
 

NOTES ON LINEAR PREDICTION AND LATTICE FILTERS

1. Introduction

 

Up to now we have discussed various approaches to discrete-time filter design that are all based on approx-
imating the response of ideal lowpass, highpass, or bandpass filters, etc., with the designs involving various 
deterministic satisfaction of constraints such as passband and stopband ripple, and passband and stopband 
edge frequencies. In many actual situations we seek to design a filter that produces a particular determinis-
tic frequency response, or perhaps an empirically-measured power spectral density function of a random 
process.

In this discussion we consider various types of 

 

filter design by modeling

 

, where we try to come up with the 
best parametric approximation to an arbitrary frequency response. 

In general, there are three types of models that can be considered. The 

 

moving average

 

 (MA) model has 
zeros but not poles:

The 

 

autoregressive 

 

(AR) model has poles but not zeros:

The third type of model has both poles and zeros and is called (unsurprisingly) the 

 

autoregressive moving-
average

 

 (ARMA) model:

Of the three types of filter design by modelling, the all-pole AR model is the most commonly used, largely 
because the design equations used to obtain the best-fit AR model are simpler than those used for MA or 
ARMA modelling. Serendipitiously, the all-pole model also has the ability to describe most types of 
speech sounds quite well, and for that reason it has become widely used in speech processing.

In these notes, we will begin by discussing a deterministic formulation of the all-pole model by matching 
unit sample responses. We will then reformulate the modelling problem in terms of stochastic signals, 
arriving at basically the same result. Finally, we will describe the simplest solution procedure to the all-
pole model, Levinson-Durbin recursion.
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2. Deterministic formulation of the all-pole model

 

Consider an arbitrary filter with the all-pole transfer function

(1)

Note that the polynomial coefficients in the denominator  have the superscript  to indicate the order of 
the all-pole model. Because the representation is not orthogonal, 

 

all

 

 of the coefficients change when the 
order of the model changes. 

The inverse 

 

z

 

-transform of Eq. (1

 

) 

 

is

(2)

Now we will consider the problem of obtaining a filter transfer function of the form in Eq. (1) to an arbi-
trary desired filter transfer function, . A reasonable objective is to minimize the average squared 

error between the magnitude of the frequency response of the desired filter desired  and the all-

pole filter that is obtained 

(3)

Applying Parseval’s theorem, we obtain from Eq. (3)

(4)

Since  is the system’s response to the unit sample function , we obtain from Eq. (2)
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(6)

For a particular model order 

 

P

 

 we solve for each  by rewriting Eq. (6) with a different internal dummy 

variable, obtaining the derivative of  with respect to  and setting the result to zero.

(7)

(8)

Because we will be solving this equation for values of 

 

k 

 

ranging from to  and because  is 

causal, the term with 

 

G

 

 will not enter into the solution for the . Hence our final form is

(9)

This equation is known as the 

 

Yule-Walker equation.

 

 The inner sum of the first term can be considered to be 
proportional to the time-averaged autocorrelation function of the unit sample response . The second 

term can be considered to be the time-averaged cross-correlation function of  with the ideal sample 

response . 

We will defer the solution to this equation until after the next section in which we derive a similar equation 
but for random signals.

 

3. Stochastic Formulation of the all-pole model: linear prediction

 

3.1.  A quick review of random processes

 

The basic theory of random processes is outlined briefly in Appendix A of Oppenheim, Schafer, and Buck 
(1998), specifically Sections A.1 through A.4. 

As Appendix A describes, a real zero-mean wide-sense stationary random processes , has the 

 

auto-

correlation function

 

 . Note that . The 

 

power spectral den-

sity function, 

 

 describes the distribution of frequency components of the process. 

 

 

 

is 

actually the discrete-time Fourier transform of , as was proved by Wiener and Khintchine. A ran-

dom process  is said to be 

 

white

 

 if  is constant over all values of . Hence, for a white ran-

dom process , , as the inverse DTFT of , will be of the form
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(10)

This means that if  is a white a random process with zero mean, successive samples of  will be 
statistically independent. 

3.2.  Stochastic formulation of all-pole modelling

Now let us consider the problem of an all-pole LSI system once again, but this time with a random process 
as input. Specifically, let , the input to the filter, be a wide-sense stationary white random process. 

Because the input to the linear filter is random, its output will be random as well. We assume that a random 

process  autocorrelation function  and power spectral density function  is observed. 

The ensemble-average autocorrelation function  is typically estimated by the 

corresponding time-averaged autocorrelation function

(11)

The time-averaged autocorrelation function  is equal to the ensemble-averaged autocorre-

lation function  if the random process is ergodic. Ergodicity is normally tac-

itly assumed for most random processes that you will encounter in the real world.

In the stochastic formulation of the LPC problem, we assume that a random process  is observed, and 
we attempt to develop the all-pole filter 

that would take a white process  as input and produce as output a random process with the power 

spectrum and autocorrelation function that most closely resembles  and , respectively. 

As before, the difference equation that characterizes this system is

(12)

Note that this equation expresses the current value of the output  as a linear combination of the previ-
ous P and a second term representing perturbations due to the contribution of the random input process 

. It is common to think of the sum that constitutes the first term of Eq. (12) as a linear estimate  
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of the current sample  based on the previous P estimates:

(13)

As it turns out, it can be shown that the filter coefficients  that provides the best all-pole model to the 

power spectral density function of a particular random process  are also the coefficients that minimize 

the mean squared error between the current value of  and its linear estimate . In other words, we 
will let 

(14)

and find the  that minimize

(15)

This produces the expression 

(16)

which of course is rather similar to Eq. (6). The solution proceeds in a similar fashion.... we obtain the 

derivative of  with respect to  and set the result to zero.

(17)

(18)

Since linear operations may be interchanged, we bring the expectation operator inside the sum on the left 
side of the equation. Using the definition above of the autocorrelation function Eq. (18) can be rewritten as 

(19)

This equation is very similar to Eq. (9). In fact, if we divide Eq. (9) by , we can rewrite it as

(20)

Note that both Eqs. (19) and (20) express the optimal LPC coefficients implicitly, and in terms of autocor-
relation functions (of the observed random data in Eq. (19) and of deterministic unit sample response in 
Eq. (20)).
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4. Solution of the LPC equations

4.1.  General solution of the LPC equation

Let us assume for the sake of example that . Using the simplified notational conventions

 and

The system of equations in Eq. (19) can be written for  as

(21)

These equations can be written in matrix-vector form as

(22)

Note that Eq. (22) is of the form

(23)

where R is a  matrix of autocorrelation coefficients,  is a  vector of the , and P is a 

 vector of autocorrelation coefficients. This equation is known as the Wiener-Hopf equation, which is 
encountered frequently in optimal signal processing.

A direct solution to the Wiener Hopf equation can be obtained by pre-multiplying both sides of Eq. (23) by 
the inverse of R:

(24)

The inversion of the R matrix can be accomplished by Gaussian elimination and other similar techniques, 

which are  in computational complexity. In this case, however, a simpler solution known as 
Levinson-Durbin recursion is possible because the correlation matrix R is Toeplitz; all the matrix elements 

of each diagonal, major and minor, are identical. As we will see, Levinson-Durbin recursion is  in 
complexity.
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4.2.  Levinson-Durbin recursion

Levinson-Durbin recursion provides for a faster solution for  in the system of equations

for situations in which the matrix on the left side of the equation is Toeplitz. In our application, the  

represent the autocorrelation coefficients of the random process . The solution  are the -

order predictor coefficients for the best-fit linear predictive model that transforms a white random process 
 into a random process that has autocorrelation coefficients  according to the equation

In the equations below,  can represent either  in the stochastic formulation or 

 in the deterministic formulations of linear prediction as outlined in the previ-

ous sections.

The equations of the Levinson-Durbin recursion, which are used to compute the corresponding reflection 
coefficients and LPC parameters are

(25)
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given by
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The coefficients  for  are referred to as the reflection coefficients. They constitute an alternate 

specification of the random process  that is as unique and complete as the LPC predictor coefficients 

. The reflection coefficients are actually far more robust to coefficient quantization than the predic-

tor coefficients, so they are frequently the representation of choice in applications such as speech coding or 
speech compression.

If the magnitude of the reflection coefficients  is less than 1 for , all of the roots of the polyno-

mial  will lie inside the unit circle. This means that if , the resulting filter 

 will be stable. It can be shown that deriving the  in the fashion described above using Levinson-

Durbin recursion guarantees that . 

We will make extensive use of the reflection coefficients  in our discussion of lattice filters.

5. The FIR lattice filter

Consider the basic lattice filter structure in the figure above. It should be obvious that this is an FIR filter 
structure, as it contains no feedback loops. In addition, if we let the input  be equal to , we can 

observe easily by inspection that  and . The value of  for other values of n is 

obtained by observing all the different ways of passing a signal through the lattice while incurring exactly 
n delays, and adding all of the corresponding branch transmittances. It can be seen that the sample 
response will be a linear combination of the .

5.1.  Time-domain and frequency-domain characterization of the lattice filter

Although it may not be totally obvious from the figure above, the FIR lattice filter is defined by the follow-
ing recursive relations:
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Because the structure is FIR, we can make use of the following general characterization of its transfer 
function for the entire filter:

(35)

We will also make use of the transfer function from the input to the  at a given stage of the lattice. For 

this, let

(36)

The corresponding transfer function from the input to the  at a given stage of the lattice is similarly 

(37)

We note that  and .

Using this notation, we can write the z-transforms of the equations that define the lattice as
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the Levinson-Durbin equation (and specifically Eq. (28) above), then 
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 or, of course

(45)

as specified by the Levinson-Durbin recursion. Hence, just as the standard FIR filter implements the unit 
sample response of a system, with the sample response values as the coefficients or parameters of the filter, 
the lattice filter implements the Levinson-Durbin recursion, with its reflection coefficients  as the param-

eters of the filter! The all-zero transfer function of this lattice filter is the reciprocal of the all-pole model 
used to describe the original random process, or in other words the filter  is the inverse of  in Eq. 
(1) if we set the gain parameter G equal to 1.

5.2.  Recursive relationships between the LPC coefficients and reflection coefficients

In Sec. 3 above, we discussed how the LPC coefficients can be obtained from the autocorrelation coeffi-
cients of an observed random process. We also noted in that section that the reflection coefficients com-

pletely specify the LPC characterization of a random process just as the LPC coefficients  do. In fact, 

given either set of coefficients, we can always obtain the other by a simple linear recursion.

Specifically, to convert from the reflection coefficients  to the LPC coefficients , we use the recursion
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Let 

Starting with , let 

 for (47)
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Taking the inverse z-transform we obtain

(49)

which is identical (to within a sign) to the linear prediction error defined in Eq. (14). Again, this expression 
describes the difference between the current sample  and the “best” linear prediction of  using 

the previous i samples. Hence the expression  is referred to as the ith-order forward prediction error.

Let us now consider the functions  in the lower “rail” of the lattice. Combining Eqs. (37) and (43) we 

obtain

 and (50)

(51)

Again, taking the inverse z-transform we obtain

(52)

Comparing Eqs. (49) and (52) we observe that  represents the difference between the , the 

value of the input function i samples ago, and some linear combination of the following i samples of the 
input, running from  right up to .. In fact, the same linear prediction coefficients are 

used, but they are applied backward. One way of thinking about this is that  is what we would have 

obtained if we calculated  but with the input function presented in time-reversed order. Because of all 

this,  is referred to as the ith-order backward prediction error.
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autocorrelation equations. As you will recall, equations were developed by starting with the difference 
equation relating the input and output, 
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Specifically, starting with 

we computed the partial derivative of  with respect to each of the  we obtained the equations

where 

With knowledge of the values of the autocorrelation coefficients  for  we can use 

the Levinson-Durbin recursion to obtain all the LPC coefficients  for model orders 1 through P and the 

reflection coefficients . 

We can also obtain estimates of the reflection coefficients  (and subsequently the LPC coefficients ) 

using expressions for forward and backward error developed in the previous section. Specifically, if we let 

we can compute the derivative of  with respect to  using the expression for  in Eq. (49). Setting 

that derivative equal to zero provides a value of the reflection coefficient  of a given stage of the lattice 

filter

(53)

where the superscript f in the symbol  reminds us that this version of the reflection coefficient was 

derived using the forward error 

Note that this estimate for the reflection coefficient is expressed in terms of the expected values of the 
products of the forward and backward errors of the previous stage in the numerator, and the expected value 
of the square of the backward prediction error in the denominator. The expression in the numerator is actu-
ally the cross-correlation of the forward and backward error functions of the previous stage, and the 
expression in the denominator is the energy of the backward error of the previous stage. Because of these 
physical interpretations, this method of obtaining the estimate of the reflection coefficients is referred to as 
the partial correlation or PARCOR method. In the approach of Sec. 3 we began by calculating the autocor-
relation functions of the input directly; in this approach the input autocorrelation is done indirectly, 
through a recursive computation of cross-correlation of prediction error functions. This approach has some 
very attractive statistical properties and is widely used.
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Of course, there is nothing magic about the forward prediction error. We can just as easily perform a simi-
lar calculation with the backward prediction error . Performing a similar set of operations on the 

backward prediction error produces the very similar estimate for the reflection coefficient

(54)

Various methods have been proposed for combining the two estimates of the reflection coefficients 

obtained using the PARCOR method,  and . For example, the Itakura estimate of the reflection coef-

ficients is obtained by combining these two results according to the equation

(55)

The Burg estimate of the reflection coefficients produced by combining these two results according to the 
equation 

(56)

Although we derived the expressions for the reflection coefficients using functions derived from the ensem-
ble averaged forward and backward error,  and , in practice we normally use the corre-

sponding time averages of these functions such as 

(57)

Time averages are equal to the corresponding ensemble averages if the random processes concerned are all 
stationary and ergodic. 

6. IIR lattice filters

As noted above, we have developed an all-zero lattice filter in the previous section with the transfer func-
tion 

Referring to the figure at the begining of Sec. 5, we note that the input is  and the output is 

. If we could maintain the same filter structure but interchange the input and output, we 

would obtain the transfer function

(58)
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which clearly is an all-pole transfer function, and in fact is exactly the transfer function of the original filter 
considered, , with the gain factor G set equal to 1.

Recall that the original definitions of the stages of the FIR lattice filter were 

(59)

(60)

With a trivial amount of algebra, Eq. (59) can be rewritten as 

(61)

Eqs. (60) and (61) suggest the following lattice stucture for a single stage:

Combining into multiple stages, we obtain the following IIR lattice structure:

Note that  is now the input and that  is the output. This filter will have the transfer function

(62)

where the LPC parameters are related to the reflection coefficients according to the usual Levinson-Durbin 
relationship. Since the filter is IIR with feedback loops, it does have the potential to be unstable. However, 
it is guaranteed to remain stable if 

 for all i. (63)

7. Additional reading

The discussions on linear prediction were based on my class notes, which in turn are largely derived from 
the text Digital Processing of Speech Signals by L. R. Rabiner and R. W. Schafer (Prentice-Hall, 1978). 
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Additional material on lattice filters was derived from Section 6.6 of Discrete-Time Signal Processing by 
A. V. Oppenheim and R. W. Schafer (Prentice-Hall, 1988). This material, which was passed out in class, 
was omitted from the current second edition of that text. The newer text Discrete-Time Speech Signal Pro-
cessing by T. F. Quatieri (Prentice-Hall, 2002) is also highly recommended and goes into deeper detail than 
Rabiner and Schafer in some aspects of the topics considered.


