
GNU Assembler Programming Tips

18–349 Embedded Real-Time Systems

1 Introduction

This document contains a collection of tips that may prove useful when writing assembly code for 18–349
labs.

2 Defining Strings in Assembly

The GNU assembler (gas) recognizes three assembler directives for defining strings. “.string” and “.asciz”
both assemble string literals with null terminators (the same as C strings), whereas “.ascii” assembles a
string literal with no null terminator. For defining a simple null-terminated string, it is usually simple
enough to use the .string directive as follows:

hello_str:
.string "Hello world!\n"

Certain situations (e.g,. the write syscall) require strings with an explicitly defined length instead of
using a null terminator. One typical way of defining strings of this fashion in C would be:

void bar(const char *str, unsigned int len);

void foo(void) {
const char hello_str[] = "Hello world!\n";
const unsigned int hello_len = sizeof(hello_str) - 1;

bar(hello_str, hello_len);
}

The resulting assembly code produced by GCC is:1

.file "foo.c"

.text

.global foo
foo:

ldr r0, phello_str
mov r1, #13
b bar

phello_str:
.word hello_str

.section .rodata
hello_str:

.ascii "Hello world!\n"

1Modified to remove unnecessary directives and to add sensible labels.

1



This assembly code produced by GCC is cumbersome for two reasons. First, the ldr instruction must
reference a pointer to hello str which GCC stores in a literal pool immediately following the code for
function foo. Second, GCC hard codes the length of the string as an integer in the mov instruction—if one
wanted to update the string in this assembly by hand, the string length would have to be modified as well.
Let’s consider the second issue first.

2.1 Determining the Length of Strings in Assembly

The “.” symbol refers to the current assembling address, and the “.set” directive assigns a value to a
symbol. Combined, one may determine the size of a section of assembly code by subtracting the current
address from a label and assigning the result to a symbol. For example, the following code sets the symbol
hello size to the size of the string hello str:

hello_str:
.ascii "Hello world!\n"
.set hello_size, .-hello_str

With this code, modifications to the hello str string will automatically change the value of hello size
accordingly.

3 Loading Constants & Labels

The ARM ISA provides two general methods for loading 32 bit constants in a register. First, the mov and
mvn instructions may be used to load an 8 bit constant shifted by an even number of bits. Second, the
ldr instruction may be used to load an arbitrary 32 bit constant that is stored in a nearby literal pool. As
illustrated in Section 2, GCC emits assembly code that uses both methods to load 32 bit constants.

3.1 The ldr Pseudo Opcode

To facilitate the loading of an arbitrary 32 bit constant, gas supports a special syntax of the ldr instruction
as a pseudo opcode:

ldr reg, =constant

The above instruction loads an immediate 32 bit value in a register, and translates to a real ldr instruction,
or a mov/mvn instruction.

For example, the instruction:

ldr r0, =42

translate to:

mov r0, #42

while the instruction:

ldr r0, =0xdeadbeef

translate to:

ldr r0, literal
...

literal:
.word 0xdeadbeef

In addition to immediate values, the ldr pseudo opcode may be used to load the address of a label. For
example, the assembly emitted by GCC in Section 2:

2



foo:
ldr r0, phello_str
...

phello_str:
.word hello_str

could be rewritten as:

foo:
ldr r0, =hello_str
...

which produces the same machine code as a result.

3.2 The adr Pseudo Opcode

Using the ldr pseudo opcode to load the address of a label still requires an entry in the literal pool to
store the address. As an alternative, gas provides the adr pseudo opcode to load the address of a label by
translating the instruction to a pc-relative add or sub instruction.

For example, the instructions:

adr r0, beef
b elsewhere

beef:
.word 0xdeadbeef

translate to:

add r0, pc, #0
b elsewhere

beef:
.word 0xdeadbeef

The adr pseudo opcode is restricted to using labels that are defined in the same assembly source file and
section as the adr instruction itself. To load a label in a different file or section, the ldr pseudo opcode must
be used instead.

4 Strings in Assembly Revisited

Using the .set directive along with the ldr & adr pseudo opcodes allows us to rewrite the GCC generated
assembly of Section 2 more succinctly.

If hello str must reside in the .rodata section, then the code must be rewritten using the ldr pseudo
opcode as follows:

.file "foo.c"

.text

.global foo
foo:

ldr r0, =hello_str
mov r1, #hello_size
b bar

.section .rodata
hello_str:

.ascii "Hello world!\n"

.set hello_size, .-hello_str

3



If, however, hello str may be moved to the .text section, then the code may be written using the adr
pseudo opcode as follows:

.file "foo.c"

.text

.global foo
foo:

adr r0, hello_str
mov r1, #hello_size
b bar

hello_str:
.ascii "Hello world!\n"
.set hello_size, .-hello_str

Since placing hello str in the .text section simplifies the assembly and shortens the resulting machine
code, it is valid argument for placing “data” in the .text section of a trivial assembly program. For non-
trivial programs (those written in C or that span multiple source files), separating strings into the .rodata
section is generally preferred.

4


	Introduction
	Defining Strings in Assembly
	Determining the Length of Strings in Assembly

	Loading Constants & Labels
	The ldr Pseudo Opcode
	The adr Pseudo Opcode

	Strings in Assembly Revisited

