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Real-World Demonstration




Real-World Characteristics

» Each player gets a Bingo card to start

» A player joining mid-game can catch up with
knowledge of previous draws

» The host announces each draw
» The winning player announces Bingo

» The host verifies the win

» The host announces the win




Baseline Application

» A distributed, online version of Bingo

» The clients pull data from the servers and the servers
push data to the clients

» DB: SQL Server 2000, Windows XP, MSE Cave machine
Servers: JBoss (JNDI, JMS) on Linux, ECE Game cluster
Clients: Windows, Linux (theoretically anywhere)

Automated command-line client
Interactive GUI-based client




Publish/Subscribe with JMS
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Baseline Architecture
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From the Real to the App

» Each player gets a Bingo card to start

» A player joining mid-game can catch up with
knowledge of previous draws

The Client asks the AnsweringServer to join and receives a
bingo card and all previous draws.

» The host announces each draw

At regular intervals (5 seconds), the HostServer broadcasts
the draws via the JMS.




From the Real to the App

»The winning player announces Bingo
» The host verifies the win

» The host announces the win
The Client asks the AnsweringServer to verify Bingo

The AnsweringServer verifies and stores the winner's ID in
the database

The HostServer checks for a winner in the DB and
broadcasts that there is a win




GUI Interface

Command Option

EEX

Java GUI on top of a Java
command-line interface
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Miscellany

» Each game: 100 draws, rather than 75

» Approximately 1.4 x 103° card combinations
(1.4 billion trillion trillion cards)

» Duplicate cards are not a problem, so theoretically
no limit on the number of players in a single game

» No guarantee of fairness in declaring a winner
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Fault Tolerance Goals (1)

Server Faults “Sacred Machine” Assumptions
e JBoss Process crashes e Replication Manager
e Machine crashes  Global Fault Detector
Network Faults e DB Server
Replicas
N replicas

Tested with 3 replicas
Round-robin recovery of JBoss servers
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FT Baseline Architecture
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Baseline Fail-Over Measurements

FT Baseline Fail-Over / Slow Server
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Baseline Fail-Over Measurements
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RT-FT Optimized 1 Architecture
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RT Optimized 1 Fail-Over Measurements

RT Optimization 1 Fail-Over
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RT-FT Optimized 2 Architecture
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RT Optimized 2 Fail-Over Measurements

RT Optimization 2 Fail-Over (Repman=1s, HealthCheckerDaemon=0.5s)
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RT-FT Optimized 3 Architecture
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RT Optimized 3 Fail-Over Measurements

RT Optimization 3 Fail-Over (Repman=0.1s, Local Checker=0.4s)
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Measurements Insights (1)




Measurements Insights (2)

Average Fault Detection Time Comparison Real Time Tuning:

Local FD=1.0s Local FD=0.7s *Repman period
Repman=0.1s  Repman=1.0s eLocal FD period
eBroadcast period
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L essons Learned

e Potentially Publish/Subscribe (JMS) can hide
server errors from clients

Typical Pull Architecture Our Push Architecture

BFD @ FD

| Start New
Replica

m Start New
Replica

O Reconnection

e JBoss Server should be run in the minimal configuration.
(default configurations are not suited for RT)




Questions?
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