Errata for First through Fifth Printings of Discrete-Time Signal Processing, Second Edition by Oppenheim and Schafer with Buck

Page	Where	Correction
87	Prob. 2.66	The reference to "Figure P1.66-1" should be "Figure P2.66-1."
87	Prob. 2.67	The reference to "Figure P1.67-1" should be "Figure P2.67-1."
87	Prob. 2.68	Both references to "Figure P1.68-1" should be "Figure P2.68-1."
91	Prob. 2.86	The reference to "Figure P1.86-1" should be "Figure P2.86-1."
91	Prob. 2.87	The reference to "Figure P1.87-1" should be "Figure P2.87-1."
98	First Equation of Example 3.1	Delete the extra equals sign to the right of the first Σ .
166	Fig. 4.19	The figures shown are actually $\sin(0.25\pi n)$ and $0.308\sin[0.25\pi(n-1)]$
	<u> </u>	2.5)], and not the cosines referenced in the text. See the corrected figure
		on the following page.
200	Fig. 4.55	$\tilde{H}_r(\Omega)$ should be $\tilde{H}_r(j\Omega)$.
217	Fig. P4.15-1	$H(e^{j\omega})$ should have a gain of 3, not 1.
281	Prob. 4.20(b)	$y_c(t)$ should be $y_r(t)$.
226	Fig. P4.44-1	The input to the system should be $r_c(t)$, not $x[n]$.
236	Fig. P4.58-2	The top T_2 in the figure should be T_1 , i.e., $T_1 = 2 \times 10^{-5}$ sec
236	Prob. 4.59, Line 4	"gain of unity" should be "gain of L."
		Also, Figure 2.17 should be Figure 4.28(b).
247	Sec. 5.2.1, Line 6	Y(x) should be $Y(z)$.
329	Fig. P5.48-1	The plot for $H_b(z)$ should have a 7th order pole at $z = 0$.
334	Prob. 5.60	Replace $z/(z-z_0^*)$ with $z/(z-1/z_0^*)$.
		Replace $z/(z-z_0^*)$ with $z/(z-1/z_0^*)$. The first term $\sum_{k=0}^{N_p} C_k z^{-1}$ should be $\sum_{k=0}^{N_p} C_k z^{-k}$
359	Eq. (6.34)	The first term $\sum C_k z^{-1}$ should be $\sum C_k z^{-k}$
		$\overline{k}=0$ $\overline{k}=0$ $\overline{k}=0$ $\overline{k}=0$
453	Fig. 7.9	The top tick on the vertical axis should be labeled $\frac{2\pi\alpha}{T_d}$, not $\frac{2\pi\alpha}{T_{\alpha}}$.
515	Prob. 7.15	"Which of the filters " should be "Which of the windows"
700	Fig. 10.3(c)	The labels $-2\pi/14$ and $-4\pi/15$ are reversed.
800	Fig. 11.13(b)	The label $\pi + \Omega \omega$ should be $2\pi - \omega_c$.
801	Last sentence	"handpass" should be "bandpass"
815	Eq. (A.20)	$\phi_{xx}[n,m]$ should be $\phi_{xy}[n,m]$
815	Eq. (A,21)	$\gamma_{xx}[n,m]$ should be $\gamma_{xy}[n,m]$
838	Answer 5.17	"linear-phase" should be "minimum-phase."
859	Middle Column	"Bankdpass" should be "Bandpass."

Corrected Figure 4.19

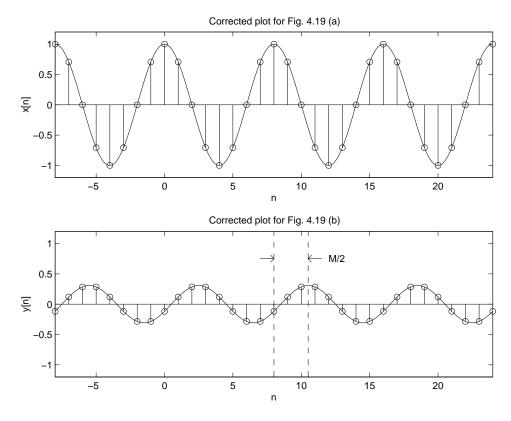


Figure 4.19 Illustration of moving-average filtering. (a) Input signal $x[n] = \cos(0.25\pi n)$. (b) Corresponding output of six-point moving-average filter.