
Team 2:

Sales Inventory
Management System

Vamshi Ambati
Myung-Joo Ko

Ryan Frenz
Cindy Jen

2

Team2 Final Presentation

S04-17654-A Analysis of Software Artifacts

Team Members

Rfrenz
@andrew.cmu.edu

Ryan Frenz

Cdj
@andrew.cmu.edu

Cindy Jen

Vamshi
@andrew.cmu.edu

Vamshi Ambati

Mko1
@andrew.cmu.edu

Myung-Joo Ko

http://www.ece.cmu.edu/~ece846/team2

3

Team2 Final Presentation

S04-17654-A Analysis of Software Artifacts

Introduction

Baseline Application
Fault Tolerance
Real-time
High Performance
Conclusion

Baseline
Application

Jan 21 – Feb 13

5

Team2 Final Presentation

S04-17654-A Analysis of Software Artifacts

Baseline Application

Menu-Based Client
Login, create/view/remove
Sales/Purchase Orders,
Inventory, Users

Sales/Purchasing
Management

Handle requests to create, view,
or remove sales or purchase
orders, respectively

User Management
Controls add/view/remove of
users
Login/logout

Inventory Management
Add/view/create inventory

Sales Inventory Management System

6

Team2 Final Presentation

S04-17654-A Analysis of Software Artifacts

Baseline Application

Java-based, 3-tier application
Middleware : EJB / Jboss
OS : Linux (MS Compatible too)
DB : MySql
Deployment tool : Ant

7

Team2 Final Presentation

S04-17654-A Analysis of Software Artifacts

Baseline Application
Why Interesting?

Strong data integrity requirements
Data seen at any client must be accurate at any given time,
regardless of other clients accessing/modifying it

Item No: 1
Qty: 100

Item No: 1
Qty: 90

Order No: 1
Item No: 1
Qty: 10

Complete Order ?
Yes

AdministratorSalesperson

8

Team2 Final Presentation

S04-17654-A Analysis of Software Artifacts

Baseline Architecture
Client Tier Middle Tier Backend

Database

Client
applications

Application Server (JBOSS)

User
Item
SalesOrder
PurchaseOrder

EJB Container

User
Management

Purchase Order
Management

Inventory
Management

Sales Order
Management

MySql

Naming Service (JNDI)

AddUser()
ViewProfile()
GetItemlist()
GetItemDetail()
PlacePurchaseOrder()
GetPurchaseOrderlist()
GetPurchaseOrderDetail()
PlaceSalesOrder()
GetSalesOrderlist()
GetSalesOrderDetail()
GetOperationId()
LogIn()
LogOut()

Client applications

JDBC

Remote Method Invocation

DatabaseServer application JNDI call

9

Team2 Final Presentation

S04-17654-A Analysis of Software Artifacts

Baseline Architecture

4 EJB Patterns

Container Managed Entity Beans
with Session Beans

Bean Managed Entity Beans with
Session Beans

Entity Beans Only Session Beans Only

SalesServer
Remote

SalesOrder
Local

SalesOrder
HomeLocal

EJB Container

Sales
OrderBean

Sales
ServerBean

SalesOrder
RemoteHome

Entity Bean

Session Bean

Database

Client Tier Middle Tier Backend

Sales Order

Fault Tolerance +
Baseline

Feb 13 – March 16

11

Team2 Final Presentation

S04-17654-A Analysis of Software Artifacts

Fault-Tolerance Goals
Replicate Sales, Purchasing, Inventory,
User, and Operations Servers
Server modules are ‘stateless’

we simply store a record of the last
transaction in the database to prevent
duplication in the case of a fault

‘Sacred’ Machine
Database, Replication Manager, Fault-
Injector

12

Team2 Final Presentation

S04-17654-A Analysis of Software Artifacts

FT-Baseline Architecture

Primary ReplicaUser
Management

Purchase Order
Management Inventory

Management

Sales Order
Management

Client Tier Backend

Database

Client
applications

Middle Tier

Application Server (JBOSS)

MySql

Naming Service (JNDI)

Client
applications

JDBC

Remote Method Invocation

DatabaseServer application JNDI call

KEY

Operation
Tracking

Backup ReplicaUser
Management

Purchase Order
Management Inventory

Management

Sales Order
Management

Operation
Tracking Replication

Manager

Fault
Detector

Sacred Machine

13

Team2 Final Presentation

S04-17654-A Analysis of Software Artifacts

Mechanisms for Fail-Over
Fail-Over through exception handling

Fault-Detection through replication manager-
Crashed replica is restarted upon detection

Exceptions Caught:
NamingException

JNDI is down (and consequently replica)
RemoteException

JNDI is still up but replica is down
CreateException

Any DB Problem (unavailable, duplicate create, etc)
Create Exception notify user (don’t fail over)
Naming and Remote retry with backup replica
Next request start over, trying primary first

14

Team2 Final Presentation

S04-17654-A Analysis of Software Artifacts

Mechanisms for Fail-Over

Replica references are obtained at time of
request

This allows for a simple fault-tolerance model
If anything goes wrong while obtaining references, we
assume the worst and fail-over
If fault was transient, we’ll be back to primary upon next
request

But herein lies the bottleneck
Performing JNDI lookup and creating remote object for
the same replica(s) every transaction
Big spike in fail-over, due to two lookups (with the first
timing out)

15

Team2 Final Presentation

S04-17654-A Analysis of Software Artifacts

Fail-Over Measurements (1)
RTT(1 Client)

0

2000

4000

6000

8000

1 79 157 235 313 391 469 547 625 703 781 859 937 1015 1093 1171 1249 1327 1405 1483

Operation Number (one run through use case)

M
ilis

ec
on

d

RTT(20 Clients)

0
20000
40000
60000
80000

100000

1 316 631 946 1261 1576 1891 2206 2521 2836 3151 3466 3781 4096 4411 4726 5041 5356 5671 5986

Operation Number (one run through use case)

M
ilis

ec
on

d

16

Team2 Final Presentation

S04-17654-A Analysis of Software Artifacts

Fail-Over Measurements (2)

JNDI
Lookup
Time
9%

Create
Server
Home
12%

View
User List

79%

View
User List

19%

Create
Server
Home
38%

JNDI
Lookup
Time
43%

Fault Free Case (1 Client) Faulty Case (1 Client)

17

Team2 Final Presentation

S04-17654-A Analysis of Software Artifacts

Fail-Over Measurements (3)

View
User List,

28%

Create
Server
Home,
27%

JNDI
Lookup
Time,
45%

Fault Free Case (20 Client) Faulty Case (20 Client)

JNDI
Lookup
Time,
19%

Create
Server
Home,
25%

View
User List,

56%

Real Time + FT +
Baseline

March 16 – April 5

19

Team2 Final Presentation

S04-17654-A Analysis of Software Artifacts

RT-FT-Baseline Architecture (1)

Upper-Bound the fail-over
Target JNDI bottleneck by simply checking
reference status instead of doing lookup

Instead of ‘lookup1-exception-lookup2’,
we want ‘check-failover’

Separate JNDI lookups into a background
thread

Runs at the beginning of execution, then
sleeps until needed (i.e. when we catch
an exception from the primary server).

20

Team2 Final Presentation

S04-17654-A Analysis of Software Artifacts

Fault-Free Case thread runs once
and never again
Faulty-Case thread runs in the
background, caching live references

Main execution simply checks if the
primary reference is valid
If it is not live, move on to secondary
object and signal the thread to update
the primary

RT-FT-Baseline Architecture (2)

21

Team2 Final Presentation

S04-17654-A Analysis of Software Artifacts

RT-FT-Baseline Architecture (3)

Other Possibilities to bound fail-over
Client-Side timeouts to reduce ‘failed’ lookup
times
Would bound fail-over to a constant factor of
the timeout value + second lookup
However, after implementing the background
thread to cache server references, adding
timeout functionality does not improve fail-
over times in the cases we consider (at least
one ‘live’ server)
Did not implement based on these
observations

22

Team2 Final Presentation

S04-17654-A Analysis of Software Artifacts

‘Real-Time’ Fail-Over Measurements

RTT(Caching / 1 Client)

0

2000

4000

6000

8000

1 89 177 265 353 441 529 617 705 793 881 969 1057 1145 1233 1321 1409 1497

Run Number

M
ilis

ec
on

d

RTT(1 Client)

0
1000
2000
3000
4000
5000
6000
7000

1 90 179 268 357 446 535 624 713 802 891 980 1069 1158 1247 1336 1425

Run Number

M
ilis

ec
on

d

Upper Bound ~ 5900 ms

Upper Bound ~ 1500 ms

23

Team2 Final Presentation

S04-17654-A Analysis of Software Artifacts

‘Real-Time’ Fail-Over Measurements

RTT(20 Clients)

0
20000
40000
60000
80000

100000

1 320 639 958 1277 1596 1915 2234 2553 2872 3191 3510 3829 4148 4467 4786 5105 5424 5743

Run Number

M
ili

se
co

nd

RTT(Caching / 20 Clients)

0

20000

40000

60000

80000

100000

1 98 195 292 389 486 583 680 777 874 971 1068 1165 1262 1359 1456
Run Number

M
ili
se

co
nd

Upper Bound ~ 78000 ms

Upper Bound ~ 6000 ms

High Performance+
RT+FT+Baseline

April 5 – April 13

25

Team2 Final Presentation

S04-17654-A Analysis of Software Artifacts

High Performance Strategy

“Functionality-Based” Load Balancing
Motivation

Webservers
Our Design

Benefits
Administrative actions do not suffer
QOS can be assured by following some
policy to split the functionality
Decent level of Load Balancing is achieved
with minimal effort

26

Team2 Final Presentation

S04-17654-A Analysis of Software Artifacts

High Performance Architecture

Server1User
Management

Purchase Order
Management

Client Tier Backend

Database

Client
applications

Middle Tier

Application Server (JBOSS)

MySql

Naming Service (JNDI)

Server2

Inventory
Management

Sales Order
Management

Client applications

JDBC

Remote Method Invocation

DatabaseServer application JNDI call

KEY

27

Team2 Final Presentation

S04-17654-A Analysis of Software Artifacts

Performance Measurements(1)

28

Team2 Final Presentation

S04-17654-A Analysis of Software Artifacts

Performance Measurements(2)
Mean RTT vs. # Clients

0

50

100

150

200

250

300

350

4 8 12 16 20 24 28 32 36 40

Simultaneous Clients

M
ea

n
R

TT

Normal
Balanced

Conclusion

30

Team2 Final Presentation

S04-17654-A Analysis of Software Artifacts

Insights From Measurements

FT-Baseline
JNDI/Reference lookups take large majority of
RTT, especially in faulty case
Even in fault-free, doing the same lookup every
time hurts RTT

RT-FT-Baseline
Caching of references nearly eliminates ‘spikes’
by reducing JNDI lookup time which is a
bottleneck in Fault tolerant systems

High-Performance
Still room for improvement of performance

31

Team2 Final Presentation

S04-17654-A Analysis of Software Artifacts

Accomplishments

Nearly full ‘spike’ reduction with client-
side reference caching (reduced RTT
upper bound by 75% for 1 client, and
92% for 20 clients)

Fully-interactive client with automated
test benches

Functionality-Based Load Balancing

32

Team2 Final Presentation

S04-17654-A Analysis of Software Artifacts

What we learned
Working in distributed Teams

Thanks to Assignment-1. CVS made life easy
Try Subversion

JBoss is great but ‘heavy’
Startup times, etc make testing difficult

Design decisions make project smoother

To conquer FT, RT, HP you need to fight 3
battles

Keeping the server stateless makes the battle
less complicated

33

Team2 Final Presentation

S04-17654-A Analysis of Software Artifacts

What more could we have done
Optimizations on Server

Fine-tuning JBOSS may improve the performance

Bounded Failover
Exception handling, TCP timeouts could be bounded

Hard-coded JNDI servers
Separate the JNDI from JBOSS
Should probably be modularized in a config file or similar

Load Balancing
Functionality-based + Standard Load balancing Algorithms

Use Cases:
Authentication
Searching
Messaging

34

Team2 Final Presentation

S04-17654-A Analysis of Software Artifacts

Had we started over !

Administrative
Would register for the course

Technical
Would have

thought twice about EJB and JBOSS
thought about Operation ID stuffing at
the time of designing the system

(Stateless vs Stateful server)

