BJT Circuit Analysis

- Assuming that the transistor is in the active region, solve for the voltages and currents --- why this assumption?
- In general, the problem requires solution of a set of nonlinear equations:

BJT Circuit Analysis

- SPICE solves the system of nonlinear equations to obtain the voltages and currents
- Is this circuit in the active region?

BE Diode Characteristic

• We can effectively use a simplified model for the diode if we know the approximate operating range of the BE diode characteristic

BE Diode Characteristic

- Note that "V_{ON}" changes if we're analyzing an order of magnitude less current
- So how do we know what the real "V_{ON}" is?

Simplified BJT Circuit Analysis

 \bullet Assuming V_{BE} is 0.78 volts, we can approximate this circuit solution by hand analysis

Simplified BJT Circuit Analysis

- What happens as R_C is decreased?
- Will it remain in the active region?

Simplified BJT Circuit Analysis

- What happens as R_C is increased?
- Will it remain in the active region?

Saturation

- When both the EBJ and CBJ are forward biased, the transistor is no longer in the active region, but it is in the saturation region of operation
- ullet We can *easily* solve for the maximum i_C that we can have before we reach saturation *for this circuit*

Saturation

 \bullet With both diodes forward biased, the collector-to-emitter voltage, v_{CE} , saturates toward a constant value

Saturation

• In saturation, increasing i_C shows little increase in i_B. Why?

Regions of Operation

• The complete i-v characteristic is:

Regions of Operation

Temperature Variations

• The collector current vs. the base-emitter voltage follows a diode characteristic, which like a diode, is temperature dependent

• Does this value of R_C significantly impact the values for i_C in this example?

Temperature Variations

 \bullet In saturation, the collector current no longer increases with increasing $V_{\mbox{\footnotesize{BE}}}.$ Why not?

Base Width Variation

- In the active region, i_C does vary somewhat with V_{CB} (hence R_C in our previous examples) due to the variation it causes in the base width.
- \bullet Effective base width, W^* , decreases with increasing V_{CB}
- What do you expect would happen to i_C as W* decreases?

- \bullet The I_C vs. V_{CE} curves in the active region have a finite slope to them due to this i_C dependence on V_{CB}
- Early showed that these slopes all converge to one negative voltage point

• The finite slope in the active region due to decreasing base width can be approximated by

$$i_c = I_s e^{v_b e^{/V} T} \left(1 + \frac{v_{ce}}{V_A} \right)$$

• This means that the output resistance between the collector and emitter is not infinite --- very important for analog design

• The output conductance, or resistance, at a fixed i_b point represents the slope of the line tangent to that point on the curve:

$$i_c = I_s e^{v_{be}/V_T} \left(1 + \frac{v_{ce}}{V_A}\right)$$

• Generally not considered for dc bias point calculations, but r_o can have a significant impact on a transistor amplifier gain

• The equivalent circuit models can be modified accordingly:

<u>or</u>

dc Bias Point Calculations

- r_o is generally not considered for hand calculations of dc bias point -- why?
- For hand calculations: use V_{BE} =0.7 and assume that the transistor is in the active region; Later verify that your assumptions were correct.

What's the maximum value that R_C can be without reaching saturation? Assume $\beta = 100$.

dc Bias Point Calculationsdc Bias Point Calculations

• What value of R_C saturates the transistor?

dc Bias Point Calculations

• What value of VCC saturates the transistor for this same circuit?

