Lab 4: Real-Time Operating Systems
18-349 Fundamentals of Embedded Systems

Part 1 Due: December 7, 2012, 11:59pm EDT
Part 2 Due: December 7, 2012, 11:59pm EDT
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1 Introduction

1.1 Overview

In this lab, you will get to implement the internals of a real-time operating system. Real time operating
systems have a number of subsystems, but their most important functions are task scheduling, resource
allocation and memory protection (a form of fault isolation). Given the time constraints of this lab, we will
not be able to fully develop all three of these aspects. Until now, resource allocation was the primary focus
of the assignments. In this assignment, the focus will shift to task management. The kernel for this lab is
rather uninterestingly named Gravelv2.

The lab is divided into two parts. The first deals with basic infrastructure, context switching, task man-
agement, concurrency control through mutexes and interface layers. The second deals with admission
control and the priority inheritance locking discipline.

The primary tasks for this lab are:

e Familiarizing yourself with the real-time kernel infrastructure.

Changing your libc and userspace to work with this new kernel.

Implement context switching, task management

¢ Implement mutexes for concurrency control

Implementing a predicate for the UB admission control algorithm to verify the schedulability of the
given task set.

e Implement priority ceiling emulation protocol.

You will be provided with a basic kernel skeleton code that you will have to extend. You will also need to
port your code from previous labs (with some changes) to support interrupts and context switching. You
will also be responsible for providing your own userspace libc support. Within this framework, you will
implement predicates for the UB test and scheduling policy routines.

Please note that this lab is due at the end of the semester. As a result, there is no room for extensions. Please
start early. Come to office hours and make full use of the class mailing list. This lab is considerably more
difficult than the previous labs. You will need to start early in order to finish it on time. As in previous labs, course
staff can point you in the right direction if you are experiencing problems in determing how you go about
doing the lab. But it is unlikely that the course staff would be able to point out exactly where your code is
going wrong.

1.2 Tasks

The end result of this lab would be a kernel that will allow multiple tasks to run on gumstix and also allow
tasks to share data (safely) amongst each other. We will list some of the tasks that you will have to perform
in the lab here. You may use this as a check list while you complete this lab. For this lab, you will:

1. Port your SWI handler and syscall code from the Gravel kernel to the Gravelv2 kernel, adding and
removing sycall wrappers as needed.

Write code for additional syscalls to support task creation and task management.
Write code to do context switching between tasks and concurrency control through mutexes.
Write the UB admission test to determine if a task set is schedulable (Part 2).

Write code to prevent unbounded priority inversion through highest locker priority protocol (Part 2).
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Write clean, modular, maintainable, readable code



1.3 Lab Support Code

Please download the support code for this lab from the course web site.
Throughout this lab we will ask you to modify the support code in order to implement your lab solution.
At the end of the lab, you must turn in these files according to the handin procedure specified in Section|[6.1}

You may work and compile code by using the cross compilation environment provided on Blackboard.
Please read the cross-compilation handout for instructions on how to set up your environment. Also note
that any code that you write should not be compiler or linker dependent. You are to strictly adhere to

ATPCS standards when writing assembly code and use reasonable discretion when using GNU features in
C.

1.4 Academic Honesty

The course staff will be reusing a lot of the material from this version of the course in the next one. Please do
not hand other students course material from this lab as this will detract from their learning experience. The
course staff may compare the code you submit with code submitted by other students (current or previous)
to detect academic integrity violations.

2 Background

In this section, we will introduce terminology that is common within the operating systems and real-time
systems communities. This will help clarify ideas and comments in the given code, and will also make the
following sections easier to follow.

Predicate A predicate is a logical statement that can either be true or false. In the context of this lab, we use
predicate to mean a function that can either return success or failure (true/false).

Scheduler The scheduler is a part of the kernel that is in charge of deciding the order in which tasks run
and the length of each run. The scheduling policy that a scheduler follows is the theoretical frame-
work that the scheduler employs in making its allocation decisions. Note that there is no mention of
context switching or architecture specific implementation details. In this lab, you will be implement-
ing sections of a scheduler, and in particular the predicates needed to implement the rate monotonic
scheduling policy.

Dispatcher The dispatcher deals with enforcing the scheduler’s policy. The context switch and task switch
routines are under the purview of the dispatcher.

Run queue The run queue or run list is a list of tasks that are currently runnable that satisfy some criteria.
On simple round-robin scheduling systems, there is one system run list where runnable tasks are
served in a first come first served (FCFS) manner (hence the name run queue). Systems that have
multiple task priorities do not have a universal run queue. Gravelv2 has a ‘run list’ for every priority
level on the system, but since there are as many priorities as tasks on Gravelv2, the scheduler enforces
that no more than one task can be in a run queue at once. Hence, we end up not using the FCFS nature
of the queue, working instead on a purely priority based scheduling policy.

Task state During the life-time of a task, it can be in a number of states. All tasks start out as runnable. The
scheduler can only schedule runnable tasks to run. When a runnable task is scheduled to run, it is
now in the running state. A running task can block on a lock or an event. When it does this, the task
moves to the blocked state. A task that is blocked cannot be scheduled to run. It can be made runnable
upon the signaling of an appropriate event. In traditional operating systems, a task that is exiting will
move from the running state to the undead or zombie state at which point it will be reaped and have its
resources returned to the system in an appropriate manner. In Gravelv2, no tasks exit and all tasks
are assumed to be periodic forever. Please remember that the scheduler will not (and is not supposed
to) schedule any task that is not runnable.



3 Gravelv2 Architecture Overview

In this section, we will describe the general architecture of the Gravelv2 kernel. This is to help you get
acquainted to the code base so that you can efficiently and correctly exploit all of its features.

3.1 Interface and Separation

Many real-time kernels do not enforce a strict boundary between the kernel and the many tasks that run
atop it. This is done for practical and performance reasons. Yet other schools of thought maintain that re-
gardless of performance, kernel design must not compromise on a clear interface layer between the kernel
(sometimes called the supervisor or the monitor) and the rest of the tasks. In this lab project, we are not uti-
lizing the ARM’s virtual memory or memory protection subsystems. Nevertheless, we want to encourage
a modular design and adequate separation between monitor tasks and unprivileged tasks. Hence, we will
still maintain two separate binaries with a well defined ABI between them.

The Gravelv2 kernel still follows the syscall interface from the previous labs although support for indi-
vidual syscalls have changed. For e.g., the exit syscall is no longer supported because tasks are assumed
to be periodic for all time. The SWI number for exit has been deprecated and calling exit will not cause an
invalid syscall to happen. Gravelv2 does not attempt to return to U-boot under all circumstances. Even
on an invalid syscall, Gravelv2 panics and stalls, but does not return to U-boot. The kernel also ignores all
arguments from U-boot. The kernel API has been updated to reflect this. A new syscall has been added
called task_create. This syscall will be part of this lab’s focus as it instructs the kernel to launch the given
task-set. Please refer to the API spec [2] for more details.

3.2 TCBs and kernel stacks

For every task that the kernel is instructed to run, the kernel maintains an in-kernel data structure that
describes the task’s current state, its general execution behavior and scheduling policy information on that
task. This block of information is the called the task control block or, sometimes, the thread control block
(TCB). Part of the description of the task’s current state is the task’s kernel stack. When the task is executing
a SWI, it must execute on a supervisor stack. But since we have a preemptible kernel, we cannot share the
supervisor stack between multiple tasks. Hence, each task gets its own kernel stack.

Gravelv2 can only support a fixed number of tasks (64). Hence, all the kernel stacks and TCBs are allo-
cated statically during kernel initialization. Users of the kernel need not worry about task kernel resources.
They only need to ascertain that they have enough user memory to allocate the task stacks and resources.

3.3 SWIs and IRQs

In Gravelv2, when a SWI is taken, all user context registers are saved, including the supervisor spsr. Grav-
elv2 uses spsr as a scratch register to allow the IRQ handler to work correctly. Hence, whenever interrupts
are enabled, spsr should be considered a scratch register that is liable to change at any time. Gravelv2
enables IRQs quickly after saving user context in the SWI to the current task’s kernel stack. This allows
Gravelv2 to be preemptible in kernel. IRQs do not run on a stack of their own. IRQs use a temporary
buffer as scratch space to transplant themselves into the current thread’s kernel stack and continue execu-
tion there. This is done carefully to avoid overwriting any SWI state already on the stack if the IRQ happens
to be taken in the middle of a SWI. Please read the top-level IRQ handler code that has been supplied with
the support code and modify your own SWI handler routine (from previous labs) appropriately so that
interrupts are enabled even when a swi instruction is executed and everything works properly.

3.4 Context Switcher

The context switcher in Gravelv2 runs in supervisor/kernel mode. This can be assumed because all SW1s
and IRQs run in supervisor mode and not in separate modes. The context switcher is parametrized to take
a source and target context region. The source region is used to store all callee save registers that need to be
preserved during the switch. The same registers are reloaded from the target context region. Note that the



spsr is not saved because it is considered a scratch register in our model. This entire operation is performed
with interrupts disabled. The disabling of interrupts must be done externally and is not enforced in the
routine itself.

3.5 Drivers

The timer and interrupt controller drivers follow the same specification as the drivers in lab 3. You can use
your implementation of Lab 3 for this part. If you are unsure about your own code (particularly, if you
wrote “spaghetti code”) for lab 3, please talk to the course instructor.

3.6 Scheduler

This section does not have a large description here as you will be implementing portions of it. The sched-
uler uses the priority order preselected for it. This order will be determined by code that you write. We
recommend that you write code that implements rate-monotonic scheduling.

3.7 Run Queues

Gravelv2 has one run-queue for every priority level on the system. Since we are implementing a rate
monotonic scheduler, there is one priority level for every task, and no more than one task is ever on the
same run-queue. The task selection routines should quickly access the next highest priority task without
performing a linear scan on the run-queues (as discussed during the lecture). Tasks are divided into task
groups based on their priority. We have a maximum of 64 tasks in our system. This requires 6 bits to
represent. We break this up into 8 groups of 8 tasks each — requiring 3 bits to represent the group and 3
to represent the task number in each group. We now maintain bitfields that denote whether a run queue
is occupied, and whether a group is occupied. To find the highest priority task quickly, we find the first
non-empty group by using a table based lookup. Once we have the highest group, we then lookup the
highest priority task in each group. Please note that priority 0 is the highest priority and 63 is the lowest.
You will need to write the code detailing this in kernel/sched/run_queue.c.

3.8 Execution Environment

The execution environment for this kernel has not been changed from lab 3. You will follow the same
procedure to load kernel and user programs as in lab 3. The memory layout will be unchanged. The kernel
is again loaded at 0xa3000000 and the user binary is loaded at 0xa0000000.

4 Code layout

When you download the support code, you will notice the general structure and directory organization of
Gravelv2 is the same as that of Gravel. The changes to notice are in the kernel/arm and kernel/syscall
directories. These directories now contain a skeleton implementation of a multi-threaded kernel. As a
convention, headers that are internal to a particular kernel module are put in the directory itself and named
with a trailing _i.

kernel/arm This directory contains ARM or XScale related hardware initialzation/interaction routines. All
of the drivers for Gravelv2 live here. The timer driver, interrupt controller driver, u-boot hijacker and
IRQ/SWI handler all live in this directory. Oddly enough, the SWI dispatch routine also lives in that
directory.

kernel/include This directory contains all of the header files needed to successfully compile the handout.
New files of particular importance are the kernel/include/sched.h and kernel/include/task.h
headers. Kernel configuration parameters are held in kernel/include/config.h



kernel/sched This directory contains scheduler routines. You will be modifying files in here. You should
read through each of the files. They contain details on how run-queues are created, how the context
switcher works, the preconditions for invoking the context switcher, the scheduling policies and task
set schedulability predicates.

kernel/syscall This directory contains the implementation of all the syscalls in the system. It also houses
the machinery needed to verify addresses passed into the kernel. When implementing syscalls, please
use these methods.

tasks/libc Please copy over your libc’s crt0 file. You will also need to add your syscall wrapper in the
tasks/libc/swi subdirectory. Remove any mention of the exit syscall. Note that crt0 should now go
into an infinite loop if main returns. You can feel free to add more functionality if you would like to
implement test programs. You should not subtract from existing functionality.

5 Part2
5.1 Schedulability

Before the Gravelv2 kernel decides to schedule a task set, it attempts to ascertain the schedulability of the
given task set. There are numerous techniques that one can use to verify schedulability. In part 2 of the lab,
we are going to use the UB admissibility rule to ensure that the given task set is schedulable. The UB test is
discussed in detail in the lecture slides. We will include the basic condition here for completeness.

In a set of n periodic tasks scheduled rate-monotonically, where task T; has periodicity Ty and worst
case execution time of Cy, T, will always meet its deadlines, for all task phasings, if

k=1 ~.
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where By represents the worst-case blocking the task experiences from lower priority tasks and we are
assuming that tasks have been sorted in ascending order of time periods, i.e., T; < Tj41.

The task scheduler calls assign_schedule to create a schedule for the given task set. You will imple-
ment this function. It is located in kernel/ub_test.c and takes an array of TCB pointers and the number
of task control block pointers in the array. It is then supposed to reorder the list and return 1 if the task set
is schedulable and return a 0 if it isn’t. First off, sort the input list so that it satisfies rate-monotonicity. Then
run the UB test on it to see if the given task set is schedulable.

For this part of the lab you will modify the task_t structure to include a blocking term, B, which refers
amount of blocking a task experiences from all the low priority tasks. You can assume that user application
will specify a correct value of this term. The new structure will be
typedef struct task
{
void (*lambda) (void*);
void *data;
void *stack_pos;
unsigned long C;
unsigned long T;
unsigned long B;

} task.t;

5.2 Priority Inheritance

In this part of the lab, you will also modify the mutex_create, mutex_lock and mutex_unlock syscalls to
implement the Highest Locker Priority (HLP) protocol. You can assume that all mutexes follow HLP for
this part of the lab (your kernel implementation can use a #define in lock.h to use HLP for this part of the



lab).You should modify the dev wait for this part to return a EHOLDSLOCK error if a task calls dev_wait while
holding a lockﬂ

6 Completing the Lab

6.1 What to Turn In

Part 1 When finished with partl, please submit the following source code and project files in an archive
lab4-partl-group-XX.tar.gz to Blackboard, where XX is your lab group number (maintain the directory
paths in the archive if you do not want to lose points). Do not turn in unnecessary object dumps, prepro-
cessed sources, compiler generated assembly or object files or files that are not relevant to the lab.

Part 2 Please upload all of your source code and project files in an archive lab4-part2-group-XX.tar.gz
to Blackboard, where XX is your lab group number (maintain the directory paths in the archive if you do not
want to lose points). Do not turn in unnecessary object dumps, preprocessed sources, compiler generated
assembly or object files or files that are not relevant to the lab.

6.2 Where to Get Help

The class lecture notes are chock full of information and detail on how to implement your lab. Previous lab
handouts contain numerous references and useful links. Please use these resources if you run into difficul-
ties.

Come to office hours of the course staff. Ask TAs conceptual questions and questions about specifications.
Please refrain from asking us to debug your code. Post messages on the mailing list: this is the fastest
method of getting answers to your questions.
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1Update kernel/include/bits/errno.h and tasks/libc/include/bits/errno.h to define EHOLDSLOCK to be 60.
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