
Distributed Bingo
17-654: Analysis of Software Artifacts

18-841: Dependability Analysis of Middleware

Team 5:
Jack Yao
Bubba Beasley
Kai Liao
Alex Berendeyev

http://www.ece.cmu.edu/~ece846/team5

2

Team Members

Bubba Beasley Alex BerendeyevKai Liao

3

Real-World Demonstration

4

Real-World Characteristics

Each player gets a Bingo card to start

A player joining mid-game can catch up with
knowledge of previous draws

The host announces each draw

The winning player announces Bingo

The host verifies the win

The host announces the win

5

Baseline Application
A distributed, online version of Bingo

The clients pull data from the servers and the servers
push data to the clients

DB: SQL Server 2000, Windows XP, MSE Cave machine
Servers: JBoss (JNDI, JMS) on Linux, ECE Game cluster
Clients: Windows, Linux (theoretically anywhere)

Automated command-line client
Interactive GUI-based client

6

Publish/Subscribe with JMS

JMS

Server Server

Client Client Client

JMS

Key
JMS Connection Server Client

JMS

7

Baseline Architecture

BingoServer

AS
HS

JMSJNDI

BingoClient

DBServer

Join()
GetSnapshot()
DeclareBingo()

Key
Remote Method Call
JMS Connection
DB Call

Server Client DBServer

8

From the Real to the App

Each player gets a Bingo card to start

A player joining mid-game can catch up with
knowledge of previous draws

The Client asks the AnsweringServer to join and receives a
bingo card and all previous draws.

The host announces each draw

At regular intervals (5 seconds), the HostServer broadcasts
the draws via the JMS.

9

From the Real to the App

The winning player announces Bingo

The host verifies the win

The host announces the win

The Client asks the AnsweringServer to verify Bingo

The AnsweringServer verifies and stores the winner's ID in
the database

The HostServer checks for a winner in the DB and
broadcasts that there is a win

10

GUI Interface

Java GUI on top of a Java
command-line interface

11

Miscellany

Each game: 100 draws, rather than 75

Approximately 1.4 x 1030 card combinations
(1.4 billion trillion trillion cards)

Duplicate cards are not a problem, so theoretically
no limit on the number of players in a single game

No guarantee of fairness in declaring a winner

12

Fault Tolerance Goals (1)
Server Faults

• JBoss Process crashes

• Machine crashes

Network Faults

“Sacred Machine” Assumptions

• Replication Manager

• Global Fault Detector

• DB Server

Replicas
N replicas
Tested with 3 replicas
Round-robin recovery of JBoss servers

13

BingoClientBingoClient

BingoServer

FT Baseline Architecture

BingoServer

AS
HS

JMSJNDI

BingoClient

DBServer

RepMan

FD (HealthChecker class)
One JBoss
server up

JBoss Servers
on replicas are

not running

One Connection
to the primary
JMS Server

Key
Remote Method Call
JMS Connection
DB Call
SSH Connection

Server Client DBServer

14

Baseline Fail-Over Measurements

FT Baseline Fail-Over

0

10

20

30

40

50

60

70

80

90

0 50 100 150 200

S
e
c
o
n
d

FD

SN

Slow Server

Fast Server

Number of faults injected

T
im

e
(s

ec
o
n
d
s)

15

Baseline Fail-Over Measurements

FT Baseline Client

0

20

40

60

80

100

120

0 1000 2000 3000 4000 5000

S
e
c
o
n
d

Time B/w Messages

Slow Server

Fast Server

T
im

e
(s

ec
o
n
d
s)

Number of faults injected

16

BingoClientBingoClient

BingoServer

RT-FT Optimized 1 Architecture

BingoServer

AS
HS

JMSJNDI

BingoClient

DBServer

All JBoss
servers on
replicas are up

Pre-established
Connections to
all JMS Servers

Key
Remote Method Call
JMS Connection
DB Call
SSH Connection

Server Client DBServer

RepMan

FD (HealthChecker class)

17

RT Optimized 1 Fail-Over Measurements

RT Optimization 1 Fail-Over

0

5

10

15

20

25

30

0 10 20 30 40 50 60 70 80 90 100

S
e
c
o
n
d

FD

SN

Slow Server

Fast Server

T
im

e
(s

ec
o
n
d
s)

Number of faults injected

18

RT-FT Optimized 2 Architecture
BingoClientBingoClient

BingoServerBingoServer

AS
HS

JMSJNDI

BingoClient

DBServer

RM__FD

FD runs as a
daemon

Key
Remote Method Call
JMS Connection
DB Call
SSH Connection

Server Client DBServer

19

RT Optimized 2 Fail-Over Measurements

RT Optimization 2 Fail-Over (Repman=1s, HealthCheckerDaemon=0.5s)

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

0 5 10 15 20 25 30

S
e
c
o
n
d

FD

SN

Number of faults injected

T
im

e
(s

ec
o
n
d
s)

20

BingoClientBingoClient

BingoServer

RT-FT Optimized 3 Architecture

BingoServer

AS
HS

JMSJNDI

BingoClient

DBServer

Local FD

RM__FD

FD runs as a
daemon

+
Local FD

Key
Remote Method Call
JMS Connection
DB Call
SSH Connection

Server Client DBServer

21

RT Optimized 3 Fail-Over Measurements
RT Optimization 3 Fail-Over (Repman=0.1s, Local Checker=0.4s)

0

0.5

1

1.5

2

2.5

3

3.5

0 5 10 15 20 25 30 35 40 45

S
e
c
o
n
d

FD

SN

T
im

e
(s

ec
o
n
d
s)

Number of faults injected

22

Measurements Insights (1)

0.1
0.4
0.7
1.0
1.3
1.6
1.9

0.4

(MAX)

0.4

(AVG)

0.4

(MIN)

0.7

(MAX)

0.7

(AVG)

0.7

(MIN)

1.0

(MAX)

1.0

(AVG)

1.0

(MIN)

0

2

4

6

8

F
D

(
S
e
c
o
n
d
)

Local Checker Period (Second)

Repman Period

(Second)

23

Measurements Insights (2)

0.1 0.4 0.7 1 1.3 1.6 1.9

0.
4

(A
V

G
)

0.
7

(A
V

G
)

1.
0

(A
V

G
)

Repman Period (Second)

Local FD
Period

(Second)

0.4 (AVG) 0.7 (AVG) 1.0 (AVG)

Average Fault Detection Time Comparison

Local FD=1.0s
Repman=0.1s

Local FD=0.7s
Repman=1.0s

FD=3.1s

Real Time Tuning:

•Repman period
•Local FD period
•Broadcast period

Repman Period (Second)

Lo
ca

l
FD

 P
er

io
d
 (

S
ec

o
n
d
)

24

Lessons Learned
• Potentially Publish/Subscribe (JMS) can hide

server errors from clients

Our Push Architecture

FD

Start New
Replica

Typical Pull Architecture

FD

Start New
Replica
Reconnection

• JBoss Server should be run in the minimal configuration.
(default configurations are not suited for RT)

25

Questions?

	Distributed Bingo
	Real-World Demonstration
	Real-World Characteristics
	Baseline Application
	From the Real to the App
	From the Real to the App
	GUI Interface
	Miscellany
	Fault Tolerance Goals (1)
	FT Baseline Architecture
	Baseline Fail-Over Measurements
	Baseline Fail-Over Measurements
	RT-FT Optimized 1 Architecture
	RT Optimized 1 Fail-Over Measurements
	RT-FT Optimized 2 Architecture
	RT Optimized 2 Fail-Over Measurements
	RT-FT Optimized 3 Architecture
	RT Optimized 3 Fail-Over Measurements
	Measurements Insights (1)
	Measurements Insights (2)
	Lessons Learned
	Questions?

