
Do You have a Mac?

!!Need -> OS X operating system.

!!Either a real Mac or a system that has OS
X installed on it

!!Need the iPhone SDK

!!http://developer.apple.com

!!This gives you the simulator and X Code
installed on your computer

!!iPhone Simulator
-!Looks like an iPhone
-!Runs like an iPhone

-!Not an iPhone
-!Limited in certain areas
-!Decieving

!!No Camera

!!None. You cannot use the Mac webcam to
take pictures.

!!You are limited to the iPhone’s photo
library to process images

!!Camera requires real hardware

!!The simulator is very fast. It runs faster
than your iPhone

!!Not as picky as real hardware

!!Harder to process multi touches in
simulator

!! Selections between 2G (First Gen), 3G
(Second Gen), and 3GS(Second ! Gen)

!!BIG differences in the hardware
limitations

!!What will run well on the 3GS means
nothing for the previous iPhones

!! iPod touches have no camera. But
otherwise same conditions apply.

!! First Gen iPod Touches have no bluetooth
or speaker

!! It’s like a cross between java and C.

!!Theres objects like java but C like syntax.

!!Objective-C is SUPER-SET of C
!!You can write pure C code for iPhone Apps

!! Problem: Will need to write Objective-C
wrappers to do conversion between C data
and Objective-C objects

!! Luckily Objective-C has many objects available
for you to use

!!Very easy to use and powerful.

!!Almost all the default Apple GUI elements
included

!!Easily integrated with code via ‘IBOutlet’
connections

!! Similar file definitions

!! .h for header files

!! .m for Objective-C files

!!Will compile *.c files as well

!!Open up XCode, Select File->New
Project

!!C’s #include is Objective-C’s #import

!! Like Java but with C syntax

!! i.e. #import “MyheaderFile.h”

!!Classes are outlined in header files as such

"! @interface CLASS_NAME : SUPER_CLASS

//fill stuff in here with variables and types
@end

!!Note: @interface <Class_Name>

!!The <Class_Name> : NSObject indicates
you are subclassing NSObject

!!Technically all Classes you write will
subclass somethin

!!NSObject <stuff?> - this indicates what
delegate methods this class will
implement/override

!!Everytime you want to write your own
custom subclass of something Apple
already wrote it’s really easy.

!! Just override the delegate methods
needed by the class with your own
versions

!!Like Java overloading

!!@property (nonatomic, retain)
<Class_type> <class_name>
!! i.e. @property (nonatomic, retain) NSString *astring;

!! @property indicates you are setting properties for this variable

!! The (nonatomic, retain) indicate type of properties to set.
"! MORE in Apple documentation.

"! (nonatomic, retain) is one of the most common ones

!! By properties I mean GET/SET methods for these values.

!! Objective-C is a OOP language -> prefers you to use get/set
methods to assign/read values.

!! @property (#properties you set#) sets the properties for the
variable.

!! Objective-C allows get/set methods to be generated automatically
for variables

!! Such as: NSString *mystring;

!! Set property: @property (nonatomic, retain) NSString* mystring

!! This says to the compiler: set GET/SET methods for mystring and
keep the variable in memory until I release it

!! Require a corresponding @synthesize mystring method

!!When you have a @property you must
have a corresponding @synthesize in the
*.m file to INIT the properties of the
value.

!!NOTE: @synthesize only inits the
properties, not the value itself.

!! Still must allocate memory for the value
or assign a initial value

!! Header.h will be like so:

!! #import “someother headerfile.h”

@interfaceTest_Class : NSObject

{
 NSString *mystring;

 }
@propert (nonatomic, retain) NSString *mystring;
@end

!! @implementation Test_Class
@synthesize mystring

//other stuff here

@end

!! Simple right?

!! How to initialize the string?

!! Most Objective-C objects will require the following initializing
code:
object = [[object_class alloc] init];

!! Now if you want to set the value you can just do this

!! [self setMystring:@”Hello World”]

!! Self is Java’s ‘this’ in reference to the current object class

!! If another class holds the object, reference that object with that
class’s object name instead of self

!! Same principles apply to function calling

!! [self functionToCall:Parameters];

!! [object_owner setMystring:@”Hello World”]

!! Confused? This is how Objective-C calls functions, in a [] fashion.

!! Always [object_owner function:<parameters>];

!! Object_owner is the owner of the function/value you want to call/
set

!! Same type of call is used for return values:

!! New_value = [object_owner <value_name>]; will return that value

!! Can be kind of annoying and useful at the same time

!! Header.h will be like so:

!! #import “someother headerfile.h”

@interfaceTest_Class : NSObject

{
 NSString *mystring;

 }
@propert (nonatomic, retain) NSString *mystring;

- (void) letsprint : (NSString*)astring;
@end

!! Within Header.c between @implementation and @end you fill out
the function prototype just like C

!! - (void) printstring : (NSString *)astring
{

 //print the string to the ‘console’
 NSLog(@”%@”, astring);

}

!!NSLog is the function that prints to the
Xcode console

!! iPhone apps are GUI apps so this is the
only way to log out information to the
GDB console

!!%@ is the %s equivalent in Objective-C

!!NOTE: ALL STRINGS MUST HAVE A ‘@’
in front

!! The function can be called somewhere in another function
like thus [self letsprint:@”hey”];

!! And the GDB console will print “hey”;

!!Whenever a new project is created.

!!A XXX_XXXAppDelegate.h & *.m file are
created.

!!These are executed by the apps main.c (which
you will never have to modify hopefully) and
displays the initial screen

!!The loading function for every app is:

!! -(void)applicationDidFinishLaunching

!! Objects are created thus:

!! new_object = [[A_CLASS alloc] init];

!! To release this later you will call [new_object release];

!! PLEASE be careful about memory leaks. On an iPhone can severly
impact performance.

!! You can usually release everything in an objects

!! -(void)dealloc() method. This is the default method called when
object is closed or ‘released’

!! Objective C is not too picky about memory initialization. Won’t
always crash but your application might not work. Make sure you
always alloc and init your objects

!!Model-View-Control model

!!Makes it so all elements are separate from
each other

!!The view (GUI), the data (Model) and the
interaction between (Control)

!!May fit you may not. Do what is best and
doesn’t break your code easily or
frustrate you

!! UIView – basic view : shown to user; add gui elements to the
objects view to show

!! UIViewController -> Controls a ‘view’. Think of this as literally the
gaurdian of the UIView. Used with navigation controls

!! UINavigationController -> that navigation bar on top with a ‘Back’
button

!! UITabBarController -> bottom row tab bar with buttons

!! UIWebView -> similar to safari html browser

!! UITableViewController -> lists data in a cell like fashion

!! UITextField

!! UITextArea

!! UILabel

!! UIButton

!! Etc…

!!Hmm.

!!Google is your friend.

!!www.iphonedevsdk.com is a good
resource.

!!http://developer.apple.com is very good.

http://www.iphonedevcentral.org/home.php

Site with lots of video tutorials. Interface Builder is confusing at first, so all the basic tutorials here can get you up to speed.

http://www.iphonedevsdk.com

great site for beginners with a forum for questions.

http://developer.apple.com/iphone/library/documentation/iPhone/Conceptual/iPhone101/Articles/00_Introduction.html

basic introduction from apple to application programming

http://developer.apple.com/iphone/library/referencelibrary/GettingStarted/Learning_Objective-C_A_Primer/

basic objective-C introduction; useful for the little introduction stuff and a primer

http://developer.apple.com/iphone/index.action

where the above links came from; Don't need an account to download the SDK or view the documents. Accounts only good for real
iphone device development

