Distributed Bingo

17-654: Analysis of Software Artifacts
18-841: Dependability Analysis of Middleware

Team 5:

Jack Yao

Bubba Beasley
Kai Liao

Alex Berendeyev

http://www.ece.cmu.edu/—ece846/team5

Team Members

Kai Liao Bubba Beasley Alex Berendeyev

Real-World Demonstration

Real-World Characteristics

» Each player gets a Bingo card to start

» A player joining mid-game can catch up with
knowledge of previous draws

» The host announces each draw
» The winning player announces Bingo

» The host verifies the win

» The host announces the win

Baseline Application

» A distributed, online version of Bingo

» The clients pull data from the servers and the servers
push data to the clients

» DB: SQL Server 2000, Windows XP, MSE Cave machine
Servers: JBoss (JNDI, JMS) on Linux, ECE Game cluster
Clients: Windows, Linux (theoretically anywhere)

Automated command-line client
Interactive GUI-based client

Publish/Subscribe with JMS
e =]

\\ S~ o -~ N
4 S~ - , S
P ~ ~ - N
N S~ - 4
’ N ~< s A
V4 \\ - ~<o 7’ \\
/7 e /&~~ N
- ~
Vi - ~ 7’ ~ N

S~ N
S< s

/7 - ~ e
’ - N L7
/’,—’ N s K
Client Client Client

Client -

| —— JMS Connection

Baseline Architecture

[BingoClient }

)

Join()

GetSnapshot() /
DeclareBingo() BingoServgr

.

Key :
— Remote Method Call -
= JMS Connection

DB Call

From the Real to the App

» Each player gets a Bingo card to start

» A player joining mid-game can catch up with
knowledge of previous draws

The Client asks the AnsweringServer to join and receives a
bingo card and all previous draws.

» The host announces each draw

At regular intervals (5 seconds), the HostServer broadcasts
the draws via the JMS.

From the Real to the App

»The winning player announces Bingo
» The host verifies the win

» The host announces the win
The Client asks the AnsweringServer to verify Bingo

The AnsweringServer verifies and stores the winner's ID in
the database

The HostServer checks for a winner in the DB and
broadcasts that there is a win

GUI Interface

Command Option

EEX

Java GUI on top of a Java
command-line interface

B I N G O s
1 2o | s | &
T [=z)eE | e2 |82
3 [z][% |sa |[&3
g (24 ea |62 | =a
14 34 46 69 94 & |25 | 45 | 65 | 85
6 | 26| 46 | &8 | =6
o |
g [zm][4 | 68 | 2=
= o |[za |48 & | 8
2 32 2 9 89| o | &0 |75 7o | e
N EN N
N R
12 |22 |82 |Tva | =2
13 Py W 65 97 14 a4 a4 T4 a4
15 | 35 |[&5 |75 |[23
16 ([26 |[56 |76 |[o6
1| e | a7 |37 | a7
1€ |35 |58 |78 | o
11 27 44 73 96 1o | == | %8 || 7o || o8
20 || 40 [80][s0 | 100
16 28 59 Fii 91 Bingo!
Game started.
MID=31: DRAW=22 =
.Message received at 153 IP=128.2.129.14%; GID=495;
MID=32 DRAW=1E5

10

Miscellany

» Each game: 100 draws, rather than 75

» Approximately 1.4 x 103° card combinations
(1.4 billion trillion trillion cards)

» Duplicate cards are not a problem, so theoretically
no limit on the number of players in a single game

» No guarantee of fairness in declaring a winner

11

Fault Tolerance Goals (1)

Server Faults “Sacred Machine” Assumptions
e JBoss Process crashes e Replication Manager
e Machine crashes Global Fault Detector
Network Faults e DB Server
Replicas
N replicas

Tested with 3 replicas
Round-robin recovery of JBoss servers

12

FT Baseline Architecture

One Connection
to the primary
JMS Server

‘ [
\

RepMan
FD (HealthChecker class)

7 One JBoss
// server up
o L4

ﬁingoServer

\\ JBoss Servers

on replicas are
not running

Key

- Remote Method Call
| = = JMS Connection
...... DB Ca”

. — SSH Connection

--
13

Baseline Fail-Over Measurements

FT Baseline Fail-Over / Slow Server

90

Fast Server

%? ¢ D
c = SN
3
]
(7))
~— * T4 *® L J . *% * L0
0 20 Lo tenieen Aate L0 (I rer stpeadt ot bl
£ “90400“.0“’,’0““’ ’.'“0’ * “,“““ 0’0“

0

0 50 100 150 200

Number of faults injected
14

Baseline Fail-Over Measurements

120

100

80

60

40

20

Time (seconds)

FT Baseline Client

o Time B/w Messages

Slow Server

Fast Server

2000 3000 4000 5000

Number of faults injected

15

RT-FT Optimized 1 Architecture
Pre-established \/M‘m [RepMan J

Connections to FD (HealthChecker class)
all IMS Servers

fngoServer \\/ All JBoss

servers on
replicas are up

Key
-— Remote Method Call

— = JMS Connection
‘....‘ DB Call

. — SSH Connection

--
16

RT Optimized 1 Fail-Over Measurements

RT Optimization 1 Fail-Over

30
w Server
25
20
¢ FD
@ 15 = SN
c
(@]
3 10
2
()]
_E 5 st Server

0 10 20 30 40 50 60 70 80 90 100

Number of faults injected
17

RT-FT Optimized 2 Architecture
[BingoClient‘m [RM__FD J

/| ’/
y 4 \ PR 4 \
QoServer \

FD runs as a
daemon

Key

- Remote Method Call
| = = JMS Connection
oooooo DB Ca”

- — SSH Connection

--
18

RT Optimized 2 Fail-Over Measurements

RT Optimization 2 Fail-Over (Repman=1s, HealthCheckerDaemon=0.5s)
5)
*
4.5 | 'Y
L 4 N
4 " I 3 * .
*
3.5 . A .
~ L ¢ ¢ ° .
(2] 3 ¢ . ¢
'8 A . . + FD
s 2.5 . . v = SN
o 2 . o
(7)) *
g
GE_) 1.5 B
= 1
0.5 |
0 -
0 5) 10 15 20 25 30

Number of faults injected

19

RT-FT Optimized 3 Architecture
[BingoClientDJ [RM__FD }
/ Sy

/
QOServer

— | FD runs as a
daemon
+

Local FD

Key

- Remote Method Call
| = = JMS Connection
oooooo DB Ca”

- — SSH Connection

--
20

RT Optimized 3 Fail-Over Measurements

RT Optimization 3 Fail-Over (Repman=0.1s, Local Checker=0.4s)

¢ FD
= SN

Time (seconds)

0 5 10 15 20 25 30 35 40 45

Number of faults injected o1

Measurements Insights (1)

Measurements Insights (2)

Average Fault Detection Time Comparison Real Time Tuning:

Local FD=1.0s Local FD=0.7s *Repman period
Repman=0.1s Repman=1.0s eLocal FD period
eBroadcast period

0.1 0.4 0.7 1 13 16 1.9

Repman Period (Second)

Local FD Period (Second)

\ 20.4 (AVG) m0.7 (AVG) 0 1.0 (AVG)

L essons Learned

e Potentially Publish/Subscribe (JMS) can hide
server errors from clients

Typical Pull Architecture Our Push Architecture

BFD @ FD

| Start New
Replica

m Start New
Replica

O Reconnection

e JBoss Server should be run in the minimal configuration.
(default configurations are not suited for RT)

Questions?

	Distributed Bingo
	Real-World Demonstration
	Real-World Characteristics
	Baseline Application
	From the Real to the App
	From the Real to the App
	GUI Interface
	Miscellany
	Fault Tolerance Goals (1)
	FT Baseline Architecture
	Baseline Fail-Over Measurements
	Baseline Fail-Over Measurements
	RT-FT Optimized 1 Architecture
	RT Optimized 1 Fail-Over Measurements
	RT-FT Optimized 2 Architecture
	RT Optimized 2 Fail-Over Measurements
	RT-FT Optimized 3 Architecture
	RT Optimized 3 Fail-Over Measurements
	Measurements Insights (1)
	Measurements Insights (2)
	Lessons Learned
	Questions?

