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Introduction

B In our lecture last Tuesday we described and discussed the
basic decimation-in-time Cooley-Tuckey fast Fourier transform
algorithm for DFT sizes that are integer powers of 2 (radix 2)

B Today we will discuss some variations and extensions of the
basic FFT algorithm:

— Alternate forms of the FFT structure
— Computation of the inverse DFT
— The decimation-in-frequency FFT algorithm

— FFT structures for DFT sizes that are not an integer power of 2
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Alternate FFT structures

B We developed the basic decimation-in-time (DIT) FFT structure
in the last lecture, but other forms are possible simply by
rearranging the branches of the signal flowgraph

B Consider the rearranged signal flow diagrams on the following
panels .....
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Alternate DIT FFT structures (continued)

B DIT structure with input bit-reversed, output natural (OSB
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Alternate DIT FFT structures (continued)

B DIT structure with input natural, output bit-reversed (OSB
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Alternate DIT FFT structures (continued)

B DIT structure with both input and output natural (OSB 9.15):
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Alternate DIT FFT structures (continued)

B DIT structure with same structure for each stage (OSB 9.16):
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Comments on alternate FFT structures

B A method to avoid bit-reversal in filtering operations is:

— Compute forward transform using natural input, bit-reversed output (as
in OSB 9.10)

— Multiply DFT coefficients of input and filter response (both in bit-
reversed order)

— Compute inverse transform of product using bit-reversed input and
natural output (as in OSB 9/14)

B Latter two topologies (as in OSB 9.15 and 9.16) are now rarely
used
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Using FFTs for inverse DFTs

B We’ve always been talking about forward DFTs in our
discussion about FFTs .... what about the inverse FFT?
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B One way to modify FFT algorithm for the inverse DFT
computation is:

— Replace 1 by “. wherever it appears
— Multiply final output by 11

B This method has the disadvantage that it requires modifying
the internal code in the FFT subroutine
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A better way to modify FFT code for
inverse DFTs

B Taking the complex conjugate of both sides of the IDFT
equation and multiplying by N:
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B This suggests that we can modify the FFT algorithm for the
inverse DFT computation by the following:

— Complex conjugate the input DFT coefficients
— Compute the forward FFT
— Complex conjugate the output of the FFT and multiply by Il Il

B This method has the advantage that the internal FFT code is
undisturbed; it is widely used.
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The decimation-in-frequency (DIF)
FFT algorithm

B Introduction: Decimation in frequency is an alternate way of
developing the FFT algorithm

B It is different from decimation in time in its development,
although it leads to a very similar structure
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The decimation in frequency FFT (continued)

B Consider the original DFT equation ....
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B Separate the first half and the second half of time samples:
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B Note that these are not N/2-point DFTs
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Continuing with decimation in frequency ...
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B These ex'p-r.essions are the N/2-point DFTs of
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These equations describe the following
structure:
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Continuing by decomposing the odd and even
output points we obtain ...
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... and replacing the N/4-point DFTs by
butterflys we obtain




The DIF FFT is the transpose of the DIT FFT

B To obtain flowgraph transposes:
— Reverse direction of flowgraph arrows
— Interchange input(s) and output(s)

u DIT butterfly: DIF butterfly:
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B Comment:

— We will revisit transposed forms again in our discussion of filter
implementation
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The DIF FFT is the transpose of the DIT FFT

B Comparing DIT and DIF structures:

DIT FFT structure: DIF FFT structure:
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B Alternate forms for DIF FFTs are similar to those of DIT FFTs
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Alternate DIF FFT structures

B DIF structure with input natural, output bit-reversed (OSB
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Alternate DIF FFT structures (continued)

B DIF structure with input bit-reversed, output natural (OSB
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Alternate DIF FFT structures (continued)

B DIF structure with both input and output natural (OSB 9.23):
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Alternate DIF FFT structures (continued)

B DIF structure with same structure for each stage (OSB 9.24):

x[0] o X0]
x[1] a X[1]
*[2)3 P s o X2

B3 X ‘- o xp3

[4] /\‘ P X[4]
x[5]d . X[5)
x[6] X[e]

eﬁie
0 Slide 22 ECE Department




FFT structures for other DFT sizes

B Can we do anything when the DFT size N is not an integer
power of 2 (the non-radix 2 case)?

B Yes! Consider a value of N that is not a power of 2, but that
still is highly factorable ...
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Non-radix 2 FFTs (continued)

B An arbitrary term of the sum on the previous panel is
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B This is, of course, a DFT of size i of points spaced by m
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Non-radix 2 FFTs (continued)

B In general, for the first decomposition we use
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B Comments:
— This procedure can be repeated for subsequent factors of N

— The amount of computational savings depends on the extent to which N
is “composite”, able to be factored into small integers

— Generally the smallest factors possible used, with the exception of some
use of radix-4 and radix-8 FFTs
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An example .... The 6-point DIT FFT
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Summary

B This morning we considered a number of alternative ways of
computing the FFT:

— Alternate implementation structures
— The decimation-in-frequency structure
— FFTs for sizes that are non-integer powers of 2

— Using standard FFT structures for inverse FFTs

B Starting on Tuesday we will begin to discuss digital filter
implementation structures
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