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1 Introduction

1.1 Overview

This lab focuses on the input-output aspect of real-time embedded systems. Up until now, all of your input-
ouput functionality depended on using Linux or helper routines provided to you by U-boot. In this lab,
you will be given a new kernel infrastructure. We shall call this kernel Gravel. In this lab, Gravel will be
a single-process kernel, not unlike the micro-kernel you wrote for your previous lab. You will learn how
to make Gravel converse with hardware modules and devices that are not directly on the ARM processor.
You will also get these devices to communicate to the processor through the use of interrupts. To this end,
you will:

e Familiarize yourself with the new kernel infrastructure.
e Port your SWI handling code to this new infrastructure.
e Port your exit, read and write syscalls to this new infrastructure.

Write a timer driver for the built-in OS Timers.

Write interrupt management and dispatch code for Gravel.
e Write programs that demonstrate your timer.

Please note that this lab is significantly more difficult than the previous labs because of time constraints
and the inherent complexity of writing drivers for external devices. Start very early—as soon as the lab is
released. If the lab handout feels unclear at first, don’t panic. Read the handout a number of times until the
entire picture becomes clear. Read the entire handout completely before you begin coding. If something is
still unclear, send an email to the course staff. You will build on your solution for Lab 2 in order to complete
this lab successfully. If you are skeptical about your Lab 2 solution, please ask the course staff to give you
access to the Lab 2 solution and then use the official solution as a starting point for this lab.

This lab provides plenty of opportunity for extra credit. You may be able to earn up to 10 extra points
on this lab for producing test cases. Further details are presented later in this handout. Please do remember
to have fun when coding the labs. There will be plenty of opportunity to express your design skills in this
lab.

1.2 Tasks

We will list all the tasks that you will have to perform to receive full credit in the lab here. You may use this
as a check list while you complete this lab. In this lab, you will:

1. Port your SWI handler and syscall code to the Gravel kernel (15 points).
. Write a timer driver that correctly reports OS timer events using interrupts (40 points).
. Write two new syscall handlers to provide the kernel time to the user (20 points).

2
3
4. Write a program that times how long it takes the user to type a sentence (7 points).
5. Write a program that displays a spinning cursor to test your timer (8 points).

6

. Write documentation of your design, implementation and testing, use good programming practices
and write clean, reusable code (10 points).

7. Write valuable test cases (<10 points).

These tasks are explained in detail below.



1.3 Expectations

You and your partners need to start early to ensure that enough time is available to complete the lab. Do
not wait until the last day to start the lab; you will run out of time.

We again emphasize that all submitted code must compile and execute properly. Code submitted that
fails to compile will receive a failing grade. Therefore it is essential that all code is tested on the gumstix
hardware prior to submission. Please also make sure that file names and cases are correct.

As in the previous lab, 10% of the lab’s grade is devoted to code style. Your code must be well com-
mented and must exhibit elements of good software practices. Please put header guards in your header
files. Do not include .c files. Modularize your solution into a number of relevant, properly named files. If
you find yourself using the same code over and over again, it should go into a function. If you find that
all of your code needs to know about all other parts of your code, you may be implementing a holographic
design. This is discouraged. Modularizing, abstraction and data hiding are all encouraged. Each file should
contain your name and a brief description of the file at minimum. You should abstract out constants cleanly
with appropriately-named #defines. Convoluted code, unnecessary and unhelpful comments and spaghetti
code will be severely penalized. You should ideally be using your own code from the Lab 2 in this lab, and
you will be using code from this lab in Lab 4. If you are not confident about your Lab 2 code, please ask the
course staff for the Lab 2 solution (but only if you have already submitted your Lab 2 code). Please write
clean, high-quality code. Use the ECE/andrew machines to make sure that files are named correctly and
that your build is accurate.

We expect to be able to upload the code to the gumstix hardware (or use the cross-compiler on a linux
machine), type “make”, and be able to execute your applications without any modification or renaming of
files. Any modifications (besides ones for our grading harness) that we have to make will result in grade
deductions.

The make infrastructure in this lab is vastly different from the previous lab. Please carefully consider
the Makefiles and don’t edit them unnecessarily. Any edits that you make must be carefully documented.
Please do not turn in any unnecessary changes to the Makefile such as modifying compilation flags (except
the CCPREFIX to allow the use of the cross—compﬂe. As always, create files with the appropriate and
intuitive/self-explanatory names.

At the end of this lab, you must turn in all source code, including the support code and any new files
you create, following the submission procedure specified in Section[9.1}

1.4 Lab Support Code

Please download the support code for this lab from the 18-349 Lab Projects page [1]. Throughout this lab
we will ask you to modify the support code in order to implement your lab solution. At the end of the lab,
you must turn in these files according to the submission procedure specified in Section 9.1}

1.5 Debugging

Learning to debug embedded systems is a highly coveted skill in the industry. During the course of com-
pleting this lab, it is likely that you will run into problems that need to be debugged. Debugging kernel
code involves a deep knowledge of the platform, tools and the code. The course staff will do their best to
help you understand the “big” issues and the overall code, but we will expect you to have tried your hand
at debugging first. When you send email to the TAs and the course staff, it is important for you to have
first tried different alternatives and describe the alternatives that your group has tried, instead of reaching
for the TAs at the first available opportunity without having expended significant debugging effort on your
own. For all hardware issues (e.g., your gumstix no longer boots up), contact the course staff immediately.

In order to better debug your issues, Qemu provides debugging capabilities which we feel might be
very useful to you for this and future labs. If you did not use Qemu in the last lab it is recommended you
give it a try for this lab. A guide to setting it up is located on the course webpage.

IThe compiler on verdex-pro boards will not work for this lab and you will need to use the cross-compiler from now on



2 Kernel Infrastructure

The kernel that you are building in this class is a embedded, low-footprint, real-time kernel named Gravel.
By the end of this semester, as you progress towards Lab 4, Gravel will eventually transform into a multi-
threaded, shared memory, pre-emptive real time kernel. It will eventually support all of the functions
mentioned in the kernel API [2]. For this lab, you will be required to implement a subset of this functionality.
In this lab, Gravel will only handle one thread and will not implement any memory protection.

2.1 Build Infrastructure

Before you begin implementing all the kernel functionality, a tour of the kernel architecture and its build
infrastructure is in order. A new unified build system has been introduced for this projectlﬂ Please take a
moment to read through the Makefile and familiarize yourself with its general structure. The primary files
are:

lab3/Makefile

lab3/kernel/kernel .mk

lab3/kernel/arm/kernel .mk

e lab3/uboot/uboot.mk
e lab3/tasks/tasks.mk

Here is a list of interesting variables that you might want to tweak. Note that when we compile your code,
we will replace your Makefile with our own. Hence, any lasting changes may only be made in the other mk
files. Please do not use the mk files to subvert the variables in the Makefile. If you feel like you desperately
need to change a particular aspect of the Makefile, send an email to the staff list and we may push out a
change that lets you do exactly that.

e PACKAGES — This variable lists the name of every program that you would like to compile for your
kernel. It is being called a package instead of a program because in a later lab, you will use the
same infrastructure to load multiple tasks in your kernel at once. Note that if you define a package
name here, a corresponding directory with the exact package name must be created in lab3/tasks/
directory. This directory must contain a valid pack.mk to describe the objects in the package and how
to construct them. Take a look at the three sample programs taken from the previous lab to get an
idea of how to construct a valid pack.mk.

e CCPREFIX — This variable is prepended to gcc, 1d, ar and objcopy. This is useful to retool the system
when you are using cross compilers. For example, since your cross compiler is arm-1inux-gcc, you
need to set CCPREFIX to arm-linux-.

e CWARNINGS_NOISY — This variable contains warnings that are not enabled by default. These warnings
are very useful and may help you track down some really nasty bugs. On the flip-side these warnings
tend to generate many false positives. Unless you code very carefully, it is very easy to get swamped
by warnings using these flags. You may include them to assist your debugging endeavors but we will
not compile your code under these flags.

e LOAD_ADDR — If you wish to load your programs at a different load address (I really don’t know why
you would), you may use these flags.

If the target rules confuse you, please read the GNU Make Manual [5] for a detailed explanation of the
different features used.

2The original incarnation of the build infrastructure was developed by Nathaniel Filardo (nwf@andrew. cmu. edu) for use in 15-410.


nwf@andrew.cmu.edu

2.2 Primary Execution Environment

The execution environment and interface to U-boot for this lab is similar to that of Lab 2. Your kernel is
loaded at 0xa3000000. The major difference is that the user program is loaded at 0xa0000000. The user
stack for this lab with be a full descending stack starting at 0xa3000000. The supervisor stack is set up by U-
boot and is a full descending stack starting at Oxa3ededf4. Here is a pictorial representation of the memory
layout. All other stacks are discussed as they are introduced in their relevant sections later.

Start Address | End Address | Type
a3f00000 | ... U-Boot Code
a3edf000 | a3efffff Heap (malloc)
a3edee00 | a3edefff U-Boot Global Data Struct
a3ededf4 | a3ededff Abort Stack
... | aBededf3 Supervisor Stack
a3000000 | ... Kernel start
... | a2ffffff User Stack
a0000000 | ... User program start + heap

The kernel has been configured to begin execution at _start. _start transfers control to kmain (instead
of a main function, your kernel code will have a kmain function), where you can insert your initialization
code.

2.3 The C Library

Gravel will be linked against U-boot’s function table. User programs for this kernel will not be linked
against u-boot. They will instead be setup to link against 1ibc. It is your responsibility to port your libc
over from your previous lab into 1ab3/tasks/libc correctly. Due to popular demand, a number of user-
space functionalities have been added to this lab’s 1ibc. These include stdio, stdlib, ctype and string func-
tions from the standard C headers. These are provided to you as-is. Please use them wisely. These library
functions are meant to be used by application programs and cannot be accessed from within the kernel.

Here is a list of library functions that have been provided. Please refer to the man pages [11] and
K&R [10] for more details and a formal specification of these functionslﬂ

2.3.1 Functions in ctype.h

int isascii(int);
int iscntrl(int);
int isdigit(int);
int isgraph(int);
int islower(int);
int isprint(int);
int isspace(int);
int isupper(int);
int isxdigit(int);
int isalpha(int);
int isalnum(int);
int ispunct(int);
int toupper(int);
int tolower(int);

3Some of the provided functions do not have a complete implementations. For example, printf does not support floating point
numbers and some of the more esoteric format specifiers. Overflow behavior of atoi and strtoul deviate from the ANSI C specification.
You should never be actually encountering these situations in code that you write though.



2.3.2 Functions in stdarg.h

void va_start(va_list, name);
type va_arg(va_list, type);
void va_end(va_list);

2.3.3 Functions in stdio.h

int putchar(int);
int puts(const char *);

int printf(const char *, ...);

int vprintf(const char *, va_list);

int sprintf(char *, const char *, ...);

int snprintf(char *, size_t, const char *, ...);

int vsprintf(char *, const char *, va_list );

int vsnprintf(char *, size_t, const char *, va_list );
int sscanf(const char *, const char *, ...);

void hexdump(void *, size_t);

The hexdump function is an additional function that dumps words from a given location for a given
length, four bytes at a time, in hexdump format.

2.3.4 Functions in stdlib.h

long atol(const char *);

int atoi(const char *);

long strtol(const char *, char **, int);

unsigned long strtoul (const char *, char **, int);

2.3.5 Functions in string.h

size_t strlen(const char *);

char *strcpy(char *, const char *);

char *strncpy(char *, const char *, size_t);
char *strdup(const char *);

char *strcat(char *, const char *);

char *strncat(char *, const char *, size_t);
int strcmp(const char *, const char *);

int strncmp(const char *, const char *, size_t);
char *strchr(const char *, int);

char *strrchr(const char *, int);

char *strstr(const char *, const char *);
char *strpbrk(const char *, const char x) ;
size_t strspn(const char *, const char *);
size_t strcspn(const char *, const char *);

void *memset(void *, int h, size_t);

int memcmp(const void *, const void *, size_t);
void *memcpy(void *, const void *, size_t);
void *memmove(void *, const void *, size_t);



3 Syscalls Revisited

In your last lab, you were asked to implement a system call interface. This task involved providing user-
space syscall stubs EI as part of libc and also implementing a SWI installation, handling and dispatch mech-
anism in the kernel. In this lab we provide you with an opportunity to revisit your design and implementa-
tion from the previous lab. You will port your code to the new infrastructure. This will be simple and will
require minimal coding changes from your part. You will then add additional syscall stubs and handlers.
These additional syscalls will allow user-space programs to exploit additional kernel functionality that you
will implement later in this lab. You will continue using AAPCS and OABI [4]. Please refer to the last lab
for details on the calling conventions. Please refer to the 18-349 Gravel kernel API [2], also posted online on
the course website [1]] for the exact specification of each syscall.

3.1 Porting the old Syscalls

When your kernel is complete, it should support read, write, and exit. Stubs for these syscalls are pro-
vided in 1ab3/tasks/libc/swi/. Fill out the stubs with code from Lab 2. No stubs have been provided for
the kernel side SWI handler. Ideally, you should copy over and use your Lab 2’s SWI dispatcher.

NOTE: If you are skeptical about your Lab 2 code, and would prefer to use the official solution for Lab 2, we
can provide you with it. Please contact the course staff to obtain the following: (i) the kernel’s main function
that shows how to clobber and restore the UBoot SWI handler, (ii) the code to enter the user application
function after setting up the stack, (iii) the SWI handler entry code, and (iv) the exit system call The SWI
argument convention remains unchanged from lab 2. We will not release this officially because there might
be 18-349 students who are yet to complete Lab 2. We will release the Lab 2 solution for reuse in this lab,
only on request.

3.2 Hijacking U-boot’s SWI handler

In this lab, you will again need to wire in your SWI handler. You might use code from your previous lab,
but note that you may want to clean up and generalize this code. You will be using it later in the lab to wire
in IRQ handlers which require a very similar operation, just with different offsets into the exception table.

3.3 Getting into user mode

Again, you should port code from the previous lab. This should be a simple task. Simply call the functions
that enter user mode from lab 2. Make sure that you update the entry address as all of your user applications
are now linked to enter at 0xa0000000. If you properly modularized your code from last time, this should
be as simple as changing a #define. Maintain this code well as you will use this in your next lab.

Please copy over your code for crt0 and the kernel code to pass arguments to the user. You will im-
plement argument passing using the specification from lab 2. The only difference is in the top of the user
stack. The user stack for this lab grows down from 0xa3000000. The argument passing convention remains
the same as lab 2.

3.4 New Syscalls

If you read lab3/tasks/libc/include/bits/swi.h, you will notice that a few new syscall numbers have
been added. These syscalls are documented in the Gravel kernel API. For this lab, you are implementing
the time syscall and the sleep syscall. The former is used to retrieve the time in milliseconds since the
kernel booted up. The latter is used to suspend the execution of the user program for a certain number of
milliseconds. Please implement the libc syscall wrappers for these two syscalls.

“There is a lot of confusing nomenclature in industry and in the literature. When one usually talks about stubs or wrappers, one is
merely talking about a small piece of code that interfaces two larger bodies of code in some manner. They are also called shim-layers
in some situations. In this document, whenever you read syscall “stub” or syscall “wrapper”, please understand that this refers to
the userspace libc assembly wrappers that perform SWIs. The kernel side assembly wrapper is called the SWI wrapper or the SWI
dispatcher.



3.5 Progress Check

If you completed the tasks in this section, you will now have a kernel that supports executing test programs
from lab2. Take a peek at how lab3/tasks/hello/pack.mk is written. See if you can copy over rotl3 from
your previous lab to the 1ab3/tasks/ folder and give it a correct pack.mk. Do not forget to add the package
name to the PACKAGES variable in the main Makefile. The TAs are going to replace your Makefile when we
test your code. Hence, we are not worried about how many of your own packages you add to PACKAGES. The
test programs from your previous labs should all work flawlessly in your current environment. Follow the
instructions from lab 2 to get U-boot to load your kernel at 0xa3000000. Load your user program of choice
at 0xa0000000. Run your kernel at 0xa3000000. You should see the program run and complete successfully.
Congratulations! You now have a working kernel.

4 Communicating with Devices

4.1 Introduction

Up until now, the code you have written primarily dealt with subsystems of the ARM processor. You had to
deal with mode changes, privilege management, software interrupts and a host of other details. Regardless,
all of this activity was to fundamentally manage features of a single device-the ARM processor. In the real
world, your embedded system is not going to run code in isolation. You will need to communicate with
other devices and with code running on those devices. There is a number of techniques used in industry
to cleanly, consistently and uniformly communicate with devices. In this lab, you will obtain hands-on
experience with some of them, namely, memory-mapped registers and hardware interrupts.

A lot of the general theoretical aspects of these techniques have been covered in the lectures. This section
will give you details on how these general concepts are applied to the ARM processor, and in particular,
to the Intel XScale PXA255 or the PXA270 (for verdex-pro boards) processor architecture that your gumstix
uses. This introduction is in not intended to be comprehensive. The authoritative specifications are the
Intel PXA255/PXA270 Processor Developer’s Manual [7, [§], the Intel XScale Architecture Manual [9], and
the ARM Architecture Reference Manual [3].

4.2 Memory Mapped Registers

One of the standard ways to uniformly communicate with devices is to use memory-mapped registers.
Suppose that you have a device that exports a number of attributes, each of which can be controlled through
some registers. One way that a programmer could modify these registers is to treat these registers as
if they were locations in memory. Then, the programmer could read from them, write to them, move
them around, etc. Architectures usually facilitate this by setting aside some region in the physical address-
space. Hardware engineers can then hook up devices in such a way that accesses to these reserved memory
locations will be correctly routed to the appropriate device that is mapped at that location. The ARM
architecture does precisely this. Here is a reproduction of the memory map of the PXA255. A much more
detailed diagram is Figure 2-2 on page 2-19 of the PXA255 Manual [7] (Figure 28-2 on page 28-2 of the
PXA270 Manual [8]).

Start Address | End Address | Type
a0000000 | a3ffffff SDRAM (64 MB)
48000000 | 4bffffff Memory Controller (MMIO)
40000000 | 43ffffff Memory Mapped Registers
00000000 | OOffffff StrataFlash ROM (16 MB)

Writes and reads to the region between 0x40000000 and 0x44000000 are intercepted by the memory subsys-
tem of the processor and rerouted to particular device registers. A detailed description of all the registers
and their addresses is provided in section 2.13 on page 2.21 of the PXA255 Processor Developer’s Manual [7]
(or Table 28-8 on page 28.13 of the PXA270 Processor Developer’s Manual [8]). Please read these manuals. It
is of tremendous importance that you understand the underlying system before you start churning out code. Please



make a note of the register maps for OS Timer and Interrupt Controller as these will be used in the next
section. Reads and writes to these locations will change the appropriate values in the device registers.

One property to remember when using memory-mapped registers is that device registers are, in a fun-
damental way, not regular memory. In a lot of situations, they do not guarantee the idempotence of their
read and write operations—the property of memory wherein multiple sequential reads or writes of the same
value from, or to, the same memory location is equivalent to a single read or write, respectively, of that
value to the same location. They also introduce new optimization hazards which is of relevance to com-
piler designers, processor architects and system programmers. The compiler is not free to assume that write
or read reordering is acceptable when dealing with memory-mapped registers. Thus, when dealing with
memory-mapped regions, you must inform the compiler of these special properties. While programming
in the C language with the gcc compiler, you can accomplish this by using the volatile keyword. In gen-
eral, you would also need to disable write coalescing, write re-ordering and caching in the processor for
those particular memory regions. Because we have not enabled caching in our processor, you do not need
to worry about the latter issues. However, please be aware that, in the real world, the situation can be far
more complex; the use of a virtual-memory system, multiple processors, out-of-order execution or an ag-
gressive compiler can all impose their own demands when dealing with memory-mapped registers. These
issues are typically resolved by using a mixture of cross-processor interrupts, memory barriers, stringent
compilation flags, not to mention a lot of caffeinated beverages.

4.3 Interrupts

Memory mapping is a technique used to transfer information to and from the primary processor, but this
transfer is always initiated by the primary processor, sometimes in a tight loop. Tight looping (also called
polling) on a condition variable can be very wasteful in terms of processor resources and bus-bandwidth
resources. In some situations, it can even slow down the target device. Interrupts are an asynchronous
method that devices can use to signal to the primary processor that it needs attention. A device can have
no interrupts, one interrupt or a number of different interrupts to signal different events.

When an interrupt is fired by an external device, the ARM processor vectors to the IRQ handler (as-
suming the device was configured to generate and IRQ) and executes the handler in IRQ mode. sp and
Ir are banked out, and cpsr is saved into the banked spsr. The interrupt handler must now appropriately
acknowledge the interrupt, pacify the signalling device and then return to the original caller without dis-
rupting its register state. The exact details of the IRQ vectoring process is described in section A2.6.8 on
page A2-24 of the ARM Architecture Manual for more details [3].

When the ARM processor vectors to an interrupt handler, IRQs are disabled until the programmer en-
ables them. For performance reasons, most real-time systems enable interrupts as soon as possible. This
allows for the nested delivery of interrupts and decreases system interrupt-latency. Allowing nested in-
terrupts can significantly complicate a multi-threaded system. Because we are only dealing with a single
interrupt on a single-threaded system in this lab, there is no need to incorporate a nested-interrupt sys-
tem. Hence, we will not require you to support nested interrupts and you may run your interrupt handlers
with IRQs disabled for the entire duration. On the other hand, because we are allowing you to run non-
preemptible interrupt handlers, you must be careful to not perform long computations inside the context
of an interrupt handler; as a rule of thumb, do not perform any computation that does not have a constant
bounded computation time (O(1) time complexity).

4.4 The Interrupt Controller

We have so far not touched on any way to determine which device raised an interrupt. This is deliberately
not mentioned in the ARM architecture so as to make it implementation-dependent. On the PXA255 and
PXAZ270 processors, there is an interrupt controller that arbiters interrupt assertions from multiple devices.
All devices are connected to the interrupt controller instead of the ARM processor, in level-sensitive mode.
When the interrupt controller notices an external device signaling an interrupt and knows that this interrupt
is not masked (masking can also be controlled by writing to the interrupt controller’s memory-mapped
registers), it asserts an IRQ/FIQ with the ARM processor. The ARM processor can then read the status
registers in the interrupt controller to determine which device actually caused the interrupt to be fired.

10



This interrupt controller is described in Section 4.2 on page 4-20 of the Intel PXA255 Processor Developer’s
Manual [7] (Section 25.4.1 for the Intel PXA270 Processor). Here is a synopsis. The interrupt controller has
a number of registers that are of importance to us. These are the ICMR, ICPR, and ICLR (verdex-pro users
should ignore ICMR2, ICPR2 and ICLR2 for this lab).

ICMR The Interrupt Controller Mask register is a 32-bit read-write register that contains a mask bit per
interrupt source. It controls whether a particular device interrupt generates a processor IRQ/FIQ or
not. If an ICMR bit is set, the corresponding interrupt is delivered. If an ICMR bit is not set, the
corresponding interrupt is masked and not delivered to the ARM processor.

ICPR The interrupt Controller Pending register is a 32-bit read-only register that shows all active interrupts
in the system. The bits in this register are not affected by ICMR bit masks and hence, reading the
ICPR gives the true state of interrupts in the system. This register can be used to determine the cause
of the current interrupt. The bits in this register are automatically cleared when the corresponding
interrupt is cleared at the source. A list of which interrupt corresponds to which device is given in the
developer’s manual.

ICLR The Interrupt Controller Level register is a 32-bit read-write register that controls whether pending
interrupts generate FIQs or IRQs. If an interrupt is masked, then the corresponding ICLR bit has no
effect. Otherwise, the corresponding interrupt is routed as an IRQ if the ICLR bit is low and routed as
an FIQ if the ICLR bit is high.

Note that we are only using the timer interrupt and routing it as an IRQ. You should configure your inter-
rupt controller accordingly.

5 Writing a Timer Driver

In this section of the lab, you will be writing a timer driver that exposes functionality of the OS Timer built
into the PXA255/270 processor. The PXA255/270 has a two major timers — the real-time timer and the OS
timer. We will be using the OS timer in this lab. The OS timer is clocked by a 3.6864 MHz oscillator for basix
boards and 3.25 MHz for verdex-pro boards (verdex-pro users should ignore the 8-channel timer for this
lab) (it is worth your remembering this number because we have previously had quiz/exam questions associated with
this lab). The OS timer contains four match registers (OSMR0-OSMR3), a counter register (OSCR), a status
register (OSSR) and an interrupt-enable register (OIER). You will be writing a driver in your kernel that will
utilize these resources to keep track of time within your kernel. You will also implement two system calls
that allow user programs to request the time and to sleep for a certain period of time.

5.1 Register Description

We shall now provide a brief overview of the OS Timer registers. Authoritative details are present in
Section 4.4 on page 4.34 of the Intel PXA255 Processor Developer’s Manual [7] (Section 22.5 for Intel PXA270
processor).

OSCR The OS Timer Count register is a 32-bit count-up counter that increments on the rising edge of the
source 3.6864 MHz (3.25 MHz for verdex-pro boards) clock. It is a read write register. There may be a
latch delay from the time the register is written to and the time the register is actually updated.

OIER The OS Timer Interrupt Enable register has four non-reserved bits. Each bit controls whether the
corresponding OS Match register is active. If a bit is high in this register, then a match between the
OSCR and the corresponding OSMR will result in the corresponding bit in OSSR to be set.

OSMRx The OS Timer Match register(#) is a set of four registers. Each register is a 32-bit read-write register
that holds a timer counter target. If the target in the match register matches the current value in OSCR
and the corresponding interrupt enable bit is set, then the corresponding OSSR bit is set. OSMR3 can
be used as a watch dog timer, but we shall not exercise this functionality in this lab.
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OSSR The OS Timer Status register holds bits indicating that a match had occurred between the OSCR and
the corresponding OSMR. This register is hooked up to the system interrupt controller. Writing a zero
to this register has no effect. Writing a 1 to a bit acknowledges the match and hence, clears that bit.

5.2 Driver Requirements

In this lab, you are required to set up the interrupt controller and the OS timer to deliver interrupts. You
are required to “wire in” an IRQ handler. This is very similar to wiring in a SWI handler. You will use the
same technique (and possibly the same code) to check if the ARM vector table contains an 1ldr pc, pc,
#x instruction and use that to hijack an 8-byte region in U-boot code sitting in RAM. If you need to recall
how to do this, please consult the Lab 2 handout. The IRQ handler must check that a timer interrupt has
occurred. If one has occurred, it must make a note of this event and reload the match registers with the
appropriate values. If the interrupt is not a timer interrupt (which should not be the case if you masked all
other interrupts), the IRQ handler must ignore it. In this lab, we are only going to use OSMRO. Please store
your timer match targets in OSMRO only. Furthermore, try not to accumulate any artificial drift. Load your
match registers so as to not introduce drift in your timing. The more meticulous you are, the more style
points you get. You may perform a one time initialization of the other OSMRs if you feel like it, but you
may not update them in your interrupt handler.

Please note that the IRQ handler uses a different sp than the supervisor sp. You are responsible for
initializing the IRQ sp so that it points to a legitimate location. Where you decide to place the IRQ stack is
a design decision that you will have to make and to subsequently document. Possible approaches involve
cordoning off a region of DRAM at some fixed address to act as the IRQ stack. Another one involves
statically allocating storage in the program data/bss sections. Other approaches may be appropriate as
well. Please make sure that you use a timer resolution of at least 10 ms. Your IRQ handler should under no
circumstance corrupt any user memory or registers.

5.3 Support Code

Significant support code has been provided to help you with this lab. You may choose to completely ignore
the code given, but you may not delete the files that are given to you. Look in the 1ab3/kernel/include/arm/
directory for arm related helper definitions and memory-mapped register read /write functions. You have
also been given debug utilities and some assembly macros in 1ab3/kernel/include/.

5.4 Syscalls

Once you have the driver working, you can now integrate it with the time and sleep syscalls. Follow the
kernel API and implement those syscalls. It should be a simple matter of leveraging the functionality of
your timer driver. Do not implement these with calls to U-boot.

5.5 Progress Check

If you have completed this lab, you will have a kernel that now handles timer interrupts. You may now
write a simple test program to exercise the syscalls to sanity check your kernel. If you've reached this point
successfully, pat yourself on the back, you're almost done with this lab! The only part remaining is a test
program that will help you exercise your kernel. We recommend that you write tests other than the one
that we require you to write.

6 Test programs
Now that the kernel is complete, you will test this kernel by writing two small application that exercise its

features. The first one displays a spinning cursor and the second one times the user’s typing speed. Here is
what these program must do:
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6.1 Splat

e The program must display a spinning cursor. The cursor must transition between the following states:
| /-\ and must transition between them once every 200 ms. In other words, the glyph must look like
a spinning bar that completes one rotation every 1.6s.

e The program should never terminate.

e The program should not read user input.

6.2 Typo

e The program must present the user with a prompt to type characters. Feel free to choose what your
prompt looks like.

e The user should be able to type a line of characters and press return.
e The program now echoes what has already been typed again.

e On the next line, the program should print out the time it took for the user to type that line (accurate
to a tenth of a second) starting from when the prompt was displayed.

e The program must present the prompt again.
e The program should never terminate.

You may assume a maximum line length, but your program may not crash if this line length is exceeded. It
may ignore characters, drop them or perform something different, but it may not crash.
Here is some sample output where the > character was used as the prompt:

> Hello World

Hello World

2.56s

> My hovercraft is full of eels.
My hovercraft is full of eels.
3.8s

6.3 Progress Check

You are now code complete. Test! Test! Test! Go back and document your code. Tle up any loose ends. You
are now ready to submit your code. Follow the submission procedure. Then, party or sleep (not the syscall,
of course)!

7 Extra Credit

You may earn up to 10 points extra in this lab if you submit a working kernel and write extra test cases.
We will examine your tasks directory to see if you have written any interesting packages that stress your
kernel. You may write straight out corner-case testers. You may write elaborate programs that do something
interesting with the given syscalls (tty games?). Note that all of these programs must adhere to the given
kernel interface and must themselves be correct. They must also not be trivial.. Handing in 20 programs,
all of which display the month, day or second since reboot in different formats is not going to get you much
in the way of extra credit. The conditions for awarding extra credit are necessarily somewhat subjective due
to the difficult task of defining a “non-trivial” test case. An interesting (note: interesting and complicated
are independent concepts), unique test case will get 5 points. Providing a battery of tests that show some
degree of thorough co-ordination and meticulousness will result in even more points. You may earn up to
10 points and no more. If you feel that you can do something very interesting but need an extra syscall or
some modification to the spec, send an email to the course staff. These requests will be evaluated on a case
by case basis.
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8 Plan of Attack

If you are feeling completely lost as to how to approach this lab, here is a rough timeline to keep you on

track.

[

. ® N o wW D

10.
11.

12.
13.
14.
15.
16.
17.

Read through the Makefiles and provided header files.

Copy over your read.S, write.S and exit.S and crt0.S from your previous lab into this lab’s libc.
Port the hijacking /wire-in code over — generalize it if possible.

Port the “go to user mode” functionality.

Port the SWI handlers.

Test your kernel with hello.

Write the syscall wrappers for the two new syscalls.

Change your hijacking code to now hijack IRQs.

Write the interrupt controller setup code. Hardcode values in at first and generalize it later once you
are sure the code works.

Write the timer setup code.

Make a dummy IRQ handler that prints “ababab” alternately. Modify the timer interval to a couple
times every second. This way you are not swamped with output. Make sure you change these back
when you are done debugging.

Make sure your timer now works.

Go in and clean up your code and add checks.
Implement global state variables to maintain time.
Implement the syscalls to return time and sleep.
Test, test, test!

Tie up loose ends, clean up your code and submit.

9 Completing the Lab

9.1

What to Turn In

When finished with the lab, please submit the following source code and project files in an archive lab3-
group-XX.tar.gz to your group’s designated AFS space, where XX is your lab group number (maintain the
directory paths in the archive if you do not want to lose points). Only one member per group needs to
submit the code (please follow the same instructions as in Labs 1 and 2).

lab3/Makefile
lab3/kernel/arm/kernel .mk
lab3/kernel/arm/psr.c
lab3/kernel/arm/reg.c
lab3/kernel/assert.c

lab3/kernel/include/arm/exception.h
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lab3/kernel/include/arm/interrupt.h
lab3/kernel/include/arm/psr.h
lab3/kernel/include/arm/reg.h
lab3/kernel/include/arm/timer.h
lab3/kernel/include/asm.h
lab3/kernel/include/assert.h
lab3/kernel/include/bits/errno.h
lab3/kernel/include/bits/fileno.h
lab3/kernel/include/bits/swi.h
lab3/kernel/include/config.h
lab3/kernel/include/inline.h
lab3/kernel/include/stdarg.h
lab3/kernel/include/types.h
lab3/kernel/kernel .mk
lab3/kernel/main.c
lab3/kernel/start.S
lab3/mount.sh
lab3/tasks/exit/exit.S
lab3/tasks/exit/pack.mk
lab3/tasks/hello/hello.c
lab3/tasks/hello/pack.mk
lab3/tasks/libc/crt0.8S
lab3/tasks/libc/include/asm.h

lab3/tasks/libc/include/bits/errno.h

lab3/tasks/libc/include/bits/fileno.h

lab3/tasks/libc/include/bits/swi.h
lab3/tasks/libc/include/bits/types.h
lab3/tasks/libc/include/ctype.h
lab3/tasks/libc/include/errno.h
lab3/tasks/libc/include/inline.h
lab3/tasks/libc/include/stdarg.h
lab3/tasks/libc/include/stdio.h

lab3/tasks/libc/include/stdlib.h
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lab3/tasks/libc/include/string.h
lab3/tasks/libc/include/sys/types.h
lab3/tasks/libc/include/unistd.h
lab3/tasks/libc/libc.mk
lab3/tasks/libc/stdio/*
lab3/tasks/libc/stdlib/*
lab3/tasks/libc/string/*
lab3/tasks/libc/swi/exit.S
lab3/tasks/libc/swi/libc.mk
lab3/tasks/libc/swi/read.S
lab3/tasks/libc/swi/sleep.S
lab3/tasks/libc/swi/time.S
lab3/tasks/libc/swi/write.S
lab3/tasks/skyeye.conf
lab3/tasks/tasks.mk
lab3/tasks/typo/pack.mk
lab3/tasks/typo/typo.c
lab3/tasks/splat/pack.mk
lab3/tasks/splat/splat.c
lab3/uboot/include/ _exports.h
lab3/uboot/include/exports.h
lab3/uboot/stubs.c

lab3/uboot/uboot .mk

Please also submit any additional source files that you may have created and that are required for successful
compilation of your project code. Feel free to organize your project in any way you see fit as long as the
above layout is maintained and any extra files are submitted.

9.2

Where to Get Help

Please read the relevant sections of documents mentioned in the reference section. By now, you should be
reasonably comfortable with using the GNU assembler and Makefiles. If you need help, consult the GAS
Manual [6] and the Make Manual [5].

Email the course staff. Show up for office hours. Ask the instructor conceptual questions and questions
about specification.

We’re here to help.

16



References

[1] 18-349. Lab projects page [online]. URL: http://www.ece.cmu.edu/~ee349/projects.htmll
[2] 18-349. Gravel Kernel API, Oct. 2011.

[3] ARM Limited. ARM Architecture Reference Manual, June 2000. URL: http://www.arm.com/community/
university/eulaarmarm.html,

[4] ARM Limited. ARM Architecure Procedure Calling Standard (AAPCS), Apr. 2008. URL: http://
infocenter.arm.com/help/topic/com.arm.doc.ihi0042b/IHI0042B_aapcs.pdf.

[5] Free Software Foundation. GNU Make [online]. URL: http://www.gnu.org/software/make/.

[6] Free Software Foundation. Using as, Aug. 2007. URL: http://sourceware.org/binutils/docs-2.
18/as/.

[7] Intel Corporation. Intel PXA255 Processor Developer’s Manual, Jan. 2004. URL: http://pubs.gumstix.
com/documents/PXADocumentation/PXA255/PXA255ProcessorDevelopersManual [278693-002]
.pdf.

[8] Intel Corporation. Intel PXA255 Processor Developer’s Manual, Jan. 2004. URL: http://pubs.gumstix.
com/documents/PXADocumentation/PXA255/PXA270ProcessorDevelopersManual [280000-002]
.pdf.

[9] Intel Corporation. Intel XScale Core Developer’s Manual, Jan. 2004. URL: http://pubs.gumstix.com/
documents/PXADocumentation/XScale/XScaleCoreDevelopersManual . pdf.

[10] B. W. Kernighan and D. M. Ritchie. The C Programming Language. Prentice Hall Professional Technical
Reference, 2nd edition, 1988.

[11] Name.net. Linux man pages [online]. URL: http://www.linuxmanpages.com/.

17


http://www.ece.cmu.edu/~ee349/projects.html
http://www.arm.com/community/university/eulaarmarm.html
http://www.arm.com/community/university/eulaarmarm.html
http://infocenter.arm.com/help/topic/com.arm.doc.ihi0042b/IHI0042B_aapcs.pdf
http://infocenter.arm.com/help/topic/com.arm.doc.ihi0042b/IHI0042B_aapcs.pdf
http://www.gnu.org/software/make/
http://sourceware.org/binutils/docs-2.18/as/
http://sourceware.org/binutils/docs-2.18/as/
http://pubs.gumstix.com/documents/PXA Documentation/PXA255/PXA255 Processor Developers Manual [278693-002].pdf
http://pubs.gumstix.com/documents/PXA Documentation/PXA255/PXA255 Processor Developers Manual [278693-002].pdf
http://pubs.gumstix.com/documents/PXA Documentation/PXA255/PXA255 Processor Developers Manual [278693-002].pdf
http://pubs.gumstix.com/documents/PXA Documentation/PXA255/PXA270 Processor Developers Manual [280000-002].pdf
http://pubs.gumstix.com/documents/PXA Documentation/PXA255/PXA270 Processor Developers Manual [280000-002].pdf
http://pubs.gumstix.com/documents/PXA Documentation/PXA255/PXA270 Processor Developers Manual [280000-002].pdf
http://pubs.gumstix.com/documents/PXA Documentation/XScale/XScale Core Developers Manual.pdf
http://pubs.gumstix.com/documents/PXA Documentation/XScale/XScale Core Developers Manual.pdf
http://www.linuxmanpages.com/

	Introduction
	Overview
	Tasks
	Expectations
	Lab Support Code
	Debugging

	Kernel Infrastructure
	Build Infrastructure
	Primary Execution Environment
	The C Library
	Functions in ctype.h
	Functions in stdarg.h
	Functions in stdio.h
	Functions in stdlib.h
	Functions in string.h


	Syscalls Revisited
	Porting the old Syscalls
	Hijacking U-boot's SWI handler
	Getting into user mode
	New Syscalls
	Progress Check

	Communicating with Devices
	Introduction
	Memory Mapped Registers
	Interrupts
	The Interrupt Controller

	Writing a Timer Driver
	Register Description
	Driver Requirements
	Support Code
	Syscalls
	Progress Check

	Test programs
	Splat
	Typo
	Progress Check

	Extra Credit
	Plan of Attack
	Completing the Lab
	What to Turn In
	Where to Get Help


