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Introduction

n Last week we discussed the Z-transform at length, including
the unit sample response, ROC, inverse Z-transforms  and
comparison to the DTFT and difference equations

n Today we will discuss the frequency response of LSI systems
and how it relates to the system function in Z-transform form

n Specifically we will 

—Relate magnitude and phase of DTFT to locations of poles and zeros in
z-plane

—Discuss several important special cases:

¨ All-pass systems

¨ Minimum/maximum-phase systems

¨ Linear phase systems
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Review - Difference equations and Z-
transforms characterizing LSI systems

n Many LSI systems are characterized by difference equations of
the form

n They produce system functions of the form

n Comment: This notation is a little different from last week s
(but consistent with the text in Chap, 5)
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Difference equations and Z-transforms
characterizing LSI systems (cont.)

n Comments:

—LSI systems characterized by difference equations produce z-
transforms that are ratios of polynomials in z or z-1

—The zeros are the values of z that cause the numerator to equal zero,
and the poles are the values of z that cause the denominator
polynomial to equal zero
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Discrete-time Fourier transforms and the
Z-transform

n Recall that the DTFT is obtained by evaluating the z-transform
along the contour

n The DTFT is generally complex and typically characterized by
its magnitude and phase:
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Obtaining the magnitude and phase of the
DTFT by factoring the z-transform

n Factoring the z-transform:

n Comment: The constants      and       are the zeros and poles of
the system respectively
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So what do those terms mean, anyway?

n Convert into a polynomial in z by multiplying numerator and
denominator by largest power of z:

n Now consider one of the numerator terms,
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Note that the vector (z-ck) is
the length of line from the
zero to the current value of z
or the distance from the zero
to the unit circle.
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Finding the magnitude of the DTFT

n Magnitude:

n Comment: The magnitude is the product of magnitudes from zeros
divided by product of magnitudes from poles
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Finding the phase of the DTFT

n Phase:

n Comment: The magnitude is the sum of the angles from the zeros
minus the sums of the angles from the poles
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Example 1: Unit time delay

n Pole-zero pattern:       Frequency response:

H z z( ) = −1
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Example 2: Decaying exponential sample
response

n Pole-zero pattern:       Frequency response:
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Example 3: Notch filter

n Pole-zero pattern:       Frequency response:
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Summary (first half)

n The DTFT is obtained by evaluating the z-transform along the
unit circle

n As we walk along the unit circle,

—The magnitude of the DTFT is proportional of the product of the
distances from the zeros divided by the product of the distances from
the poles

—The phase of the DTFT is (within additive constants) the sum of the
angles from the zeros minus the sum of the angles from the poles

n After the break:

—Allpass systems

—Minimum-phase and maximum-phase systems

—Linear-phase systems
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Special types of LSI systems

n We can get additional insight about the frequency-response
behavior of LSI systems by considering three special cases:

—Allpass systems

—Systems with minimum or maximum phase

—Linear-phase systems
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All-pass systems

n Consider an LSI system with system function

with αααα complex ..

n Let

—Then there is a pole at

—And a zero at

n Comment: We refer to this configuration as mirror image
poles and zeros
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Frequency response of all-pass systems

n Obtaining magnitude of frequency response directly:
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Frequency response of all-pass systems

n All-pass systems have mirror-image

sets of poles and zeros

n All-pass systems have a frequency

response with constant magnitude
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System functions with the same magnitude can
have more than one phase function

n Consider two systems:

System 1: pole at .75, zero at .5    System 2: pole at .75, zero at 2

n Comment: System 2 can be obtained by cascading System 1
with an all-pass system with a pole at .5 and a zero at 2.  Hence
the two systems have the same magnitude.
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But what about the two phase responses?

Response of System 1:                 Response of System 2:

n Comment: Systems have same magnitude, but System 2 has
much greater phase shift
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General comments on phase responses

n System 1 has much less phase shift than System 2; this is
generally considered to be good

n System 1 has its zero inside unit circle; System 2 has zero its
zero outside the unit circle

n A system is considered to be of minimum phase  if all of its
zeros lie inside the unit circle

n A system is considered to be of maximum phase  if all of its
zeros lie outside the unit circle

n Systems with more than one zero might have neither minimum
nor maximum phase
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A digression: Symmetry properties of DTFTs

n Recall from DTFT properties:
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Consequences of Hermitian symmetry

n If
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Zero phase systems

n Consider an LSI system with an even unit sample response:

n DTFT is

n Comments:
—Frequency response is real, so system has zero  phase shift

—This is to be expected since unit sample response is real and even
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Linear phase systems

n Now delay the system s sample response to make it causal:

n DTFT is now

n Comment:
—Frequency response now exhibits linear phase shift
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An additional comment or two

n The system on the previous page exhibits linear phase shift

n This is also reasonable, since the corresponding sample
response can be thought of as a zero-phase sample response
that undergoes a time shift by two samples (producing a linear
phase shift in the frequency domain)

n Another way to think about this is as a sample response that is
even symmetric about the sample n=2

n Linear phase is generally considered to be more desirable than
non-linear phase shift

n If a linear-phase system is causal, it must be finite in duration.
(The current example has only 5 nonzero samples.)
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Another example of a linear phase systems

n Now let s consider a similar system but with an even number of
sample points:

n DTFT is
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Comments on the last system

n The system on the previous page also exhibits linear phase
shift

n In this case the corresponding sample response can be
thought of as a zero-phase sample response that undergoes a
time shift by 2.5 samples

n In this case the unit sample response is symmetric about the
point  n=2.5

n This type of system exhibits generalized linear phase ,
because the unit sample response is symmetric about a
location that is between two integers
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Four types of linear-phase systems

n Oppenheim and Schafer refer to four types systems with
generalized linear phase.  All have sample points that are
symmetric about its midpoint.

—Type I: Odd number of samples, even symmetry

—Type II: Even number of samples, even symmetry

—Type III: Odd number of samples, odd symmetry

—Type IV: Even number of samples, odd symmetry
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Summary of second half of lecture

n All-pass systems have poles and zeros in mirror-image  pairs

n Minimum phase causal and stable systems have all zeros (as
well as all poles) inside the unit circle

n Maximum phase causal and stable systems have all zeros
outside the unit circle

n Linear phase systems have unit sample responses that are
symmetric about their midpoint (which may  lie between two
sample points


