
World Wide Web 2 (1999) 69–83 69

Measuring the capacity of a Web server under realistic loads

Gaurav Banga and Peter Druschel
Department of Computer Science, Rice University, Houston, TX 77005, USA

E-mail: gaurav@cs.rice.edu

The World Wide Web and its related applications place substantial performance demands on network servers. The ability to measure
the effect of these demands is important for tuning and optimizing the various software components that make up a Web server. To
measure these effects, it is necessary to generate realistic HTTP client requests in a test-bed environment. Unfortunately, the state-of-
the-art approach for benchmarking Web servers is unable to generate client request rates that exceed the capacity of the server being
tested, even for short periods of time. Moreover, it fails to model important characteristics of the wide area networks on which most
servers are deployed (e.g., delay and packet loss). This paper examines pitfalls that one encounters when measuring Web server capacity
using a synthetic workload. We propose and evaluate a new method for Web traffic generation that can generate bursty traffic, with peak
loads that exceed the capacity of the server. Our method also models the delay and loss characteristics of WANs. We use the proposed
method to measure the performance of widely used Web servers. The results show that actual server performance can be significantly
lower than indicated by standard benchmarks under conditions of overload and in the presence of wide area network delays and packet
losses.

1. Introduction

The explosive growth in size and usage of the World
Wide Web results in increasing load on its constituent net-
works and servers, and stresses the protocols that the Web is
based on. Improving the performance of the Web has been
the subject of much recent research, addressing various as-
pects of the problem such as better Web caching [Bestavros
et al. 1995; Braun and Claffy 1994; Chankhunthod et al.
1996; Seltzer and Gwertzman 1995; Williams et al. 1996],
HTTP protocol enhancements [Banga et al. 1997; Fielding
et al. 1997; Mogul et al. 1997; Padmanabhan and Mogul
1994; Spasojevic et al. 1994], better HTTP servers and
proxies [ACME 1998; Apache 1998; Chankhunthod et al.
1996; Zeus 1998] and server OS implementations [Banga
et al. 1998; Banga et al. 1999; Banga and Mogul 1998;
Compaq 1998; Druschel and Banga 1996; Hu et al. 1997a;
Mogul 1995b; Mogul and Ramakrishnan 1997].

To date most work on measuring Web software perfor-
mance has concentrated on accurately characterizing Web
server workloads in terms of request file types, transfer
sizes, locality of reference in URLs requested and other re-
lated statistics [Arlitt and Williamson 1996; Bestavros et al.
1995; Braun and Claffy 1994; Crovella and Bestavros 1996;
Cunha et al. 1995; Kwan et al. 1995]. Some researchers
have tried to evaluate the performance of Web servers and
proxies using real workloads directly [Banga and Mogul
1998; Maltzahn et al. 1997; Mogul 1995a]. However, this
approach suffers from the experimental difficulties involved
in non-intrusive measurement of a live system and the in-
herent irreproducibility of live workloads.

Recently, there has been some effort towards Web server
evaluation through generation of synthetic HTTP client
traffic, based on invariants observed in real Web traffic
[Almeida et al. 1996; Mecklermedia 1996; Mindcraft 1998;

SPEC 1996; Web66 1996]. Unfortunately, there are pitfalls
that arise in generating heavy and realistic Web traffic us-
ing a limited number of client machines. These problems
can lead to significant deviation of benchmarking condi-
tions from reality and fail to predict the performance of a
given Web server.

In a Web server evaluation test-bed consisting of a small
number of client machines, it is difficult to simulate many
independent clients. Typically, a load generating scheme
is used that equates client load with the number of client
processes in the test system. Adding client processes is
thought to increase the total client request rate. Unfor-
tunately, some peculiarities of the TCP protocol limit the
traffic generating ability of such a simple scheme. Because
of this, generating request rates that exceed the server’s ca-
pacity is nontrivial, leaving the effect of request bursts on
server performance unevaluated.

The commonly used scheme generates client traffic that
has little resemblance in its temporal characteristics to real-
world Web traffic. In addition, there are fundamental differ-
ences between the delay and loss characteristics of WANs
and the LANs used in test-beds. All of these factors may
cause certain important aspects of Web server performance
to remain unevaluated. Finally, care must be taken to en-
sure that limited resources in the simulated client systems
do not distort the server performance results.

In this paper, we examine these issues and their effect
on the process of Web server evaluation. We propose a
new methodology for HTTP request generation that com-
plements the work on Web workload modeling. Our work
focuses on those aspects of the request generation method
that are important for providing a scalable means of gen-
erating realistic HTTP requests, including peak loads that
exceed the capacity of the server. We also address the need
to model the delay and loss characteristics of WANs. We

 Baltzer Science Publishers BV



70 G. Banga, P. Druschel / Measuring Web server capacity

expect that this request generation methodology, in con-
junction with a representative HTTP request data set like
the one used in the SPECWeb benchmark [SPEC 1996] and
a representative temporal characterization of HTTP traffic,
will result in a benchmark that can more accurately predict
actual Web server performance.

The rest of this paper is organized as follows. Sec-
tion 2 gives a brief overview of the dynamics of a typical
HTTP server running on a UNIX-based TCP/IP network
subsystem. Section 3 identifies problems that arise when
trying to measure the performance of such a system. In
section 4 we describe our methodology. Section 5 gives
a quantitative evaluation of our methodology, and presents
measurements of Web servers using the proposed method.
Finally, section 6 covers related work and section 7 offers
some conclusions.

2. Dynamics of an HTTP server

In this section, we briefly describe the working of a typ-
ical HTTP server on a machine with a UNIX-based TCP/IP
implementation. The description provides background for
the discussion in the following sections. For simplicity, we
focus our discussion on a BSD based network subsystem
[McKusick et al. 1996; Wright and Stevens 1995]. The be-
havior of other implementations of TCP/IP, such as those
found in UNIX System V [Bach 1986] and Windows NT
[Custer 1993], is similar.

In the HTTP protocol, for each URL fetched, a browser
establishes a new TCP connection to the appropriate server,
sends a request on this connection and then reads the
server’s response.1 To display a typical Web page, a
browser may need to initiate several HTTP transactions to
fetch the various components (HTML source, images) of
the page.

Figure 1 shows the sequence of events in the connection
establishment phase of an HTTP transaction. The dashed
flow on the right side of the figure shows the processing per-
formed by a user-level HTTP process, while the left picture
shows the events in the network and in the server’s in-kernel
TCP/IP code. After starting, the Web server process listens
for connection requests on a socket bound to a well-known
port – typically port 80. When a connection establishment
request (TCP SYN packet) from a client is received on this
socket (figure 1, position 1), the server TCP responds with
a SYN-ACK TCP packet, creates a socket for the new,
incomplete connection, and places it in the listen socket’s
SYN-RCVD queue. Later, when the client responds with an
ACK packet to the server’s SYN-ACK packet (position 2),
the server TCP removes the socket created above from the
SYN-RCVD queue and places it in the listen socket’s queue
of connections awaiting acceptance (accept queue). Each
time the WWW server process executes the accept() system
call (position 3), the first socket in the accept queue of the

1 HTTP 1.1 supports persistent connections where several requests may
be sent serially over one connection.

Figure 1. HTTP connection establishment timeline.

listen socket is removed and returned. After accepting a
connection, the WWW server – either directly or indirectly
by passing this connection to a helper process – reads the
HTTP request from the client, sends back an appropriate
response, and closes the connection.

In most UNIX-based TCP/IP implementations, the ker-
nel variable somaxconn limits the maximum backlog on a
listen socket. This backlog is an upper bound on the sum
of the lengths of the SYN-RCVD and accept queues. In
the context of the discussion above, the server TCP drops
incoming SYN packets (figure 1, position 1) whenever this
sum exceeds a value of 1.5 times the backlog.2 When the
client TCP misses the SYN-ACK packet, it goes into an
exponential backoff paced SYN retransmission mode until
it either receives a SYN-ACK, or its connection establish-
ment timer expires.3

The average length of the SYN-RCVD queue depends
on the average round-trip delay between the server and its
clients, and the connection request rate. This is because
a socket stays on this queue for a period of time equal
to the round-trip delay. Long round-trip delays and high
request rates increase the length of this queue. The ac-
cept queue’s average length depends on how fast the HTTP
server process calls accept() (i.e., the rate at which it serves
requests) and the request rate. If a server is operating at
its maximum capacity, it cannot call accept() fast enough

2 In the System V Release 4 flavors of UNIX (e.g., Solaris) this sum is
limited by 1× backlog rather than 1.5× backlog.

3 4.4BSD’s TCP retransmits at 6 seconds and 30 seconds after the first
SYN is sent before finally giving up at 75 seconds. Other TCP imple-
mentations behave similarly.



G. Banga, P. Druschel / Measuring Web server capacity 71

to keep up with the connection request rate and the queue
grows.

Each socket’s protocol state is maintained in a data struc-
ture called a Protocol Control Block (PCB). TCP maintains
a table of the active PCBs in the system. A PCB is cre-
ated when a socket is created, either as a result of a system
call, or as a result of a new connection being established.
A TCP connection is closed either actively by one of the
peers executing a close() system call, or passively as a re-
sult of an incoming FIN control packet. In the latter case,
the PCB is deallocated when the application subsequently
performs a close() on the associated socket. In the former
case, a FIN packet is sent to the peer and after the peer’s
FIN/ACK arrives and is ACKed, the PCB is kept around
for an interval equal to the so-called TIME-WAIT period
of the implementation.4 The purpose of this TIME-WAIT
state is to be able to retransmit the closing process’s ACK
to the peer’s FIN if the original ACK gets lost, and to allow
the detection of delayed, duplicate TCP segments from this
connection.

A well-known problem exists in many traditional imple-
mentations of TCP/IP that limits the throughput of a Web
server. These systems have small default and maximum
values for somaxconn. Since this threshold can be reached
when the accept queue and/or the SYN-RCVD queue fills,
a low value can limit throughput by refusing connection
requests needlessly. As discussed above, the SYN-RCVD
queue can grow because of long round-trip delays between
server and clients, and high request rates. If the limit is too
low, an incoming connection may be dropped even though
the Web server may have sufficient resources to process
the request. Even in the case of a long accept queue, it is
usually preferable to accept a connection, unless the queue
already contains enough work to keep the server busy for at
least the client TCP’s initial retransmission interval (6 sec-
onds for 4.4BSD). To address this problem, some vendors
have increased the maximum value of somaxconn (e.g.,
Digital UNIX uses 32767, Solaris uses 1000). In section 3,
we will see how this fact interacts with WWW request gen-
eration.

Commonly used Web server applications use a num-
ber of different process architectures. Some servers, e.g.,
Apache [Apache 1998], use a process-per-connection ar-
chitecture. This is similar to the UNIX server model, al-
though a set of persistent pre-forked processes is used in
order to reduce forking overhead. Multi-process servers
can suffer from large context-switching overhead, so many
recent servers use a single-process architecture. There are
two types of single-process servers: event-driven servers,
which use the select() system call to allow a single thread5

to perform processing for all connections being handled by

4 This TIME-WAIT period should be set equal to twice the Maximum
Segment Lifetime (MSL) of a packet on the Internet (RFC 793 [Postel
1981] specifies the MSL as 2 minutes, but many implementations use a
much shorter value).

5 An event-driven server on a multi-processor machine uses as many
threads as there are processors in the system.

the server, and multi-threaded servers, where each connec-
tion is assigned to a dedicated thread. Zeus [Zeus 1998]
is an example of a single-process server. In section 5, we
will discuss the effect of WAN characteristics on the per-
formance of a process-per-connection server and a single-
process server.

3. Problems in generating synthetic HTTP requests

This section identifies problems that arise when trying to
measure the performance of a Web server, using a test-bed
consisting of a limited number of client machines. For rea-
sons of cost and ease of control, it is desirable to use a small
number of client machines to simulate a large client popu-
lation. We first describe a straightforward, commonly-used
scheme for generating Web traffic, and identify problems
that arise.

In the simple method, a set of N Web client processes6

execute on P client machines. Usually, the client machines
and the server share a LAN. Each client process repeat-
edly establishes an HTTP connection, sends an HTTP re-
quest, receives the response, waits for a certain time (think
time), and then repeats the cycle. The sequence of URLs
requested comes from a database designed to reflect realis-
tic URL request distributions observed on the Web. Think
times are chosen such that the average URL request rate
equals a specified number of requests per second. N is
typically chosen to be as large as possible given P , so as
to allow a high maximum request rate. To reduce cost and
for ease of control of the experiment, P must be kept low.
All the popular Web benchmarking efforts that we know of
use a load generation scheme similar to this [Mecklermedia
1996; Mindcraft 1998; SPEC 1996; Web66 1996].

Several problems arise when trying to use the simple
scheme described above to generate realistic HTTP re-
quests. We describe these problems in detail in the fol-
lowing subsections.

3.1. Inability to generate excess load

In the World Wide Web, HTTP requests are generated
by a huge number of clients, where each client has a think
time distribution with large mean and variance. Further-
more, the think time of clients is not independent; factors
such as human users’ sleep/wake patterns, and the publica-
tion of Web content at scheduled times causes high corre-
lation of client HTTP requests. As a result, HTTP request
traffic arriving at a server is bursty with the burstiness
being observable at several scales of observation [Crov-
ella and Bestavros 1996], and with peak rates exceed-
ing the average rate by factors of 8 to 10 [Mogul 1995a;
Stevens 1996]. Furthermore, peak request rates can easily
exceed the capacity of the server.

6 In this discussion we use the terms client processes to denote either
client processes or client threads, as this distinction makes no difference
to our method.



72 G. Banga, P. Druschel / Measuring Web server capacity

Figure 2. Request rate versus no. of clients.

By contrast, in the simple request generation method, a
small number of clients have independent think time dis-
tributions with small mean and variance. As a result, the
generated traffic has little burstiness. The simple method
generates a new request only after a previous request is
completed. This, combined with the fact that only a lim-
ited number of clients can be supported in a small test-bed,
implies that the clients stay essentially in lock-step with the
server. That is, the rate of generated requests never exceeds
the capacity of the server.

Consider a Web server that is subjected to HTTP re-
quests from an increasing number of clients in a test-bed
using the simple method. For simplicity, assume that the
clients use a constant think time of zero seconds, i.e., they
issue a new request immediately after the previous request
is completed. For small document retrievals, a small num-
ber of clients (3–5 for our test system) are sufficient to drive
the server at full capacity. If additional clients are added
to the system, the only effect is that the accept queue at
the server will grow in size, thereby adding queuing delay
between the instant when a client perceives a connection
as established, and the time at which the server accepts the
connection and handles the request. This queuing delay re-
duces the rate at which an individual client issues requests.
Since each client waits for a pending transaction to finish
before initiating a new request, the aggregate connection re-
quest rate of all the clients remains equal to the throughput
of the server.

As we add still more clients, the server’s accept queue
eventually fills. At that point, the server TCP starts to
drop connection establishment requests that arrive while the
sum of the SYN-RCVD and accept queues is at its limit.
When this happens, the clients whose connection requests
are dropped go into TCP’s exponential backoff and generate
further requests at a very low rate. (For 4.4BSD based
systems, the rate is 3 requests in 75 seconds.) This behavior
is shown graphically by the solid line in figure 2. The server
saturates at point A, and then the request rate remains equal
to the throughput of the server until the accept queue fills

up (point B). Thereafter the rate increases as in the solid
line at 0.04 requests/second per added client.

To generate a significant rate of requests beyond the ca-
pacity of the server, one would have to employ a huge
number of client processes. Suppose that for a certain size
of requested file, the capacity of a server is 100 connec-
tions/sec, and we want to generate requests at 1100 re-
quests/sec. One would need on the order of 25000 client
processes ((1100−100)/(3/75)) beyond the maximum size
of the listen socket’s accept queue to achieve this request
rate. Recall from section 2 that many vendors now config-
ure their systems with a large value of somaxconn to avoid
dropping incoming TCP connections needlessly. Thus, with
somaxconn = 32767, one would need 74151 processes
(1.5× 32767 + 25000) to generate 1100 requests/sec. Ef-
ficiently supporting such large numbers of client processes
on a small number of client machines is not feasible.

A real Web server, on the other hand, can easily be
overloaded by the huge (practically infinite) client popula-
tion existing on the Internet. As mentioned above, it is not
unusual for a server to receive bursts of requests at rates
that exceed the average rate by factors of 8 to 10. The
effect of such bursts is to temporarily overload the server.

Many UNIX and non-UNIX based network subsystems
suffer from poor overload behavior [Banga 1998; Druschel
and Banga 1996; Mogul and Ramakrishnan 1997]. Under
heavy network load these interrupt-driven systems can enter
a state called receiver-livelock [Ramakrishnan 1992]. In
this state, the system spends all its resources processing
incoming network packets (in this case TCP SYN packets),
only to discard them later because there is no CPU time
left to service the receiving application program (in this
case the Web server). It is therefore important to evaluate
Web server performance under overload.

Synthetic requests generated using the simple method
cannot reproduce the bursty aspect of real traffic, and there-
fore fail to evaluate the behavior of Web servers under
overload.

3.2. Inability to model characteristics of real networks

The Internet based Web has network characteristics that
differ from the LANs on which Web servers are usually
benchmarked. Performance aspects of a server that are de-
pendent on such network characteristics are not evaluated.
In particular, the simple method does not model high and
variable WAN delays. Packet losses due to congestion are
also absent in LAN-based test-beds. Both of these phe-
nomena induce large amounts of state in real-world servers,
which is known to adversely affect performance.

For example, WAN delays and packet losses cause long
SYN-RCVD queues in a server’s listen socket, which may
cause poor performance, as discussed in section 2. Delays
and packet losses also increase the lifetime of connections,
thus inducing a large number of simultaneous connections
at a server, which can cause significant performance degra-
dation of event-driven servers [Banga and Mogul 1998;



G. Banga, P. Druschel / Measuring Web server capacity 73

Fox et al. 1997; Maltzahn et al. 1997] and other types
of servers.

WAN delays also cause an increase in the bandwidth-
delay product experienced by a TCP connection. There-
fore, the server TCP needs to provide increased amounts of
buffer space (in the form of socket send buffers) for Web
transfers to proceed at full speed. This increased demand
for buffer space may reduce the amount of main mem-
ory available for the document cache. Current Web server
benchmarks do not expose these performance aspects of
servers.

Other aspects of the network subsystem, such as the
server TCP’s timeout mechanism, are never exercised dur-
ing benchmarking and may perform poorly in practice. Our
experiments, described in detail later in section 5, suggest
that these factors are important in practice.

3.3. Client and network resource constraints

When generating synthetic HTTP requests from a small
number of client machines, care must be taken that resource
constraints on the client machine do not accidentally dis-
tort the measured server performance. With an increasing
number of simulated clients per client machine, client-side
CPU and memory contention is likely to arise. Eventually,
a point is reached where the bottleneck in a Web trans-
action is no longer the server but the client. Designers
of commercial Web server benchmarks have also noticed
this pitfall. The WebStone benchmark [Mindcraft 1998]
explicitly warns about this potential problem, but gives no
systematic method to avoid it.

The primary factor in preventing client bottlenecks from
affecting server performance results is to limit the number
of simulated clients per client machine. In addition, it is
important to use an efficient implementation of TCP/IP (in
particular, an efficient PCB table implementation) on the
client machines, and to avoid I/O operations in the simu-
lated clients that could affect the rate of HTTP transactions
in uncontrolled ways. For example, writing logging infor-
mation to disk can affect the client behavior in complex
and undesirable ways.

Similarly, while benchmarking a Web server, it is impor-
tant to ensure that the bandwidth of the network connecting
the client machines to the server is not a bottleneck factor.
Many modern workstations can saturate a single 100 Mbps
link. Therefore, it may be necessary to use multiple net-
work interfaces in the Web server machine to measure its
true capacity.

4. A new method for generating HTTP requests

In this section, we describe the design of a new method
to generate Web traffic. This method addresses the prob-
lems raised in the previous section. It should be noted that
our work does not by itself address the problem of accu-
rate simulation of Web workloads in terms of the request

Figure 3. Test-bed architecture.

file types, transfer sizes and locality of reference in URLs
requested; instead, we concentrate on mechanisms for gen-
erating heavy concurrent traffic that has a temporal behavior
similar to that of real Web traffic. Our work is intended to
complement the existing work done on Web workload char-
acterization [Bestavros et al. 1995; Braun and Claffy 1994;
Chankhunthod et al. 1996; Seltzer and Gwertzman 1995;
Williams et al. 1996], and can be easily used in conjunc-
tion with it.

4.1. Basic architecture

The basic architecture of our test-bed is shown in fig-
ure 3. A set of P client machines are connected to the
server machine being tested. Each client machine runs a
number of S-Client (short for Scalable Client) processes.
The structure of an S-Client, and the number of S-Clients
that run on a single machine are critical to our method
and are described in detail below. The client machines are
connected to the server through a router that has sufficient
capacity to carry the maximum client traffic anticipated.
The purpose of the router is to simulate WAN effects by
introducing an artificial delay and/or dropping packets at a
controlled rate.

4.2. S-Clients

An S-Client (figure 4) consists of a pair of processes
connected by a UNIX domain socketpair. One process in
the S-Client, the connection establishment process, is re-
sponsible for generating HTTP requests at a certain rate
and with a certain request distribution. After a connection
is established, the connection establishment process sends
an HTTP request to the server, then it passes on the con-
nection to the connection handling process, which handles
the HTTP response.



74 G. Banga, P. Druschel / Measuring Web server capacity

Figure 4. A Scalable Client.

The connection establishment process of an S-Client
works as follows: The process opens D connections to
the server using D sockets in non-blocking mode. These
D connection requests7 are spaced out over T milliseconds.
T is required to be larger than the maximal round-trip delay
between client and server (remember that an artificial delay
may be added at the router).

After the process executes a non-blocking connect() to
initiate a connection, it records the current time in a variable
associated with the used socket. In a tight loop, the process
checks if for any of its D active sockets, the connection is
complete, or if T milliseconds have elapsed since a con-
nect() was performed on this socket. In the former case,
the process sends an HTTP request on the newly estab-
lished connection, hands off this connection to the other
process of the S-Client through the UNIX domain socket-
pair, closes the socket, and then initiates another connection
to the server. In the latter case, the process simply closes the
socket and initiates another connection to the server. No-
tice that closing the socket in both cases does not generate
any TCP packets on the network. In the first case, the close
merely releases a reference to the corresponding socket. In
the second case, the close prematurely aborts TCP’s con-
nection establishment timeout period and releases socket
resources in the kernel.

The connection handling process of an S-Client waits for
(1) data to arrive on any of the active connections, or (2) for

7 In this paper, we model only HTTP/1.0, which uses a dedicated connec-
tion for each distinct HTTP request.

a new connection to arrive on the UNIX domain socket
connecting it to the other process. In case of new data on
an active socket, it reads this data; if this completes the
server’s response, it closes the socket. A new connection
arriving at the UNIX domain socket is simply added to the
set of active connections.

The rationale behind the structure of an S-Client is as
follows. The two key ideas are to (1) shorten TCP’s connec-
tion establishment timeout, and (2) to maintain a constant
number of unconnected sockets (simulated clients) that are
trying to establish new connections. Condition (1) is ac-
complished by using non-blocking connects and closing the
socket if no connection was established after T seconds.
The fact that the connection establishment process tries to
establish another connection immediately after a connection
was established ensures condition (2).

The purpose of (1) is to allow the generation of request
rates beyond the capacity of the server with a reasonable
number of client sockets. Its effect is that each client socket
generates SYN packets at a rate of at least 1/T . Shortening
the connection establishment timeout to 500 ms by itself
would cause the system’s request rate to follow the dashed
line in figure 2.

The idea behind (2) is to ensure that the generated re-
quest rate is independent of the rate at which the server han-
dles requests. In particular, once the request rate matches
the capacity of the server, the additional queuing delays
in the server’s accept queue no longer reduce the request
rate of the simulated clients. Once the server’s capacity
is reached, adding more sockets (descriptors) increases the



G. Banga, P. Druschel / Measuring Web server capacity 75

request rate at 1/T requests per descriptor, eliminating the
flat portion of the graph in figure 2.

To increase the maximal request generation rate, we can
either decrease T or increase D. As mentioned before,
T must be larger than the maximal round-trip time between
client and server. This is to avoid the case where the client
aborts an incomplete connection in the SYN-RCVD state
at the server, but whose SYN-ACK from the server (see
figure 1) has not yet reached the client. Given a value of T ,
the maximum value of D is usually limited by OS imposed
restrictions on the maximum number of open descriptors in
a single process. However, depending on the capacity of
the client machine, it is possible that one S-Client with a
large D may saturate the client machine.

Therefore, as long as the client machine is not satu-
rated, D can be as large as the OS allows. When multiple
S-Clients are needed to generate a given rate, the largest
allowable value of D should be used, as this keeps the to-
tal number of processes low, thus reducing overhead due to
context switches and memory contention between the var-
ious S-Client processes. How to determine the maximum
rate that a single client machine can safely generate without
risking distortion of results due to client side bottlenecks is
the subject of the next section.

The proposed method for generating Web traffic scales
linearly with the number of client machines as long as net-
work contention is not an issue. This is because the load
generating ability of an S-Client is independent of the ca-
pacity of the server, as we work around TCP’s exponen-
tial backoff and because we separate the request generation
process and hence the generation rate from the connection
handling process.

The presented scheme generates HTTP requests with a
trivial think time distribution, i.e., it uses a constant think
time chosen to achieve a certain constant request rate. It
is possible to generate more complex request processes by
adding appropriate think periods between the point where
an S-Client detects a connection was established and when
it next attempts to initiate another connection. In this way,
any request arrival process can be generated whose peak
request rate is lower than or equal to the maximum raw
request rate of the system. In particular, the system can be
parameterized to generate self-similar traffic [Crovella and
Bestavros 1996].

4.3. Request generating capacity of a client machine

As noted in the previous section, while evaluating a Web
server, it is very important to operate client machines in
load regions where they are not limiting the observed per-
formance. Our method for finding the maximum number
of S-Clients that can be safely run on a single machine –
and thus determine the value of P needed to generate a
certain request rate – is as follows. The work that a client
machine has to do is largely determined by the sum of the
number of sockets D of all the S-Clients running on that
machine. Since we do not want to operate a client near its

capacity, we choose this value as the largest number N for
which the throughput vs. request rate curve when using a
single client machine is identical to that resulting from the
use of two client machines.8 The corresponding number of
S-Clients we need to use is found by distributing these N
descriptors into as few processes as the OS permits. We
call the request rate generated by these N descriptors the
maximum raw request rate of a client machine.

It is possible that a single process’s descriptor limit (im-
posed by the OS) is smaller than the average number of
simultaneous active connections in the connection handling
process of an S-Client. In this case we have no option but
to use a larger number of S-Clients with smaller D val-
ues to generate the same rate. Due to increased memory
contention and context switching, this may actually cause a
lower maximum raw request rate for a client machine than
if the OS limit on the number of descriptors per process
was higher. The number of machines needed to generate a
certain request rate may be higher in this case.

4.4. Design of the delay router

This section discusses the design of the router shown
in figure 3. As mentioned in section 4.1, the purpose of
this router is to simulate the effects of WANs. Our goal is
to be able use the router to simultaneously model multiple
wide area network paths between the various clients and
the server, each of which have independent and adjustable
latency, bandwidth and loss characteristics.

We implemented the router by modifying the forward-
ing mechanism in the 4.4BSD TCP/IP protocol stack. As
a result, the router software is easily portable to any BSD
based UNIX operating system. Our changes to the for-
warding mechanism were as follows: The vanilla BSD for-
warding mechanism forwards an IP packet destined for an-
other machine as soon as it is processed in ip input() (or
after a fragmented packet has been reassembled) by calling
ip forward(). In contrast, our delay router queues packets
in a kernel data structure, to be forwarded after a speci-
fied delay. A dedicated kernel process continuously checks
for packets that are due to be forwarded; once a packet is
ready, it calls ip forward() to transmit this packet.

Continuous polling is used instead of a periodic, clock-
interrupt driven check in order to conserve the timing of
packets on the network. Our router is able to conserve
temporal packet spacing, and scale the spacing correctly
when modeling limited bandwidth paths. If two back-to-
back packets were separated in the incoming packet train
at the router by T , their spacing in the outgoing train is T
scaled by a factor equal to the ratio of the bandwidth of the
incoming path to the bandwidth of the path being modeled
by the router, assuming that the former is greater than the
latter.

8 A two-machine client configuration may suffer more packet collisions
than a single machine configuration on a shared Ethernet. In all our
experiments, we use a switched network with sufficient capacity in the
switch.



76 G. Banga, P. Druschel / Measuring Web server capacity

In contrast, a periodic check based scheme introduces
burstiness in the outgoing packet train, because all packets
due for transmission within a check period are transmit-
ted simultaneously. Even with a check period of 10 ms,
which corresponds to the clock-interrupt frequency of many
commonly-used operating systems, up to 43 back-to-back
packets may be sent during each check period if the sim-
ulated path bandwidth is 50 Mbps. This issue is impor-
tant because TCP performance is known to be affected
by phenomena such as ACK compression [Mogul 1993;
Shenker et al. 1990], which also disturb the timing of pack-
ets in the network.

The forwarding delay for a packet is computed as the
sum of three components. Algebraically, this is expressed
as

delaypacket

= latencypath +
sizepacket

bandwidthpath
+ queuing-timepath.

Essentially, this equation models a limited-bandwidth
network pipe between a client and the server. The first
component in the equation is a propagation delay, which
models the latency of the path. Next, we have the trans-
mission delay, which models the time required to transfer
a packet given a certain path bandwidth. The last compo-
nent models queuing delay inside the router. This is the
time that a packet has to wait while the preceding packets,
which are being sent along the same path, are transmitted.
This is computed as

queuing-timepath =

queued packets on path∑
i=0

sizepacketi

bandwidthpath
.

The delay router can support multiple simulated network
paths. For example, the router may be configured such that
all packets between client machine A and the server traverse
one network path with its set of delay and bandwidth para-
meters. Packets between machine B and the server might
use a different path with its own set of delay and bandwidth
parameters, and so on. The router can also drop packets
on a given simulated path at a controlled rate and with a
given loss model. Also, while the current implementation
does not model fluctuations in path bandwidth, this could
be easily implemented in our framework.

The router allows us to accurately model fairly complex
scenarios. For example, we can model a scenario where a
certain fraction of a server’s load is from clients that are
connected to the server via fast networks, such as a LAN.
Another fraction of the clients may be assumed to be home
users, connected via modems. A third fraction of clients
may be connected via moderate latency and high-bandwidth
cross-country backbone networks. Finally, a fourth set of
hosts may make requests to the server over lossy networks,
such as wireless networks.

5. Quantitative evaluation

In this section we present experimental data to quantify
the problems identified in section 3, and to evaluate the
performance of our proposed method. We first measure the
request generation limitations of the simple approach and
evaluate the S-Client based request generation method pro-
posed in section 4. We then describe the use of S-Clients to
measure the overload performance of a Web server. Finally,
we present an evaluation of the effect of WAN characteris-
tics on Web server performance.

5.1. Experimental setup

We use two experimental setups. Our first set of exper-
iments (described in sections 5.2–5.4) were performed in a
test-bed consisting of 4 Sun Microsystems SPARCStation
20 model 61 workstations (60 MHz SuperSPARC+, 36 KB
L1, 1 MB L2, SPECint92 98.2) as the client machines. The
workstations are equipped with 32 MB of memory and run
SunOS 4.1.3 U1. Our server is a dual processor SPARC-
Station 20 constructed from 2 erstwhile SPARCStation 20
model 61 machines. This machine has 64 MB of mem-
ory and runs Solaris 2.5.1. A 155 Mbps ATM local area
network connects the machines, using FORE Systems SBA-
200 network adaptors. For our HTTP server, we used the
NCSA httpd server software, revision 1.5.1. The server’s
OS kernel was tuned using Web server performance en-
hancing tips advised by Sun. That is, we increased the total
pending connections (accept+SYN-RCVD queues) limit to
1024. In this set of experiments, we used no artificial de-
lay in the router connecting the clients and the server. We
will refer to this test-bed as “Testbed-1” in the following
discussion.

Our second set of experiments (described in sections 5.5
and 5.6) were performed on a test-bed consisting of 2
166 Mhz Pentium Pro PCs, each with 64 MB of memory,
as the client machines. Our server was a 333 Mhz Pen-
tium II PC equipped with 128 MB of memory. The client
machines were connected over a 100 Mbps switched Fast
Ethernet to a router (300 Mhz Pentium Pro with 128 MB
of memory). The server was connected to the router over
another 100 Mbps Fast Ethernet. Both the router and the
server had four 100 Mbps Fast Ethernet interfaces each.
For our server software, we used Apache v1.2.4 [Apache
1998] and Zeus v1.3.0 [Zeus 1998]. All machines, includ-
ing the router, ran FreeBSD 2.2.5. The router’s kernel was
slightly modified to incorporate the new forwarding code
described in section 4.4. We will refer to this test-bed as
“Testbed-2” below.

5.2. Request generation rate

The purpose of our first experiment is to quantitatively
characterize the limitations of the simple request generation
scheme described in section 3. In this experiment, we use
Testbed-1. We run an increasing number of client processes



G. Banga, P. Druschel / Measuring Web server capacity 77

Figure 5. Request rate versus number of clients.

Figure 6. Request rate versus number of descriptors.

distributed across 4 client machines. Each client tries to
establish an HTTP connection to the server, sends a request,
receives the response and then repeats the cycle. Each
HTTP request is for a single file of size 1294 bytes. We
measure the request rate (incoming SYNs/second) at the
server.

In a similar test, we ran 12 S-Clients distributed across
the 4 client machines with an increasing number of de-
scriptors per S-Client and measured the request rate seen
at the server. Each S-Client had the connection establish-
ment timeout period T set to 500 ms. The same file was
requested as in the case of the simple clients. We ensured
that the network was not a bottleneck in this experiment.

Figure 5 plots the total connection request rate seen by
the server versus the total number of client processes for
the simple client test. Figure 6 plots the same metric for
the S-Client test, but with the total number of descriptors
in the S-Clients on the x-axis. For the reasons discussed
earlier, the simple scheme generates no more than about
130 requests/second (which is the capacity of our server
for this request size). At this point, the server can accept
connections at exactly the rate at which they are generated.

As we add more clients, the queue length at the accept
queue of the server’s listen socket increases and the request
rate remains nearly constant at the capacity of the server.

With S-Clients, the request rate increases linearly with
the total number of descriptors being used for establishing
connections by the client processes. To highlight the dif-
ference in behavior of the two schemes in this figure, we
do not show the full curve for S-Clients. The complete
curve shows a linear increase in request rate all the way
up to 2065 requests/second with our setup of four client
machines. Beyond this point, client capacity resource limi-
tations set in and the request rate ceases to increase. More
client machines are needed to achieve higher rates. Thus
we see that S-Clients enable the generation of request loads
that greatly exceed the capacity of the server. The generated
load also scales very well with the number of descriptors
being used.

5.3. Overload behavior of a Web server

Being able to reliably generate high request rates, we
used the new method to evaluate how a typical commercial
Web server behaves under high load. We measured the
HTTP throughput achieved by the server in transactions
per second. The same 1294 byte file was used in this test.

Figure 7 plots the server throughput versus the total
connection request rate. As before, the server saturates
at about 130 transactions per second. As we increase the
request rate beyond the capacity of the server, the server
throughput declines, initially somewhat slowly, and then
more rapidly reaching about 75 transactions/second at 2065
requests/second. This decline in throughput with increas-
ing request rate is due to the CPU resources spent on pro-
tocol processing for incoming requests (SYN packets) that
are eventually dropped due to the backlog on the listen
socket (i.e., the full accept queue).

The reason behind this poor overload behavior of Web
servers has been explained elsewhere [Banga 1998]. Es-
sentially, the interrupt-driven nature of the protocol stack
causes strictly higher priority to be assigned to non-flow-
controlled kernel activities, such as the processing of in-
coming SYN packets. Packet processing associated with
established HTTP connections is flow-controlled by the
progress rate of user-level applications. Thus, under over-
load, the progress of of established HTTP connections
suffers as the system spends increasing amounts of time
processing SYN packets only to drop these later at the full
listen socket.

The slope of the throughput drop corresponds to about
325 µsec worth of processing time per SYN packet. While
this may seem large, it is consistent with our observation
of the performance of a server system based on a 4.4BSD
network subsystem retrofitted into SunOS 4.1.3 U1 on the
same hardware.

The large drop in throughput of an overloaded server
highlights the importance of evaluating the overload be-
havior of a Web server. Note that it is impossible to eval-



78 G. Banga, P. Druschel / Measuring Web server capacity

Figure 7. Web server throughput versus request rate.

Figure 8. Web server throughput under bursty conditions versus request rate.

uate this aspect of Web server performance with current
benchmarks that are based on the simple scheme for re-
quest generation.

5.4. Throughput under bursty conditions

In section 3, we point out that one of the drawbacks of
the simple traffic generation scheme is the lack of burstiness
in the request traffic. A burst in request rate may temporar-
ily overload the server beyond its capacity. Since figure 7
indicates degraded performance under overload, we were
motivated to investigate the performance of a Web server
under bursty conditions.

We configured an S-Client with think time values such
that it generates bursty request traffic. We characterize the
bursty traffic by 2 parameters, (a) the ratio between the
maximum request rate and the average request rate, and (b)
the fraction of time for which the request rate exceeds the

average rate. Whenever the request rate is above the mean,
it is equal to the maximum. The period is 100 seconds. For
four different combinations of these parameters we varied
the average request rate and measured the throughput of the
server. We used Testbed-1 in this experiment.

Figure 8 plots the throughput of the Web server versus
the average request rate. The first parameter in the label
of each curve is the factor (a) above, and the second is the
factor (b) above, expressed as a percentage. For example,
(6, 5) refers to the case where for 5% of the time the request
rate is 6 times the average request rate.

As expected, even a small amount of burstiness can de-
grade the throughput of a Web server. For the case with 5%
burst ratio and peak rate 6 times the average, the throughput
for average request rates well below the server’s capacity
is degraded by 12–20%. In general, high burstiness both in
parameter (a) and in parameter (b) degrades the through-
put substantially. This is to be expected given the reduced



G. Banga, P. Druschel / Measuring Web server capacity 79

Figure 9. Server throughput versus WAN delays.

performance of a server beyond the saturation point in fig-
ure 7.

The bursty traffic model in this experiment is only a
crude approximation of actual traffic conditions at a real
WWW server. The point of this experiment is to show that
the use of S-Clients enables the generation of request distri-
butions of complex nature and with high peak rates. This is
not possible using a simple scheme for request generation.
Moreover, we have shown that the effect of burstiness on
server performance is significant.

5.5. Effect of WAN delays

In our next experiment, we use our new method to char-
acterize the effect of WAN delays on Web server through-
put. We configured Testbed-2 with 4 S-Clients distributed
across two client machines. Each S-Client generates a re-
alistic workload which was derived from Rice University’s
Computer Science departmental Web server logs. Only re-
quests for static documents were extracted from the log.
We use a real workload in this experiment in order to ob-
serve the expected secondary effects of excess state in a
server, i.e., the effects of the increased memory require-
ments resulting from WAN conditions on the effective size
of the server’s main memory file cache. In a control exper-
iment, we use a trivial workload where the S-Clients make
requests for the same 1 KB file.

The router was configured to introduce a fixed round-
trip delay T . We varied T from 0 to 200 ms to model
typical round-trip delays in the United States portion of the
Internet. In this experiment, we do not model the effects
of limited path bandwidth; each client-router-server path
had a real and simulated bandwidth of 100 Mbps. The
router always had sufficient CPU to perform its forward-
ing role without becoming a bottleneck. We measured the
throughput of the server as a function of T . Our results for
the Apache server are shown as the curve labeled “Apache

server throughput” in figure 9. The request rate generated
by the clients was matched to the capacity of the server in
this experiment, i.e., the server was not overloaded.

As we can see, the throughput of the Apache server
declines significantly as the network delay increases. With
200 ms round-trip delay, the throughput is about 54% lower
than the throughput observed with 0 ms simulated delay
(the LAN case).

To understand the reason behind this throughput drop,
we instrumented the server to find out where the system’s
time was being spent. We noticed that WAN delays induce
a large number of simultaneously active connections at the
server. This is because with larger round-trip network de-
lays, each TCP (and thus HTTP) connection at the server
lasts longer. From queuing theory, we know that for a given
service rate, longer service times lead to a larger number of
simultaneously active jobs. Thus, with longer HTTP con-
nection times, the average number of simultaneously active
connections is larger. This larger number of active connec-
tions at the server is directly responsible for the decreased
server throughput, for reasons discussed below.

First, the large number of connections increase the mem-
ory pressure at the server, due to the per-connection state
that needs to be maintained. This state includes per-
connection state maintained by Apache (Apache uses a
UNIX process for each connection) and the per-connection
state maintained by the OS kernel. The latter includes the
socket buffers, the size of which increases with the network
delay.

Second, with a process-per-connection server such as
Apache, a large number of simultaneously active connec-
tions increases the context-switching overhead in the server
system. The system continuously switches between a large
number of server processes while handling the HTTP re-
quests on various connections.

The total number of active connections and Apache
server processes as a function of network delay is shown in



80 G. Banga, P. Druschel / Measuring Web server capacity

Figure 10. Variation of # of active connections and server processes with WAN delays.

figure 10. The solid curve (labeled “Active connections”)
shows the average number of HTTP connections that are
in the TCP’s ESTABLISHED state for a particular value of
network delay. The dotted curve depicts the total number
of Apache server processes. As we can see, the number of
active connections and server processes increases rapidly
with network delay. The total number of server processes
levels out at 152 active processes. This corresponds to an
Apache configuration value which limits the total number
of server processes to the default value of 152. The active
connection count continues to increase even beyond this
point. Connections that do not have a process assigned to
them wait to be accepted in the accept queue of the Web
server’s listen socket.

The drop in Apache’s throughput in figure 9 up to about
100 ms network delay is primarily due to increased memory
pressure and context switching in the system as Apache
increases its number of server processes. Each Apache
process has an incremental memory requirement of about
500 KB. The memory consumed by these server processes
decreases the total amount of memory available for the main
memory file cache, which in turns decreases throughput.
Instrumentation of the kernel confirmed this; the size of
the file cache decreases from about 97 MB at 0 ms delay to
roughly 28 MB at 100 ms delay. Since the working set of
our workload is about 80 MB in size, this causes the server
system to move from a CPU bound scenario, where most
requests are satisfied from the file cache, to a disk-bound
scenario, where frequent file cache misses degrade server
throughput significantly.

Beyond 100 ms of network delay, Apache does not in-
crease the number of server processes further since its con-
figuration limit was reached. The subsequent decrease in
server throughput is due to increased memory pressure in
the system as the amount of data dedicated to socket buffers
increases. At 200 ms delay, the total memory consumption
of all network buffers is about 3.6 MB. Note that this con-

tribution to memory pressure is likely to increase further in
the near future, as networks with very high bandwidth-delay
products, such as intercontinental high-speed networks, are
deployed.

The dotted curve in figure 9, labeled “Apache server
throughput (trivial workload),” shows the throughput of
Apache with increasing WAN delay when it faces a trivial
workload, i.e., all requests to the server are for the same
1 KB file. Here, all requests hit in the file cache. The
purpose of plotting this curve is to separate out the effect
of factors other than the reduced main memory cache hit
rate. There is roughly a 12% drop in throughput over the
range of network delays. We attribute this throughput drop
primarily to the context-switching overhead as the number
of Apache processes increases.

We also measured the throughput of the Zeus server
with increasing WAN delays. In contrast to Apache,
Zeus is a single-process, event-driven server. It does not
use a separate process for every connection; instead all
connections are handled within the same server process.
Our objective in benchmarking Zeus was to see how its
performance is impacted by WAN delays given that it
has reduced per-connection memory requirements and less
context-switching overhead.

Our results are shown in the curve labeled “Zeus server
throughput” in figure 9. There is a decrease in server per-
formance of roughly 20% over the range of network delays.
Instrumentation of the system shows that the primary cause
is poor scalability of the select() system call with respect to
the total number of connections being simultaneously han-
dled. Event-driven servers like Zeus makes heavy use of
select() to manage multiple HTTP connections on a non-
blocking fashion. This effect (and a solution to the poor
performance of select()) are covered in detail elsewhere
[Banga et al. 1998; Banga and Mogul 1998].

A caveat is in order here. From the difference in
throughput degradation rates of Apache and Zeus, the



G. Banga, P. Druschel / Measuring Web server capacity 81

reader might conclude that event-driven servers like Zeus
are a partial solution for the performance problems of
Apache in the presence of WAN delays. However, event-
driven servers may have performance problems of their
own, which degrade their throughput for disk-bound work-
loads.

Being single-threaded, the lack of support for non-
blocking disk I/O [Banga et al. 1998] in many operating
systems (including FreeBSD) causes purely event-driven
servers to be blocked for hundreds of milliseconds on each
disk I/O. During this period, no processing happens for any
connection being handled by the server. Thus, in the pres-
ence of memory cache misses, single-threaded event-driven
servers effectively serve documents at disk speed (60–120
requests/second).

Zeus can be configured to use multiple processes to
overcome this problem; however, the added memory re-
quirements and context-switching overheads may then re-
sult in performance problems similar to those experienced
by Apache. Unfortunately, we were unable to verify this
experimentally, as multi-process configurations of Zeus are
not supported under FreeBSD.

In summary, wide-area network delays have a significant
impact on the performance of Web servers. This impact
remains unevaluated by standard benchmarks, which are
based on LAN test-beds.

5.6. Effect of packet losses

Our final experiment attempts to measure the effect of
packet losses on Web server throughput. We configured
the router of Testbed-2 to drop packets. The router was
configured to cause packet losses with a rate varying from
0% to 5%. The round-trip delay between the client and
the server was constant at 100 ms. As in the previous
experiment, the generated request rate was matched to the
capacity of the server.

Our results indicate that packet losses increase the
amount of state at the server, due to an increase in the num-
ber of active connections. The reason is that, like WAN
delays, packet losses increase the duration of an HTTP
transaction. At a 5% packet loss rate, the number of simul-
taneously active connections that we observed at the server
was about 320, compared to 149 without losses. At this
loss rate, the maximum throughput of the server is 237 re-
quests/sec. This corresponds to a degradation of about 36%
from the throughput measured with no losses and 100 ms
network delay.

This result shows that packet losses, like WAN de-
lays, have a significant impact on Web server performance,
which remains unevaluated by existing benchmarks.

6. Related work

Operating system researchers have devoted much effort
to characterizing and improving Web server performance.

In an early study, Mogul analyzed Web server performance
in the context of the 1994 California election server [Mogul
1995a; Mogul 1995b]. This evaluation was performed by
observing server behavior while facing a live workload.
Another early study was performed by McGrath at NCSA
[McGrath 1995]. This study used an HTTP request gen-
eration method very similar to the simple method that we
described in section 3.

Since then, there have been a large number of efforts
to evaluate and improve Web and proxy server perfor-
mance. These include efforts to support zero-copy I/O
[Pai et al. 1999], to improve the architecture of servers
[Chankhunthod et al. 1996], to reduce the number of system
calls in the typical I/O path [Hu et al. 1997a; Hu et al. 1998;
Hu et al. 1997b], and to quantify the interaction of
Web servers and operating systems [Almeida et al. 1996;
Schechte and Sutaria 1996; Yates et al. 1997]. Kaashoek
et al. have developed a prototype high-performance Web
server based on a customized operating system that is tai-
lored specially for servers [Kaashoek et al. 1997; Kaashoek
et al. 1996]. The request generation method used in all
these studies is similar to the simple method of sec-
tion 3.

There is also much existing work towards characteriz-
ing the invariants in WWW traffic. Arlitt and Williamson
[1996] characterized several aspects of Web server work-
loads such as request file type distribution, transfer sizes,
locality of reference in the requested URLs and related
statistics. Crovella and Bestavros [1996] looked at self-
similarity in WWW traffic. The invariants reported by
these efforts have been used in evaluating the performance
of Web servers, and the many methods proposed by re-
searchers to improve WWW performance.

Formal Web server benchmarking efforts have relatively
recent origins. WebStone [Mindcraft 1998] was one of the
earliest Web server benchmarks. WebStone is similar to
the simple scheme described in section 3 and suffers from
its limitations. Other early efforts [Mecklermedia 1996;
Web66 1996] were similar to WebStone. SPECWeb96
[SPEC 1996] is a standardized Web server benchmark from
SPEC, with a workload derived from the study of typical
servers on the Internet. The request generation method of
this benchmark is also similar to that of the simple scheme
and suffers from the same limitations.

The Wisconsin Proxy Benchmark (WPB) described by
Almeida and Cao was designed to specifically measure the
performance of a proxy server, as opposed to a Web server
[Almeida and Cao 1998]. The first version of this bench-
mark uses a variant of the simple request generation method
described in section 3 that has been parameterized to allow
the generation of requests to a long-tailed distribution of
document sizes.

One aim of the WPB work was to measure the effect of
slow modem connections on proxy server throughput. For
this, a modem emulator implemented in the client machine
kernel spaces out IP packets according to the delay and
bandwidth characteristics of modem links. This study was,



82 G. Banga, P. Druschel / Measuring Web server capacity

however, mainly concerned with the effect of proxy perfor-
mance on the response time seen by a client connected to
the Internet via a slow modem link. The effect on proxy
performance of well-connected clients that access the proxy
via long-delay, but relatively high-bandwidth links was not
studied. In addition, the overload behavior of proxy servers
was not evaluated. A new version of the WPB, which uses
our S-Client method to generate requests, is currently being
used to study proxy performance under overload.

Mosberger and Jin describe httperf, a tool that attempts
to provide a comprehensive benchmark for Web server
measurement [Mosberger and Jin 1998]. httperf supports
HTTP/1.1-style persistent connections, request pipelining,
and “chunked” transfer-encoding [Fielding et al. 1997;
Nielsen et al. 1997]. An important concern in the design
of this tool is the complete separation of the issues related
to the actual generation of HTTP calls from those related
to the specific workload and measurements that should be
used. httperf uses a specially constructed method, which
is similar to and partly based on the S-Client architecture,
for generating requests that exceed the capacity of the Web
server being measured. This tool, however, does not model
the effects of WANs on server performance.

Banga and Mogul describe the effect of WAN charac-
teristics on the performance of event-driven Web servers
[Banga and Mogul 1998]. Their measurements were per-
formed in the context of a live workload, and by using a
specially constructed benchmark which used a number of
slow client connections to artificially increase the number
of simultaneously active connections. While useful, this
benchmarking approach does not generalize to modeling
arbitrary WANs and combinations of networks. This ap-
proach also fails to accurately model the exact timing of
packets and packet losses on WANs.

In summary, most Web benchmarks that we know of
evaluate Web Servers only by modeling aspects of server
workloads that pertain to request file types, transfer sizes
and locality of reference in URLs requested. No bench-
mark, other than those that are based on our method, at-
tempts to accurately model the effects of request overloads,
or WAN characteristics on server performance. Our method
based on S-Clients enables the generation of HTTP requests
with burstiness and high rates. Furthermore, the use of a
controlled delay/loss inducing router allows us to model
the effect of WANs on server performance. Our work is
intended to complement the workload characterization ef-
forts to evaluate Web servers.

7. Conclusion

This paper examines pitfalls that arise when generating
synthetic Web server workloads in a testbed consisting of a
small number of client machines. It exposes limitations of
the simple request generation scheme that underlies state-
of-the-art Web server benchmarks. In particular, current
benchmarks do not drive a server beyond its capacity and

they do not model the effect of delays and packet losses in
the network.

We propose and evaluate a new strategy that addresses
these problems by using a novel client process architecture
(S-Clients) and a WAN-modeling router. S-Clients allow
the generation of request loads that exceed the server’s ca-
pacity. The router makes it possible to measure the effect
of packet losses and delays on the server’s performance.

Initial experience in using this method to evaluate widely
used Web servers indicates that measuring server perfor-
mance under overload, bursty traffic conditions, and in the
presence of WAN packet losses and delays, gives new and
important insights in Web server performance. Our new
methodology enables the evaluation of this important as-
pect of Web server performance.

Source code and additional technical information about
our benchmarking method can be found at http://www.cs.
rice.edu/CS/Systems/Web-measurement/.

Acknowledgements

We are grateful to the anonymous referees for their
detailed comments, which helped us to improve this pa-
per. This work was supported in part by NSF Grants
CCR-9803673, CCR-9503098, and by Texas TATP Grant
003604.

References

ACME (1998), “ACME Laboratories, thttpd,”
http://www.acme.com/software/thttpd/.

Almeida, J., V. Almeida, and D. Yates (1996), “Measuring the Behavior
of a World-Wide Web Server,” Technical Report TR-96-025, Boston
University, Department of Computer Science, Boston, MA.

Almeida, J. and P. Cao (1998), “Measuring Proxy Performance with the
Wisconsin Proxy Benchmark,” Presented at the 3rd Web Caching
Workshop, Manchester, England.

Apache (1998), “Apache HTTP Server Project,”
http://www.apache.org/.

Arlitt, M.F. and C.L. Williamson (1996), “Web Server Workload Char-
acterization: The Search for Invariants,” In Proceedings of the ACM
SIGMETRICS ’96 Conference, Philadelphia, PA, pp. 126–137.

Bach, M.J. (1986), The Design of the UNIX Operating System, Prentice-
Hall, Englewood Cliffs, NJ.

Banga, G. (1998), “The Design and Implementation of a New Network
Subsystem Architecture for Server Systems,” Master’s thesis, Rice
University, Houston, TX.

Banga, G., F. Douglis, and M. Rabinovich (1997), “Optimistic Deltas
for WWW Latency Reduction,” In Proceedings of the 1997 USENIX
Annual Technical Conference, Anaheim, CA, pp. 289–303.

Banga, G., P. Druschel, and J.C. Mogul (1998), “Better Operating System
Features for Faster Network Servers,” In Proceedings of the Workshop
on Internet Server Performance, Madison, WI, pp. 69–79.

Banga, G., P. Druschel, and J.C. Mogul (1999), “Resource Containers:
A New Facility for Resource Management in Server Systems,” In
Proceedings of the 3rd Symposium on Operating Systems Design and
Implementation, New Orleans, LA, pp. 45–58.

Banga, G. and J.C. Mogul (1998), “Scalable Kernel Performance for In-
ternet Servers Under Realistic Loads,” In Proceedings of the 1998
USENIX Annual Technical Conference, New Orleans, LA, pp. 1–12.



G. Banga, P. Druschel / Measuring Web server capacity 83

Bestavros, A., R. Carter, M. Crovella, C. Cunha, A. Heddaya, and S. Mir-
dad (1995), “Application-Level Document Caching in the Internet,”
Technical Report TR-95-002, Boston University, Department of Com-
puter Science, Boston, MA.

Braun, H. and K. Claffy (1994), “Web Traffic Characterization: An As-
sessment of the Impact of Caching Documents from NCSA’s Web
Server,” In Proceedings of the Second International WWW Confer-
ence, Chicago, IL, pp. 1007–1027.

Chankhunthod, A., P.B. Danzig, C. Neerdaels, M.F. Schwartz, and K.J.
Worrell (1996), “A Hierarchical Internet Object Cache,” In Proceed-
ings of the 1996 USENIX Annual Technical Conference, San Diego,
CA, pp. 153–163.

Compaq (1998), “Compaq Computer Corporation, Digital UNIX Tuning
Parameters for Web Servers,”
http://www.digital.com/info/internet/document/
ias/tuning.html.

Crovella, M. and A. Bestavros (1996), “Self-Similarity in World Wide
Web Traffic: Evidence and Possible Causes,” In Proceedings of the
ACM SIGMETRICS ’96 Conference, Philadelphia, PA, pp. 160–169.

Cunha, C., A. Bestavros, and M. Crovella (1995), “Characteristics of
WWW Client-Based Traces,” Technical Report TR-95-010, Boston
University, Department of Computer Science, Boston, MA.

Custer, H. (1993), Inside Windows NT, Microsoft Press, Redmond, WA.
Druschel, P. and G. Banga (1996), “Lazy Receiver Processing (LRP):

A Network Subsystem Architecture for Server Systems,” In Proceed-
ings of the 2nd Symposium on Operating Systems Design and Imple-
mentation, Seattle, WA, pp. 261–276.

Fielding, R., J. Gettys, J.C. Mogul, H. Frystyk, and T. Berners-Lee (1997),
“Hypertext Transfer Protocol – HTTP/1.1,” RFC 2068.

Fox, A., S.D. Gribble, Y. Chawathe, E.A. Brewer, and P. Gauthier (1997),
“Cluster-Based Scalable Network Services,” In Proceedings of the Six-
teenth ACM Symposium on Operating System Principles, San Malo,
France, pp. 78–91.

Hu, J.C., S. Mungee, and D.C. Schmidt (1998), “Techniques for Devel-
oping and Measuring High-Performance Web Servers Over ATM Net-
works,” In Proceedings of the IEEE Infocom Conference, San Fran-
cisco, CA.

Hu, J.C., I. Pyrali, and D.C. Schmidt (1997a), “Measuring the Impact
of Event Dispatching and Concurrency Models on Web Server Perfor-
mance Over High-Speed Networks,” In Proceedings of the 2nd Global
Internet Conference, Phoenix, AZ.

Hu, Y., A. Nanda, and Q. Yang (1997b), “Measurement, Analysis, and Per-
formance Improvement of the Apache Web Server,” Technical Report
TR 1097-0001, University of Rhode Island, ECE Dept.

Kaashoek, M.F., D.R. Engler, G.R. Ganger, H. Briceno, R. Hunt,
D. Mazieres, T. Pinckney, R. Grimm, J. Janotti, and K. Mackenzie
(1997), “Application Performance and Flexibility on Exokernel Sys-
tems,” In Proceedings of the Sixteenth ACM Symposium on Operating
System Principles, Saint-Malo, France, pp. 52–65.

Kaashoek, M.F., D.R. Engler, G.R. Ganger, and D.A. Wallach (1996),
“Server Operating Systems,” In Proceedings of the 1996 ACM SIGOPS
European Workshop, Connemara, Ireland, pp. 141–148.

Kwan, T.T., R.E. McGrath, and D.A. Reed (1995), “User Access Patterns
to NCSA’s World-Wide Web Server,” Technical Report UIUCDCS-R-
95-1934, Dept. of Computer Science, Univ. IL.

Maltzahn, C., K.J. Richardson, and D. Grunwald (1997), “Performance
Issues of Enterprise Level Web Proxies,” In Proceedings of the ACM
SIGMETRICS ’97 Conference, Seattle, WA, pp. 13–23.

McGrath, R.E. (1995), “Performance of Several HTTP Demons on an
HP 735 Workstation,”
http://www.nc-sa.uiuc.edu/InformationServers/
Performance/V1.4/report.html.

McKusick, M.K., K. Bostic, M.J. Karels, and J.S. Quarterman (1996), The
Design and Implementation of the 4.4BSD Operating System, Addison-
Wesley, Reading, MA.

Mecklermedia (1996), “Mecklermedia Corporation, WebServer Compare,”
http://webcompare.iworld.com/.

Mindcraft (1998), “Mindcraft Inc., WebStone,”
http://www.mindcraft.com/webstone/.

Mogul, J.C. (1993), “Observing TCP Dynamics in Real Networks,” In
Proceedings of the ACM SIGCOMM ’92 Conference, pp. 281–292.

Mogul, J.C. (1995a), “Network Behavior of a Busy Web Server and its
Clients,” Technical Report WRL 95/5, DEC Western Research Labo-
ratory, Palo Alto, CA.

Mogul, J.C. (1995b), “Operating System Support for Busy Internet
Servers,” In Proceedings of the Fifth Workshop on Hot Topics in Op-
erating Systems, Orcas Island, WA.

Mogul, J.C., F. Douglis, A. Feldmann, and B. Krishnamurthy (1997), “Po-
tential Benefits of Delta Encoding and Data Compression for HTTP,”
In Proceedings of the ACM SIGCOMM ’97 Conference, Cannes,
France, pp. 181–194.

Mogul, J.C. and K.K. Ramakrishnan (1997), “Eliminating Receive Live-
lock in an Interrupt-Driven Kernel,” ACM Transactions on Computer
Systems 15, 3, 217–252.

Mosberger, D. and T. Jin (1998), “httperf – A Tool for Measuring Web
Server Performance,” In Proceedings of the Workshop on Internet
Server Performance, Madison, WI, pp. 59–68.

Nielsen, H., J. Gettys, A. Baird-Smith, E. Prud’hommeaux, H.W. Lie, and
C. Lilley (1997), “Network Performance Effects of HTTP/1.1, CSS1,
and PNG,” In Proceedings of the ACM SIGCOMM ’97 Conference,
Cannes, France, pp. 155–166.

Padmanabhan, V.N. and J.C. Mogul (1994), “Improving HTTP La-
tency,” In Proceedings of the Second International WWW Conference,
Chicago, IL, pp. 995–1005.

Pai, V.S., P. Druschel, and W. Zwaenepoel (1999), “IO-Lite: A Unified I/O
Buffering and Caching System,” In Proceedings of the 3rd Symposium
on Operating Systems Design and Implementation, New Orleans, LA,
pp. 15–28.

Postel, J.B. (1981), “Transmission Control Protocol,” RFC 793.
Ramakrishnan, K.K. (1992), “Scheduling Issues for Interfacing to High

Speed Networks,” In Proceedings of the IEEE Global Telecommuni-
cations Conference, Orlando, FL, pp. 622–626.

Schechte, S.E. and J. Sutaria (1996), “A Study of the Effects of Context
Switching and Caching on HTTP Server Performance,”
http://www.eecs.harvard.edu/∼stuart/Tarantula/
FirstPaper.html.

Seltzer, M. and J. Gwertzman (1995), “The Case for Geographical Push-
caching,” In Proceedings of the 1995 Workshop on Hot Topics in Op-
erating Systems, Orcas Island, WA, pp. 51–55.

Shenker, S., L. Zhang, and D. Clark (1990), “Some Observations on the
Dynamics of a Congestion Control Algorithm,” ACM Computer Com-
munication Review 20, 4, 30–39.

Spasojevic, M., M. Bowman, and A. Spector (1994), “Using a Wide-
Area File System Within the World-Wide Web,” In Proceedings of the
Second International WWW Conference, Chicago, IL.

SPEC (1996), “The Standard Performance Evaluation Corporation,
SPECWeb96,”
http://www.specbench.-org/osg/web96/.

Stevens, W. (1996), TCP/IP Illustrated Volume 3, Addison-Wesley, Read-
ing, MA.

Web66 (1996), “Web66 GStone Testing Laboratory Preliminary Report,”
http://web66.coled.umn.edu/gstone/.

Williams, S., M. Abrams, C.R. Standridge, G. Abdulla, and E.A. Fox
(1996), “Removal Policies in Network Caches for World-Wide Web
Documents,” In Proceedings of the ACM SIGCOMM ’96 Conference,
Palo Alto, CA, pp. 293–305.

Wright, G. and W. Stevens (1995), TCP/IP Illustrated Volume 2, Addison-
Wesley, Reading, MA.

Yates, D., V. Almeida, and J. Almeida (1997), “On the Interaction Between
an Operating System and Web Server,” Technical Report TR-97-012,
Boston University, Department of Computer Science, Boston, MA.

Zeus (1998), “Zeus,”
http://www.zeus.co.uk/.


