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FREQUENCY
SAMPLING
FORM

In this form we use the fact that the system function H (2) of an FIR
filter can be reconstructed from its samples on the unit circle. From our
discussions on the DFT in Chapter 5 we recall that these samples are in
fact the M-point DFT values {H (k), 0 <k < M — 1} of the M-point
impulse response h (n). Therefore we have

H(z) = Z[h(n)]
— Z[IDFT {H ()}

Using this procedure, we obtain [see (5.17) on page 127]

M M-1
H(z)= (1__—_Z__M) 3 r__fﬂc)___ (6.12)

—k._1
M k=0 WM z

This shows that the DFT H (k), rather than the impulse response h (n)
(or the difference equation), is used in this structure. It is also interesting
to note that the FIR filter described by (6.12) has a recursive form similar
to an IIR filter because (6.12) contains both poles and zeros. The resulting
filter is an FIR filter since the poles at W;,* are canceled by the roots of

1-2M=9

The system function in (6.12) leads to a parallel structure as shown in
Figure 6.15 for M = 4. :

One problem with the structure in Figure 6.15 is that it requires a
complex arithmetic implementation. Since an FIR filter is almost always a
real-valued filter, it is possible to obtain an alternate realization in which
only real arithmetic is used. This realization is derived using the symmetry
properties of the DFT and the W;;* factor. Then (6.12) can be expressed
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FIGURE 6.15 Frequency sampling structure for M = 4

as (see Problem 6.10)

=22 {22|H(k)|Hk(z)+ H(°21+fl1%le)} (6.13)

where L = %=1 for M odd, L = ¥ —1 for M even, and {H (), k=1,
., L} are second-order sections given by
cos[£H (k)] — 27  cos [LH (k) — Z2E]
1-22"1cos (-2—)"'4—'°) + 272

Hy (2) = (6.14)

Note that the DFT samples H (0) and H (M/2) are real-valued and that
the third term on the right-hand side of (6.13) is absent if M is odd. Using
(6.13) and (6.14), we show a frequency sampling structure in Figure 6.16
for M = 4 containing real coefficients.
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FIGURE 6.16 Frequency sampling structure for M = 4 with real coefficients
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MATLAB

Given the impulse response h (n) or the DFT H (k), we have to deter-

IMPLEMEN- mine the coefficients in (6.13) and (6.14). The following MATLAB function,
TATION dir2fs, converts a direct form (h (n) values) to the frequency sampling
form by directly implementing (6.13) and (6.14).
function [C,B,A] = dir2fs(h)
% Direct form to Frequency Sampling form conversion
%
% [C,B,A]l = dir2fs(h)
% C = Row vector containing gains for parallel sections
% B = Matrix containing numerator coefficients arranged in rows
% A = Matrix containing denominator coefficients arranged in rows
% h = impulse response vector of an FIR filter
%
M = length(h);
H = £ft(h,M);
magH = abs(H); phaH = angle(H)’;
% check even or odd M
if (M == 2xfloor(M/2))
L = M/2-1; 4 M is even
A1 = [1,-1,0;1,1,0];
C1 = [real(H(1)),real (H(L+2))];
else
L = (M-1)/2; % M is odd
Al = [1,-1,0];
C1 = [real(H(1))];
end
k = [1:L]’;
% initialize B and A arrays
B = zeros(L,2); A = ones(L,3);
% compute denominator coefficients
A(1:L,2) = -2xcos(2*pi*k/M); A = [A;A1];
% compute numerator coefficients
B(1:L,1) = cos(phaH(2:L+1));
B(1:L,2) = -cos(phaH(2:L+1)-(2*pi*k/M));
% compute gain coefficients
C = [2+magH(2:L+1),C1]°;
In the above function the impulse response values are supplied through the
h array. After conversion, the C array contains the gain values for each
parallel section. The gain values for the second-order parallel sections
are given first, followed by H (0) and H (M/2) (if M is even). The B
matrix contains the numerator coefficients, which are arranged in length-
2 row vectors for each second-order section. The A matrix contains the
denominator coefficients, which are arranged in length-3 row vectors for
the second-order sections corresponding to those in B, followed by the
coeflicients for the first-order sections.
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a EXAMPLE 6.6

Solution

A practical problem with the structure in Figure 6.16 is that it has
poles on the unit circle, which makes this filter critically unstable. If the
filter is not excited by one of the pole frequencies, then the output is
bounded. We can avoid this problem by sampling H (z) on a circle |z| = r,
where the radius r is very close to one but is less than one (e.g., r = 0.99),
which results in

1-rM-M 0 H(k) ik
_ E . — wk/M
H(z) = M Wi H(k)=H (reJ )

(6.15)

Now approximating H (re/2™*/M) ~ H (e/2™*/M) for r ~ 1, we can obtain
a stable structure similar to the one in Figure 6.16 containing real values.
This is explored in Problem 6.11.

Let h(n) = §{1,2,3,2,1}. Determine and draw the frequency sampling form.
. )

MATLAB Script
>> h = [1,2,3,2,1)/9;
>> [C,B,A] = dir2fs(h)
C=
0.5818
0.0849
1.0000
B =
-0.8090 0.8090
0.3090 -0.3090
A=
1.0000 -0.6180 1.0000
1.0000 1.6180 1.0000
1.0000 -1.0000 0

Since M = 5 is odd, there is only one first-order section. Hence

| P —0.809 + 0.809z~1
H(z) = — [0'5818 1—-0.6182-1 + z-2
0.309 — 0.309z! 1
MR P W TP el g
The frequency sampling form is shown in Figure 6.17. O
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O EXAMPLE 6.7
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FIGURE 6.17 Frequency sampling structure in Ezample 6.6

The frequency samples of a 32-point linear-phase FIR filter are given by
1, k=0,1,2
|H(k)]=<0.5, k=3
0, k=4,5,...,15

Determine its frequency sampling form, and compare its computational com-
plexity with the linear-phase form.

Solution In this example since the samples of the DFT H (k) are given, we could use
(6.13) and (6.14) directly to determine the structure. However, we will use the
dir2fs function for which we will have to determine the impulse response h (n).
Using the symmetry property and the linear-phase constraint, we assemble the
DFT H (k) as
H (k)= |Hk)|&4H®, k=0,1,...,31
|H (k)| =|H((32~k)|, k=1,2,...,31; H{)=1
(HE) =-22 - _/HE2—k), k=0,1,...,31
2 32
Now the IDFT of H (k) will result in the desired impulse response.
>> M = 32; alpha = (M-1)/2;
>> magHk = [1,1,1,0.5,zeros(1,26),0.5,1,1];
>> k1 = 0:156; k2 = 16:M-1;
>> angHk = [-alpha*(2*pi)/Mxkl, alpha*(2*pi)/M*(M-k2)];
>> H = magHk.*exp(j*anghk) ;
>> h = real (ifft(H,M));
>> [C,B,A] = dir2fs(h)
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.9962
.9808
.9569
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.7121
.2038
.85651
.0000
.5792
.9883
.4993
.3162
.3039
.9996
.8084
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.8478
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.1111
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.3902
.0000
.3902
.7654
L1111
.4142
.6629
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1.0000 1.8478 1.0000
1.0000 1.9616 1.0000
1.0000 -1.0000 : 0
1.0000 1.0000 0

Note that only four gain coeflicients are nonzero. Hence the frequency sampling
form is

—~0.9952 +0.99522"" _ , 0.9808 — 0.9808z~* +
H(z) = 1—2732 1-1.96162"1+ 22 1—1.8478z-1 + 22
32 —0.9569 + 0.95692 1

1-1.6629271+272  1-271

To determine the computational complexity, note that since H (0) = 1, the first-
order section requires no multiplication, while the three second-order sections
require three multiplications each for a total of nine multiplications per output
sample. The total number of additions is 13. To implement the linear-phase
structure would require 16 multiplications and 31 additions per output sample.
Therefore the frequency sampling structure of this FIR filter is more efficient
than the linear-phase structure. o





