
MATLAB Release Notes -5

MATLAB
®

High Performance Numeric Computation
 and Visualization Software

For UNIX
Workstations

Release Notes
Version 4.1

-4

The software described in this document is furnished under a license agree-
ment. The software may be used or copied only under the terms of the license
agreement.
MATLAB 4.1 Release Notes (May 1993)
© COPYRIGHT 1984-93 by The MathWorks, Inc. All Rights Reserved.
Unpublished - Rights reserved under the copyright law of the United States.
No part of this manual may be photocopied or reproduced in any form without prior
written consent from The MathWorks, Inc.

U.S. GOVERNMENT: If Licensee is acquiring the software on behalf of any unit or agency
of the U. S. Government, the following shall apply:

(a) for units of the Department of Defense:
RESTRICTED RIGHTS LEGEND: Use, duplication, or disclosure by the
Government is subject to restrictions as set forth in subparagraph (c)(1)(ii) of the
Rights in Technical Data Clause at DFARS 252.227-7013.
(b) for any other unit or agency:
NOTICE - Notwithstanding any other lease or license agreement that may pertain
to, or accompany the delivery of, the computer software and accompanying
documentation, the rights of the Government regarding its use, reproduction and
disclosure are as set forth in Clause 52.227-19(c)(2) of the FAR.
Contractor/manufacturer is The MathWorks Inc., 24 Prime Park Way, Natick, MA
01760.

MATLAB and SIMULINK are registered trademarks, and Handle Graphics is a
trademark of The MathWorks, Inc.
UNIX is a trademark of UNIX Systems Laboratories.
VMS and DECstation are trademarks of Digital Equipment Corporation.
PostScript is a trademark of Adobe Systems Inc.
X Window System is a trademark of M. I. T.

Printing History
January 1993 First Printing
May 1993 Second Printing (updated)

The MathWorks, Inc.
24 Prime Park Way, Natick, Mass. 01760
Phone: (508) 653-1415 FAX: (508) 653-2997

Email addresses:

tech@mathworks.com Technical support.
suggest@mathworks.com Product enhancement suggestions.
bugs@mathworks.com Bug reports.
doc@mathworks.com Documentation error reports.
subscribe@mathworks.com Subscribing user registration.
service@mathworks.com Order status, license renewals, passcodes.
info@mathworks.com Sales, pricing, and general information.

MATLAB Release Notes -3

Contents

MATLAB 4.1 ... 1
Introduction .. 1
MATLAB 4.1 Documentation ... 1

New Features ..2
New M-Files .. 2
New Language Features... 5

Toolbox Path Cache..5
“cd” and “which” Return Values ...5
“eval” Error Trapping ..6
“lasterr” Built-In Function.. 6

In Situ MEX-File Debugging.. 7
New Mathematical Functions .. 8

Polynomial Eigenvalue - polyeig ..8
Exponential Integral - expint ... 8

New Graphics Features .. 9
Font Support.. 9
24-Bit Color Support ..9
Expanded Printer Support.. 9
Terminal Graphics Support ..10
Using a Supported Graphics Terminal ..12
Keeping MATLAB from Connecting to an X Server......................13
Line Width ...14
Line Style Order ..14
Texture Mapping Surfaces – The texturemap FaceColor14
Semi-Automatic Axes Limits ..15
Logarithmic Scaling ..16
Window Mouse Button Functions ..16
Object Mouse Button Down Functions ..17
Sliders Now Display Arrows ...17
Simplified Setting of Uicontrol Parent ...18
Uicontrol Editable Text Behavior ..18
Drawnow Discard ..19

New Handle Graphics Object Properties... 20

-2

Querying Handle Graphics Object Properties 20
Properties Common to all Graphics Objects 20
Root Properties .. 22
Figure Properties .. 23
Axes Properties ... 26
Properties Common to all Axes Children..29
Surface Properties ... 30
Text Properties .. 30
Uimenu Properties .. 32

New Features for File I/O Functions ..33
fread ..33
fwrite ... 34
feof ... 35
fprintf..35
fscanf .. 36
fseek... 36
fgetl, fgets .. 37
frewind..37
Reading and Writing Strings – Error Messages 37
sprintf .. 37
New fopen Permissions ...37
sscanf ... 38

Improvements and Bug Fixes .. 39
Matrix Decomposition Functions ... 39
Polynomial Functions ... 39
2-D Signal Processing Functions ... 39
Interpolation Functions .. 40
Bessel Functions ... 40
The Reciprocal Condition Estimator–rcond .. 41
Surface Object CData ... 41
Save Handles Global Variables Correctly ... 41
Domain Name Server ... 41
License Manager ... 42
matlab/etc Directory Is Now Self-Contained ... 42
Changes to the print Command...43

Creating EPS Files with print ... 43
Notes On MATLAB’s Behavior ... 44

Variable Names in Data Files .. 44

MATLAB Release Notes -1

Logical Operators ..44
Graphics Issues ...45

Color Error Tolerance ...45
Running Movies ...45
Execution Speed of Callback Functions45
Using Non-Normal Erase Mode ...46
Order of Execution of Button Down Functions47
How Objects Are Selected ...48
Understanding Window Events and Callback Functions 51
Using Error Trapping with Call Back Functions53
Using an Unsupported Graphics Terminal53
Defining Terminal Characteristics..54

Very Large Variables on IBM Systems ..55
Platform-Specific File I/O Behavior ...56

Reading Data Using fscanf and sscanf... 56
Reaching EOF with fread and fscanf ...58

Inconsistencies in fprintf and sprintf Output.........................59

0

MATLAB 4.1

MATLAB Release Notes 1

MATLAB 4.1

Introduction
This document provides additional information not found elsewhere in
the documentation that accompanies MATLAB 4.1. More specifically, it

• Describes features that were added or enhanced after the formal doc-
umentation went to press.

• Discusses important bug fixes.

• Characterizes some of the more subtle aspects of MATLAB’s behavior.

MATLAB 4.1 Documentation
MATLAB comes with an extensive set of documentation including both
an on-line Help facility as well as a complete set of printed manuals. The
on-line help provides readily accessible reference information on all
MATLAB commands. It is accompanied by a suite of interactive demos
that serve to illustrate many of MATLAB’s powerful new features. These
on-line resources are augmented with a full set of printed documenta-
tion consisting of the following items:

• The MATLAB 4.1 Release Notes (this document).

• The Installation Guide describes how to install MATLAB.

• The New Features Guide provides information useful in making the
transition from MATLAB 3.5 to MATLAB 4.

• The MATLAB User's Guide covers platform-specific aspects of using
MATLAB and includes a tutorial that introduces basic MATLAB func-
tionality.

• The MATLAB Reference Guide contains an alphabetical compendium
of all MATLAB commands.

• The External Interface Guide describes the external interfaces to
MATLAB, including methods for importing and exporting data as well
as facilities for dynamically linking your own C and Fortran code with
MATLAB.

New Features

2

New Features

This section describes features that were added or enhanced since the
4.0 release of MATLAB.

New M-Files
This section provides a list of M-files that are not described in the
MATLAB Reference Guide. You can obtain more information on any of
these M-files using MATLAB’s on-line Help facility. For example, typing

help cedit

at the MATLAB prompt returns information on the cedit command.

General M ATLAB Commands

cedit Set parameters for controlling command-line
editing and recall facility

ls List the contents of the current directory
pwd Show the current working directory
matlabroot Return the directory in which MATLAB was

installed
tempname Return a name suitable for use in creating a

temporary file
whatsnew Display toolbox README files
version Display the MATLAB version that you are running

Language Functions

mexdebug Enable in situ debugging of MEX-files
nargchk Check the number of input arguments

Elementary Functions

sec, csc, cot Secant, Cosecant, and Cotangent
sech, csch, coth Hyperbolic Secant, Cosecant, and Cotangent
asec, acsc, acot Inverse Secant, Cosecant, and Cotangent
asech, acsch, acoth Inverse Hyperbolic Secant, Cosecant, and

Cotangent

Special Matrices

gallery A couple of small test matrices
pascal Pascal matrix

New Features

MATLAB Release Notes 3

Special Functions

gcd Greatest common divisor
lcm Least common multiple
expint Exponential integral
cart2pol Transform Cartesian coordinates to polar
cart2sph Transform Cartesian coordinates to spherical
pol2cart Transform polar coordinates to Cartesian
sph2cart Transform spherical coordinates to Cartesian

Matrix Functions

qrdelete Delete a column from the QR factorization
qrinsert Insert a column in the QR factorization
polyeig Polynomial eigenvalue solver

Data Functions

gradient Approximate gradient
subspace Angle between two subspaces

Polynomial Functions

polyder Polynomial derivative

Function functions

ode23p Solve differential equations, low order method,
displaying plot

Sparse Functions

sparsfun Sparse auxiliary functions and parameters

2-D Graphics

comet Comet plot
stem Plot discrete sequence data

3-D Graphics

comet3 3-D Comet plot
slice Volumetric slice plot
waterfall Waterfall plot

New Features

4

General Purpose Graphics

imagesc Scale data and display as image
ishold Return 1 if hold is on
newplot Graphics M-file preamble to handle the NextPlot

property
whitebg Set default figure background color to white
graymon Set default figure properties for gray-scale monitor
terminal Set graphics terminal type
gco Return handle of current object

User Interface Primitives

rbbox Rubberband box for region selection
uigetfile Dialog box for obtaining name of existing file
uiputfile Dialog box for specifying name of new file

Color Control

contrast Gray scale color map to enhance image contrast
prism Color map of prism colors
white All white monochrome color map

Sound Functions

auread Read Sun audio file
auwrite Write Sun audio file
lin2mu Linear to mu-law conversion
mu2lin Mu-law to linear conversion

String Functions

blanks A string of blanks
deblank Strip trailing blanks from end of a string
findstr Finds one string within another
isletter True for letters of the alphabet

Low-Level File I/O Functions

feof Test for end-of-file
fgetl Return the next line of the file as a string, without

newline
fgets Return the next line of the file as a string, with new-

line
frewind Rewind an open file

New Features

MATLAB Release Notes 5

New Language Features
This section describes additional enhancements to the MATLAB lan-
guage.

Toolbox Path Cache
The names of the M-files and MEX-files that reside in the toolbox sub-
directories are now placed in a cache when MATLAB starts up. This en-
hancement substantially reduces the time it takes to locate functions
invoked from the command line as well as those encountered during the
process of compiling M-files, particularly when running MATLAB in a
networked environment.

Except for the noticeable increase in performance, this change is essen-
tially transparent to the user. The only subtlety is that because the tool-
box M-files are cached, MATLAB will no longer automatically detect that
a new toolbox M-file has been added or modified. M-files that are located
elsewhere on your MATLABPATH are not cached and MATLAB continues to
detect changes and additions to files in these directories. Thus it is con-
venient to think of the M-files that reside in the toolbox directories as
“read-only” entities. (You should not really have reason to modify these
files anyway.)

The cache is rebuilt anytime the matlabpath command (or the path
command, which calls matlabpath) is executed. Thus if you find it nec-
essary to refresh the cache, you can issue the command

matlabpath(matlabpath)

If you have additional directories of M-files that you would like to have
cached (e.g., a library of M-files that you use frequently) that don’t re-
side under the standard MATLAB toolbox directory, you can do this by
setting the environment variable TOOLBOX to include these additional di-
rectories. Any subdirectories at or below the specified directories will be
cached. Note, however, that if you do this, you should make sure that
you also include the standard MATLAB toolbox directory. For example

setenv TOOLBOX $MATLAB/toolbox;/home/me/M–file_lib

“cd” and “which” Return Values
The cd and which commands now return values when invoked as func-
tions – that is, when called with left-hand side arguments. For instance,
you can now say

old_dir = cd;
cd some/new/directory
cd(old_dir) % Return to original directory

New Features

6

This behavior is based on the notion of command/function duality as
described in the New Features Guide.

“eval” Error Trapping
The eval function now provides an optional mechanism for detecting
and trapping error conditions that occur during the evaluation of the ar-
gument expression. To use this feature, you simply provide a second
string argument to eval containing an expression or the name of a func-
tion to be executed in the event that an error is encountered during the
evaluation of the primary argument. For example,

eval('cd new/dir', 'disp(''cd was unsuccessful'')');

will either set the current directory to new/dir or will display the mes-
sage cd was unsuccessful if the cd command returns an error. Note
the use of double quotes to delineate the string argument to disp within
the string argument to eval .

“lasterr” Built-In Function
MATLAB now provides a new built-in function lasterr that enables you
to query the most recent error that has occurred. MATLAB automatical-
ly sets this function to the corresponding error message text. You may
find it useful to set lasterr to a known value (perhaps the empty string
'') so that you can use it to determine when an error has occurred. This
approach can be particularly useful when used in connection with eval
error trapping as described above. Consider, for example, a simple M-
file that prompts the user for the name of a new directory.

while (1)
dirname = input('Enter new directory: ','s');
lasterr('');
eval('cd(dirname)', '')
if isempty(lasterr)

break
end
disp('That was an invalid name. Please try again')

end

Note that the empty string passed as the second argument to eval pre-
vents it from erroring out and allows the M-file to retain control in spite
of an error.

New Features

MATLAB Release Notes 7

In Situ MEX-File Debugging
On most UNIX platforms it is now possible to debug MEX-files while
they are running within MATLAB. Complete source code debugging is
possible including setting breakpoints, examining variables, and step-
ping through the source code line-by-line.

To debug a MEX-file from within MATLAB, you must first compile the
MEX-file with debugging information by specifying the –g option to
cmex or fmex . For example,

cmex –g yprime.c

You also need to start MATLAB up in a debugger. Do so by specifying the
name of the debugger you want to use with the –D option when starting
MATLAB. For instance, to use gdb , the GNU Debugger, you would type

matlab –Dgdb

Once the debugger has loaded MATLAB into memory, you can start it by
issuing a run command. Now, from within MATLAB, enable MEX-file
debugging by typing

mexdebug on

at the MATLAB prompt. Then run the MEX-file you want to debug as
you would normally (either directly or via some other function or script).
Before executing the MEX-file, you will be returned to the debugger.

You may need to tell the debugger where the MEX-file was loaded, in
which case MATLAB will display the appropriate command for you to
issue. At this point you are ready to start debugging. You can list the
source code for your MEX-file and set break points in it. It is often con-
venient to set one at mexFunction so that you stop at the beginning of
your MEX-file. Then to cause execution of the MEX-file to commence,
simply issue a continue command to the debugger.

Once you hit one of your breakpoints, you can make full use of any facil-
ities your debugger provides to examine variables, display memory, or
look at registers, etc. Please refer to the documentation provided with
your debugger for additional details on it use.

If you are at the MATLAB prompt and want to return control to the de-
bugger, you can issue the command

mexdebug stop

This facility allows you to gain access to the debugger so that you can
set additional breakpoints or examine source code. To resume execution
simply issue the continue command to the debugger.

New Features

8

New Mathematical Functions

Polynomial Eigenvalue - polyeig
polyeig is a new function that solves the polynomial eigenvalue prob-
lem of degree p:

using the notation

[X, E] = polyeig(A0, A1, A2, ..., Ap)

where the input is p + 1 square matrices, , all of the
same order, n. The output is an n-by-np matrix X whose columns are the
eigenvectors, and a vector of length np, E, whose elements are the corre-
sponding eigenvalues.

Exponential Integral - expint
expint is a new function that computes the exponential integral

using the notation

y = expint(x)

If x is in the range [-38, 2], a series expansion is used; otherwise, a con-
tinued fraction representation is employed.

A0 λA1 λ2A2 … λpAp+ + + +() x 0=

A0 A1 A2 … Ap, , , ,

y
e t−

t
dtx

∞∫=

New Features

MATLAB Release Notes 9

New Graphics Features
This section describes additional enhancements to MATLAB’s graphics
capabilities.

Font Support
Text objects now allow you to control their font size and typeface on a
per object basis. The complete set of 35 fonts now found on most Post-
Script printers is supported; however, you must have access to these
fonts in order to see them displayed on your screen. Since axes labels
and titles are themselves text objects, this addition means that you now
have much greater control over the appearance of your plots. Similarly,
you can also specify the typeface and size used for axes enumerations.
The “Text Properties” section later in this document provides additional
information on these properties and how to use them.

24-Bit Color Support
MATLAB 4.1 includes support for 24-bit color on X11 display servers ca-
pable of rendering it. This enhancement means that you can create
graphics objects having more than 256 distinct colors and you can dis-
play images containing more than 256 pixel values. Systems with 24-bit
color also avoid the problems associated with sharing color maps
amongst different Figure Windows as well as with other simultaneously
running applications.

Note that to take advantage of this feature, you must configure your
X11 display server to run in 24-bit TrueColor or DirectColor mode. For
instance, on a Sun workstation with a GS graphics accelerator, you
must specify the following command line option when starting your X
server

–dev /dev/cgtwelve0 defdepth 24

Expanded Printer Support
MATLAB 4.1 now provides support for a greatly expanded set of printers
including the complete line of HP LaserJets. The table shown below pro-
vides a complete list of newly supported devices. To use one of these
printers, simply specify the device type as an optional parameter to the
print command as shown

print –dlaserjet filename

New Features

10

or make it your default by editing the dev option in printopt.m.

This support is implemented transparently using the GhostScript post-
processor, which automatically converts MATLAB-generated PostScript
output into a form appropriate to the specified device.

Terminal Graphics Support
MATLAB 4.1 now contains comprehensive support for Tektronix-based
graphics terminals and terminal emulators. Both Tektronix 4010/4014
and Tektronix 4100/4105 devices are supported within the context of
the following limitations:

Printer Option

Hewlett-Packard LaserJet –dlaserjet

Hewlett-Packard LaserJet+ –dljetplus

Hewlett-Packard LaserJet IIP –dljet2p

Hewlett-Packard LaserJet III –dljet3

Hewlett-Packard DeskJet 500C (1-bit color) –dcdeskjet

Hewlett-Packard DeskJet 500C (24-bit color) –dcdjcolor

Hewlett-Packard DeskJet 500C (B/W) –dcdjmono

Hewlett-Packard DeskJet and DeskJet+ –ddeskjet

Hewlett-Packard PaintJet –dpaintjet

Hewlett-Packard PaintJet XL –dpjetxl

Cannon BubbleJet BJ10E –dbj10e

DEC LN03 –dln03

Epson-compatible dot matrix printer (9- or 24-pin) –depson

Epson-compatible (9-pin, triple resolution) –deps9high

Epson LQ-2550 –depsonc

Fujitsu 3400/2400/1200 (LQ-2550 compatible) –depsonc

New Features

MATLAB Release Notes 11

Tektronix 4010/4014

• Only black and white is supported.

• There is only one marker size for the “o” and the “. ” markers.

• Polygons and rectangles cannot be filled and are rendered as outlines.
For example, surf(eye(4)) and mesh(eye(4)) look exactly alike. As
a result, hidden line/surface removal is not supported.

• There are four different font sizes derived from the value of the
FontSize property.

• There is no support for interpolation, texture mapping, images, mov-
ies, or screen capture.

• It is not possible to set a figure’s position.

• Only minimal clipping is supported. Plots do not fully clip to axes.

• Text rotation does not rotate text but displays it in a different order.
For example, a text rotation of zero degrees displays text left to right,
a text rotation of 90 degrees displays text top to bottom, a text rota-
tion of 180 degrees displays text right to left (backwards), and a text
rotation of 270 degrees displays text bottom to top.

Tektronix 4100/4105

• Only black and white and 3-bit color are supported. The default Tek-
tronix color map (black, white, red, green, blue, cyan, magenta, yel-
low) is used for all graphics. Changing the color map of your terminal
before invoking MATLAB will cause incorrect colors to appear.

• There is only one marker size for the “o” and the “. ” markers.

• Filled rectangles and polygons use a Tektronix dithered fill pattern
based on the RGB value in the figure’s color map to which the rectan-
gle or polygon’s color corresponds.

• Only one font size is supported. The other font sizes are too large to
be displayed correctly.

• There is no support for interpolation, texture mapping, movies, or
screen capture. Images are supported and are dithered based on the
screen depth of your terminal.

• It is not possible to set a figure’s position.

• Only minimal clipping is supported. Plots do not fully clip to axes.

• Line colors use the closest entry in the Tektronix color map.

New Features

12

Using a Supported Graphics Terminal
To use a Tektronix terminal or emulator with MATLAB 3.5, you either
used a supplied terminal personality file (TPF) or created one. With
MATLAB 4.1, terminal characteristics for the supported graphics termi-
nals are defined in a single file, called terminal.m , stored in the
MATLAB toolbox. The table below lists the terminals whose character-
istics are included in the terminal.m file.

Graphics Terminal Option

C.Itoh citoh

Ergo ergo

Graphon graphon

Hewlett-Packard 2647 hp2647

Human Designed Systems hds

Macintosh with VersaTerm (Tektronix 4010/4014) versa

Macintosh with VersaTerm (Tektronix 4100) versa4100

Macintosh (Color/Grayscale) with VersaTerm (Tek-
tronix 4105)

versa4105

MS-DOS Kermit 2.23 kermit

Retrographics card retro

Selanar graphics 100 sg100

Selanar graphics 200 sg200

Tektronix 4010/4014 tek401x

Tektronix 4100 tek4100

Tektronix 4105 tek4105

VT240 and VT340 Tek mode vt240tek

Wyse WY–99GT wyse

xterm, Tektronix graphics xtermtek

New Features

MATLAB Release Notes 13

If you are using a graphics terminal or terminal emulator listed above,
follow either step below to identify the terminal to MATLAB:

• To identify the terminal for the current MATLAB session only, specify
the terminal code (from the table above) by entering the following
MATLAB command:

terminal terminal–code

For example, to run MATLAB from a Tektronix 4014, enter:

terminal tek401x

• To identify the terminal automatically each time MATLAB starts up,
include the terminal command described above in the startup
M-file, startup.m . The next time you run MATLAB, the terminal
characteristics will be applied automatically.

If the graphics terminal or terminal emulator you want to use is not list-
ed in the above table, you must create an M-file specifying the its char-
acteristics as described in the section “Using an Unsupported Graphics
Terminal” in the back of this document.

Keeping MATLAB from Connecting to an X Server
If you are running MATLAB remotely using a graphics terminal or ter-
minal emulator, you must make sure that MATLAB does not automati-
cally connect to an X Windows display server. If it does, your graphics
will display on that X server and you will not be able to change the ter-
minal settings.

The following are two ways to make sure MATLAB does not connect to
an X Windows display server:

• You can specify a nonexistent display or use an invalid display name
on the MATLAB command line:

matlab –display null

• Usually when running under the X Windows environment, a shell en-
vironment variable called DISPLAY is set to the name of the X Win-
dows display server on which windows are to appear. You can unset
this environment variable before you run MATLAB.

For the C shell:

unsetenv DISPLAY

For the Bourne shell:

unset DISPLAY

New Features

14

Line Width
It is now possible to set the line width for graphics objects using the
LineWidth property as shown below

set(handle, 'LineWidth', 2)

where the new width is specified in points (1/72 inch). This property ap-
plies to axes, lines, surfaces, and patches.

Line Style Order
It is now possible to specify which line types (e.g., solid, dashed, etc.) are
used and what order they are used in when plotting multi-line data.
This feature is analogous to the ColorOrder facility that allows you to
specify the order in which line colors are used.

Texture Mapping Surfaces – The texturemap FaceColor
Texture mapping is a technique for mapping a 2-D image onto a 3-D sur-
face by transforming color data so that it conforms to the surface. It al-
lows you to apply a “texture,” such as bumps or wood grain, to a surface
without performing the geometric modeling necessary to actually create
a surface with these features. The color data can also be any image, such
as a scanned photograph.

MATLAB texture maps a surface by assigning the texture color data to
the surface’s Cdata property. While a surface’s color is always deter-
mined by the values contained in its Cdata property, texture mapping
differs in that the dimensions of the Cdata array can be different from
the surface’s Zdata . This allows you to apply an image of arbitrary size
to any surface. MATLAB interpolates texture color data so that it is
mapped to the entire surface.

You must set the surface’s FaceColor property to texturemap before set-
ting Cdata to an arbitrarily sized array. You can do this in one of two
ways:

• Use the surface object creation function, which allows you to specify
object properties when you create the surface.

• Use set to change the FaceColor property of an existing surface and
to specify new data for Cdata .

The following example shows how to map the mandrill image to a cylin-
drical surface. By default, MATLAB maps the image to the entire sur-
face; however, this example pads the image data so that the mandrill is
displayed on half of the cylinder, thus making it easier to recognize the
image.

New Features

MATLAB Release Notes 15

load mandrill
colormap(map)
[x,y,z] = cylinder;
Xhalf = [ones(480,375)*max(max(X))/2, X, ...

ones(480,125)*max(max(X))/2];
surface(x,y,z, 'FaceColor','texturemap', ...

'EdgeColor','none', 'Cdata',flipud(Xhalf))
view(3)

The size of the mandrill data is 480 by 500, so an additional 500 columns
of data are added to make the image occupy half of the cylinder. The col-
umns are added before and after the existing data so as to orient the im-
age correctly for the default 3-D view.

The values used to pad the data are set to one-half of the maximum val-
ue of the mandrill data. This sets the color of the half cylinder that does
not contain the mandrill to the color that is in the middle of the man-
drill’s color map (map).

In addition to setting the FaceColor to texturemap , the EdgeColor is set
to none to remove the grid lines.

Since image data is normally displayed with ‘ij’ axis numbering, the
mandrill data is reversed in the vertical direction using flipud . (See the
axis reference page for more information.)

To produce the same picture using high-level graphics functions, you
must obtain the handle of the surface and change the relevant proper-
ties:

[x,y,z] = cylinder;
h = surf(x,y,z);
set(h, 'FaceColor','texturemap', 'EdgeColor','none',...

'Cdata',flipud(Xhalf))

Semi-Automatic Axes Limits
You can now specify one extreme of the coordinate axes or color axis
range (XLim , YLim , ZLim , or CLim properties) and allow the other extreme
to auto-scale. This is done by setting the limit that you want to auto-
scale to plus or minus inf .

For example, this statement forces the minimum limit of the x-axis to 0,
but allows the maximum limit to auto-scale:

set(gca,'XLim',[0 inf])

To set the maximum limit to 40 and let the minimum limit auto-scale,
use

set(gca,'XLim',[–inf 40])

New Features

16

The minimum will always be less than the maximum, regardless of
which extreme is specified.

Logarithmic Scaling
MATLAB can now plot negative data on a logarithmic scale. It cannot,
however, do so using negative and positive data simultaneously on the
same axes. If there is any positive data, the negative data is ignored and
the lower limit auto-scales so that the axes display the smallest positive
data value. MATLAB creates a negative log axis only when all the data
plotted to an axes is negative.

As described above, setting axes limits (the XLim , YLim , ZLim , or CLim
properties) to plus or minus inf cause the corresponding limit to
auto-scale. With logarithmic scaling, an axis limit of zero can also be
used to indicate that auto-scaling is desired. The axis minimum (if the
limits are [0 +n]) or maximum (if the limits are [–n 0]) will be chosen
to accommodate the value of the data that is closest to zero.

For example, these statements

plot(rand(1:10))
set(gca,'YLim',[0 0.1])
set(gca,'YScale','log')

set the upper limit to 10-1 but allow the lower limit to auto-scale (except
for data values of zero, which map to minus infinity).

If you set axis limits before plotting any data, MATLAB attempts to se-
lect appropriate limits and then revises these limits when you plot ac-
tual data.

If, while using logarithmic scaling, you specify a negative value for a
minimum axis limit and a positive value for the corresponding maxi-
mum axis limit, MATLAB treats the lower limit as if it were zero and
auto-scales that limit.

Window Mouse Button Functions
You can define callback functions that execute as a result of mouse but-
ton actions that occur within a Figure Window. These action are: press-
ing a mouse button, moving the mouse while holding a button pressed,
and releasing a mouse button. The callback functions are defined for a
particular Figure Window using the WindowButtonDownFcn ,
WindowButtonMotionFcn , and WindowButtonUpFcn figure properties.

A typical scenario might be to have the WindowButtonDownFcn define the
WindowButtonMotionFcn . This way, the WindowButtonMotionFcn

New Features

MATLAB Release Notes 17

(which may, for example, cause the pointer to drag any graphics object
it touches) is only active after the mouse button is pressed.

The WindowButtonUpFcn can undefine the WindowButtonMotionFcn (by
setting it to the empty string: '') so that pointer motion no longer af-
fects the display (e.g., no longer drags graphics objects). In this case,
the WindowButtonMotionFcn continues to execute until the mouse but-
ton is released, even if the pointer is moved outside the Figure Window.

The figure properties WindowButtonDownFcn ,
WindowButtonMotionFcn , and WindowButtonUpFcn are affected by the
figure Interruptible property described later in this document.

Object Mouse Button Down Functions
You can define a function that executes whenever you use the mouse on
a Handle Graphics™ object. All Handle Graphics objects (except
uimenus and the root) support a new property, ButtonDownFcn , that al-
lows you to define a callback function to execute whenever you press a
mouse button while the pointer is on the object.

You define the callback function as a string on which MATLAB performs
an eval('string') when the function is invoked. Therefore, the string
can be any valid MATLAB expression or the name of an M-file. The
string is executed in the MATLAB workspace.

Note that the callback function defined for an object’s ButtonDownFcn
property is separate from the callback functions you can define for the
uicontrol CallBack property and the figure WindowButtonDownFcn prop-
erty. In fact, all callback functions can operate simultaneously. Howev-
er, it is important to understand the sequence in which the callback
functions execute and the criteria established for their selection. See the
section “Order of Execution of Button Down Functions” later on in this
document for a detailed discussion of this topic.

Sliders Now Display Arrows
Uicontrol sliders ('style' set to 'slider') now display arrows if the as-
pect ratio of the width to the height of the control is in the following
range

aspect ratio < 1/4 [Vertical]

aspect ratio > 4 [Horizontal]

Use the Position property to specify aspect ratio.

New Features

18

When you use the mouse on an arrow, the slider position indicator (and
the associated slider Value) moves in the indicated direction by a value
of 1/100th of the total range. Clicking the mouse while the pointer is in
the trough moves the slider 1/10th of the total range.

The following picture illustrates how the slider looks with an aspect ra-
tio of 7.

Simplified Setting of Uicontrol Parent
Analogous to uimenu objects, uicontrol objects now accept a parent han-
dle as their first argument (without identifying the value as a property).
Thus a synopsis of the revised uicontrol syntax is

h = uicontrol(‘PropertyName’,PropertyValue,...)
h = uicontrol(handle, ‘PropertyName’,PropertyValue,...)

where handle is the handle of the figure object in which the uicontrol is
to appear. If no handle is specified, the uicontrol is created as a child of
the current Figure Window. It is not possible to change a uicontrol ob-
ject’s parent once it has been created.

Uicontrol Editable Text Behavior
Editable text uicontrols ('Style' set to 'edit') now operate in two
modes: single line and multiline. The values of the Min and Max proper-
ties determine which mode is used.

Single line mode is used whenever

(max – min) <= 1

In single line mode, typing a carriage return executes the uicontrol’s
callback function. Therefore, you can enter only a one line string in this
mode.

Multiline mode is used whenever you specify values for Min and Max
such that

(max – min) > 1

In multiline mode, entering a carriage return does not cause the call-
back function to execute, so you can type more than one line (containing
carriage returns) into the edit box. To apply the string (i.e., execute the
callback function), type Control-Return or move the pointer off the
edit box.

New Features

MATLAB Release Notes 19

Note that this represents a change in the default behavior of this uicon-
trol. Previously, multiline mode was the default and the values Min and
Max were ignored. However, since the default value for Min is 0 and the
default value for Max is 1, single line mode is now used when you do not
specify values for Min and Max.

Drawnow Discard
The drawnow command now takes an optional argument, discard . With
this option drawnow essentially performs the opposite of its normal op-
eration – it discards all pending events, including drawing, mouse
events, and keyboard events.

This option can be useful if you want to change object properties tempo-
rarily while performing an operation and then change them back with-
out causing the Figure Window to redraw. For example, you may want
to change figure properties before printing hardcopy, but do not want to
see (or wait for) the window contents to redraw using these new proper-
ties, and redraw again when you reset the properties.

If you type

set(gcf,'Color',’r’),drawnow discard

the figure background color does not change. However, if you then list
the value of the Color property it is returned as red:

get(gcf,'Color')

ans =
1 0 0

If you resize the window, thereby generating an event that causes the
window to redraw, the figure background is redrawn in red.

New Features

20

New Handle Graphics Object Properties
MATLAB graphics are build around an object-oriented system referred
to as Handle Graphics. Associated with each graphical object are a num-
ber of properties that determine its current behavior and appearance.

Querying Handle Graphics Object Properties
You can examine the set of properties that a particular graphics object
supports by entering the statement:

get(handle)

where handle is the object’s handle. Similarly, you can type

set(handle)

to see lists of all possible values associated with each property.

Many Handle Graphics object types now have additional properties be-
yond those documented in the MATLAB Reference Guide. The following
sections cover in detail the new properties for each of the basic object
types.

Properties Common to all Graphics Objects
The ButtonDownFcn and Interruptible properties described below are
available with all graphics objects except for the root object.

ButtonDownFcn Property

ButtonDownFcn string

The ButtonDownFcn property enables you to define a function that exe-
cutes whenever you press a mouse button while the pointer is over the
corresponding object. You define the callback function as a string that
is passed to eval . Therefore, the string can be any valid MATLAB ex-
pression or the name of an M-file. The string is executed in the MATLAB
workspace. Note that for uimenu objects, the CallBack function super-
sedes the ButtonDownFcn ; however, uicontrol objects support both their
own CallBack function as well as a ButtonDownFcn . See the section
“How Objects are Selected” later in this document for a description of
how these mechanisms interact.

Interruptible Property

Interruptible yes | no

This property controls whether or not the action defined by a
ButtonDownFcn can be interrupted during its execution. The default is

New Features

MATLAB Release Notes 21

no, which means MATLAB does not allow other functions to execute un-
til the currently executing function finishes.

For figure objects, this property also affects whether or not
WindowButtonDownFcn , WindowButtonMotionFcn ,
WindowButtonUpFcn , and KeyPressFcn callback functions can be inter-
rupted during execution.

For uimenu and uicontrol objects, this property also controls whether or
not a uicontrol or uimenu callback function can be interrupted during
its execution. Again, the default value of no means MATLAB does not al-
low other callback functions to begin execution until the currently exe-
cuting callback finishes.

It also means that the user cannot, for example, change the value of the
current figure (i.e., the value returned by gcf) by changing the window
focus. This is particularly useful in preventing impatient users from dis-
rupting a lengthy callback function by clicking around the display with
the mouse while the callback executes.

When an object’s Interruptible property is yes , and another callback
is selected to run, the following sequence occurs:

1. The executing callback encounters a drawnow , pause , or getframe
command that causes MATLAB to process the event queue.

2. Execution of the interrupted callback is suspended.

3. The interrupting callback function executes to completion (unless it
is interruptible and gets interrupted).

4. The interrupted callback resumes execution. The original state of
MATLAB (e.g., the current figure, the current axis, workspace vari-
ables, etc.) is not restored.

This sequence is repeated for each level of interruption.

Clearly, it is possible for the interrupting callback function to alter con-
ditions that affect the execution of the interrupted callback. When an
object has its Interruptible property set to yes , the task of restoring
(or at least monitoring) the conditions that existed when a callback is
interrupted must be handled by the individual callback functions.

See “Understanding Window Events and Callback Functions” in the
section “Notes on MATLAB’s behavior” later in this document for a more
complete discussion of this property.

New Features

22

Root Properties
This section describes figure properties not listed in the root object
reference page of the MATLAB Reference Guide.These properties pertain
to terminal characteristics used when running MATLAB via a remote
terminal.

ScreenDepth bits per pixel

This property indicates the depth of the display bitmap or the number
of bits per pixel. Thus, the maximum number of simultaneous colors
that can be displayed on the current graphics device is 2 raised to this
power. ScreenDepth supersedes the BlackAndWhite property described
in the MATLAB Reference Guide.

If MATLAB successfully connects to an X Window display server, it au-
tomatically determines whether it is running on color or monochrome
hardware and sets the value of this property to the depth of your dis-
play.

If you are not using X Windows, you should set this property. If you
don’t set the property or specify a value of zero, MATLAB uses a default
value of 3 when the TerminalProtocol property is set to tek410x , and
a value of 1 otherwise.

If you are using X Windows, setting this property to zero re-enables au-
tomatic screen depth detection.

Caution
If ScreenDepth is set to an incorrect value, graphics may
not display properly.

TerminalHideGraphCommand string

This property specifies the escape sequence that MATLAB issues to hide
the graph window when switching from graph mode back to command
mode. This property is only used by the terminal graphics driver. Con-
sult your terminal manual for the correct escape sequence.

TerminalOneWindow yes | no

This property indicates whether or not there is only one window on your
terminal. If the terminal uses only one window, MATLAB waits for you
to press a key before it switches from graphics mode back to command
mode. This property is only used by the terminal graphics driver.

TerminalProtocol none | x | tek401x | tek410x

This property tells MATLAB what type of terminal you are using. Spec-
ify tek401x for terminals that emulate Tektronix 4010/4014 terminals.

New Features

MATLAB Release Notes 23

Specify tek410x for terminals that emulate Tektronix 4100/4105 termi-
nals. If you are using X Windows and MATLAB can connect to your X
display server, this property will automatically be set to x .

Once this property is set, it cannot be changed unless you quit and re-
start MATLAB. To find out how to prevent MATLAB from connecting to
an X display server, see the section titled “Keeping MATLAB from Con-
necting to an X Display Server.”

TerminalShowGraphCommand string

This property specifies the escape sequence that MATLAB issues to dis-
play the graph window when switching from command mode to graph
mode. This property is only used by the terminal graphics driver. Con-
sult your terminal manual for the appropriate escape sequence.

Figure Properties
This section describes figure properties not listed in the figure refer-
ence page of the MATLAB Reference Guide.

BackingStore Property

BackingStore on | off

When BackingStore is on, MATLAB stores a copy of each Figure Win-
dow in an off screen pixel buffer. When an obscured Figure Window is
exposed, its contents are copied from this buffer rather than being re-
generated, thereby increasing the speed at which the screen is redrawn.

While this is generally a desirable situation, these buffers do consume
system memory. If memory limitations occur, you can set
BackingStore to off to disable this feature and release the memory
used by these buffers.

Not all machines that MATLAB runs on support BackingStore . If your
machine does not support it, setting the BackingStore property will re-
sult in a warning message and otherwise has no effect.

FixedColors Property

FixedColors n by 3 matrix (read only)

This property lists all fixed colors defined for the figure. Fixed colors are
independent of the figure color map. They are directly defined colors
that MATLAB uses when you explicitly specify the color of an object.

For example, if you enter the following statement

line('Color',[.2 .4 .6])

New Features

24

and then get the value of the FixedColors property

fc = get(gcf,'FixedColors')

fc is assigned the values

fc =
0 0 0
1.0000 1.0000 1.0000
0.2000 0.4000 0.6000

Note that black ([0 0 0]) and white ([1 1 1]) are created because the
figure has a black background and white text by default. If you change
the figure Color property to green, for example, the black entry is re-
placed by [0 1 0] .

KeyPressFcn Property

KeyPressFcn string

The KeyPressFcn property is analogous to the ButtonDownFcn property
in that it enables you to specify a callback function that is to be invoked
any time a key is pressed when the corresponding window has focus.
The callback routine can query the figure CurrentCharacter property
to determine what character was typed thereby causing the callback to
be executed.

MenuBar Property

MenuBar none | figure

This property enables you to display or hide the menu bar that sits at
the top of Figure Windows. Note that Figure Window menu bars are not
supported on all systems; however, for those that do, the default is to
display them.

ShareColors Property

ShareColors yes | no

The ShareColors property affects the use of slots in the system color ta-
ble. On systems having eight or fewer bits per pixel, color table slots are
typically a precious resource and should be conserved in order to allow
the maximum number of windows to render their contents with reason-
able looking colors. When this property is set to yes , MATLAB is very
careful about reusing existing color table slots whenever possible.

Occasionally, however, this behavior is undesirable as, for instance,
when dynamically adjusting the color map for a specific window. In this
case, the time required to readjust the color table assignments for any

New Features

MATLAB Release Notes 25

other windows is prohibitively expensive. Thus, under these circum-
stances, it is desirable that the window whose color map is being adjust-
ed not share any of its color table slots with other windows, and hence
the user should set this property to no.

WindowButtonDownFcn Property

WindowButtonDownFcn string

This property allows you to define a function for the particular Figure
Window that MATLAB executes whenever a button down event occurs
in that window (i.e., whenever a mouse button is pressed while the
pointer is in the window).

MATLAB performs an eval(string) on the specified string. This means
the string can be any valid MATLAB expression or the name of an M-file.

WindowButtonMotionFcn Property

WindowButtonMotionFcn string

This property allows you to define a function for the particular Figure
Window that MATLAB executes whenever a motion event occurs in that
window (i.e., whenever the pointer is moved within the Figure Window).

MATLAB performs an eval(string) on the specified string. This means
the string can be any valid MATLAB expression or the name of an M-file.

WindowButtonUpFcn Property

WindowButtonUpFcn string

This property allows you to define a function for the particular Figure
Window that MATLAB executes whenever a button up event occurs for
that window (i.e., whenever a mouse button is released).

The button up event is associated with the window in which the preced-
ing button down event occurred. Therefore, the pointer need not be in
the Figure Window when the button is released to generate the button
up event.

MATLAB performs an eval(string) on the specified string. This means
the string can be any valid MATLAB expression or the name of an M-file.

Axes Properties
This section describes axes properties that are not listed in the axes ref-
erence page of the MATLAB Reference Guide

New Features

26

CurrentPoint Property

CurrentPoint 2 by 3 matrix

The axes CurrentPoint property contains the coordinates of two points
that are defined by the location of the pointer. MATLAB updates this
property continually. The axes CurrentPoint is derived from the figure
CurrentPoint by translating it to axes coordinates.

Pointers exist in the 2-D space of the computer screen whereas
MATLAB graphics objects exist in 3-D data space. To accommodate this
difference, MATLAB returns the line perpendicular to the plane of the
screen and passing through the pointer. It does so by providing the 3-D
coordinates of the points on this line where it intersects the front and
back surfaces of the axes volume. The axes volume is defined by its x, y,
and z limits.

The returned matrix is of the form:

The coordinates are returned in the data space of the current axes (i.e.,
the same units as the data plotted on the axes). The pointer does not
have to be within the axes, or even the Figure Window; the coordinates
are returned with respect to the requested axes regardless of the loca-
tion.

The following example allows you to see the nature the data returned
by the CurrentPoint property. It is instructive to try this example.

First create a 2-D plot of a sine wave (any 2-D plot will do):

t = 0:pi/20:2*pi;
plot(sin(t))

Next, set hold to on so that you can plot additional data in the same axes
and use the axis command to freeze the scaling at the current limits:

hold on
axis(axis)

Now define a window button down function that retrieves and plots the
data returned by the CurrentPoint . (Note that there is no carriage re-
turn after the second line; it is wrapped to fit on the page.)

xback yback zback
xfront yfront zfront

New Features

MATLAB Release Notes 27

set(gcf,'WindowButtonDownfcn',...
'p=get(gca,''CurrentPoint'');plot3(p(:,1),p(:,2),p(:,3),
'' ∗'');plot3(p(:,1),p(:,2),p(:,3),'':'')')

You can now press a mouse button anywhere on the plot and invoke the
window button down function. When you click a mouse button, a ∗
marker appears on the plot at the location of the CurrentPoint . (Actu-
ally, what you see is the front end point.)

Now change to a 3-D view:

view(3)

From another point of view, you can see that there are two end points
plotted (connected with a dotted line to make it easier to associate to-
gether the correct points).

In this example, the two end points lie on the z = 1 and the z = –1 planes.
In the more general case, the points returned by CurrentPoint do not
necessarily lie along an axis; they can be at an arbitrary orientation.

To illustrate this, click on the plot while the view is still set for 3-D.
Once again the CurrentPoint location is displayed as single marker be-
cause you are looking along the line it defines. This time, however, the
line is not parallel to either the x-, y-, or z-axis. If you again change the
view, you can see the lines defined by the two end points.

0 5 10 15 20 25 30 35 40 45
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

New Features

28

Allowing the CurrentPoint to define a line segment enables you to im-
plement a 3-D picking scheme. It is particularly useful when the view is
set at some arbitrary orientation and you need to determine which ob-
ject is first intersected by the line. You can do this by comparing the x,
y, and z data of all the objects in the axes to see if and where they inter-
sect the line defined by the end points.

Font Properties

The font characteristics used in rendering axes tick mark labels can be
specified using the same font property values as those of the text object
described later in this chapter. Specifically, you can specify the
FontName , FontSize , FontWeight , and FontAngle properties.

LineStyleOrder Property

LineStyleOrder column–array of text strings

This property enables you to specify which line types (e.g., solid, dashed,
etc.) are used and what order they are used in when plotting multi-line
data. For example to use solid, dashed, and dotted lines in that order
you would say:

set(gca, 'LineStyleOrder', ['– ', '––', ': '])

or

set(gca, 'LineStyleOrder', '–|––|:')

0
10

20
30

40

-1

-0.5

0

0.5

1
-1

-0.5

0

0.5

1

New Features

MATLAB Release Notes 29

Note that when using the first form shown, you must pad the single-
character line type specifiers with spaces if you are also using two char-
acter specifiers so that all strings in the parameter matrix have the
same length.

The default value is '–' indicating that all data is to be plotted as solid
lines. Colors rather than line styles are used to differentiate them.

Title Property

Title text handle

This property holds the handle of the text object that is displayed as the
figure title. You can use this handle to change the properties of the title
text object or to create a title for a figure.

For example, the following statement changes the color of the current
axes’ title to red:

set(get(gca,'Title'),'Color','r')

To create a title, set Title to the handle of the text you want to use as
the title:

set(gca,'Title',text('String','Profound Data'))

However, it is generally simpler to use the title command to initially
create the title.

Properties Common to all Axes Children

EraseMode Property

EraseMode normal | none | xor | background

All children of axes except images now allow you to specify an erase
mode that determines how they are erased and redrawn. This property
applies to line, patch, surface, and text objects. Graphics objects are
erased when you change their coordinate data (i.e., their XData , YData ,
and ZData properties)

This property is useful when creating animated sequences, where con-
trol of how individual objects redraw is necessary for improving
performance and obtaining special effects.

normal mode redraws affected regions of the display, performing the
three dimensional analysis necessary to ensure that all objects are ren-
dered correctly. While this mode produces the most accurate picture, it
also takes the most time. The other modes do not perform a complete

New Features

30

redraw and therefore are considerably faster, but can produce a less
accurate picture.

When the erase mode is none , the object is not erased when it is moved
or destroyed.

xor mode erases the object by xor-ing its color with the color of the
screen beneath it. When the object is erased, it does not damage the
objects beneath it. However, when objects are drawn in xor mode, their
colors are dependent on the color of the screen beneath them. Therefore,
the object is colored correctly only when rendered over the figure back-
ground color.

background mode produces a properly colored object. However, the
object is erased by drawing it in the figure’s background color. This
damages objects that are behind the erased object.

LineWidth Property

All children of axes except text and images now allow you to specify the
thickness of the lines used when they are rendered. This property ap-
plies to line, patch, and surface objects.
LineWidth width

The new width is specified in points (1/72 inch). The default value is 0.5
points.

Surface Properties
This section describes figure properties not listed in the surface refer-
ence page of the MATLAB Reference Guide.

MarkerSize Property

MarkerSize point size

As with line objects, you can now specify the size of markers used with
surfaces. This property is only used when the LineStyle property is set
to one of the marker types (point, plus, star, circle or x-mark). The de-
fault value is 6 points.

Text Properties
This section describes figure properties not listed in the text reference
page of the MATLAB Reference Guide.

Text objects now support font properties that allow you to specify font
characteristics.

New Features

MATLAB Release Notes 31

FontName Property

FontName font family

This property specifies the font family (e.g., Helvetica).

FontSize Property

FontSize point size

This property specifies the font size in points (one point = 1/72 inch).

FontWeight Property

FontWeight light | normal | demi | bold

This property specifies the character weight.

FontAngle Property

FontAngle normal | italic | oblique

This property specifies the character slant.

A font is defined by a number of characteristics in addition to its name.
Not all combinations of these properties are allowed. MATLAB currently
supports the eleven font families typically found on most PostScript
printers. These include the basic four fonts Times, Helvetica, Courier,
and Symbol as well as the now common Avant Garde, Bookman, Helvet-
ica Narrow, New Century Schoolbook, Palatino, Zapf Chancery, and
Zapf Dingbats.

For example, to specify 10-point Helvetica-BoldOblique, set the font
properties to:

FontName Helvetica
FontSize 10
FontWeight bold
FontAngle oblique

When the set of currently specified parameters does not correspond to
an available font, MATLAB uses the following rules for selecting the
current font:

1. MATLAB accepts oblique in place of italic and vice versa.

2. If a match is still not found, MATLAB ignores the FontAngle .

3. If a match is still not found, MATLAB ignores the FontWeight .

4. If a match is still not found, MATLAB ignores the FontSize .

5. If a match is still not found, MATLAB does not change the font.

New Features

32

When MATLAB generates hardcopy output, it does not attempt to deter-
mine what fonts are available on the hardcopy device before it sends
output to the device.

The default font for text objects as well as for axes enumerations is 12-
point Helvetica. When using TrueType fonts, and Times and Helvetica
are unavailable, Times will be replaced with New Times Roman, Hel-
vetica will be replaced with Arial, and Courier will be replaced with
New Courier.

Uimenu Properties
Uimenu objects support several additional properties beyond those dis-
cussed in the uimenu reference page of the MATLAB Reference Guide.

BackgroundColor Property

BackgroundColor ColorSpec

This property specifies the color used to fill the rectangle defined by the
menu. Specify this color using a vector of RGB values or one of
MATLAB’s predefined names. See the ColorSpec reference page for
more information on specifying color. The default color is a light gray
which is defined by the RGB triple

[0.7020 0.7020 0.7020]

ForegroundColor Property

ForegroundColor ColorSpec

This property specifies the color of the text displayed on the uimenu ob-
ject. Specify the color using a vector of RGB values or one of MATLAB’s
predefined names. See the ColorSpec reference page for more informa-
tion on specifying color. The default color is black.

Checked Property

Checked on | off

Setting this property to on causes a check mark to be placed next to the
corresponding menu item. This feature can be used to create menus that
list features that can be turned on or off at the discretion of the user.
Note that there is no formal mechanism for indicating that a particular
menu item can or cannot be checked.

New Features

MATLAB Release Notes 33

New Features for File I/O Functions
This section describes new features supported by the file I/O functions
as well as additional file I/O functions not described in the MATLAB
Reference Manual.

fread
[a,count] = fread(fid,size,'precision',skip)

The skip argument optionally specifies the number of bytes to skip after
each read. It is used to extract the data in noncontiguous fields from
fixed length records. For example, consider a file containing a series of
records, each with fields of length 8, 16, and 4 bytes.

Suppose you want to read the data from the 4-byte fields into a matrix.
Rather than repeatedly calling fseek to reposition the file pointer and
fread to read the single field of data, you can instruct fread to skip 24
bytes between each read. Reading continues until the end of the file or
until the specified size is reached. The following statements illustrate
this procedure:

fid = fopen(‘filename’); % open the file for reading
status = fseek(fid,24,'bof'); % set file pointer
A = fread(fid,'float',24); %read to end of file

These statements open the file for reading and obtain the file identifier.
fseek moves the file pointer 24 bytes from the beginning of the file to
position it correctly for the first read. fread reads the 4-byte field (float
precision) and then skips 24 bytes before again reading the next 4 bytes.
Since no size argument is specified, this process continues until the end
of the file is reached.

fread also supports a repetition factor that is useful for reading multi-
element fields. You specify the repetition factor as a multiplier applied
to the precision argument. For example, consider the following data
structure:

8 16 8

Initial file pointer position set with fseek

44 16

8 8 40 8 8 40

Initial file pointer position set with fseek

New Features

34

The file is composed of a repeating sequence of records, each with fields
of lengths 8, 8, and 40 bytes. The 40-byte field contains 40 chars . The
following statements read 10, 40-byte fields into the columns of a 40 by
10 matrix:

fid = fopen('filename'); % open the file for reading
status = fseek(fid,16,'bof'); % set file pointer
A = fread(fid,[40,10]'40*char',16);
A = setstr(A’)

Transposing the matrix A arranges the data as 10 lines of characters,
each 40 columns wide.

Note that you must specify a nonzero skip argument in order to use a
repetition factor.

fwrite
count = fwrite(fid,A,'precision',skip)

The skip argument optionally specifies the number of bytes to skip
before each write. fwrite writes the elements of matrix A into the spec-
ified file, skipping the specified number of bytes before each write.

You do not need to call fseek first (unless you want to skip other parts
of the file, such as a header) as you do when reading data.

For example, to write data to the first data structure discussed in the
“fread” section, open the file for writing and specify a skip of 24 bytes:

fid = fopen('filename','w');
count = fwrite(fid,A,'float',24);

You can also specify a repetition factor with fwrite . This is useful for
writing to multi-element fields within a data record. For example, to
write data to the second structure discussed in the “fread” section, open
the file for writing and specify a repetition factor of 40 and a skip of 16
bytes:

fid = fopen('filename','r+');
count = fwrite(fid,A,'40*char',16);

These statements open the file for updating and write the elements of A
separated by 16 byte intervals. If the end of the file is reached before
writing all elements in A, fwrite appends to the file by continuing to
skip 16 bytes and writing 40 chars until all elements are written.

Note that you must specify a nonzero skip argument in order use a rep-
etition factor.

New Features

MATLAB Release Notes 35

feof
result = feof(fid)

feof tests whether the EOF (end of file) indicator has been set for the
specified file. It returns 1 if the EOF indicator is set and 0 if it is not set.

The EOF indicator is set when fread attempts to read past the last
character in the file. Moving the file position indicator to the end of the
file using fseek(fid,0,'eof') does not set the EOF indicator. For ex-
ample,

fseek(fid,0,'eof')
result = feof(fid,'eof');
result =

0

fprintf
count = fprintf(fid,'format',A,...)

The format argument is a string containing C language conversion
specifications. Format conversion specifications involve the character %,
optional flags, optional width and precision fields, optional subtype
specifiers, and conversion characters d, i , o, u , x , X, f , e, E, g, G, c , and
s . See an ANSI C manual for complete details.

Complete ANSI C support for these conversion characters is provided
consistent with “expected” MATLAB behavior. If a MATLAB matrix ele-
ment (type 'double ') maps without loss of significance to the underlying
C data type associated with the conversion specifier, then the result is
the same as that of ANSI C. Otherwise, e format is used. For example,
using the d conversion specifier to print a matrix containing a combina-
tion of types produces the following output:

A = [2 3 4;pi 2*pi 5.235;Nan Inf NaN];
fprintf(1,'%d\n',A)
2
3.141593e+00
NaN
3
6.283185e+00
Inf
4
5.234000e+00
NaN

You must explicitly convert non-integral MATLAB values to integral
MATLAB values (using floor , ceil , round , or fix) before they print
with the expected ANSI C behavior. Note that NaNs and Inf s are unaf-
fected by the conversion specifier.

New Features

36

MATLAB supports the following nonstandard subtype specifiers for con-
version characters o, u, x , and X.

• t – The underlying C data type is a float rather than an unsigned in-
teger.

• b – The underlying C data type is a double rather than an unsigned
integer.

For example, to print a double value in hex use a format such as '%bx '

fscanf
[A,count] = fscanf(fid,'format',size)

The size argument specifies the number of “objects” to scan. There is a
one to one correspondence between objects and format specifiers. Now,
%s corresponds to one object. Since MATLAB stores one character per
matrix element the resulting returned matrix may be larger than the
size originally specified. MATLAB increases the number of columns as
required to accommodate any additional elements.

The format argument is a string containing C language conversion
specifications. Format conversion specifications involve the character %,
optional assignment-suppressing asterisk and width field, and conver-
sion characters d, i , o, u, x , e, f , g, s , c , and [. . .] (scanset). For a
complete conversion character specification, see an ANSI C manual.

Complete ANSI C support for these conversion characters is provided
consistent with “expected” MATLAB behavior. For example, an impor-
tant difference occurs when using e, f , and g conversions. %e/%f/%g map
directly to a double (not to a float) as if you specified %le/%lf/%lg . (All
MATLAB matrix elements are doubles.) Use the nonstandard construct
%he/%hf/%hg to map directly to a float.

Note that subtype specifiers in Standard C like h and l , though not men-
tioned specifically above, are supported in the following way:
fscanf scans the incoming data and converts it to the specified data
type before converting it to a double.

fseek
fseek does not let you move the file position indicator passed the last
byte written. See feof for more information.

New Features

MATLAB Release Notes 37

fgetl, fgets
These functions return the next line of a text file as a string. fgetl re-
turns the string without a newline, whereas fgets returns the string
with a newline.

frewind
frewind(fid)

frewind sets the file position indicator of the file identified by fid to the
beginning of the file.

Reading and Writing Strings – Error Messages
sprintf and sscanf now support an additional output argument to re-
turn error messages that occur during their execution. You must use
this optional argument to obtain error messages since no file descriptor
is available to pass to ferror .

sprintf
The new syntax for the sprintf function includes an error output argu-
ment:

[s,errmsg] = sprintf('format',a,...)

errmsg is an optional output argument that returns an error message
string if an error occurs or an empty matrix if an error does not occur.
The format changes discussed under fprintf apply identically to
sprintf .

New fopen Permissions
By default, files are now opened in binary mode. To open a text file, add
't' to the permission string, for example 'rt' and 'wt+'. (On UNIX sys-
tems, text and binary files are the same so this has no effect. But on PC,
Macintosh, and VMS systems this is critical.)

The new W (write) and A (append) permission options have the same
meaning as their lower-case counterparts except they prevent fwrite
and fprintf from flushing the current output buffer. This is useful for
writing to tape devices. For example, a command such as

fid = fopen('/dev/rst0','W')

typically opens a 1/4'' cartridge tape for writing with no flushing on a
Sun4.

New Features

38

sscanf
The sscanf function returns two new arguments: errmsg , and
nextindex :

[a,count,errmsg,nextindex] = sscanf(s,'format',size)

errmsg is an optional output argument that returns an error message
string if an error occurs or an empty matrix if an error does not occur.
The format changes discussed under fscanf apply identically to
sscanf .

nextindex contains a value equal to one greater than the index of the
last character scanned from the string specified in the s input argu-
ment. The third output argument, errmsg , no longer returns the mes-
sage 'At end–of–string' when the end-of-string is encountered during
the scanning process.

You can test for end-of-string by checking errmsg to see if it is empty
and checking nextindex to see if its value is greater than the length of
the scanned string. For example, you can use an if statement to evalu-
ate the returned arguments:

s = ‘2.7183 3.1416’;
[a,count,errmsg,nextindex] = sscanf(s,'%f');
if nextindex > size(s,2) & errmsg == []

Improvements and Bug Fixes

MATLAB Release Notes 39

Improvements and Bug Fixes

This section describes improvements made to MATLAB for the 4.1 re-
lease. It also discusses the most important software defects that are
fixed in MATLAB 4.1.

Matrix Decomposition Functions
The following enhancements have been made to MATLAB’s matrix de-
composition functions:

• null and orth now use svd rather than qr . This change makes the
rank calculation more reliable and provides consistency with the rank
function.

• The statement

[Q, R] = qr(A, 0)

now produces an “economy size” decomposition. If A has more rows
than columns, the resulting Q will be the same size as A rather than a
full, square matrix.

Polynomial Functions
The polynomial functions polyfit and polyval have been enhanced to
optionally generate error estimates for fitted data using an additional
parameter S. If a polynomial is fit to a set of data using

[p, S] = polyfit(x, y, n)

and then evaluated using

[y, delta] = polyval(p, x, S)

the band y ± delta will contain at least 50 percent of the original data
if the data errors were independent and normally distributed with con-
stant variance.

2-D Signal Processing Functions
The 2-D signal processing functions filter2 and conv2 have been en-
hanced to accept an optional third argument that specifies the size of
the resulting matrix.

Y = filter2(B, X, 'shape')

C = conv2(A, B, 'shape')

Improvements and Bug Fixes

40

For filter2 , this “shape” parameter can have the following values:

'same' Returns the central part of the convolution that is the
same size as X. This is the default.

'valid' Returns only those parts of the convolution that are
computed without the zero-padded edges,
size(Y) < size(X) .

'full' Returns the full 2-D convolution, size(Y) > size(X) .

For conv2 , this “shape” parameter can have the following values:

'full' Returns the full 2-D convolution. This is the default.
'same' Returns the central part of the convolution that is the

same size as A.
'valid' Returns only those parts of the convolution that are

computed without the zero-padded edges, size(C) =
[ma–mb+1,na–nb+1] when size(A) > size(B) .

conv2 is fastest when size(A) > size(B) .

Interpolation Functions
The suite of M-files for interpolating data has been modified and ex-
tended for MATLAB 4.1. The underlying algorithms have been substan-
tially improved so as to be more memory efficient.

interp1 1-D data interpolation (table lookup)
interp2 2-D data interpolation (table lookup)
interp3 2-D biharmonic data interpolation and gridding
interp4 2-D bilinear data interpolation
interp5 2-D bicubic data interpolation

Bessel Functions
The suite of M-files for implementing Bessel functions has been modi-
fied and extended for MATLAB 4.1. The underlying algorithms have
been substantially improved. There are now four primary functions for
real x .

besselj(alpha,x) Bessel functions of the first kind
bessely(alpha,x) Bessel functions of the second kind
besseli(alpha,x) Modified Bessel functions of the first kind
besselk(alpha,x) Modified Bessel functions of the second kind

An old function, bessela(alpha,x) , accepts complex x , but may produce
inaccurate results for large alpha or large x .

Improvements and Bug Fixes

MATLAB Release Notes 41

The bessel(alpha,x) M-file, calls besselj(alpha,x) if x is real,
besseli(alpha,x) if x is imaginary, and bessela(alpha,x) if x is com-
plex. The auxiliary routine besseln is no longer used. besselh has been
superseded by bessely .

The Reciprocal Condition Estimator–rcond
This release of MATLAB fixes a bug in the rcond function. Previously,
rcond returned a larger than expected estimate for some matrices. It
did, however, return a result on the order of eps for matrices that are
singular to working precision.

rcond now returns an estimate that matches the value returned by the
Fortran LINPACK library.

Surface Object CData
When flat shaded, a surface object now accepts a CData matrix whose
size is one less (in each dimension) than the size of the ZData matrix.
This is because the extra row and column are not needed to flat shade
the object. Of course, CData and ZData can be the same size and must be
for interpolated shading.

When the surface FaceColor property is set to a ColorSpec (a single col-
or), none , or texturemap , CData can be any size. Previously, only a Face-
Color of texturemap allowed the CData and the ZData matrices to be of
different sizes.

Save Handles Global Variables Correctly
In MATLAB 4.0, issuing save from within an M-file function caused both
the function’s local variables as well as all global variables to be saved
in the resulting MAT-file. Thus, global variables that were not visible
from inside the M-file function were being saved. In MATLAB 4.1, issu-
ing a save command from within an M-file function saves the function’s
local variables and only those global variables that have been explicitly
declared global within the function.

Domain Name Server
MATLAB no longer requires a special version to support the Domain
Name Server on the Sun4.

Improvements and Bug Fixes

42

License Manager
There is a new interface for starting the license manager at boot time
called lmboot . See the MATLAB Installation Guide for more information
on using lmboot . You should continue to use lmstart to start the license
manager during an interactive session.

The default license logfile pathname has changed. The new pathname
is /usr/adm/license.log4 . The old name was /usr/adm/license.log .

matlab/etc Directory Is Now Self-Contained
You can run the license manager from a machine that is separate from
the one on which you install the MATLAB root directory. The following
steps describe how to do this. Note that $MATLAB refers to the root direc-
tory where you install MATLAB. For example, this might be
/usr/local/matlab . $SERVER refers to the root directory where you are
going to place the license manager portion of MATLAB. For example, you
might use /usr/local/lm .

1. Install MATLAB according to the instructions in the MATLAB Instal-
lation Guide.

2. Copy the $MATLAB/etc directory in its entirety to the $SERVER direc-
tory on each license server.

3. Edit the license.dat file to specify the correct pathnames for the
MLM daemon script and the local.options file. These pathnames
must refer to the new license manager location. See the “Under-
standing the license.dat File” section of the MATLAB Installation
Guide for more information.

4. Use the ln command with the –s option to create a symbolic link on
the license manager server from /etc/lmboot to $SERVER/etc/lm-
boot as shown below

ln –s $SERVER/etc/lmboot /etc/lmboot

5. Insert the Bourne Shell code fragment in the appropriate boot script
for your platform as described in the “Installing MATLAB from
Tape” section of the MATLAB Installation Guide. You must perform
this step on the license manager server (even though you already
performed it on the machine when you installed MATLAB).

This procedure allows you to run the license manager from a machine
that does not have access to the MATLAB root directory.

Improvements and Bug Fixes

MATLAB Release Notes 43

Changes to the print Command
The print command supports a new option, –f , that allows you to spec-
ify the Figure Window or the SIMULINK window that you want to print.
Previously, print assumed the current figure as the window to print
and did not allow you to specify another window except by making it the
current figure (i.e., the value returned by gcf).

The syntax is

print –ffigurehandle
print –fwindowtitle

For example, specifying a value of 2 for the –f option

print –f2

prints the Figure Window whose handle is 2, regardless of which figure
is the current figure.

If you are running SIMULINK you can print the block diagram displayed
in a SIMULINK window using the window’s title. For example,

print –ff14

prints the SIMULINK window entitled f14 .

Creating EPS Files with print
In release 4.0, the print command terminated with an error if you spec-
ified an Encapsulated PostScript (EPS) device option, but did not spec-
ify a filename. This error occurred because you cannot print a stand-
alone EPS file. (Specifying the print command without a
filename automatically sends the output to the printer.)

With version 4.1, print automatically creates an EPS file if you do not
specify a filename when selecting one of the EPS device options (–deps ,
–depsc , –deps2 , or –depsc2). You can now enter a command such as the
following without creating an error condition:

print –f2 –deps

In this case, MATLAB creates a file named after the Figure Window
used to create the file (in this case,. Figure 2) and issues the following
message:

Encapsulated PostScript files cannot be sent to the
printer.
File saved to disk under name 'figure2.eps'

Notes On MATLAB’s Behavior

44

Notes On MATLAB ’s Behavior

This section describes aspects of MATLAB’s current behavior that are
not presented in the documentation. Note that there may be changes to
this behavior in future releases.

Variable Names in Data Files
You cannot retrieve variables from data files (i.e., load from MAT-files)
if the variable names begin with a number. To avoid problems, you
should ensure all workspace variables that you want to save have
names beginning with a character.

Logical Operators
The logical operators &, | , ~, xor , any , and all treat any nonzero number
as one. This includes i (), inf , NaN, and complex numbers whose real
part is zero, but whose imaginary part is nonzero.

On the other hand, if and while treat a number as nonzero when the
real part of the number is nonzero. This means that i (represented as 0
+ 1.0000i in MATLAB) evaluates to zero (i.e., false). NaNs return an er-
ror when used with if and while .

Relational operators produce some unexpected results when used with
i , as the following table illustrates. Results using NaNs, however, are as
expected.

i Evaluates To NaN Evaluates To

i == 0 false NaN == 0 false

i < 0 false NaN < 0 false

i <= 0 true NaN <= 0 false

i > 0 false NaN > 0 false

i >= 0 true NaN >= 0 false

i ~= 0 true NaN ~= 0 true

1−

Notes On MATLAB’s Behavior

MATLAB Release Notes 45

Graphics Issues

Color Error Tolerance
When you specify a color directly (i.e., with its RGB values), MATLAB
either defines that color using a slot in the system color table or selects
a color that is close enough, as defined by the color error tolerance. By
default, colors that are closer than an average of 1 part in 257 for each
red, green, and blue are mapped to the same color. (Generally, your eyes
cannot distinguish values closer than this anyway.)

If you set the figure MinColormap property to 256, and create an image
using

colormap(gray(256))
image(1:256)

MATLAB allocates 256 separate colors on the system because no two col-
ors are closer together than their error tolerance.

However, if you set the figure MinColormap property to 512 (assuming
your system can handle that many colors), and create an image using

colormap(gray(512))
image(1:512)

MATLAB allocates only a little more than 256 separate colors and most
colors are the same as one of their neighbors.

Running Movies
movie now displays each frame as it loads the data into memory. It then
runs the movie the specified number of times at the specified speed.
This eliminates long delays with a blank screen when a memory-inten-
sive movie is loaded. Note that the first time the movie is displayed it
runs slowly, but this run is not counted as one of the movie repetitions.

Execution Speed of Callback Functions
MATLAB allows you to define callback functions for uicontrols, uimenus,
and various mouse button events. The ways in which you define these
functions can affect the speed with which they execute. Basically, there
are three possibilities. You can specify the callback function as a string
argument that is

• The name of a function M-file

• A string that you pass as an argument

• The name of a script M-file

Notes On MATLAB’s Behavior

46

In each case, MATLAB passes the string (which can be the name of a file)
to the eval function.

If the string is the name of a function M-file, MATLAB compiles the file
once and can repeatedly execute it without recompiling. This provides
the fastest callback execution, if it is to be called more than once.

If the string is passed directly as an argument (not the name of a file),
MATLAB interprets the commands contained in the string each time it
executes the callback. This is generally slower than defining the call-
back as a function M-file.

If the string is the name of a script M-file, MATLAB loads the file into
memory and interprets each line each time the callback is executed.
This produces the slowest callback execution.

Using Non-Normal Erase Mode
When a graphics object’s Erasemode property is set to background , xor ,
or none , the order in which you specify property/value pairs for that ob-
ject becomes important. In such cases both the first and the last proper-
ty/value pairs, specified in a single call to set , must be properties that
change the appearance of the object in order for MATLAB to initiate a
redraw.

This means you cannot specify UserData or Interruptible as the first
or last property in a single call to set . For example, if you define a sur-
face whose EraseMode is background :

h = surface(peaks,'EraseMode','background')

and then attempt to change some of the surface’s properties

set(h,'ZData',peaks.*(–1),'UserData',1)

the surface is erased but not redrawn. To avoid this problem, issue two
separate statements:

set(h,'ZData', –peaks)
set(h,'UserData',1)

If you specify an odd number of properties, a single call to set works if
you can arrange the properties so that the first and last property/value
pairs are not setting UserData or Interruptible . For example,

set(h,'ZData',–peaks,'UserData',1,'EdgeColor','none')

Notes On MATLAB’s Behavior

MATLAB Release Notes 47

Order of Execution of Button Down Functions
When you press a mouse button in a Figure Window, the following se-
quence occurs (unless there is a noninterruptible callback function al-
ready executing):

1. MATLAB determines on what child of the figure the button press oc-
curs and sets the CurrentObject property to that object. If the but-
ton press did not occur on a child object, then CurrentObject is set
to the figure itself.

MATLAB also updates the figure CurrentPoint and
SelectionType properties, the root CurrentFigure property, and
the axes CurrentPoint property.

The current object is restacked to the top (i.e., its handle becomes
the first listed as the children of its parent). The importance of
stacking order is discussed in the “How Objects Are Selected” sec-
tion.

2. If a figure WindowButtonDownFcn defined, MATLAB executes it.

3. If there is a ButtonDownFcn defined for the CurrentObject , MAT-
LAB executes it. (Notice that the figure’s
WindowButtonDownFcn executes before the
CurrentObject ’s ButtonDownFcn .)

All of these actions occur as a result of a single button down event.

If, at this point in time, you move the mouse thereby generating a mouse
motion event, the follow sequence occurs:

1. If there is a figure WindowButtonMotionFcn defined and there is no
noninterruptible callback function already executing, then MATLAB
updates both the figure and axes CurrentPoint properties.

2. MATLAB then executes the WindowButtonMotionFcn .

When you release the mouse button, a similar sequence occurs:

1. If there is a figure WindowButtonUpFcn defined and there is not a
noninterruptible callback function already executing, then MATLAB
updates both the figure and axes CurrentPoint properties.

2. MATLAB then executes the WindowButtonUpFcn .

The uicontrol object is a special case in that it executes the function de-
fined by either its CallBack or ButtonDownFcn property, depending on
where the pointer is when you press the mouse button. This is described
in the “How Objects Are Selected” section. However, when the uicon-

Notes On MATLAB’s Behavior

48

trol’s CallBack function is invoked, the figure’s WindowButtonDownFcn
and WindowButtonUpFcn callbacks are not invoked.

The figure’s Interruptible property affects ButtonDownFcn callback
functions. See the “Understanding Window Events and Callback Func-
tions” section for information on how this property affects the way call-
back functions execute.

How Objects Are Selected
Since graphics objects can overlap each other on the display, MATLAB
establishes criteria that determine which one is selected by a given
mouse button press (and thereby has its ButtonDownFcn executed).
Basically, two criteria are considered: the stacking order of the objects
and the region of selectability defined around the object.

The stacking order is determined by the order in which you issue the ob-
ject creation commands. The most recently specified object is placed
highest on the stack. Pressing a mouse button while the pointer is on an
object moves that object to the top of the stacking order. (Note that
stacking order is not the arrangement of the objects in 3-D space. Ob-
jects are drawn in the correct 3-D order regardless of their stacking or-
der.)

Stacking order is a factor in selection when objects overlap. When over-
lap occurs, the object selected by a button press on the region of overlap
is the one highest in the stacking order.

The region of selectability of an object is greater than the area actually
occupied by the object. The shape of this region varies with object type.

Axes

The axes region of selectability is determined by the axes box, but ex-
tends to include to the area outside the axes where labels and titles ap-
pear.

Notes On MATLAB’s Behavior

MATLAB Release Notes 49

Lines

Select line objects by clicking in a region five pixels wide surrounding
the line, as illustrated in the following picture:

This simplifies the selection of lines since most are too thin to be easily
clicked on with the mouse.

Surfaces, Patches, and Text

Surface, patch, and text objects can be selected anywhere within a rect-
angle that encloses the object. If the view is 3-D, the rectangle encloses
the object after it is transformed it to the 2-D screen. This is illustrated
in the following picture.

Depending on the shape of the object, the enclosing rectangle can pro-
duce unexpected results. For example, suppose you create a patch and
a line object:

patch('ButtonDownFcn','disp(''patch'')')
line([1,0],[0,1],'ButtonDownFcn','disp(''line'')')

Notes On MATLAB’s Behavior

50

The default patch object is a triangle, but its region of selectability is a
rectangle in which the line object lies when the default 2-D view is used:

Since the line object is the last object specified, it is stacked above the
patch object. You can therefore select the line object even though it lies
within the patch’s region of selectability. However, if you click on the
patch, it is moved to the top of the stacking order, after which you can
no longer select the line.

Since the patch object’s region of selectability lies in the x-y plane, you
can change to a 3-D view and once again select the line.

Uicontrols

Uicontrol objects are designed to execute a callback function via their
CallBack property. They can also execute a callback function defined
with their ButtonDown property. Since both callbacks are invoked by
mouse button down events, MATLAB defines two different regions to
discriminate between the two.

If you press a mouse button when the pointer is on the uicontrol, its
CallBack property is evaluated. When you use the mouse on a region
around the uicontrol, the ButtonDownFcn property is evaluated. This re-
gion extends on all sides of the uicontrol for a width of approximately
five pixels. The following picture indicates the uicontrol’s region of se-
lectability with the hash lines:

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Notes On MATLAB’s Behavior

MATLAB Release Notes 51

When you invoke a ButtonDownFcn , you also invoke the figure’s
WindowButtonDownFcn , if one is defined. This is not the case with the ui-
control’s CallBack function.

While the ButtonDownFcn property does not contain the functionality
necessary to create a robust 3-D picking scheme, it does provide a
means for implementing features like object dragging. See the
sigdemo1.m and sigdemo2.m M-files in the demos subdirectory for exam-
ples.

Understanding Window Events and Callback Functions
MATLAB allows you to define callback functions for uicontrols, uimenus,
and mouse actions that occur in a Figure Window. Callback functions
execute in response to window events (e.g., pressing a mouse button
while the pointer is on a pushbutton, selecting a menu, etc.). Problems
can occur, however, when users generate additional window events
while a callback function is still executing.

As a mechanism to control the way in which callback functions execute,
MATLAB provides the Interruptible property. This property deter-
mines whether or not an executing callback function can be interrupted
to allow another callback to execute.

In order for MATLAB to know that an action capable of invoking a call-
back function occurred, it must look at the event queue (a list of window
events in sequence maintained by the X server). MATLAB does this only
at specific times:

• When returning to the MATLAB prompt

• When encountering a pause statement

• When executing a drawnow command

• When executing a getframe command

An interruption of a callback function can occur only when MATLAB
checks the event queue and then only if the object’s Interruptible
property is yes . The best way to understand the process is to consider
some likely scenarios.

Scenario 1: Non-interruptible Callback Function

Suppose a non-interruptible callback function is executing. Contained
in this function is a drawnow command. While this callback function ex-
ecutes, the user presses the mouse button in a Figure Window for which
WindowButtonDownFcn is defined. The following sequence occurs:

Notes On MATLAB’s Behavior

52

1. When drawnow executes, MATLAB checks the event queue and pro-
cesses all pending events, thus discovering that a button press
occurred in a Figure Window with a WindowButtonDownFcn defined.

2. MATLAB checks the executing callback’s Interruptible property to
see if it can stop executing the callback function and begin executing
the action defined by the WindowButtonDownFcn .

3. MATLAB determines that it cannot interrupt the executing callback
and flushes all events from the queue. Thus the fact that a mouse
button was pressed in a Figure Window having a defined
WindowButtonDownFcn is lost.

4. The original callback continues to execute.

Note that if the original callback did not contain a drawnow command (or
a pause or getframe), the window button down event would not be pro-
cessed until MATLAB returned to the prompt. In this case, the event is
not lost – it is just delayed.

Scenario 2: Interruptible Callback Function

Suppose an interruptible callback function is executing. Contained in
this function is a drawnow command. While this callback function exe-
cutes, the user presses the mouse button in a Figure Window for which
a WindowButtonDownFcn is defined. The following sequence occurs:

1. When drawnow executes, MATLAB checks the event queue and pro-
cesses all pending events, thus discovering that a button press
occurred in a Figure Window with a WindowButtonDownFcn defined.

2. MATLAB checks the executing callback’s Interruptible property to
see if it can stop executing the callback function and begin executing
the action defined by the WindowButtonDownFcn .

3. Since the callback function is interruptible, MATLAB suspends its
execution and executes the WindowButtonDownFcn function.

4. When the WindowButtonDownFcn ends, execution of the original call-
back function resumes where it left off. However, MATLAB’s state
(such as the current figure or current axes) at the time of interrup-
tion is not restored.

Note that if the original callback did not execute a drawnow , the inter-
rupting event would not be processed until MATLAB returned to the
prompt (i.e., no interruption would occur). Note also that interrupting
callbacks can themselves be interrupted.

Notes On MATLAB’s Behavior

MATLAB Release Notes 53

You can use the drawnow command’s discard option to prevent
MATLAB from changing the display while executing interrupting call-
backs. See the “Drawnow Discard” section for more information.

Using Error Trapping with Call Back Functions
Error trapping is useful when implementing Handle Graphics callback
functions, as it provides a mechanism for ensuring that callback func-
tions maintain control in the event of an error. Since the CallBack prop-
erty accepts only a single string argument, you must explicitly specify
eval with two arguments as the callback string in order to use error
trapping. For instance, without error trapping you could say

set(h, 'CallBack', 'disp(''Button Was Pushed'')');

whereas to use error trapping you would say

set(h, 'CallBack', ...
'eval(''disp(''''Button Was Pushed'''')'', ...

''disp(''''Error During CallBack'''')'')';

Note that each time quotes are nested deeper, two more must be used.

Using an Unsupported Graphics Terminal
If your graphics terminal or terminal emulator is not one of those sup-
ported in the terminal.m file, you must create an M-file that specifies
the terminal characteristics by following these steps:

1. Determine the type of Tektronix terminal your terminal or terminal
program emulates.

2. Look in your terminal or terminal program user’s manual to deter-
mine what values to use for the terminal characteristics described
below. The Tektronix 4105 definition in terminal.m is a good exam-
ple of how to set these characteristics.

3. Create an M-file that sets these root object properties and displays
an appropriate initialization string for your terminal. Again, see the
Tektronix 4105 definition in terminal.m for a good example. This
step is described in more detail in the next section.

4. Either execute your M-file directly or use terminal.m to execute it.
To run terminal.m , enter the following command:

terminal m–filename

where m–filename is the name of the M-file that describes the ter-
minal. terminal.m automatically checks to see if the terminal you
specify exists as an M-file and, if so, executes it.

Notes On MATLAB’s Behavior

54

Defining Terminal Characteristics
To properly identify your terminal, you must define its characteristics
by specifying the root object properties described in the next subsec-
tions.

Defining the Terminal Type

You define the terminal type with the TerminalProtocol property. This
property indicates whether your terminal emulates a Tektronix 4010/
4014, a 4100, or a 4105.

Specify tek401x for terminals that emulate Tektronix 4010/4014 termi-
nals. Specify tek410x for terminals that emulate Tektronix 4100/4105
terminals. If you are using X Windows and MATLAB can connect to your
X display server, this property will automatically be set to x .

Defining the Number of Colors that Can Be Displayed

You indicate the number of colors your terminal can display by specify-
ing the ScreenDepth property.

If you are using a black and white terminal, set this property to 1. If you
are using an eight-color terminal, set this property to 3. If you are using
a 256-color terminal, set this property to 8.

If you are using X Windows and MATLAB can connect to an X display
server, if you omit this property or set its value to zero, MATLAB will au-
tomatically determine whether it is running on color or monochrome
hardware and set the value of this property to the depth of your display.

If you are not using X Windows and do not specify this property,
MATLAB uses a default value of 3 when the TerminalProtocol property
is set to tek410x , and a value of 1 otherwise.

Specifying this property is useful if you are using X Windows on color
hardware but displaying results on a monochrome monitor. If the prop-
erty is not specified, MATLAB might determine erroneously that the
monitor is a color device.

Changing from Graphics Mode to Text Mode

To tell MATLAB how to change from graphics mode (the graph window)
to text mode (the MATLAB command window), specify the escape se-
quences with the TerminalHideGraphCommand property. Consult your
terminal manual for the correct escape sequences.

Notes On MATLAB’s Behavior

MATLAB Release Notes 55

Changing from Text Mode to Graphics Mode

To tell MATLAB how to change from text mode (the MATLAB command
window) to graphics mode (the graph window), specify the escape se-
quences with the TerminalShowGraphCommand property. Consult your
terminal manual for the correct escape sequences.

Using Separate Graphics and Text Windows

To indicate whether the terminal can maintain separate graphics and
text screens in different windows, specify the TerminalOneWindow prop-
erty. For example, for an xterm emulating a Tektronix 4010 or 4014, set
this property to no because the graph window and command window are
two separate windows that can be displayed at the same time.

The default value for this property is yes .

Very Large Variables on IBM Systems
MATLAB running on IBM RS6000 systems can encounter problems al-
locating very large variables. Attempting to create a variable that ex-
ceeds a certain size limit (which depends on system memory), can kill
your MATLAB process. This problem is due to the very non-standard
manner in which IBM has implemented memory management in the
operating system. In essence, the OS will indicate that it has successful-
ly allocated space for a variable, but does not, in fact, guarantee that the
memory is really available when you actually try to access it, thus re-
sulting in an unpredictable, yet fatal, error.

Notes On MATLAB’s Behavior

56

Platform-Specific File I/O Behavior

Reading Data Using fscanf and sscanf
The MATLAB functions fscanf and sscanf do not behave in a consistent
manner on all platforms when reading NaNs and inf s. This is because
MATLAB relies on the respective vendors’ C library routines to imple-
ment these functions.The following table summarizes the behavior on
each platform.

In addition, each platform varies in the way it handles error conditions.
Consider the following example:

fid = fopen('error.file','w+')
n = fprintf(fid,'%s\n%s\n%s\n','6.25e–038','.45375e+003',...

'3e8');

 These statements create a file containing the following data:

6.25e–038
.45375+e003
3e8

Next call fopen again to ensure the buffer is flushed before reading the
file with fscanf :

fid = fopen('error.file')
[a,b] = fscanf(fid,'%6e')
ferror(fid)
fclose(fid)

Platform
fscanf

Read NaN
fscanf

Read Inf
sscanf

Read NaN
sscanf

Read Inf

MS Windows No No No No

SunOS 4.1.X Yes Yes Yes Yes

Solaris 2.X Yes Yes Yes Yes

HP 700 No No No No

SGI No No No No

IBM RS/6000 Yes Yes Yes Yes

DECstation No No No No

Notes On MATLAB’s Behavior

MATLAB Release Notes 57

The following table lists the values returned on each platform for the
fscanf statement:

An error condition exists because fscanf is instructed by the %6e for-
matting argument to read up to a maximum of six characters to obtain
a floating point number. Reading six characters gives

6.25e–

which is not a valid floating point number.

It is interesting to note that the first four platforms in the table return
incorrect data and in three cases return three values. This illustrates
the different ways in which each platform deals with error conditions.

While it is important to realize how functions behave on your platform,
the real lesson to be learned in this example is the importance of calling
ferror whenever you read data from a file. In this case, all platforms
terminated the read with the following error message:

Sorry. No help in figuring out the problem....

Platform a b

MS Windows 6.25
38.00
0.4538

3

SunOS 4.1.X 6.25 1

Solaris 2.X 6.25
-38.00
0.4537

3

HP700 6.25
38.00
0.45375

3

SGI 6.25
38.00
0.45375

3

IBM RS/6000 [] 0

DECstation 6.25
38.00
0.4537

3

Notes On MATLAB’s Behavior

58

MATLAB is not able to provide specific information about the nature of
the error. However, receiving an error should make you question the va-
lidity of any of the returned data.

MATLAB’s sscanf function does not directly call the C library’s sscanf .
Therefore, it has been implemented to always return an empty string
when it encounters an error. For example, the following statement

[a,b,c,d] = sscanf(‘6.25e–038’,’%6e’)

again produces an error condition. However, sscanf returns the follow-
ing values on all platforms:

a = []
b = 0
c = 'Matching failure in format'
d = 1

Reaching EOF with fread and fscanf
Whenever the fread or fscanf function reads to the end of a file (EOF),
the ferror function always returns the string 'At end–of–file' . This
is because these functions rely on the Standard C fread and fscanf ,
which are implemented to work this way.

This is potentially problematic only in the case where an error occurs on
the last element read in the file. Any error that occurs at that point is
masked by the fact that ferror always returns the end of file message
when it reaches EOF.

For example, suppose file contains 3.65e– as its last element. Clearly
this constitutes bad data which leads to an error condition when you
read the file:

fid = fopen('file')
[a,b] = fscanf(fid,'%g')
if feof(fid)

ferror(fid)
end

However, ferror returns 'At end–of–file' without indicating the oc-
currence of an error. In cases where the integrity of the data file is un-
clear, it is advisable to attempt to determine the validity of the data.

Notes On MATLAB’s Behavior

MATLAB Release Notes 59

Inconsistencies in fprintf and sprintf Output
In extreme cases, such as the following example which deals with a
number on the limit of what double precision can represent, the output
of fprintf and sprintf can vary across different platforms. Consider
the following MATLAB code fragment.

ber = 3141592653589793.238462643383279;
fprintf (1,’%.0f’,ber)
format hex
ber

The output on different platforms is

MS Windows: 3141592653589794 43265286144ada43

SunOS 4.1.X: 3141592653589794 43265286144ada43

Solaris 2.X: 3141592653589794 43265286144ada43

HP 700: 3141592653589794 43265286144ada43

IBM RS/6000: 3141592653589794 43265286144ada43

SGI: 3141592653589793 43265286144ada43

DECstation: 3141592653589793 43265286144ada43

The internal representations in hex are the same. Notice, however, that
the output from fprintf is not consistent across all platforms.

MATLAB fprintf and sprintf functions use the C library fprintf and
sprintf functions. Since Standard C does not specify how the conver-
sion between number systems should behave, the actual output de-
pends on whether the function performs rounding or truncation.

