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Introduction

 In our lecture last Tuesday we described and discussed the
basic decimation-in-time Cooley-Tuckey fast Fourier transform
algorithm for DFT sizes that are integer powers of 2 (radix 2)

 Today we will discuss some variations and extensions of the
basic FFT algorithm:
– Alternate forms of the FFT structure

– Computation of the inverse DFT

– The decimation-in-frequency FFT algorithm

– FFT structures for DFT sizes that are not an integer power of 2
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Alternate FFT structures

 We developed the basic decimation-in-time (DIT) FFT structure
in the last lecture, but other forms are possible simply by
rearranging the branches of the signal flowgraph

 Consider the rearranged signal flow diagrams on the following
panels …..
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Alternate DIT FFT structures (continued)

 DIT structure with input bit-reversed, output natural (OSB
9.10):
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Alternate DIT FFT structures (continued)

 DIT structure with input natural, output bit-reversed (OSB
9.14):
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Alternate DIT FFT structures (continued)

 DIT structure with both input and output natural (OSB 9.15):
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Alternate DIT FFT structures (continued)

 DIT structure with same structure for each stage (OSB 9.16):
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Comments on alternate FFT structures

 A method to avoid bit-reversal in filtering operations is:
– Compute forward transform using natural input, bit-reversed output (as

in OSB 9.10)

– Multiply DFT coefficients of input and filter response (both in bit-
reversed order)

– Compute inverse transform of product using bit-reversed input and
natural output (as in OSB 9/14)

 Latter two topologies (as in OSB 9.15 and 9.16) are now rarely
used
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Using FFTs for inverse DFTs

 We’ve always been talking about forward DFTs in our
discussion about FFTs …. what about the inverse FFT?

 One way to modify FFT algorithm for the inverse DFT
computation is:
– Replace           by           wherever it appears

– Multiply final output by

 This method has the disadvantage that it requires modifying
the internal code in the FFT subroutine
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A better way to modify FFT code for
inverse DFTs

 Taking the complex conjugate of both sides of the IDFT
equation and multiplying by N:

 This suggests that we can modify the FFT algorithm for the
inverse DFT computation by the following:
– Complex conjugate the input DFT coefficients

– Compute the forward FFT

– Complex conjugate the output of the FFT and multiply by

 This method has the advantage that the internal FFT code is
undisturbed; it is widely used.
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The decimation-in-frequency (DIF)
FFT algorithm

 Introduction: Decimation in frequency is an alternate way of
developing the FFT algorithm

 It is different from decimation in time in its development,
although it leads to a very similar structure
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The decimation in frequency FFT (continued)

 Consider the original DFT equation ….

 Separate the first half and the second half of time samples:

 Note that these are not N/2-point DFTs
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Continuing with decimation in frequency ...

 For k  even, let

 For k odd, let

 These expressions are the N/2-point DFTs of
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These equations describe the following
structure:
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Continuing by decomposing the odd and even
output points we obtain …
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… and replacing the N/4-point DFTs by
butterflys we obtain
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The DIF FFT is the transpose of the DIT FFT

 To obtain flowgraph transposes:
– Reverse direction of flowgraph arrows

– Interchange input(s) and output(s)

         DIT butterfly:   DIF butterfly:

 Comment:
– We will revisit transposed forms again in our discussion of filter

implementation
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The DIF FFT is the transpose of the DIT FFT

 Comparing DIT and DIF structures:
DIT FFT structure:    DIF FFT structure:

 Alternate forms for DIF FFTs are similar to those of DIT FFTs
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Alternate DIF FFT structures

 DIF structure with input natural, output bit-reversed (OSB
9.20):
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Alternate DIF FFT structures (continued)

 DIF structure with input bit-reversed, output natural (OSB
9.22):
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Alternate DIF FFT structures (continued)

 DIF structure with both input and output natural (OSB 9.23):

Carnegie
Mellon        Slide 22     ECE Department

Alternate DIF FFT structures (continued)

 DIF structure with same structure for each stage (OSB 9.24):
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FFT structures for other DFT sizes

 Can we do anything when the DFT size N is not an integer
power of 2 (the non-radix 2 case)?

 Yes!  Consider a value of N that is not a power of 2, but that
still is highly factorable …

 Then let
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Non-radix 2 FFTs (continued)

 An arbitrary term of the sum on the previous panel is

 This is, of course, a DFT of size      of points spaced by
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Non-radix 2 FFTs (continued)

 In general, for the first decomposition we use

 Comments:
– This procedure can be repeated for subsequent factors of N

– The amount of computational savings depends on the extent to which N
is “composite”, able to be factored into small integers

– Generally the smallest factors possible used, with the exception of some
use of radix-4 and radix-8 FFTs
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An example …. The 6-point DIT FFT

 P1 = 2; P2 = 3;
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Summary

 This morning we considered a number of alternative ways of
computing the FFT:
– Alternate implementation structures

– The decimation-in-frequency structure

– FFTs for sizes that are non-integer powers of 2

– Using standard FFT structures for inverse FFTs

 Starting on Tuesday we will begin to discuss digital filter
implementation structures


