Hardware Support for Efficient Virtualization

John Fisher-Ogden
University of California, San Diego

Abstract single physical server. Virtual machines can further in-
crease reliability and robustness by supporting live migra

Virtual machines have been used since the 1960’s in creatfign from one server to another upon hardware failure.
ways. From multiplexing expensive mainframes to providing
backwards compatibility for customers migrating to newchar ~ Software developers can also take advantage of virtual
ware, virtualization has allowed users to maximize theaigesof machines in many ways. Writing code that is portable
limited hardware resources. Despite virtual machineinfplly across multiple architectures requires extensive testing
the way-side in the 1980's with the rise of the minicompute¥, each target platform. Rather than maintaining multiple
are now seeing a revival of virtualization with virtual maus physical machines for each platform, testing can be done
being used for security, isolation, and testing among sther \yithin a virtual machine for each platform, all from a sin-
With so many creative uses for virtualization, ensuringhhigy e \yorkstation. Virtualization can also be exploited for
performar_lge for appl!catlons running in a virtual machiree bPlebugging purposes. Post-mortem forensics of a crashed
comes critical. In this paper, we survey current researeh 10 : L
wards this end, focusing on the hardware support which echr_cqmp_romlsgd Server can be expedlte_d if _the Server was
ables efficient virtualization. Both Intel and AMD have imeo FUNNING IN & virtual mach'ne [9]- \ﬁrtuall_zgtlon_ can also
porated explicit support for virtualization into their CRig- D€ used to supporttechniques such as bidirectional debug-
signs. While this can simplify the design of a stand aloneseir ging [12] which aid both software developers and system
machine monitor (VMM), techniques suchparavirtualization administrators.

and hosted VMM's are still quite effective in supportingtugl
machines. One final factor in the revival of virtual machines is

We compare and contrast current approaches to efficient (/€Y ¢an provide simplified application deployment by
tualization, drawing parallels to techniques developedBiy Packaging arentire environment together to avoid com-
over thirty years ago. In addition to virtualizing the CPUe wplications with dependencies and versioning.
also examine techniques focused on virtualizing 1/0 and the . . . o
memory management unit (MMU). Where relevant, we identify W'_th SO many creative USGT'S fF’r VIrtuall.Zatl'on, e_nsur-
shortcomings in current research and provide our own thisug'9 high performance for applications running in a virtual
on the future direction of the virtualization field. machine becomes critical. In this paper, we survey cur-

rent research towards this end, focusing on the hardware
support which enables efficient virtualization.

1 Introduction We compare and contrast current approaches to effi-

. o . cient virtualization, drawing parallels to techniques de-
The current virtualization renaissance has spurred exci

. o) 1 IBM over thir r . In addition to vir-
ing new research with virtual machines on both the so éoped by over thirty years ago. In addition to

T-

: ualizing the CPU, we also examine techniques focused
ware and the hardyvare side. BOt.h Int?' a_nd AMD ha\é% virtualizing 1/0 and the memory management unit
incorporated explicit support for virtualization into the

CPU designs. While this can simplify the design of MMU). Where relevant, we identify shortcomingsin cur-

stand alone virtual machine monitor (VMM), technique&gcfosr?i;ctn : \r;i(:tﬁgl)i\gt?o%ufire?;vn thoughts on the future
such asparavirtualizationand hosted VMM's are still '
quite effective in supporting virtual machines. In the remainder of this paper, we present and evalu-
This revival in virtual machine usage is driven by mangte multiple techniques aimed at providing efficient virtu-
motivating factors. Untrusted applications can be safedlization. In Section 2, we provide some historical back-
sandboxed in a virtual machine providing added securgyound to put current Intel and AMD proposals in context.
and reliability to a system. Data and performance isol8ection 3 then details the current approach from Intel. We
tion can be provided through virtualization as well. Se&ext turn to the virtualization of the MMU in Section 4
curity, reliability, and isolation are all critical compents and 1/O in Section 5. Finally, Section 6 provides some
for data centers trying to maximize the usage of their hamiscussion and comparisons before considering future di-
ware resources by coalescing multiple servers to run oreations for this field. Section 7 concludes our analysis.

2 Background The VM/370 is comprised of three distinct modules:
the Control Program (CP), Conversational Monitor Sys-

In this section, we will highlight relevant approaches t@m (CMS), and Remote Spooling and Communications

virtualization from the past few decades before discussig8gbsystem (RSCS). The Control Program handles the du-

the current techniques from Intel and AMD. ties of a VMM and creates virtual machines, while CMS
is the guest operating system which runs in each virtual
2.1 Classical Virtualization machine. CMS was originally written for the IBM Sys-

tem/360 and transitioned to the virtual environment once
Popek and Goldberg's 1974 paper define requirementsdgs came on-line. The final module of VM/370, RSCS,
what is termedlassical virtualizatior{15]. By their stan- handles the networking and communication between vir-
dards, a piece of software can be considered a VMM fifij{al machines and also remote workstations.
meets the following three requirements: A major goal of IBM was maintaining compatibility
across damily of computers. While the VM/370 ran on

* Er?:iIr\gil%ﬁnﬁﬁiﬁceﬂz::%?lragSrdzgpr:ngn;i\?e\lllrtgzlrt-he System/370 and exported that architecture through its
. . . y inning Y DAl machines, programs written for the System/360
ring differences in resource availability and timing.

could still be run with degraded performance, despite the
e Performance A “statistically dominant” subset of underlying architecture not supporting certain features.
instructions must be executed directly on the CPU. An important design goal for CP and CMS was to
make the virtual machine environment appear identical to
e Safety A VMM must completely control system re-jts native counterpart. However, IBM did not make ef-
sources. ficiency and performance an explicit design goal. While
efficiency was not eschewed outright, these pioneering ef-

An early technlque for V|rtuaI|zat|on_ wdEap anq €M~ forts rightly focused on functionality and correctness.
ulate While this approach was effective at providing an When running multiple guests in virtual machines

equivalent execution environment, its performance was . . o
each guest believes that all of memory is at its disposal.

severely lacking as each instruction could require tens : : :
o . -Since a VMM must provide aequivalentenvironment
native instructions to emulate. The performance requirg- .)
r guests, dynamic address translation (DAT) must be
ment for a VMM does not rule out trap and emulate, bu .
performed to translate guest physical addresses to host

rather, limits its application. .
Popek and Goldberg also defisensitiveinstructions phy_s,lcal agdresses.. VM/370 ussivadow page table®
achieve this translation.

which can violate the safety and encapsulation that aShadow a0e tables are a fairly simple mechanism for
VMM provides. For example, an instruction which pag y P

changes the amount of system resources available wo%lrlg\”dmg DAT but have been usgd quite heavily over
the years. A guest OS manages its own page tables to

be considered sensitive. A VMM can be constructed fora Lest virtual addresses to quest physical addresses
an architecture if the sensitive instructions are a sulfse{ 0 P9 9 phy)

the privileged instructions. This ensures that the VM Ince guest physical addresses are _actledlst virtual

. o . addresses, the VMM must then use its own page tables
can step in on all sensitive instructions and handle thet'(r)nma 10 a host phvsical address. Once a host phvsical
safely since they are guaranteed to trap. P bny : phy

However, even if an architecture fails this, as the x dress is optamed, amapping from guegt virtual address
host physical address can be inserted into the hardware

rchi r ftwar hni n mpl ' X
arch tectu e;dpes, soft a etec_ quesca be. employe récr)]slatlon lookaside buffers (TLB).
achieve a similar execution environment despite not being
classically virtualizable

222 370-XA

2.2 1BM Virtualizable Architectures The System/370 Extended Architecture (370-XA) [11]

Now that we have established a baseline for virtualizatfi@ntinues the evolution of virtual machines beyond the
architectures, we examine a few IBM systems which piyM/370. Given that performance was not an explicit goal
neered the field of virtualization. for the VM/370, the 370-XA was able to increase the ef-

ficiency of virtualization in a variety of ways.

Since the trap and emulate technique was used so heav-
ily, the 370-XA incorporateg-code extensions callexs-
The Virtual Machine Facility/370 (VM/370) [8] providessiststo the CPU to replace common functions that were
multiple virtual machines to users, each having the samgensive to emulate. As not all the available assists were
architecture as the underlying IBM System/370 hardwaggeted at virtualization support, we restrict our discus
they run on. sion to the assists that did target virtualization.

221 VM/370

In previous systems, assists had proved themselvesupport virtual machine guests. While the 370-XA
be quite indispensable for running virtual machines. Thesipported two architectures as virtual environments,
caused the 370-XA to coalesce a large number of these VM/ESA supportdive different architecture modes:
assists into a new execution mode for the CRIterpre- System/370, ESA/390, VM Data Spaces mode, 370-XA,
tive executionwhich recognizes special instructions anand ESA/370, with the latter two being architectural
enables most privileged instructions to execute direatlysubsets of ESA/390.

the virtual environment. The VM Data Spaces mode enables memory sharing
To enter interpretive execution mode, the privilegesbmmunication among guests that do not use DAT and
SIE instruction is used (Start Interpretive Execution)e Thyso removes the 2 GB address space limit. While sup-
operand given to SIE is thstate descriptiorwhich de- porting five environments for virtual machines may seem
scribes the current state of the guest. Upon exiting ifinnecessary with today’s personal workstations, one must
terpretive execution, the state description is updated, famember that the VM/ESA was designed to run on large
cluding the guest program status word (PSW). The staf@inframes foenterprises Providing compatibility dur-
description also details the reason for the exit to expedig migration to a newer platfrom as well as enabling test-

any necessary handling by the host program. ing of the new platform was critical to IBM's business
Potential causes for exiting interpretive execution igince the hardware was quite expensive.

clud_e interrupts, exceptions, ir_1$tructions that require s Like the 370-XA, the VM/ESA also supports preferred
ulation, or even any instruction that the host progragg, age mode via the preferred-machine assist. The 370-
chooses via a mask. _ XA could only support a single guest in this mode since
Interpretive execution on the 370-XA can provide Virg, guest did not use paging. However, the VM/ESA in-
tual envi_ronments for both the System/370 and the 37Q;4es Multiple Domain Facility (MDF) which add®nes
XA architectures. However, the 370-XA does not usg gy nnort multiple guests in preferred mode. A guest is
shadow page tables like VM/370. Since the 370-XA SURgsigned a contiguous block of host storage with a register
ports a larger 2GB address space, there were CONCeIGS, the base of this block and another register with the
over a possible sparseness of address references leadingqt the block. The VM/ESA can then support multiple

to a poor TLB cache hit rate. Maintaining the shadopeferred guests each in its own zone, using single regis-

page tables can be costly as well. ter translation to efficiently map between a guest physical
To avoid these issues, the 370-XA performs both leXyqress and a host physical address.

els of translation in hardware rather than relying on the . .
. The dominant reason for guests to run in preferred stor-
shadow page tables to map guest physical addresses to . . ; .
. . age mode is to achieve high performance I/O without the
host physical addresses. In Section 4, we see that bo

Intel and AMD have adopted similar approaches. need .to perfofm multiple !evels 9f qddress translation.
. N . . The single register translation maintains the performance
While guests can execute many privileged mstructlongIinS while enablina multiole preferred quests
in interpretive execution, guest I/O instructions do cauge 9 piep i g '
a trap to the VMM. The 370-XA does support a check- '€ VM/ESA does support running VM/ESA as a
ing mode on a sub-channel basis that limits referencedist of itself, “Russian doll" style. Interpreted SIE
guest’s storage only. This checking mode provides Soﬁ{éableS_anOther_lnstance of_ lnterpre_tlve _ext_ecut|on when
protection against malicious or buggy guests already interpretively executing, distinguishing betwee
However, the 370-X/Apreferred-machine assisllows “virtual” guests and “rgal“ guests. However, not all hgrd-
trusted guests to run directly in the host address spac/@§€ Models support interpreted SIE. In that case, inter-
avoid the overhead of an extra level of translation. TheREt€d SIE can be simulated through shadow page tables
trusted guests can execute most privileged instructions,§"d Other shadow structures in the “real” guest. Zone
cluding those for /0. Guests also handle their own intdiglocation replaces the lowest level of dynamic address
rupts in this mode, reducing the need to trap to the VMN{ansiation to reduce the performance premium for run-
On a final note, the 370-XA supports segment prote@ngd nested virtual machines.
tion for limiting access among guests for isolation and se- To conclude our discussion of VM/ESA, we note that
curity. This is not an assist per se, but rather an extensibg hardware TLBs are not tagged and must be flushed

of the base architecture. when switching between guests.
The VM/370, 370-XA, and VM/ESA illustrate the
223 VM/ESA progression of virtualization techniques, with incregsin

amounts of functionality and performance as the systems
Building upon the 370-XA, the Virtual Ma- matured. Many ground-breaking ideas were formulated
chine/Enterprise Systems Architecture (VM/ESA these systems, and we can clearly see their influence on
[14] also uses interpretive execution to efficientlthe current virtualization offerings from Intel and AMD.

2.3 x86 Virtualization required for control structures like the interrupt-degti

o _ ., table (IDT) and the global-descriptor table (GDT) [13].
We now step forward in time and _conS|der the widel either case, the VMM must protect the portions of the
used x86 architecture. Due to the rise of personal wor, dress space it uses from the guest. Otherwise, a guest

SL"’.‘“O”S and dec"f‘de of(;nam;r_ame comphuters, v_|rtual M@uld discover its running in a virtual machine or compro-
chines were considere not mg_moret anan '“te_feStPH%e the virtual machine’s isolation by reading or writing
footnote in the history of computing. Because of this, tr}ﬁose locations

x86 was designed without much consideration for virtual-

ization. Thus, it is unsurprising that the x86 fails to meet

Popek and Goldberg’s requirements for beat@ssically Non-Privileged Sensitive I nstructions

virtualizable.) o) . o
However, techniques were developed to circumvent tNEXt in clear violation of “classical” virtualization, éh

shortcomings in x86 virtualization. We first present a feftP® SUPPOrts sensitive instructions that are not privilege

of the architectural challenges inherent in the x86 befdt@d therefore do nottrap to the VMM for correct handling.
discussing various solutions to these challenges. For example, the SMSW instruction stores the machine

status word in a register which can then be read by the

uest [16], exposing privileged information.
2.3.1 Architectural Challenges g [16]. exposing p g

The x86 architecture supports 4 privilege levelstings, Silent Privilege Failures
with ring 0 being the most privileged and ring 3 the least.
Operating systems run in ring 0, user applications run Another problem involving privileged state is that some

ring 3, and rings 1 and 2 are not typically used. privileged accesses, rather than trapping to the VMM, fall
silently without faulting. This violates Popek and Gold-
Ring Compression berg's tenet that guest virtual machines must execute iden-

tically to native execution barring solely timing and re-
To provide isolation among virtual machines, the VMMource availability.
runs in ring 0 and the virtual machines run either in ring
1 (the 0/1/3 model) or ring 3 (the 0/3/3 model). While the _ o
0/1/3 model is simpler, it can not be used when runningiRteérrupt Virtualization
64 bit mode on a CPU that supports the 64 bit extensi

FERally, i irtualizati hall f
io the x86 architecture (AMD64 and EM64T). ally, interrupt virtualizationcan be a challenge for x86

T tect the VMM f tOS ith . virtual machines. The VMM wants to manage external
0 protect Ine rom gues es, eliner paging G?ﬁterrupt masking and unmasking itself to maintain con-

segment limits can be used. However, segment limits A of the system. However, some guest OSes frequently

not supported in 64 bit mode and paging on the x86 dor%%sk and unmask interrupts, which would result in poor

n_ot d|st|ngwsh_ between rings 0, 1, and 2. Th|s_ re.su“sb%rformance if a switch to the VMM was required on each
ring compressionwhere a guest OS must run in ring 3

nprotected from ; lication masking instruction.
unprotectedirom userapplications. We have briefly presented some of the challenges to

_ o virtualization on the x86 architecture. We refer interdste
Ring Aliasing readers to Robin and Irvine’s analysis [16] for a more thor-

A related problem ising aliasingwhere the true privilege ough presentation.

level of a guest OS is exposed, contrary to the guest’s be-
lief that it is running in ring 0. For example, executing 232 Binary Transation
PUSH instruction on the CS register, which includes the
current privilege level, and then subsequently examiniMghile emulation can provide transparency and compati-
the results would reveal the privilege discrepancy. bility for guest virtual machines, its performance can be
poor. One technique to improve virtualization perfor-
mance isinary translation

Binary translation involves rewriting the instructions of
Address space compressiprovides another hurdle foran application and inserting traps before problem sections
virtualizing the x86 architecture. The VMM can either runr converting instructions to an entirely different ingtru
its own address space which can be costly when switchimgn set architecture (ISA). Binary translation can be done
between guests and the VMM, or it can run in part of tretatically or dynamically Dynamic binary translation is
guest’s address space. When the VMM runs in its own agsed in just-in-time compilation (JIT), for example when
dress space, some storage in the guest address space iextitluting bytecode on a Java Virtual Machine (JVM).

Address Space Compression

Many of the x86 architectural challenges outlined pr@to a virtual ISA that enables increased communication
viously can be solved by simply inserting a trap instrubetween hardware and software.
tion that enables the VMM to gain control and correctly For example, software can track the phases of an ap-
emulate any problematic instructions. plication and tune the branch prediction logic in the hard-
Static binary translation can have difficulty analyzingaare to optimize for the current application phase.
binary to reconstruct basic block information and a con- While this technique has only seen limited use, the best
trol flow graph. Dynamic translation avoids this becauseakample is Transmeta’s Crusoe processor. The Crusoe ex-
can translate instructions as needed. However, the onliemally supports an x86 ISA while internally using a very
translation must be done quickly to maintain acceptaldeng instruction word (VLIW) architecture for power effi-
levels of performance. ciency [17].
A novel example of binary translation is the FX!32
profile-directed binary translator from DEC [7]. FX!32
emulates an application on its first run while profiling thd Current Approach&s
application to determine the instructions that would most
benefit from running natively. These instructions are thafirtualization on the x86 architecture has required unnec-
translated so the next time the application is run, its p&ssary complexity due to its inherent lack of support for
formance improves dramatically. virtual machines. However, extensions to the x86 remedy
While FX!I32 is a solution to running x86 applicationéhis problem and as a result, can support a much simpler
on DEC’s Alpha architecture, its hybrid approach conYMM. Further, the extensions succeed in making the x86
bining emulation and dynamic binary translation illusdrchitecture classically virtualizable.
trates an effective solution to executing unmodified bina- Both leading chip manufacturers, Intel and AMD, have

ries transparently, without sacrificing performance. rolled out these virtualization extensions in current pro-
cessors. Intel calls its virtualization technology VT-rep
viously codenamed Vanderpool. AMD’s extensions go
233 Paravirtualization by the name AMD-V, previously Secure Virtual Machine
Binary translation enables virtualization when recompiq-SVM) and codenamed Pacifica.
While Intel VT-x and AMD-V are not entirely equiv-

Ing source code IS not d(_93|_rab_le or feasilffeu aywtual- alent, they share the same basic structure. Therefore, we
izationeschews this restriction in the name of high perfO{écuS our discussion on Intel's offering, noting significan

mance virtual machme; . . . _departures for AMD in Section 6.2.
Rather than presenting an equivalent virtual environ-

ment to guests, paravirtualization exposes virtual ma-

chine information to guest operating systems, enablisgl Intel VT-x

the guests to make more informed decisions on things like))

page replacement. In addition, source-level modificatiofjg€! VT-x introduces new modes of CPU operation:

can be made to avoid the x86 challenges to virtualiz4¥X 00t operation and VMX non-root operation[13].

tion. Whereas binary translation would trap on probler‘FP—ne_Can &"25 of VM_X r%Otf ope\r/a_:_tlon bde!ng S|m(|jla(rj :CO
atic instructions, paravirtualization can avoid the insgr PréVious 1A-32 operation before Vi-x and is intended for
tions entirely. VMMs (“host” mode), while VMX non-root operation

A leading paravirtualization system is Xen [6]. Xe is essentially gguestmode targeted at virtual machines.

achieves high performance for guest virtual machin’egth operating modes support execution in all four privi-

while retaining the benefits of virtualization—resourcgge rings. . .
utilization isol?:\tion etc The VMRUN instruction performs a VM entry, trans-

Of course, Xen must sacrifice binary compatibility foferrmg from host to guest mode. Control transfers back

. . . {o host mode on a VM exit which can be triggered by
guest operating systems. While one can easily recompi . .
. . both conditional and unconditional events. For example,
a Linux OS to run on Xen, the same can not be said

Microsoft's Windows OSes. t%re_l NVD ipstruction l_mconditionally trigger_s a V_M exit
while a write to a register or memory location might de-
pend on which bits are being modified.

2.4 Co-designed Virtual Machines Critical to the interaction between hosts and guests is
the virtual machine control structure (VMCS) which con-

While software tricks can often be played to support virttiains both guest state and host state. On VM entry, the

alization on an uncooperative architecture, an alteraatiyuest processor state is loaded from the VMCS after stor-

is to design the architecture and VMM in tandem. Thes®g the host processor state. VM exit swaps these opera-
co-designedirtual machines blur the strict ISA boundaryions, saving the guest state and loading the host state.

The processor state includes segment registers, the CR&ils on the reasons for the exit to aid the VMM in han-
register, and the interrupt descriptor table register ®T dling it.
The CRS3 register (control register 3) holds the physical While the VMM responds to events from a guest, this
location of the page tables. By loading and storing thiecomes a two-way communication channel watrent
register on VM entry and exit, guest virtual machines camjection Event injection allows the VMM to introduce
run in an entirely separate address space than the VMhterrupts or exceptions to a guest using the IDT.
However, the VMCS doesot contain any general pur-
pose registers as the VMM can do this as needed. T§
improves VM entry and VM exit performance. On a re-
lated note, a guest's VMCS is referenced with a physidal Section 2.3.1, we outlined several architectural chal-
address to avoid first translating a guest virtual addresdenges inherent in the x86 which created barriers to vir-
As alluded to above, the biggest difference betwe@mlization. Now that we have examined VT-x in more
host and guest mode (VMX root and non-root operatioggtail, we see that VT-x does in fact provide solutions to
is that many instructions in guest mode will trigger a VMach challenge.
exit. TheVM-execution control fieldset the conditions By introducing a new mode of execution with full ac-
for triggering a VM exit. cess to all four privilege rings, both the ring compression
The control fields include: and ring aliasing problems disappear. A guest OS exe-
) . . cutesinring 0 while the VMM is still fully protected from
e External-interrupt exiting Sets whether external 'n'any errant behavior.
terrupts causes VM exits, regardless of guest inter-g;, 0 each guest VMCS is referenced with a physical
rupt masking. address and the VMCS stores the critical IDTR and CR3
e Interrupt-window exiting Causes a VM exit when régisters, virtual machines have full access to their entir
guest interrupts are unmasked. address space, eliminating the problem of address space
compression.
e Use TPR shadowAccesses to the task priority reg- The x86 contains both non-privileged sensitive instruc-
ister (TPR) through register CR8 (64-bit mode onlyjons and privileged instructions that fail silently. How-
can be set to use a shadow TPR register, availablexifer, given VT-x's extensive flexibility for triggering VM
the VMCS. This avoids a VM exit in the commorexits, fine-grained control over any potentially problem-
case. atic instruction is available.
¢ CR masks and shadowdBit masks for each con- Lastly,.the VMCS.’ conFroI.fieIds also adqlress the chal-
. e lenge of interrupt virtualization. External interruptsnca
trol register enable guest modification of select bILS : .
. . . e set to always cause a VM exit, and VM exits can be
while transferring to host mode on writes to Othecronditionally triggered upon guest masking and unmask-
bits. Similar to the TPR register, the VMCS alsQ

. . : ing of interrupts.
includes shadow registers which a guest can freely
9 9)9W|th these solutions to the x86 virtualization chal-

read.) . .
lenges, the x86 can finally be termeldssicallyvirtual-

While the register masks provide fine-grained contrgiable. With VT-x, the VMM can be much simpler com-
over specific control registers, the VMCS also includd@gred to the previous techniques of paravirtualization and
several bitmaps that provide added flexibility. binary translation. A simpler VMM leaves less room for

error and can provide a more secure virtual environment

e Exception bitmap Selects which exceptions causéor guest virtual machines.

a VM exit. Page faults can be further differentiated
based on the fault’s error code.

'2.1 Architectural Challenges Addr essed

3.1.2 Performance

¢ |/O bitmap Configures which ports in the 16-bit I/0

: Intel VT-x provides the hardware support enabling a sim-
port space cause VM exits when accessed.

pler VMM. However, simplicity and performance are of-

e MSR bitmapsSimilar to CR bit masks, each modef€n competing goals.
specific register (MSR) has a read bitmap and a writeAdams and Agesen demonstrate that software tech-
bitmap to control accesses. niques for virtualization, e.g. paravirtualization and bi
nary translation, outperform a hardware-based VMM
With all of these possible events causing a VM exileveraging Intel's VT-x [4]. They experiment with
it becomes important for a VMM to quickly identify theseveral macro- and micro-benchmarks, as well as
problem and correct it so control can return to the guesi-called “nanobenchmarks” which exercise individual
virtual machine. To facilitate this, a VM exit also includesirtualization-sensitive instructions.

The hardware VMM performs better in some ofthe ed |/O Virtualization
periments, but overall the software VMM provides a bet-
ter high-performance virtualization solution. Reasons f&fficient I/O virtualization is an important consideration
this performance discrepancy include: for many uses of virtual machines. Here, we present cur-
rent approaches to handling I/O in a virtual environment.
e Maturity. Hardware assisted virtualization on th&/e then examine AMD’s current DEV proposal before
x86 is still an emerging technology while softwarenoving on to Intel's VT-d.
techniques have been around long enough to mature.

e Page faults Maintaining integrity of shadow page5.1 Current Methods

tables can be expensive and cause many VM exits. - . N
P y Before describing current techniques for handling input

e Statelessnes/MM must reconstruct the cause fo|a.nd output in virtual machines, we review three distinct
a VM exit from the VMCS. classes of VMMs. Each class provides a unique approach
to 1/0 and virtualization, illustrated in Figure 1.

Of these barriers to high performance, only the last
is inherent to a hardware VMM. Maturity will come in e Hosted VMM The VMM executes in an existing OS,
due time and both Intel and AMD have proposed so- utilizing the device drivers and system support pro-
lutions providing hardware MMU support for servicing vided by the OS [18].
page faults.

Similar to the VM/370, VT-x strives for correctness and ® Stand-Alone VMMA hypervisor runs directly on the
functionality before aggressively optimizing. AVMentry ~ hardware and incorporates its own drivers and sys-
required 2409 cycles on Intel's P4 microarchitecture, the tem services [6].
first to support VT-x. However, the next generation Core
microarchitecture reduces this to 937 cycles, a 61% reduc®
tion [4]. We expect to see further improvementsto VT-x’s
performance as it becomes a more established technology.

Hybrid VMMs Combines the control of a stand-
alone VMM with the simplicity of hosted VMM by
running a deprivilegedervice OSas an additional
guest and routing 1/0 requests through it.

4 MMU Virtualization Hardware support via device drivers is paramount to
providing an effective VMM for virtualizing I/O. Re-
Given the performance degradation caused by handliftplementing device drivers for a stand-alone VMM can
page faults via shadow page tables, virtualizing the meRf expensive and therefore, limits the portability of the
ory management unit becomes an important next step. Y\MM to a small set of supported hardware. However, us-
tel's extended page tables (EPT) and AMD’s Nested pai@g an additional operating system to handle I/O resources
tables (NPT) are proposals for doing exactly this. imposes additional performance overhead. Reducing this

Rather than have the VMM maintain the integrity of theerformance overhead is one of the goals of Intel's VT-d
shadow page table mappings, EPT adds a separate s@f@posal.
hardware-walked page tables which map the guest physGiven these three styles of VMMs, we now consider
ical addresses to host physical addresses. Shadow pageting techniques for virtualizing I/O that can be apglie
tables were managed in software by the VMM but Epwyith Varying effectiveness to each VMM class. These
and Nested Paging add hardware support to avoid cod@ighniques can be concurrently employed by a VMM, e.g.
VM entries and exits. paravirtualizing a high-performance network card while

Another feature that Intel and AMD will include isemulating a legacy disk controller.
tagged TLBs. Intel assigns virtual-processor identifiers
(VPIDs) to each virtual machine and tags the translatig, iation
entries in the TLB with the appropriate VPID. This avoids
the performance hit of flushing the TLB on every VMDevice emulationis the most general technique and re-
entry and VM exit. Without a tagged TLB, flushing theuires the implementation of real hardware completely in
translations is required to avoid incorrect mappings frosoftware. This creates a virtual device that the guest-inter
virtual to physical addresses. acts with.

While the extended page tables and VPID tagged TLBsThere is usually a different physical hardware device
are not currently available, we expectthem to further closaderneath that performs the actual I/O. The emulated vir-
the performance gap by eliminating major sources of visal device serve as an adapter, converting an unsupported
tualization overhead. interface to a supported one.

O5-Hosted VIVIM

User Level
Monitor (ULM)

Device
Models

Vi

Guest CS
and Apps

Driver

Device

Stand-alone Hypervisor VMM

VM4 ViV,
Guest S SGuest OS
and Apps and Apps
ri
Hypervisor Device
Models
Diriver
]
Hybrid VMM
Service VM
User Level VM
Monitor (LMY
. Guest 08
Service OS5 and Apps
\ 4\i e
/
\ u-Hypervisor

Devices

In addition, a VMM must also be able to inject inter-
rupts into the guest. This is often done via emulation of a
programmable interrupt controller (PIC).

In a datacenter, migration of virtual machines is of-
ten important to maintain high availability in the face of
unreliable hardware. Device emulation facilitates viltua
machine migration since the virtual device state exists in
memory and can be easily transferred. Further, the guest
is not tied to a specific piece or version of hardware that
might not be available on another machine.

Another consideration for virtualization is the ability
to efficiently multiplex a device across multiple guest
VMs. Device emulation simplifies sharing a physical de-
vice since the VMM can perform the multiplexing while
presenting individual virtual devices to each guest.

While emulation does have the ease of migration and
multiplexing advantages, it has the disadvantage of poor
performance. Emulation requires the VMM to perform
a significant amount of work to present the illusion of a
virtual device. Further, when dealing with specific device
driver binaries, “bug emulation” may be required to match
the hardware expectations of the device driver.

Emulation can be effectively applied to all three VMM
classes.

Paravirtualization

Rather than bending over backwards to match the expecta-
tions of a device driver or other guest softwagraravirtu-
alizationmodifies the guest software to cooperate directly
with the VMM,

Of course, this is only possible when source-level mod-
ifications can be made and recompiled. Proprietary oper-
ating systems and device drivers can not be paravirtual-
ized. This limits paravirtualization’s applicability, bthe
performance boost achieved offers a worthwhile trade-off.

Paravirtualization uses an eventing or callback mecha-
nism for better performance than an emulated PIC. How-
ever, performance comes at the cost of modifying a guest
OS'’s interrupt handling mechanisms.

Also, necessary modifications for one guest OS might
be entirely separate from modifications required for a dif-
ferent guest OS.

Similar to emulation, paravirtualization supports both
VM migration and device sharing. VM migration is pos-
sible as the destination platform supports the same VMM
APIs needed by the guest software stack [3].

While paravirtualization is usually applied to stand-
alone VMMs, it is applicable to all classes.

Figure 1: Current Methods for Virtualizing 1/0. Credit [3]

Dedicated Devices

The final device virtualization technique we consider does
not virtualize the device but rather assigns it directly to

a guest virtual machine.Dedicated devicesitilize the DEV. A protection domain is loosely defined as an “iso-

guest’s device drivers, ensuring full compatibility. Thelated environment to which a subset of the host physical
also simplify the VMM by removing much of the com-memory is allocated.”[3] This abstract definition enables
plexity required to securely and efficiently handle 1/O rgsrotection domains to be defined for virtual machines as
guests. well as device drivers running in the VMM.

Virtual devices can be easily replicated for additional By using address translation tables, VT-d achieves the
guests but there are only limited physical resources tim&tcessary DMA isolation, restricting access to physical
can be dedicated to guests. Further, directly assigningramory only to assigned devices. DMA virtual addresses
device to a virtual machine can make the VM difficult tDVA) are used in the translation tables. Depending on
migrate, especially any hardware device state. the software usage model, DVAs can be guest physical

Dedicated devices eliminate most virtualization ovegddresses, host linear addresses, or some other abstracted
head and enable added simplicity in a VMM. Howvirtual I/O address.
ever, the main disadvantage is that direct memory acces¥T-d also includes an IOTLB to cache address transla-
(DMA) from hardware devices directly to a guest’s virtudlon lookups, improving the performance further. The PCI
address is not currently supported due to isolation and &d+s/device/function acts as the identifier for the DMA re-

dress translation challenges. qguest. This ID is used when performing address transla-
Enabling DMA for this scenario is one of the key contions to achieve the DMA remapping from DVA to physi-
tributions of Intel’'s VT-d. cal memory.

Once the data has been transferred to memory, the ap-
propriate guest must be notified. Previously, interrupts
52 AMD DEV were routed through the VMM, adding additional over-
ead. VT-d adds interrupt virtualization support to boost

Since Intel's VT-d provides further functionality beyonorﬂ
erformance.

. : . . D
that of AMD's DEV, we first consider DEV, setting the Before VT-d, devices on the x86 could signal an inter-

stage for VT-d. rupt using legacy I/O interrupt controllers or issue a mes-
AMD’s proposal for handling I/O virtualization adds P g legacy P

. ; . sage signaled interrupt (MSI) via DMA to a predefined
a device exclgglon VECtdDEV) that permlts or bIO.CkS address range. Current device issued MSls encode inter-
DMA to specified memory pages. DEV is essentially

table that specifies access controls between devices fipt attributes in the DMA requests, violating the isolatio
P flirement across protection domains [3].
memory pages.

Si s h lusi ‘ Intel's VT-d redefines the interrupt-message format for
INCE gUESLS have exclusive access 1o memory pa‘iﬁéls, providing the necessary isolation. The VT-d DMA

DEVbcan Ib € useit_to FSOMV,LdE ::*xclusme ‘ZCC?SS to dath%ﬁtes contain only a message identifier and the hardware
vice by only permiting etween the device and Nfqyice's requesterid. These ids are then used to index into

guests address space.' a interrupt-remapping table which contains the expected
The access check is made on the HyperTranspﬁalliErrupt attributes.

boundary at the CPU and either blocks or permits the-l-hiS interrupt-remapping table is validated by the

DMA request. If access IS permitted, the request MM and opague message ids are given to devices to pro-
marked safe to avoid subsequent access control Ched\?'rde the protection domain isolation

The end result of DEV is that it ensures that a dedi-
cated hardware device writes only to the intended gue
assigned memory pages.

~We have simplified our discussion of VT-d for clar-
%ﬁ, but VT-d also includes additional mapping struc-
tures, some of which are nested hierarchically. Repeat-
edly traversing these tables can become expensive. To
53 Intd VT-d avoid this in the common case, VT-d adds various hard-
ware managed caching structures, including the above-
Intel's VT-d proposal surpasses AMD’s DEV in terms afentioned IOTLB and an interrupt entry cache, to im-
functionality. The main components of VT-d are DMAprove performance.
remapping and interrupt virtualization.
VT-d adds a generalized IOMMU architecture. Tr ; :
ditional IOMMU'’s have been used to efficiently suppoar?'4 Future Directions
DMA scatter/gather operations and are implemented\fT-d enables virtual machines to utilize DMA with ded-
PCI root bridges [3]. icated devices in a protected, efficient manner. However,
VT-d incorporates software specified protection dd/T-d does not support high-performance multiplexing of
mains which restrict access only to devices assigned tdevices.
domain. This provides similar isolation and exclusion as Intel has done much of the necessary work to achieve

efficient device sharing, and now, the device makers them- IBM vs. Intel VT-x
selves as well as the PCI Express Special Interest Group| Interpretive execution VMX non-root mode
[2] (PCISIG) must join in the efforts. Towards this end, State description VMCS
the PCISIG has proposed a few extensions to PCI Express| Shadow page tables | Shadow page tables
which we briefly discuss here. 2-level page tables | Extended page tables

Since the IOTLB must handle multiple concurrent re-
guests at times, finding the right size for the TLB struc- The interpretive execution mode pioneered by the 370-
ture can be difficult. One solution to this involves movXA enabled guests to execute most privileged instructions
ing these cached translation entries from the IOTLB threctly. Intel targets this efficiency with its VMX non-
the physical devices themselves. This proposal by tteot mode which lets guests execute privileged instruc-
PCISIG is termeadddress translation servicg§$] (ATS). tions in ring 0.

Of course, ATS would have to guarantee that installed The VMCS conceptually represents the same thing as
translations only come from a valid source and do not V\BM’s guest state descriptions, albeit augmented to match
olate protection domains. the specifics of the x86.

Another proposal enables PCI Express devices to supAs discussed in Section 4, VT-x currently utilizes
port multiple virtual functions each of which gives the shadow page tables to virtualize the MMU and handle
illusion of an entirely separate physical device. This eguest paging. The 370-XA avoided shadow page tables
ables the direct assignment of virtual functions on a dead performed both levels of translation using hardware
vice to a guest virtual machine, while efficiently multiwalked page tables. Intel's EPT and AMD’s Nested Pag-
plexing the device across multiple guests. Combining thi¥) proposals both incorporate the additional level of in-
proposal with Intel VT-d, 1/O virtualization and direct asdirection into the hardware to avoid the costs of managing
signment of devices will become an attractive feature fite shadow page tables.
guest virtual machines. Exits from IBM’s interpretive execution were caused

An interesting case study for this virtual functions prd?y interrupts, exceptions, instructions that required-sim
posal is InfiniBand. InfiniBand has actually supported vilation, or any instruction chosen via a mask. VM exits
tual functions at the hardware level for a few years ndiem Intel's VMX non-root mode also can be similarly
[10]. Separate logical communication links, termed vigonfigured although the control fields in the VMCS pro-
tual lanes, share a single physical link. Each lane individde finer-grained policies through bitmasks on registers,
ually performs its own flow control and buffer manageeXxceptions, and 1/0 ports.
ment, isolated from the other lanes. InfiniBand supports\We note that VM/ESA supports “Russian doll” virtual-
up to 15 general purpose virtual lanes plus an additiorzétion with multiple levels of interpretive execution. VT
lane for control traffic. x would need to use paravirtualization or binary transla-

Whether the PCISIG can build upon InfiniBand's virtion to achieve the same effect. Of course, the motivations

tual lanes and provide a general solution for all PCI EXQr supporting this use case are not clear so it is under-
press devices remains to be seen. We look forwards{@ndable that VT-x eschews this functionality.

PCISIG’s proposals coming to fruition. Lastly, VM/ESA did not support tagged TLBs and
therefore, a flush was required when switching between

virtual machines. Again, current Intel and AMD offerings
6 Discussion suffer from the same performance degradation. However,
Intel proposes adding a virtual processor ID (VPID) to

In this section, we look back to IBM and see the roots gleferentlate TLB entries between multiple guest virtual

Intel's VT-x and AMD-V. As we have focused on Intel fonaCZ'_Tes' | and h inlv d
the most part, we discuss AMD'’s alternative offering. We, While Intel and AMD have certainly drawn upon the

then turn forward to future directions and applications &@oneering work of IBM, they haye expanded the teChf
hardware-supported virtualization. niques and adapted them accordingly to fit the x86 archi-

tecture. In particular, high performance 1/0 has become
critical to virtualization in data centers. Intel’s VT-d-of
6.1 IBM Comparisons fers some interesting solutions to this challenge, moving
one step closer to the complete virtualization of all aspect
Now that we have presented both IBM’s and Intel’s teclof a machine.
niques for virtualization, we see direct correlations be- However, we note that we have only examined a smalll,
tween IBM’s virtualization approaches and Intel's VT-x.albeit important, fraction of IBM’s virtualization resex.
The following table lists IBM’s concepts on the leffTechniques and ideas from Intel may not be as novel as we
with Intel's adaptations on the right. realize since IBM performed a large amount of virtualiza-

10

tion research in the 1970’s. There will always be some work that a VMM must han-
dle for guests, but the key will be to amortize this over-
6.2 AMD-V head across as many guest instructions as possible.
Finally, it is important to consider the market forces
AMD-V [5] is functionally quite similar to Intel's VT-x. driving virtualization. We have sketched many motivating
However, the two competing approaches provide incossenarios where efficient virtualization is critical. How-
patible ISAs. When AMD first announced its codenameayer, to what extent VT-d and DEV influence the market
Pacifica virtualization initiative, it included proposald- remains to be seen. Of course, academic institutions can
dressing both the MMU and DMA. This gave AMD arpioneer research in many areas, it still falls to Intel and
edge in functionality over Intel, but Intel quickly rele@seAMD to put the technology in the hands of consumers.
their own proposals with Intel's DMA remapping going
beyond the functionality provided by AMD. .
One reason that AMD announced their proposals firét Conclusion
is that AMD processors contain the MMU on-chip as well
as the HyperTransport communication bus. AMD coulye have critically examined hardware support for effi-
not ignore these components as easily as Intel. cient virtualization. IBM pioneered this area witlx
In addition to shadow paging and nested paging, AMBode assists and interpretive execution as well as shadow
V also supportpaged real modevhich is similar to the page tables and two-level hardware walked page tables.
preferred machine assist zones of the VM/ESA. Pageédrrent techniques and proposals from Intel and AMD
real mode enables the virtualization of guests that rbnild upon IBM’s foundation, adding tagged TLBs, DMA
in real mode, using only segments and offsets to spedi§mapping, and finer-grained control. These additions
physical addresses. Shadow paging is used here as welefresent an important step towards the true goal of
provide the illusion of real mode for appropriate guestsachieving native execution speeds in a virtual machine on
One terminology difference we note is that AMD termthe x86 architecture.
its shared host-guest control structure the virtual machin
control block (VMCB) as opposed to Intel's VMCS.
Acknowledgments

6.3 FutureDirections We would like to thank Geoff Voelker for his invaluable

With VT-x and AMD-V, the x86 architecture has becom#put during discussions forming this work.
classically virtualizable. Moving beyond this barrier; in

terest turned to efficiently handling page faults and t

memory management unit. While optimizations will n@seferences

doubt be made to existing virtualization components, thﬁ]
last challenge involves I/O and DMA.

Current I/O solutions leave much to be desired and the
upcoming proposal from Intel still only lays the founda- _
tion for I/O virtualization. VT-d enables the direct assign [2] PC! Special Interests Group.
ment of hardware devices to guest virtual machines, butit 't tP://ww. pcisig. com
does not facilitatsharinga device across multiple guests[3] Darren Abramson, Jeff Jackson, Sridhar Muthrasanal-
[3]. lur, Gil Neiger, Greg Regnier, Rajesh Sankaran, loannis

Quality of service and priority scheduling are very Schoinas, Rich Uhlig, Balaji Vembu, and John Weigert. In-
real considerations in a datacenter environment. Effi- tel Virtualization Technology for directed I/Qntel Tech-
ciently multiplexing a device across guests is only the "°l09y Journal10(3):179-192, August 2006.
first step. Fine-grained control ovpplicy is critical as [4] Keith Adams and Ole Agesen. A comparison of software
well. Achieving device multiplexing both securely and and hardware techniques for x86 virtualizati@perating

PCI Express Address Translation Services and 1/O Virtu-
alization, WinHEC 2006ht t p: / / www. mi cr osoft.
conf whdc/ wi nhec/ pred06. mspx.

efficiently is certainly a motivating goal for virtualizati Systems Revigw0(5):2-13, December 2006.
research. [5] AMD. Amd64 virtualization codenamed "pacifica” tech-
Another direction for virtualization is eliminating all nology: Secure virtual machine architecture reference

performance overheads for virtual machines. Executing manual, May 2005.

at native speeds is the gold standard of virtual machi P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris,
benchmarking. It will be interesting to see if hardware A Ho, I. Pratt, A. Warfield, and R. Neugebauer. Xen and
techniques can surpass software virtualization, or if the the art of virtualization. IrProceedings of the ACM Sym-
optimal solution might be a hybrid approach. posium on Operating Systems Principl€stober 2003.

11

[7] Anton Chernoff, Mark Herdeg, Ray Hookway, Chris
Reeve, Norman Rubin, Tony Tye, S. Bharadwaj Yadavalli,
and John Yates. FX!32: A profile-directed binary transla-
tor. IEEE Micro, 18(2):56—64, Mar/Apr 1998.

[8] Robert J. Creasy. The origin of the vm/370 time-sharing
system. IBM Journal of Research and Development
25(5):483-490, 1981.

[9] George W. Dunlap, Samuel T. King, Sukru Cinar, Mur-
taza A. Basrai, and Peter M. Chen. Revirt: enabling intru-
sion analysis through virtual-machine logging and replay.
SIGOPS Oper. Syst. Re86(SI):211-224, 2002.

[10] Chris Eddington. Infinibridge: An infiniband channel
adapter with integrated switchEEE Micro, 22(2):48-56,
2002.

[11] Peter H. Gum. System/370 extended architecture: +acil
ities for virtual machines.IBM Journal of Research and
Development27(6):530-544, November 1983.

[12] Samuel T. King, George W. Dunlap, and Peter M. Chen.
Debugging operating systems with time-traveling virtual
machines Proceedings of the 2005 Annual USENIX Tech-
nical ConferenceApril 2005.

[13] Gil Neiger, Amy Santoni, Felix Leung, Dion Rodgers, and
Rich Uhlig. Intel Virtualization Technology: Hardware
support for efficient processor virtualizationntel Tech-
nology Journal 10(3):167-177, August 2006.

[14] D. L. Osisek, K. M. Jackson, and P. H. Gum. ESA/390
interpretive-execution architecture, foundation for VM/
ESA. IBM Systems JournaB0(1):34-51, 1991.

[15] Gerald J. Popek and Robert P. Goldberg. Formal re-
guirements for virtualizable third generation architeetu
Communications of the ACM7(7):412—-421, July 1974.

[16] John Scott Robin and Cynthia E. Irvine. Analysis of the
Intel Pentium’s ability to support a secure virtual machine
monitor. In USENIX, editor,Proceedings of the Ninth
USENIX Security Symposium, August 14-17, 2000, Den-
ver, Coloradg page 275, San Francisco, CA, USA, 2000.
USENIX.

[17] J. Smith, S. Sastry, T. Heil, and T. Bezenek. Achieving
high performance via co-designed virtual machines. In
IWIA '98: Proceedings of the 1998 International Work-
shop on Innovative Architecturgpage 77, Washington,
DC, USA, 1998. IEEE Computer Society.

[18] Jeremy Sugerman, Ganesh Venkitachalam, and Beng-
Hong Lim. Virtualizing I/O devices on vmware worksta-
tion’s hosted virtual machine monitor. Proceedings of
the General Track: 2002 USENIX Annual Technical Con-
ference pages 1-14, Berkeley, CA, USA, 2001. USENIX
Association.

12

