
Intel® Virtualization Technology: Hardware Support
for Efficient Processor Virtualization

Intel® Virtualization Technology

Intel®

Technology
Journal

Volume 10 Issue 03 Published, August 10, 2006 ISSN 1535-864X DOI: 10.1535/itj.1003

More information, including current and past issues of Intel Technology Journal, can be found at:
http://developer.intel.com/technology/itj/index.htm

http://developer.intel.com/technology/itj/index.htm

Intel® Virtualization Technology: Hardware Support for Efficient Processor Virtualization 167

Intel® Virtualization Technology: Hardware Support for
Efficient Processor Virtualization

Gil Neiger, Corporate Technology Group, Intel Corporation
Amy Santoni, Digital Enterprise Group, Intel Corporation
Felix Leung, Digital Enterprise Group, Intel Corporation

Dion Rodgers, Digital Enterprise Group, Intel Corporation
Rich Uhlig, Corporate Technology Group, Intel Corporation

Index words: virtualization, processor, VT-x, VT-i

ABSTRACT

Virtualizing the physical resources of a computing system
to improve sharing and utilization has been done for
decades. Virtualization had once been confined to
specialized server and mainframe systems, but
improvements in the performance of platforms based on
Intel® technology now allow those platforms to efficiently
support virtualization. However, the IA-32 and Itanium®
processor architectures pose a number of significant
challenges to virtualization.

The first generation of Intel® Virtualization TechnologyΔ
(VT) for IA-32 and Itanium processors provides hardware
support that simplifies processor virtualization, enabling
reductions in virtual machine monitor (VMM) software
size and complexity. Resulting VMMs can support a
wider range of legacy and future operating systems (OSs)
on the same physical platform while maintaining high
performance.

In this paper, we provide details of the virtualization
challenges posed by IA-32 and Itanium processors;
present an overview and furnish details of VT-x (Intel
Virtualization Technology for the IA-32 architecture) and
VT-i (Intel Virtualization Technology for the Itanium
architecture); show how VT-x and VT-i address
virtualization challenges; and finally provide examples of
usage of the VT-x and VT-i architecture.

INTRODUCTION
Virtualizing the physical resources of a computing system
to achieve improved degrees of sharing and utilization is a
well-established concept that goes back decades [1]. Full
virtualization of all system resources (including
processors, memory and I/O devices) makes it possible to
run multiple operating systems (OSs) on a single physical

platform. In contrast to a non-virtualized system, in which
a single OS is solely in control of all hardware platform
resources, a virtualized system includes a new layer of
software, called a virtual-machine monitor (VMM). The
principal role of the VMM is to arbitrate access to the
underlying physical host platform resources so that these
resources can be shared among multiple OSs that are
“guests” of the VMM. The VMM presents to each guest
OS a set of virtual platform interfaces that constitute a
virtual machine (VM).

Virtualization was once confined to specialized,
proprietary, high-end server and mainframe systems. It is
now becoming more broadly available and is supported in
off-the-shelf IA-based systems—systems based on Intel
architecture hardware. This development is due in part to
the steady performance improvements of IA-based
systems, which mitigate traditional virtualization
performance overheads. Other factors include new
creative software approaches addressing the difficulties
inherent to IA virtualization [2–4] and the emergence of
novel applications for virtualization in both industry and
academia.

In the sections that follow, we examine some of the
technical difficulties with bringing virtualization to IA-
based systems and present an overview of Intel
Virtualization Technology (VT), which provides hardware
assists for overcoming these difficulties. The first
generation of VT focuses on a set of hardware assists that
facilitates the virtualization of IA processors. VT-x refers
to new architectural extensions that aid in IA-32 processor
virtualization, while VT-i refers to a set of assists for
virtualizing Itanium processors. VT-x and VT-i eliminate
many of the problems that make writing a VMM for IA-
based systems a challenge and hence make possible the

Intel Technology Journal, Volume 10, Issue 3, 2006

Intel® Virtualization Technology: Hardware Support for Efficient Processor Virtualization 168

broader availability of virtualization technology in both
server and client systems.

SOFTWARE-ONLY VIRTUALIZATION
WITH THE IA-32 AND ITANIUM®
ARCHITECTURES
Established and emerging uses provide strong motivation
for improving virtualization support in both server and
client computing systems. Unfortunately, the IA-32 and
Itanium architectures present many challenges to
providing such support. Software techniques exist that
address some of those challenges.

Challenges to Virtualizing Intel Architectures
Intel microprocessors (both IA-32 and Itanium
architecture) provide protection based on the concept of a
2-bit privilege level, using 0 for most-privileged software
and 3 for least-privileged. The privilege level determines
whether privileged instructions, which control basic CPU
functionality, can execute without fault. It also controls
address-space accessibility based on the configuration of
the processor’s page tables and, for IA-32, segment
registers. Most IA software uses only privilege levels 0
and 3.

For an OS to control the CPU, some of its components
must run with privilege level 0. Because a VMM cannot
allow a guest OS such control, a guest OS cannot execute
at privilege level 0. Thus, VMMs running on either IA-32
or Itanium processors must use ring deprivileging, a
technique that runs all guest software at a privilege level
greater than 0. A guest OS could be deprivileged in two
distinct ways: it could run either at privilege level 1 (the
0/1/3 model) or at privilege level 3 (the 0/3/3 model).

Although the 0/1/3 model supports simpler VMMs, it
cannot be used for guests on IA-32 processors in 64-bit
mode (more details in “ring compression” section). (64-bit
mode is part of Intel® Extended Memory 64
TechnologyΦ—Intel® EM64T—the 64-bit extensions to
IA-32.)

Ring Aliasing
Ring aliasing refers to problems that arise when software
is run at a privilege level other than the privilege level for
which it was written.

An example in IA-32 involves the CS segment register,
which points to the code segment. If the PUSH
instruction is executed with the CS segment register, the
contents of that register (which include the current
privilege level) is pushed on the stack. Similarly, the
Itanium instruction br.call saves the current privilege level
into the ppl field of the Previous Function State (PFS)
register, which can be read at any privilege level. In either

case, a guest OS could easily determine that it is not
running at privilege level 0.

Address-Space Compression
OSs expect to have access to the processor’s full virtual-
address space (known as the linear-address space in
IA-32). A VMM must reserve for itself some portion of
the guest’s virtual-address space. It could run entirely
within the guest’s virtual-address space, which allows it
easy access to guest data, but the VMM’s instructions and
data structures would use a substantial amount of the
guest’s virtual-address space.

Alternatively, the VMM can run in a separate address
space, but even in that case, the VMM must use a minimal
amount of the guest’s virtual-address space for the control
structures that manage transitions between guest software
and the VMM. For IA-32, these structures include the
interrupt-descriptor table (IDT) and the global-descriptor
table (GDT), which reside in the linear-address space. For
the Itanium architecture, the structures include the
interruption vector table (IVT), which resides in the
virtual-address space.

The VMM must prevent guest access to those portions of
the guest’s virtual-address space that the VMM is using.
Otherwise, the VMM’s integrity could be compromised (if
the guest can write to those portions) or the guest could
detect that it is running in a VM (if it can read those
portions). Guest attempts to access these portions of the
address space must generate transitions to the VMM,
which can emulate or otherwise support them. The term
address-space compression refers to the challenges of
protecting these portions of the virtual-address space and
supporting guest accesses to them.

Non-Faulting Access to Privileged State
Privilege-based protection prevents unprivileged software
from accessing certain components of CPU state. In most
cases, attempted accesses result in faults, allowing a
VMM to emulate the desired guest instruction. However,
the IA-32 and Itanium architectures both include
instructions that access privileged state and do not fault
when executed with insufficient privilege. For example,
the IA-32 registers GDTR, IDTR, LDTR, and TR contain
pointers to data structures that control CPU operation.
Software can execute the instructions that write to, or
load, these registers (LGDT, LIDT, LLDT, and LTR) only
at privilege level 0. However, software can execute the
instructions that read, or store, from these registers
(SGDT, SIDT, SLDT, and STR) at any privilege level. If
the VMM maintains these registers with unexpected
values, a guest OS using the latter instructions could
determine that it does not have full control of the CPU.

Another example pertains to the page-table address (PTA)
register of the Itanium architecture, a field that references

Intel Technology Journal, Volume 10, Issue 3, 2006

Intel® Virtualization Technology: Hardware Support for Efficient Processor Virtualization 169

the base address of the virtual hash page table (VHPT).
The instruction mov to cr.PTA is the normal way to access
this register, and software can execute it only at privilege
level 0. However, the thash instruction indirectly exposes
all or part of the VHPT base address, and software can
execute it at any privilege level. If the VMM maintains the
VHPT at a different address than the guest OS expects, a
guest OS using the thash instruction could determine that
it does not have full control of the CPU.

Adverse Impact on Guest System Calls

Ring deprivileging can interfere with the effectiveness of
facilities in the IA-32 architecture that accelerate the
delivery and handling of transitions to OS software. The
IA-32 SYSENTER and SYSEXIT instructions support low-
latency system calls. SYSENTER always effects a
transition to privilege level 0, and SYSEXIT faults if
executed outside that ring. Ring deprivileging thus has the
following implications:

• Executions of SYSENTER by a guest application
cause transitions to the VMM and not to the guest
OS. The VMM must emulate every guest execution of
SYSENTER.

• Executions of SYSEXIT by a guest OS cause faults to
the VMM. The VMM must emulate every guest
execution of SYSEXIT.

Interrupt Virtualization
Providing support for external interrupts, especially
regarding interrupt masking, presents some specific
challenges to VMM design. Both the IA-32 and Itanium
architectures provide mechanisms for masking external
interrupts thus preventing their delivery when the OS is
not ready for them. IA-32 uses the interrupt flag (IF) in
the EFLAGS register to control interrupt masking; the
Itanium architecture uses the i bit in the processor status
register (PSR) to provide this function. In both cases, a
value of 0 indicates that interrupts are masked.

A VMM will likely manage external interrupts and deny
guest software the ability to control interrupt masking.
Existing protection mechanisms allow such denial of
control by ensuring that guest attempts to control interrupt
masking fault in the context of ring deprivileging. Such
faulting can cause problems because some OSs frequently
mask and unmask interrupts. Intercepting every guest
attempt to do so could significantly affect system
performance.

Even if it were possible to prevent guest modifications of
interrupt masking without intercepting each attempt,
challenges would remain when a VMM has a “virtual
interrupt” to deliver to a guest. A virtual interrupt should
be delivered only when the guest has unmasked interrupts.
To deliver virtual interrupts in a timely way, a VMM

should intercept some but not all attempts by a guest to
modify interrupt masking. Doing so could significantly
complicate the design of a VMM.

Access to Hidden State
Some components of IA-32 and Itanium processor state
are not represented in any software-accessible register.
Examples for IA-32 include the hidden descriptor caches
for the segment registers. A segment-register load copies
the referenced descriptor (from the GDT or LDT) into this
cache, which is not modified if software later writes to the
descriptor tables. IA-32 does not provide a mechanism for
saving and restoring hidden components of a guest context
when changing VMs or for preserving them while the
VMM is running.

In the Itanium architecture, there is a field in the Register
Stack Engine (RSE) called the current frame load enable
(CFLE). There is no direct way to write this value. There
are cases where the VMM may take an external interrupt
and wants to return to the guest OS with this value equal
to zero. The return from interrupt (rfi) instruction forces
this value to a one.

Ring Compression
Ring deprivileging uses privilege-based mechanisms to
protect the VMM from guest software. IA-32 includes two
such mechanisms: segment limits and paging. Because
segment limits do not apply in 64-bit mode, paging must
be used in this mode. Because IA-32 paging does not
distinguish privilege levels 0–2, the guest OS must run at
privilege level 3 (the 0/3/3 model). Thus, the guest OS
runs at the same privilege level as guest applications and
is not protected from them. This problem is called ring
compression.

Frequent Access to Privileged Resources
A VMM may prevent guest access to privileged resources
by forcing attempts at such accesses to fault. Even when
this ensures correct behavior, performance may be
compromised if the frequency of such faults is excessive.

In the IA-32 and Itanium architectures, an example
involves the task-priority register (TPR). For the IA-32
architecture, this register is located in the advanced
programmable interrupt controller (APIC), and for the
Itanium architecture, it is one of the control registers.
Because it controls interrupt prioritization, a VMM must
not allow a guest OS access to the TPR. However, some
OSs perform such accesses with very high frequency.
These accesses require VMM intervention only if they
cause the TPR to drop below a value determined by the
VMM.

The Itanium architecture supports efficient interruption
handlers by providing them with information about the
interruption and the interrupted context. These data are

Intel Technology Journal, Volume 10, Issue 3, 2006

Intel® Virtualization Technology: Hardware Support for Efficient Processor Virtualization 170

recorded, not in memory, but in a set of interruption-
control registers. The processor protects system integrity
by generating faults in response to accesses to those
registers outside privilege level 0. Typically, every
interruption handler reads these registers. If each such
access generates a fault to the VMM, the performance of
these handlers will be severely compromised.

ADDRESSING VIRTUALIZATION
CHALLENGES IN SOFTWARE
To address the virtualization challenges that the IA-32 and
Itanium architecture present, VMM designers have
developed creative techniques for modifying guest
software (source or binary). Denali [5] and Xen* [2] are
examples of VMMs that use source-level modifications in
a technique called paravirtualization. Developers of these
VMMs modify the source code of a guest OS to create an
interface that is easier to virtualize. Paravirtualization
offers high performance and does not require changes to
guest applications. A disadvantage of paravirtualization is
that it limits the range of supported OSs; VMMs that rely
on paravirtualization cannot support an OS whose source
code the VMM’s developers have not modified.

A VMM can support unmodified OSs by transforming
guest-OS binaries on-the-fly to handle virtualization-
sensitive operations. VMMs that use such binary-
translation techniques include those developed by
VMware [4] as well as Virtual PC* and Virtual Server*
from Microsoft. [3]. Such VMMs support a broader range
of OSs than VMMs that use paravirtualization.

A central design goal for Intel VT has been to eliminate
the need for CPU paravirtualization and binary translation
techniques, to simplify the implementation of robust
VMMs that can support a broad range of unmodified
guest OSs, and to maintain high levels of performance.

INTEL® VIRTUALIZATION
ARCHITECTURE OVERVIEW
In this section, we discuss some of the details of Intel VT
architecture. We first describe the VT-x support for IA-32
processor virtualization [6], and then we describe the VT-i
support for Itanium processor virtualization [7].

VT-x Architecture Overview
VT-x augments IA-32 with two new forms of CPU
operation: VMX root operation and VMX non-root
operation. VMX root operation is intended for use by a
VMM, and its behavior is very similar to that of IA-32
without VT-x. VMX non-root operation provides an
alternative IA-32 environment controlled by a VMM and
designed to support a VM. Both forms of operation
support all four privilege levels, allowing guest software

to run at its intended privilege level, and providing a
VMM with the flexibility to use multiple privilege levels.

VT-x defines two new transitions: a transition from VMX
root operation to VMX non-root operation is called a
VM entry, and a transition from VMX non-root operation
to VMX root operation is called a VM exit. VM entries
and VM exits are managed by a new data structure called
the virtual-machine control structure (VMCS). The VMCS
includes a guest-state area and a host-state area, each of
which contains fields corresponding to different
components of processor state. VM entries load processor
state from the guest-state area. VM exits save processor
state to the guest-state area and then load processor state
from the host-state area.

Processor operation is changed substantially in VMX non-
root operation. The most important change is that many
instructions and events cause VM exits. Some instructions
(e.g., INVD) cause VM exits unconditionally and thus can
never be executed in VMX non-root operation. Other
instructions (e.g., INVLPG) and all events can be
configured to do so conditionally using VM-execution
control fields in the VMCS.

Guest-State Area
The guest-state area of the VMCS is used to contain
elements of the state of virtual CPU associated with that
VMCS.

For proper VMM operation, certain registers must be
loaded by every VM exit. These include those IA-32
registers that manage operation of the processor, such as
the segment registers (to map from logical to linear
addresses), CR3 (to map from linear to physical
addresses), IDTR (for event delivery), and many others.
The guest-state area contains fields for these registers so
that their values can be saved as part of each VM exit.

In addition, the guest-state area contains fields
corresponding to elements of processor state that are not
held in any software-accessible register. One of these
elements is the processor’s interruptibility state, which
indicates whether external interrupts are temporarily
masked (e.g., due to execution of the MOV-SS
instruction) and whether non-maskable interrupts (NMIs)
are masked because software is handling an earlier NMI.

The guest-state area does not contain fields corresponding
to registers that can be saved and loaded by the VMM
itself (e.g., the general-purpose registers). Exclusion of
such registers improves the performance of VM entries
and VM exits. Software can manage these additional
registers more efficiently as it knows better than the CPU
when they need to be saved and loaded.

Intel Technology Journal, Volume 10, Issue 3, 2006

Intel® Virtualization Technology: Hardware Support for Efficient Processor Virtualization 171

VM-Execution Control Fields
The VMCS contains a number of fields that control VMX
non-root operation by specifying the instructions and
events that cause VM exits. In this section, we present
some of these controls.

The VMCS includes controls that support interrupt
virtualization:

• External-interrupt exiting. When this control is set,
all external interrupts cause VM exits; in addition, the
guest is not able to mask these interrupts (e.g.,
interrupts are not masked if EFLAGS.IF=0).

• Interrupt-window exiting. When this control is set, a
VM exit occurs whenever guest software is ready to
receive interrupts (e.g., when EFLAGS.IF=1).

• Use TPR shadow. When this control is set, accesses
to the APIC’s TPR through control register CR8
(available only in 64-bit mode) are handled in a
special way: executions of MOV CR8 access a TPR
shadow referenced by a pointer in the VMCS. The
VMCS also includes a TPR threshold; a VM exit
occurs after any instruction that reduces the TPR
shadow below the TPR threshold.

There are also VM-execution control fields that support
efficient virtualization of the IA-32 control registers CR0
and CR4. These registers each comprise a set of bits
controlling processor operation. A VMM may wish to
retain control of some of these bits (e.g., those that
manage paging) but not others (e.g., those that control
floating-point instructions). The VMCS includes, for each
of these registers, a guest/host mask that a VMM can use
to indicate which bits it wants to protect. Guest writes can
freely modify the unmasked bits, but an attempt to modify
a masked bit causes a VM exit. The VMCS also includes,
for each of these registers, a read shadow whose value is
returned to guest reads of the register.

To support VMM flexibility, the VMCS includes bitmaps
that allow a VMM selectivity regarding the causes of
some VM exits. The following items detail three of these:

• Exception bitmap: This field contains 32 entries for
the IA-32 exceptions. It allows a VMM to specify
which exceptions should cause VM exits and which
should not. For page faults, further selectivity is
supported based on a fault’s error code.

• I/O bitmaps: These bitmaps contain one entry for
each port in the 16-bit I/O space. An I/O instruction
(e.g., IN) causes a VM exit if it attempts to access a
port whose entry is set in the I/O bitmaps.

• MSR bitmaps: These bitmaps contain two entries (one
for read, one for write) for each model-specific
register (MSR) currently in use. An execution of

RDMSR (or WRMSR) causes a VM exit if it attempts
to read (or write) an MSR whose read bit (or write
bit) is set in the MSR bitmaps.

In addition to the controls mentioned above, there are
VM-execution controls that support flexible VM exiting
for a number of privileged instructions.

VMCS Details
Like the IA-32 page tables, each VMCS is referenced with
a physical (not linear) address. This eliminates the need to
locate the VMCS in the guest’s linear-address space
(which, as noted below, may be different from that of the
VMM). The format and layout of the VMCS in memory is
not architecturally defined, allowing implementation-
specific optimizations to improve performance in VMX
non-root operation and to reduce the latency of
VM entries and VM exits. VT-x defines a set of new
instructions that allows software to access the VMCS in
an implementation-independent manner.

Details of VM Entries and VM Exits
As noted earlier, VM entries load processor state from the
guest-state area of the VMCS. (Note that, because the
state loaded includes CR3, the guest may run in a different
linear-address space than the VMM.) In addition to
loading guest state, VM entry can be optionally
configured for event injection. The CPU effects this
injection using the guest IDT to deliver an event
(exception or interrupt) specified by the VMM, just as if it
had actually occurred immediately after VM entry. This
feature removes the need for a VMM to emulate delivery
of these events.

As noted above, VM exits save processor state into the
guest-state area and then load processor state from the
host-state area. (Again, because the state loaded includes
CR3, the VMM may run in a different linear-address
space than the guest.) This implies that all VM exits use a
common entry point in the VMM. To simplify the design
of a VMM, VT-x specifies that each VM exit save into the
VMCS detailed information on the cause of the VM exit.
Every VM exit records an exit reason (specifying, for
example, which instruction caused the VM exit); many
also record an exit qualification, which provides further
details. For example, if a VM exit is caused by the MOV
CR instruction, the exit reason would indicate “control-
register access” and the exit qualification would identify
the following: (1) the specific control register (e.g., CR0);
(2) whether the MOV was to or from the register; and
(3) which other register was the source or destination of
the instruction.

Each VM exit due to an IA-32 exception saves, in
addition to information about the exception, information
about any event (e.g., an external interrupt) that was being

Intel Technology Journal, Volume 10, Issue 3, 2006

Intel® Virtualization Technology: Hardware Support for Efficient Processor Virtualization 172

delivered at the time the exception occurred. This allows a
VMM to virtualize nested exceptions properly.

VT-i Architecture Overview
VT-i expands the Itanium architecture with extensions to
the processor hardware and the Processor Abstraction
Layer (PAL) firmware.

VT-i adds a new PSR bit (PSR.vm) that allows guest OSs
to be run at the privilege level for which they were
designed and creates interceptions to a VMM necessary
for the creation of a complete VM. The VMM runs with
this bit equal to zero and runs guest software with this bit
equal to one.

The PSR.vm bit modifies the behavior of all privileged
instructions as well as that of some non-privileged
instructions that access state that a VMM may want to
control (including the thash, ttag, and mov cpuid
instructions). When a guest OS executes one of these
instructions a virtualization intercept is caused which
transfers control to the VMM with the PSR.vm bit set to
zero.

PSR.vm is orthogonal to the privilege level. This fact
allows guest software to run at its designated privilege
level; if desired, a VMM can span multiple privilege
levels.

PSR.vm also controls the number of virtual-address bits
available to software. When a VMM is running
(PSR.vm = 0), all implemented virtual-address bits are
available. When a guest is running (PSR.vm = 1) the
uppermost implemented virtual-address bit is not available
and unimplemented data/instruction address faults or
unimplemented instruction address traps are created if this
bit is used. This provides a VMM a dedicated address
space that guest software cannot access.

VT-i also includes a number of additions to the PAL
firmware layer. These additions provide a consistent
programming interface to a VMM even if the hardware is
not implemented identically across processor generations.
These PAL extensions include a set of new procedures;
the addition of PAL services for high-frequency VMM
operations; and a virtual processor descriptor (VPD) table.

The PAL procedures are used for setting up and tearing
down a VM environment; for setting global VMM
configuration options; for initializing and terminating
virtual processors; and for saving and restoring a subset of
state of a virtual processor. These procedures follow the
same calling convention as existing PAL procedures. In
addition, a new PAL interface called a PAL service has
been introduced for virtualization. PAL services reduce
overhead through use of a new calling convention
specifically targeted for use by a VMM. PAL services

provide functionality to synchronize guest hardware
registers and the VPD; to save and restore a subset of the
state of a virtual processor; to resume execution of the
guest software after a virtualization intercept; to calculate
guest VHPT hashes and tags; and to set up pending
interrupts for the guest.

The VPD table is located in memory selected by the
VMM. It is usually located in the VMM’s virtual-address
space and is accessed by both the PAL firmware and the
VMM. The VPD contains configuration settings for the
virtual processor and a subset of the virtual processor’s
state that influences its execution characteristics. For
example, the virtual processor’s control-register values are
located in the VPD but not its general registers. The
layout of the VPD is architected to be 64K in size and
includes reserved space for future usage.

The VPD contains two configuration fields that allow the
VMM to customize the virtualization environment:

• Virtualization-acceleration field. This field allows the
VMM to customize the virtualization of a particular
resource or instruction, leading to a reduction in the
number of virtualization intercepts that the VMM has
to handle. It provides accelerations for external-
interrupt handling as well as intercept control for
reads and writes to interruption control registers
(cr16-cr25), reads of the PSR, reads of CPUID, the
cover instruction, and the bank-switch instruction
(bsw).

For example, a VMM could enable the bank-switch
optimization. Guest execution of bsw would use
values that the VMM had set up in the VPD for the
guest OS and would never cause a virtualization
intercept to the VMM.

• Virtualization-disable field. This field allows the
VMM to disable virtualization of a particular
resource or instruction, leading to a reduction in the
number of virtualization intercepts the VMM handles.
This field provides disables for virtualization of the
external interrupt control registers (cr65–71), the
performance monitoring registers, the debug registers,
the PSR.i bit, and the interval timer match register.

To provide efficient handling of virtualization intercepts
for a VMM, the architecture has added two new vectors
into the IVT:

• Virtualization vector. This vector is used for all
virtualization-related intercepts. To reduce decoding
complexity, a VMM can configure the processor to
provide the cause of the virtualization intercept (a
bitmap field of intercepting instructions) as well as
the faulting opcode in two of the processor banked
registers. A VMM can relocate this handler to a

Intel Technology Journal, Volume 10, Issue 3, 2006

Intel® Virtualization Technology: Hardware Support for Efficient Processor Virtualization 173

memory location outside the IVT as well through a
PAL interface.

• Virtual external interrupt vector. The processor uses
this vector when the guest unmasks a pending
external interrupt. It would be used when the VMM
has a virtual interrupt for the guest that it cannot
deliver due to guest masking. When the guest
performs an operation to unmask the highest pending
interrupt, the guest state is updated and control is
transferred to this new vector. This streamlines
delivery of guest external interrupts for the VMM.

VT-i also provides global configuration options that a
VMM can set that apply to all virtual processors activated
by the VMM. These global configuration options
determine whether the cause of a virtualization intercept is
provided, if the opcode of the instruction causing the
virtualization intercept is provided, if the performance
counters are frozen for all virtualization intercepts, and the
byte order (or endianness) of the date located in the VPD.

VT-i also includes the vmsw instruction. This instruction
transitions the PSR.vm bit with minimum overhead. This
can reduce transition overhead between guest software
and a VMM in cooperative virtualization environments.

SOLVING VIRTUALIZATION
CHALLENGES WITH VT-X AND VT-I
VT-x and VT-i allow guest software to run at its intended
privilege level. Guest software is constrained, not by
privilege level, but because for VT-x it runs in VMX non-
root operation or for VT-i with PSR.vm = 1. These facts
allow VMMs to avoid the virtualization challenges
identified earlier.

Address-Space Compression
VT-x and VT-i provide two different techniques for
solving address-space compression problems.

With VT-x, every transition between guest software and
the VMM can change the linear-address space, allowing
guest software full use of its own address space. The
VMX transitions are managed by the VMCS, which
resides in the physical-address space, not the linear-
address space.

With VT-i, the VMM has a virtual-address bit that guest
software cannot use. A VMM can conceal hardware
support for this bit by intercepting guest calls to the PAL
procedure that reports the number of implemented virtual-
address bits. As a result, the guest will not expect to use
this uppermost bit, and hardware will not allow it to do so,
thus providing the VMM exclusive use of half of the
virtual-address space.

Ring Aliasing and Ring Compression
VT-x and VT-i allow a VMM to run guest software at its
intended privilege level. This fact eliminates ring aliasing
problems because instructions such as PUSH (of CS) and
br.call cannot reveal that software is running in a VM. It
also eliminates ring compression problems that arise when
a guest OS executes at the same privilege level as guest
applications.

Nonfaulting Access to Privileged State
VT-x and VT-i avoid the problem of providing
nonfaulting access to privileged state in two ways: by
adding support that causes such accesses to transition to a
VMM and by adding support that causes the state to
become unimportant to a VMM.

A VMM based on VT-x does not require control of the
guest privilege level, and the VMCS controls the
disposition of interrupts and exceptions. Thus, it can allow
its guest access to the GDT, IDT, LDT, and TSS. VT-x
allows guest software running at privilege level 0 to use
the instructions LGDT, LIDT, LLDT, LTR, SGDT, SIDT,
SLDT, and STR.

With VT-i, the thash instruction causes virtualization
faults, giving a VMM the opportunity to conceal any
modifications it may have made to the VHPT base
address.

Guest System Calls
Problems occur with the IA-32 instructions SYSENTER
and SYSEXIT when a guest OS runs outside privilege
level 0. With VT-x, a guest OS can run at privilege level
0, which eliminates problems associated with guest
transitions.

Interrupt Virtualization
VT-x and VT-i both provide explicit support for interrupt
virtualization.

VT-x includes an external-interrupt exiting VM-execution
control. When this control is set to 1, a VMM prevents
guest control of interrupt masking without gaining control
of every guest attempt to modify EFLAGS.IF. Similarly,
VT-i includes a virtualization-acceleration field that
prevents guest software from affecting interrupt masking
and avoids making transitions to the VMM on every
access to the PSR.i bit.

VT-x also includes an interrupt-window exiting VM-
execution control. When this control is set to 1, a VM exit
occurs whenever guest software is ready to receive
interrupts. A VMM can set this control when it has a
virtual interrupt to deliver to a guest. Similarly, VT-i
includes a PAL service that a VMM can use to register the

Intel Technology Journal, Volume 10, Issue 3, 2006

Intel® Virtualization Technology: Hardware Support for Efficient Processor Virtualization 174

vector of the pending virtual interrupt. When guest
software executes instructions to unmask the pending
interrupt, control is transferred to the VMM via the new
virtual external interrupt vector.

Access to Hidden State
VT-x and VT-i use different techniques to allow a VMM
to manipulate components of guest state that are not
represented in any software-accessible register.

VT-x includes, in the guest-state area of the VMCS, fields
corresponding to CPU state not represented in any
software-accessible register. The processor loads values
from these VMCS fields on every VM entry and saves
into them on every VM exit. This provides the support
necessary for preserving this state while the VMM is
running or when changing VMs.

VT-i provides a way for the VMM to set the RSE CFLE
bit to the desired value via an argument value in the PAL
service used to return to guest interruption handlers.

Frequent Access to Privileged Resources
VT-x and VT-i allow a VMM to avoid the overhead of
high-frequency guest accesses to the TPR register. A
VMM can configure the VMCS (for VT-x) or use an
acceleration (for VT-i) so that the VMM is invoked only
when required: For VT-x this occurs when the value of the
TPR shadow associated with the VMCS drops below that
of a TPR threshold in the VMCS. For VT-i this occurs
only when the writing of the TPR unmasks a virtual
pending external interrupt for the guest.

With VT-i, a VMM can use the virtualization-acceleration
field in the VPD to indicate that guest software can read
or write the interruption-control registers without invoking
the VMM on each access. The VMM can establish the
values of these registers before any virtual interruption is
delivered and can revise them before the guest
interruption handler returns.

USAGE OF THE INTEL
VIRTUALIZATION ARCHITECTURE
We have described the basic architecture for VT-x and
VT-i, and in the next section, we provide some usage
examples of the architecture by a VMM. This is intended
to highlight some usage models, but it is not a
comprehensive set of all usage models.

VMM Usage of VT-x Architecture Features

Exception Handling
VT-x allows a VMM to configure any IA-32 exception to
cause a VM exit based on its vector (for page faults,
further selectivity is supported based on a fault’s error

code). When handling such VM exits, a VMM has access
to complete information about the exception, including its
error code and any other fault-specific information (e.g.,
the faulting linear address for a page fault).

The VMM may determine that the exception causing the
VM exit should be handled by the guest OS. In these
cases, the VMM can perform a VM entry to guest using
event injection to deliver the exception.

Alternatively, a VMM may respond to such a VM exit by
eliminating the cause of the exception (e.g., by modifying
the page tables to mark present a page that had not been
present). In these cases, the VMM can then perform a
VM entry to the guest, which will resume execution at the
point at which the exception occurred. If the VM exit was
due to a nested fault, the VMM can use event injection to
deliver to the guest that event whose delivery encountered
that nested fault.

Interrupt Virtualization
When a VMM has an interrupt to deliver to a guest OS, it
can do so using event injection with the next VM entry. If
guest software is not ready for an interrupt (e.g., because
EFLAGS.IF = 0), the VMM can instead re-enter the guest
having set the interrupt-window exiting VM-execution
control. A VM exit will occur the next time the guest is
ready for an interrupt. A VMM can then use event
injection as part of the next VM entry.

Lazy Floating-Point State Processing
The IA-32 architecture includes features by which an OS
can avoid the time-consuming restoring the floating-point
state when activating a user process that does not use the
floating-point unit. It does this by setting the TS bit in
control register CR0. If a user process then tries to use the
floating-point unit, a device-not-available fault
(exception 7 = #NM) occurs. The OS can respond to this
by restoring the floating-point state and by clearing
CR0.TS, which prevents the fault from recurring.

VT-x includes features by which a VMM can process
floating-point state lazily, even when supporting a guest
OS that does so also. We outline how this may be done.

Before entering a guest whose floating-point state has not
been restored, a VMM can do the following:

• Set the TS bit in the CR0 field in the guest-state area;
this ensures that any guest floating-point access
causes a #NM.

• Set bit 7 (corresponding to #NM) in the exception
bitmap; this ensures that any #NM causes a VM exit.

• Set the TS bit in the CR0 guest/host mask; this
ensures that any guest attempt to modify CR0.TS
causes a VM exit.

Intel Technology Journal, Volume 10, Issue 3, 2006

Intel® Virtualization Technology: Hardware Support for Efficient Processor Virtualization 175

• Set the TS bit in the CR0 read shadow to the value
expected by guest software (determined on VM exits
caused by guest attempts to modify CR0.TS).

In response to a VM exit caused by a #NM, a VMM can
check the value of the TS bit in the CR0 read shadow. If it
is set, the guest would have incurred its own #NM; the
VMM can use event injection to deliver it to the guest.
Otherwise, the VMM can do the following:

• Restore the guest’s floating-point state.

• Set the TS bit in the CR0 field in the guest-state area
to the value expected by guest software.

• Clear bit 7 in the exception bitmap; this ensures that
the guest OS will handle any subsequent #NM.

• Clear the TS bit in the CR0 guest/host mask; this
allows the guest to modify CR0.TS freely.

VMM Usage of VT-i Architecture Features

Instruction Emulation
The VMM virtualization intercept handler is responsible
for emulating certain instructions for a guest OS including
side effects of successful emulation. One example of
instruction emulation is the MOV-from-PTA instruction.
The VMM emulates this instruction by placing the guest
PTA value in the target register of the instruction. Since
the VMM has successfully implemented the MOV-from-
PTA instruction, it needs to implement the side effects of
the instruction execution required by the Itanium
architecture. In this example the VMM must also update
the value in the cr.iipa register, which records the last
successfully executed instruction with PSR.ic equal to 1.

Virtualization Configuration
VT-i is capable of providing a virtualization intercept on
every access to privileged resources that may be required
or desired for certain VMM implementations. VT-i also
provides a way for a VMM to specify virtualization
policies on certain resources in advance such that
interceptions to the VMM can be reduced for high
frequency operations. This functionality is provided
through virtualization-accelerations, virtualization-
disables, and new synchronization services. One example
is the interruption control register reads. Guest OS
interruption handlers read interruption control registers
frequently and cause a lot of interceptions into the VMM.
The interruption control register read acceleration allows
VMM software to provide preset values for all
interruption control registers in the VPD and invoke the
PAL write synchronization service before returning to a
guest handler. When this acceleration is enabled, guest
reads of the interruption control registers are not
intercepted to the VMM; instead the value preset by the

VMM is returned to the guest. Similarly, the interruption
control register write acceleration allows the guest to
write to interruption control registers without VMM
interceptions. VMM can invoke the PAL read
synchronization service to obtain the latest values written
by the guest and perform any virtualization functions
required before emulating the return from interrupt (rfi)
instruction of the guest handler. All other accelerations
and disables in VT-i have the same goal—to allow the
VMM to specify the virtualization policies of the
privileged resources ahead of time such that guest
instructions can execute without interceptions to the
VMM.

External and PAL-Based Interruption Handling
In addition to implementing policies to virtualize accesses
to privileged resources on the processor, VMM software
also needs to virtualize external interruptions as well as
accesses to platform resources that are considered
privileged. For example, VMM software will continue to
handle external interruptions or PAL-based interruptions
even if the guest OS had masked these interruptions.

VMM software delivers guest external interrupts only
when they are unmasked. When unmasked, the VMM
delivers the interruption to the guest handler required by
the architecture. For example, the VMM needs to set up
the values of the guest interruption control registers, PSR
fields, and register stack engine (RSE) state. Since some
of the RSE state is not accessible by VMM software, VT-i
provides PAL service to allow VMMs to invoke guest
handlers correctly.

VMM software registers the corresponding handlers for
PAL-based interruptions (e.g., initialization and machine
check events) and provides the virtualization policies for
these events. VT-i makes no changes to the handling of
PAL-based interruptions. The handling and propagation of
these events from the VMM to the guest OS is VMM
design specific.

FUTURE OF INTEL VIRTUALIZATION
ARCHITECTURE
The following features are anticipated for future
processors supporting VT-x:

• NMI-window exiting. The interrupt-window exiting
VM-execution control (described earlier) causes a
VM exit when a guest is ready for maskable external
interrupts, allowing a VMM to deliver such interrupts
in a timely way. NMI-window exiting provides
corresponding support for non-maskable interrupts
(NMIs), which are blocked by other conditions than
those that block maskable external interrupts.

Intel Technology Journal, Volume 10, Issue 3, 2006

Intel® Virtualization Technology: Hardware Support for Efficient Processor Virtualization 176

• Virtual-processor identifiers (VPIDs). This feature
allows a VMM to assign a different non-zero VPID to
each virtual processor (the zero VPID is reserved for
the VMM). The CPU can use VPIDs to tag
translations in the TLBs. This feature eliminates the
need for TLB flushes on every VM entry and VM exit
and eliminates the adverse impact of those flushes on
performance.

• Extended page tables (EPT). When this feature is
active, the ordinary IA-32 page tables (referenced by
control register CR3) translate from linear addresses
to guest-physical addresses. A separate set of page
tables (the EPT tables) translate form guest-physical
addresses to the host-physical addresses that are used
to access memory. As a result, guest software can be
allowed to modify its own IA-32 page tables and
directly handle page faults. This allows a VMM to
avoid the VM exits associated with page-table
virtualization, which are a major source of
virtualization overhead without EPT.

CONCLUSION
While the use of virtualization was once confined to
proprietary server and mainframe computing systems,
established and emerging applications for virtualization in
both server and client systems are moving it into the
mainstream. Despite the promise of new and existing
virtualization usages, many challenges stand in the way of
achieving efficient virtualization of today’s IA-based
systems.

VT-x and VT-i are the first components of Intel VT, a
series of processor innovations soon to become available
in IA-based client and server platforms. VT-x and VT-i
offer solutions to the problems inherent in IA-32 and
Itanium processor virtualization and thus enable the
development of simpler VMM software that supports a
wider range of legacy and future OS’s while maintaining
high levels of performance.

ACKNOWLEDGMENTS
The authors thank the following for their contributions to
the development of the VT-x and VT-i architectures:
Andrew V. Anderson, Steven M. Bennett, Jason Brandt,
Stephen Fischer, Gideon Gerzon, Gary Hammond,
Stalinselvaraj Jeyasingh, Alain Kägi, Mike Kozuch, Tariq
Masood, Sanjoy Mondal, Rajesh Parthasarathy, Rajesh
Sankaran, Sebastian Schönberg, and Larry Smith. We also
thank Fernando C. M. Martins for his many contributions
to the development of this paper.

REFERENCES
[1] R.P. Goldberg, “Survey of Virtual Machine Research,”

Computer, June 1974, pp. 34–45.

[2] P. Barham et al., “Xen and the Art of Virtualization,”
in Proceedings 19th ACM Symp. Operating Systems
Principles, ACM Press, 2003, pp. 164–177.

[3] Microsoft Corp., “Microsoft Virtual Server 2005
Technical Overview,” 2004,; at
http://download.microsoft.com/download/5/5/3/55321
426-cb43-4672-9123-
74ca3af6911d/VS2005TechWP.doc*

[4] C.A. Waldspurger, “Memory Resource Management
in VMware ESX Server,” in Proceedings 5th Symp.
Operating Systems Design and Implementation, The
Usenix Association, 2002, pp. 181–194.

[5] A. Whitaker, M. Shaw, and S. Gribble, “Scale and
Performance in the Denali Isolation Kernel,” in
Proceedings 5th Symp. Operating Systems Design and
Implementation, The Usenix Association, 2002, pp.
195–210.

[6] Intel Corp., “IA-32 Intel® Architecture Software
Developer's Manuals;” at
http://www.intel.com/design/pentium4/manuals/index_
new.htm

[7] Intel Corp., “Intel® Itanium® Architecture Software
Developer’s Manual-Volume 2: System Architecture,
Revision 2.2,” document number 1805, 2006; at
ftp://download.intel.com/design/Itanium/manuals/2453
1805.pdf

AUTHORS’ BIOGRAPHIES
Gil Neiger is a principal engineer in Intel’s Corporate
Technology Group and leads development of the VT-x
architecture. He received his Ph.D. degree in Computer
Science from Cornell University.

Amy Santoni is a principal engineer in Intel’s Digital
Enterprise Group and leads the Itanium Architecture
Team. She is one of the principal architects of VT-i. Amy
has been with Intel for 13 years working in design,
validation, firmware, and architecture positions. She
received her B.S. degree in Computer Engineering from
the University of Michigan.

Felix Leung is a staff engineer in Intel’s Digital
Enterprise Group and is responsible for the definition and
development of VT-i architecture. He has been with Intel
for 11 years and has held verification, design, and
architecture positions in various IA-32 and Itanium
processor design projects. He received his B.S. degree in
Computer Science from the University of Wisconsin-
Madison.

http://download.microsoft.com/download/5/5/3/55321426-cb43-4672-9123-74ca3af6911d/VS2005TechWP.doc
http://www.intel.com/design/pentium4/manuals/index_new.htm
ftp://download.intel.com/design/Itanium/manuals/24531805.pdf

Intel Technology Journal, Volume 10, Issue 3, 2006

Intel® Virtualization Technology: Hardware Support for Efficient Processor Virtualization 177

Dion Rodgers is a senior principal engineer in Intel’s
Digital Enterprise Group and is responsible for bringing
multiple advanced technology initiatives such as VT-x to
the IA-32 product line. He received his M.S. degree in
Computer Engineering from Clemson University.

Rich Uhlig is a senior principal engineer in Intel’s
Corporate Technology Group and leads various aspects of
Intel’s overall virtualization effort including architecture
definition, research prototyping, performance analysis,
and software usage. He received his Ph.D. degree in
Computer Science and Engineering from the University of
Michigan.

Δ Intel® Virtualization Technology requires a computer
system with an enabled Intel® processor, BIOS, virtual
machine monitor (VMM) and, for some uses, certain
platform software enabled for it. Functionality,
performance or other benefits will vary depending on
hardware and software configurations and may require a
BIOS update. Software applications may not be
compatible with all operating systems. Please check with
your application vendor.

Φ Intel® EM64T requires a computer system with a
processor, chipset, BIOS, operating system, device drivers
and applications enabled for Intel EM64T. Processor will
not operate (including 32-bit operation) without an Intel
EM64T-enabled BIOS. Performance will vary depending
on your hardware and software configurations. See
www.intel.com/info/em64t for more information including
details on which processors support Intel EM64T or
consult with your system vendor for more information.

Copyright © Intel Corporation 2006. All rights reserved.
Intel and Itanium are trademarks or registered trademarks
of Intel Corporation or its subsidiaries in the United States
and other countries.

* Other names and brands may be claimed as the property
of others.

This document contains information on products in the
design phase of development. The information here is
subject to change without notice. Do not finalize a design
with this information. Contact your local Intel sales office
or your distributor to obtain the latest specifications and
before placing your product order.

INFORMATION IN THIS DOCUMENT IS PROVIDED
IN CONNECTION WITH INTEL® PRODUCTS. NO
LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL
OR OTHERWISE, TO ANY INTELLECTUAL
PROPERTY RIGHTS IS GRANTED BY THIS
DOCUMENT. EXCEPT AS PROVIDED IN INTEL'S
TERMS AND CONDITIONS OF SALE FOR SUCH

PRODUCTS, INTEL ASSUMES NO LIABILITY
WHATSOEVER, AND INTEL DISCLAIMS ANY
EXPRESS OR IMPLIED WARRANTY, RELATING TO
SALE AND/OR USE OF INTEL PRODUCTS
INCLUDING LIABILITY OR WARRANTIES
RELATING TO FITNESS FOR A PARTICULAR
PURPOSE, MERCHANTABILITY, OR
INFRINGEMENT OF ANY PATENT, COPYRIGHT OR
OTHER INTELLECTUAL PROPERTY RIGHT.

Intel may make changes to specifications and product
descriptions at any time, without notice.

This publication was downloaded from
http://developer.intel.com/.

Legal notices at
http://www.intel.com/sites/corporate/tradmarx.htm.

http://www.intel.com/info/em64t
http://developer.intel.com/
http://www.intel.com/sites/corporate/tradmarx.htm

Intel Technology Journal, Volume 10, Issue 3, 2006

Intel® Virtualization Technology: Hardware Support for Efficient Processor Virtualization 178

THIS PAGE INTENTIONALLY LEFT BLANK

Copyright © 2006 Intel Corporation. All rights reserved.
Intel is a trademark or registered trademark of Intel Corporation or its subsidiaries in the United States and other countries.
For a complete listing of trademark information visit: www.intel.com/sites/corporate/tradmarx.htm

For further information visit:

developer.intel.com/technology/itj/index.htm

http://developer.intel.com/technology/itj/index.htm
http://www.intel.com/sites/corporate/tradmarx.htm

