The most significant risk to the project at the moment is not being able to build the prototype on time. The mechanical aspects of this project have been more challenging than anticipated. As a result, we could not finish the mechanical design as soon as we would have liked. The contingency plan right now is to have a meeting tomorrow to figure out what aspects of the system we have finalized and try to order parts for those aspects, so that we can get some subsystems out ASAP.
Another risk is that we build the force sensing/feedback protype, and the user experience is not as intuitive as we had wanted. We have looked into previous research and found that the most common solution approach for force feedback is to use haptic engines that could direct haptic feedback to specific parts of the user’s hand. However, such hardware is out of reach in terms of budget. The best way we can mitigate this is to build the remote controller prototype as soon as we can so that we have time to iterate.
In terms of design changes, we realized that ARUCO tags will not provide sufficient depth precision. We estimated depth precision to be ~7mm based on the tag’s size and the pixel resolution. Therefore, we switched from a monocular web cam to a binocular stereo cam to measure depth directly as opposed to via ARUCO tags. This will end up costing less because we are getting it from the 18-500 inventory, so it’s a win-win.
No schedule changes?
New cam!