
Comparing the Performance of Web Server Architectures

David Pariag, Tim Brecht, Ashif Harji, Peter Buhr, and Amol Shukla
David R. Cheriton School of Computer Science

University of Waterloo, Waterloo, Ontario, Canada
˘

db2pariag,brecht,asharji,pabuhr,ashukla
¯

@cs.uwaterloo.ca

ABSTRACT
In this paper, we extensively tune and then compare the perfor-
mance of web servers based on three different server architectures.
The µserver utilizes an event-driven architecture, Knot uses the
highly-efficient Capriccio thread library to implement a thread-per-
connection model, and WatPipe uses a hybrid of events and threads
to implement a pipeline-based server that is similar in spirit to a
staged event-driven architecture (SEDA) server like Haboob.

We describe modifications made to the Capriccio thread library
to use Linux’s zero-copy sendfile interface. We then introduce the
SYmmetric Multi-Processor Event Driven (SYMPED) architecture
in which relatively minor modifications are made to a single pro-
cess event-driven (SPED) server (theµserver) to allow it to con-
tinue processing requests in the presence of blocking due to disk
accesses. Finally, we describe our C++ implementation of WatPipe,
which although utilizing a pipeline-based architecture, excludes
the dynamic controls over event queues and thread pools used in
SEDA. When comparing the performance of these three server ar-
chitectures on the workload used in our study, we arrive at different
conclusions than previous studies. In spite of recent improvements
to threading libraries and our further improvements to Capriccio
and Knot, both the event-basedµserver and pipeline-based Wat-
Pipe server provide better throughput (by about 18%). We also ob-
serve that when using blocking sockets to send data to clients, the
performance obtained with some architectures is quite good and in
one case is noticeably better than when using non-blocking sockets.

Categories and Subject Descriptors
D.1.3 [Programming Techniques]: Concurrent Programming—
Parallel programming; D.4.1 [Process Management]: Concur-
rency, Threads; D.4.8 [Performance]: Measurements

General Terms
Design, Experimentation, Measurement, Performance

Keywords
web servers, threads, events, scalability, performance

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
EuroSys’07,March 21–23, 2007, Lisboa, Portugal.
Copyright 2007 ACM 978-1-59593-636-3/07/0003 ...$5.00.

1. INTRODUCTION
Several different server architectures have been proposed for

managing high levels of server concurrency. These can be broadly
categorized as event-driven, thread-per-connection (sometimes re-
ferred to as thread-based) or a hybrid utilizing a combination of
events and threads.

Previous research [18] has analyzed the strengths and weak-
nesses of many of these architectures. However, more recent work
[24, 8, 22, 23] has re-ignited the debate regarding which archi-
tecture provides the best performance. The most recent results
conclude that the thread-per-connection Knot server [22], which is
based on the scalable user-level threading-package Capriccio [23],
matches or exceeds the performance of the hybrid, pipeline-based
Haboob server. In this paper, we conduct benchmark experiments
to compare the performance of well tuned, state-of-the-art event-
based and thread-per-connection servers (theµserver and Knot),
along with a hybrid, pipeline-based server (called WatPipe). Wat-
Pipe’s architecture is designed to be similar to the staged event-
driven architecture (SEDA) used to implement Haboob [24]. While
SEDA and Haboob are written in Java and use dynamic controllers
to adjust the number of threads and load shedding within each
stage, WatPipe is written in C++ and does not implement any con-
trollers.

The contributions of this paper are:

• We present two new approaches for supporting the zero-copy
sendfile system call within the Capriccio threading library,
and evaluate their performance using the Knot web server.

• The SYmmetric Multi-Process Event Driven (SYMPED) and
shared-SYMPED server architectures are introduced.

• A hybrid pipeline server-architecture, based on a simplified
staged event-driven (SEDA) architecture, is introduced.

• The importance of properly tuning each of the server architec-
tures is demonstrated. We find that with the workload used in
this paper, performance can vary significantly with the number
of simultaneous connections and kernel threads.

• The event-basedµserver and the pipeline-based WatPipe servers
are found to perform as well as or better than the thread-per-
connection Knot server on the workload used in this paper.

• Contrary to prior work, the results obtained using our workload
show that the overheads incurred by the thread-per-connection
architecture make it difficult for this architecture to match the
performance of well implemented servers requiring substantially
fewer threads to simultaneously service alarge number of con-
nections.

• In some of the architectures examined, the use of blocking sock-
ets for writing replies is found to perform quite well.

The remainder of this paper is organized as follows. Section 2
describes background and related work. Section 3 describes our
experimental environment and workload. Sections 4, 5, and 6
describe the implementation and performance tuning experiments
conducted for the Knot, theµserver and WatPipe servers, respec-
tively. In Section 7, several server configurations are compared and
analyzed using the best performance of each tuned server. Section 9
explains why our findings differ substantially from previous work,
and Section 10 presents our conclusions.

2. BACKGROUND AND RELATED WORK
Modern Internet servers must efficiently operate on thousands of

files and connections [3]. However, operations on files and sockets
may cause a server to block unless special action is taken. There-
fore, strategies for dealing with blocking I/O are a key requirement
in most server architectures. The main strategies are: do noth-
ing, use non-blocking or asynchronous I/O, or delegate potentially
blocking I/O operations to threads, either among separate server
processes or within a single server process using multiple kernel
threads.

While most Unix-like systems support non-blocking socket I/O,
support for non-blocking file I/O is poor or non-existent. Asyn-
chronous I/O (AIO) mechanisms exist for some file operations, but
performance critical system calls likesendfile have no AIO
equivalents [14]. In light of these limitations, many server archi-
tectures have adopted threading to mitigate the effects of blocking
I/O. Threading is introduced via kernel processes and/or user-level
thread libraries.

Threads do not prevent blocking due to I/O; they only provide
possible alternative executions. For example, when one thread
blocks due to I/O, other non-blocked threads may still be able to ex-
ecute. This approach relies on transparent context switching of ker-
nel threads by the operating system or user-level threads by a thread
library to continue execution. Typically, a user-level thread-library
attempts to avoid blocking due to I/O by wrapping appropriate sys-
tem calls with library specific code. These wrapped calls check if
socket I/O can be performed without blocking and only schedules
user-level threads that can make those calls without blocking. This
is done using an event mechanism likeselect or poll or, for
some system calls, by putting the socket into non blocking mode
and making the call directly. Additionally, many system calls that
can potentially block due to file system I/O may be handed off to
workers that are implemented using kernel-threads so that the op-
erating system can context switch from workers that block due to
disk I/O to workers that are not blocked. With this approach, care
must be taken to ensure that enough kernel-level threads are avail-
able to handle requests made by user-level threads and access to
data that is shared among threads is properly synchronized without
incurring excessive overheads. An additional concern in this and
other web server architectures is using enough kernel-level threads
to make certain that all kernel-threads do not become blocked si-
multaneously.

One of the main differences among web server architectures
is the association of connections with threads. In thread-per-
connection servers at least one user-level thread and possibly a ker-
nel thread is required for each connection. Pai et al. [18], refer
to shared-memory thread-per-connection servers (multiple threads
within a single address space) as multi-threaded (MT) and sepa-
rate processes-per-connection servers (all threads of execution are
in different address spaces) as multi-process (MP). In architec-
tures that require a large number of threads, overhead due to thread
scheduling, context-switching, and contention for shared locks can
combine to degrade performance. In fact, architects of early sys-

tems found it necessary to restrict the number of concurrently run-
ning threads [3, 12]. Restricting the number of threads means either
restricting the number of simultaneous connections (in a thread-
per-connection server) or multiplexing multiple connections within
each thread.

The Single Process Event-Driven (SPED) [18] architecture mul-
tiplexes all connections within a single process by putting all sock-
ets into non-blocking mode, and only issuing system calls on those
sockets that are ready for processing. An event notification mecha-
nism such asselect, poll, epoll, orkqueue is used to iden-
tify those sockets that are currently readable or writable. For each
such socket, the server invokes an appropriate event-handler to pro-
cess the request without causing the server to block. The SPED
architecture leverages operating system support for non-blocking
socket I/O. However, the SPED architecture makes no provisions
for dealing with blocking file I/O operations. Therefore, alternative
server architectures are required for workloads that induce blocking
due to disk activity.

In this paper, we introduce the SYmmetric Multi-Process Event-
Driven (SYMPED) architecture (see Section 5.1), which extends
the SPED model by employing multiple processes each of which
acts as a SPED server to mitigate blocking file I/O operations and
to utilize multiple processors. The SYMPED model relies on the
operating system to context switch from a process that blocks to a
process that is ready to run.

The Flash server implements the Asymmetric Multi-Process
Event-Driven (AMPED) [18] architecture, combining the event-
driven approach of SPED with helper processes dedicated to per-
forming potentially blocking file system operations. In this archi-
tecture, a single event-driven process delegates all file system I/O
to helper processes, which invoke the potentially blocking opera-
tion. Processes may or may not share address spaces. Like the
SYMPED architecture, the AMPED model relies on the operating
system for all process scheduling. One potential drawback of the
AMPED approach is the coordination and communication required
between the SPED server and its helper processes.

In order to directly compare the performance of different server
architectures Pai et al. [18] implemented several different architec-
tures within the Flash server. They demonstrate that a SPED server
outperforms threaded servers on in-memory workloads, and the
AMPED server matches or exceeds the performance of a thread-
per-connection server on disk-bound workloads.

The Staged Event-Driven Architecture (SEDA) [24] consists of a
network of event-driven stages connected by explicit queues. Each
SEDA stage uses a thread pool to process events entering that stage.
SEDA allows stages to have private thread pools or to share thread
pools among stages. The size of each stage’s thread pool is gov-
erned by an application-specific resource controller, and threads
are used to handle blocking I/O operations and to utilize CPUs in
a multiprocessor environment. While SEDA does not use a sepa-
rate thread for each connection, concurrency still requires the use
of (possibly large) thread pools.

Recent work by von Behren et al. [22] argues that many of the
observed weaknesses of threads are due to poorly implemented
user-level threading libraries, and are not inherent to the threading
model. As evidence, the authors present experiments comparing
the Knot and Haboob web servers. Knot is a thread-per-connection
server written in C, using the lightweight, cooperatively scheduled
user-level threads provided by the Capriccio threading library. Ha-
boob is a SEDA-based server written in Java. Each of Haboob’s
SEDA stages contains a thread pool and application logic respon-
sible for handling a portion of the processing required to handle an
HTTP request.

Based on an experimental comparison of Knot and Haboob, von
Behren et al. conclude that threaded servers can match or exceed
the performance of event-driven servers. However, they also ob-
serve that Haboob context switches more than 30,000 times per
second under their workloads [22]. They point out that this be-
haviour is partly due to the context switching required when events
pass from one SEDA stage to another. Other studies have com-
pared the performance of different servers with Haboob and shown
the performance of Haboob is significantly lower than current state-
of-the-art servers [6, 19].

In this paper we experimentally evaluate, analyze and compare
the performance of three different server architectures: an event-
driven SYMPED (using theµserver), thread-per-connection (using
Knot) and a SEDA inspired pipeline-based architecture (using Wat-
Pipe).

3. METHODOLOGY
We now describe the hardware and software environments used

to conduct the experiments described in the remainder of the paper.

3.1 Environment
Our experimental environment consists of four client machines

and a single server. The client machines each contain two 2.8 GHz
Xeon CPUs, 1 GB of RAM, a 10,000 rpm SCSI disk, and four
one-gigabit Ethernet cards. They run a 2.6.11-1 SMP Linux kernel
which permits each client load-generator to run on a separate CPU.
The server is identical to the client machines except that it contains
2 GB of memory and a single 3.06 GHz Xeon CPU. For all exper-
iments the server runs a 2.6.16-18 Linux kernel in uni-processor
mode. A server with a single CPU was chosen because Capriccio
does not implement support [23] for multiprocessors.

The server and client machines are connected via multiple 24-
port gigabit switches. On each client machine two CPUs are used to
run two copies of the workload generator. Each copy of the work-
load generator uses a different network interface and simulates mul-
tiple users who are sending requests to and getting responses from
the web server. The clients, server, network interfaces and switches
have been sufficiently provisioned to ensure that the network and
clients are not the bottleneck.

3.2 Workload
Our HTTP workload is based on the static portion of the widely

used SPECweb99 [21] benchmarking suite. However, we address
two notable problems with the SPECweb99 load-generator. The
first problem is that theclosed-loopSPECweb99 load-generator
does not generate overload conditions because it only sends a
new request after the server has replied to its previous request.
Banga et al. [2] show this simple load-generation scheme causes the
client’s request rate to be throttled by the speed of the server, which
is especially a problem when studying servers that are meant to be
subjected to overload. The second problem is that the SPECweb99
load-generator does not adequately model user think-times, web-
browser processing-times, or network delays. Instead new requests
are initiated immediately after the response to the previous request.

The first problem is addressed by usinghttperf [16] and its sup-
port for session log files to create apartially-open loop system[20].
This permits us to produce representative workloads because re-
quests are generated by new arrivals and by multiple requests from
persistent HTTP/1.1 connections. Additionally, overload condi-
tions are generated by implementing connection timeouts. In our
experiments, the client-side timeout is 15 seconds for each request.

The second problem is addressed by including periods of inac-
tivity in our HTTP traces. Barford and Crovella [4] have developed

probability distributions to model both “inactive” and “active” off-
periods. Inactive off-periods model the time between requests initi-
ated by the user, which includes time spent reading a web page, as
well as any other delays occurring between user requests. Active
off-periods model the time between requests initiated by the web
browser, which includes time spent parsing the initial page, sub-
sequently sending requests to fetch objects embedded within that
page, and waiting for the responses to such requests. Barford and
Crovella observe that inactive off-periods (user think-times) follow
a Pareto probability distribution, while active off-periods (browser
think-times and delays) follow a Weibull distribution.

Recent work [13] measured browser think-times using modern
Internet browsers on both Windows and Linux. Although the
methodologies used are quite different, the resulting models for
think-times are quite similar. Based on the observations made in
these previous studies we chose an inactive off-period of 3.0 sec-
onds and an active off-period of 0.343 seconds. Note that under our
workload both the active and inactive off-periods take into account
a notion of delays that can occur when communicating between a
client and a server, including effects of wide area network (WAN)
traffic.

Our SPECweb99 file-set contains 24,480 files, totalling 3.2 GB
of disk space. This size matches the file set used in previous
work [23], which concluded thread-per-connection servers match
or exceed the performance of event-based servers. Our HTTP
traces, though synthetic, accurately recreate the file classes, access
patterns (i.e., a Zipf distribution), and number of requests issued per
(HTTP 1.1) persistent connection that are used in the static portion
of SPECweb99.

3.3 Tuning
Each server architecture has a number of static configuration pa-

rameters that can affect its performance with respect to different
workloads. Tuning involves running experiments to measure the
performance of each server as the tuning parameters are varied. In
tuning the performance of each server for the workload used in this
study, our methodology was to start by choosing a range of connec-
tions and kernel-level worker threads or processes and then to pro-
duce the matrix containing the cross product of these two ranges.
In the case of tuning Knot with application-level caching a third
dimension, cache size, was also included. The original ranges were
chosen to be sufficiently wide that the extremes would result in poor
performance and that the sweet spot would be covered somewhere
within the original matrix. The results of runs using the original
matrix were then analyzed and used to create a more fine-grained
matrix, which was then used to better determine the combination
of parameters that resulted in the best performance. In some cases
further refinements were made to the fine-grained matrix and extra
experiments were run to help provide insights into the behaviour
of the different architectures. Each experiment requires between 2
and 8 minutes to run (depending on the rate at which requests were
being issued) with 2 minutes idle time being used between exper-
iments to ensure that all timed wait states would have a chance to
clear. As a result, 30-75 minutes were required to produce a single
line on a graph plotting multiple rates. Because of the time required
to tune each server, our experiments in this paper are restricted to
a single workload. In the future we hope to study alternative work-
loads.

Note that we only show a small subset of the experiments con-
ducted during this study. They have been chosen to illustrate some
of the issues that need to be considered when tuning these servers
and to show the best performance tunings for each server.

3.4 Verification
Prior to running a full slate of experiments, a correctness test

was conducted with each server to ensure that they were respond-
ing with the correct bytes for each request. In addition, it is im-
portant to verify that each server and each different configuration
of the servers, successfully processes the given workload in a way
that permits fair comparisons. Our SPECweb99-like workload uses
a set of files with 36 different sizes, ranging from 102 to 921,600
bytes. Because some servers might obtain higher throughput or
lower response times by not properly handling files of all sizes, we
check if all file sizes are serviced equally. Client timeouts are per-
mitted across all file sizes; however, the verification ensures that if
timeouts occur, all file sizes timeout with approximately the same
frequency (no single timeout percentage can be 2% larger than the
mean). We also check that the maximum timeout percentage is
≤ 10%. An additional criteria is that no individual client experi-
ences a disproportionate number of timeouts (i.e., timeout percent-
ages for each file size are≤ 5%). This check is similar in nature
to that performed in SPECweb99 to verify that approximately the
same quality of service is afforded to files of different sizes. Re-
sults are only included for experiments that pass verification for all
request rates. In instances where verification did not pass, it was
most often due to servers not being able to respond to requests for
large files prior to the client timing out. This simulates a user get-
ting frustrated while waiting for a page and stopping the request
and browsers that have built-in timeout periods.

4. KNOT
In this section, the Capriccio threading library and the Knot web

server are described, followed by a description of our modifications
to Capriccio and Knot to support thesendfile system call. We
then explore the impact of key performance parameters on three
different versions of Knot: one using application-level caching (as
in the original version) and two using different approaches to im-
plementingsendfile. In the process, we demonstrate that both
Knot and Capriccio are properly tuned for our workload. This tun-
ing is a necessary precondition for a fair comparison of Knot, the
µserver, and WatPipe in Section 7.

4.1 Capriccio Threading Library
Capriccio provides a scalable, cooperatively scheduled, user-

level threading package for use with high concurrency servers. Pre-
vious work [23] has established that Capriccio scales to large num-
bers of threads with lower overheads than other Linux threading
packages. As a result, Capriccio represents the state-of-the-art in
Linux threading packages.

In Capriccio, multiple user-level threads are layered over a sin-
gle kernel thread. By default, all sockets are set to non-blocking
mode. Non-blocking socket I/O is performed by a scheduler thread
executing on the same kernel thread as the user-level threads. Disk
I/O is performed by handing off system calls that access the file
system to auxiliary kernel-threads called worker threads. Capric-
cio carefully controls how system calls involving I/O are invoked
by providing wrappers for most system calls that do socket or disk
I/O.

For socket I/O, the user-level thread, via the system-call wrapper,
attempts the system call in non-blocking mode. If the call com-
pletes successfully, the requesting thread continues. However, if
the call returnsEWOULDBLOCK, an I/O request structure is created
and queued for processing and the socket descriptor is added to a
poll interest set. The scheduler thread periodically invokes the
poll system call to determine if the socket is readable or writable.
Whenpoll indicates that the socket is readable or writable, the

system call is repeated and the requesting thread is then returned
to the scheduler’s ready list. All of our Knot experiments use the
widely supportedpoll interface becauseepoll is only available
in Linux systems and Capriccio’s support for Linux’sepoll inter-
face is incomplete (the Capriccio paper reports that only the micro-
benchmarks were run usingepoll and that they experienced prob-
lems usingepollwith Knot). Additionally, as shown in Section 7,
the overheads incurred due topoll are small for well tuned servers
and are in line with thepoll or select overheads incurred by
the other servers.

For disk I/O, an I/O request structure is created and queued
for processing. Capriccio uses worker threads which periodically
check for and perform the potentially blocking queued disk I/O re-
quests. When a request is found, it is dequeued and the system
call is performed by the worker thread on behalf of the user-level
thread. As a result, calls block only the worker threads and the op-
erating system will context switch from the blocked kernel thread
to another kernel thread that is ready to run. When the disk opera-
tion completes, the worker thread is then scheduled by the kernel,
the system call completes, and the requesting user-level thread is
returned to the user-level thread scheduler’s ready list.

4.2 Knot Server
The Knot server associates each HTTP connection with a sep-

arate Capriccio thread, creating a thread-per-connection server.
Threads can be statically pre-forked, as part of the server’s initial-
ization, or dynamically forked when a new connection is accepted.
Previous research [22, 5] reports that statically pre-forking threads
results in better performance. As a result, pre-forked threads are
used in our Knot experiments.

When threads are pre-forked, each thread executes a continuous
loop that accepts a client connection, reads an HTTP request, and
processes the request to completion before reading the next request
from that client. Once all requests from a client are processed, the
connection is closed and the loop is repeated. In Knot, the number
of user-level threads places a limit on the number of simultaneous
connections the server can accommodate. As a result, workloads
that require large numbers of simultaneous connections require the
server to scale to large numbers of threads. However, the need for a
high degree of concurrency must be balanced against the resources
consumed by additional threads. We explore this balance by tuning
the number of threads used by Knot to match our workload.

Knot uses an application-level cache that stores HTTP headers
and files in user-space buffers. An HTTP request causes an HTTP
header to be created and data to be read into the cache buffers, if not
already there. Then, thewrite system call is used to send these
buffers to the client. However, thewrite call requires the buffer
to be copied into the kernel’s address space before the data can be
transmitted to the client.

Intuitively, storing more files in the application-level cache re-
duces disk reads. However, a larger application-level file-cache
can result in contention for physical memory. Thus, we explore
the influence of application-level cache sizes on the performance
of Knot.

4.3 Modifying Knot
Several changes were made to both Capriccio and Knot. First,

Knot’s cache was modified so it no longer stores the contents of
files in application-level buffers. Instead, the cache stores only
HTTP headers and open file descriptors. This change was made
in preparation for subsequent changes that allow Knot to use the
zero-copysendfile system call. Second, the hash function used
in the caching subsystem was changed (in all versions of Knot) to

a hash function taken from theµserver. This function is less sensi-
tive to similarities in URIs present in our workloads, and the use of
a common hash-function eliminates performance differences that
might otherwise be caused by difference in the behaviour of the
application’s cache. Third, Capriccio and Knot were modified to
support thesendfile system call. This step was taken for three
reasons: 1) it allows Knot to take advantage of zero-copy socket I/O
when writing replies, eliminating expensive copying between the
application and the kernel, 2) it reduces the server’s memory foot-
print by relying only on the file system to cache files, 3) it is viewed
as part of the best-practices deployed by modern servers and allows
for a fair comparison against theµserver and WatPipe, which can
both usesendfile for sending data to clients. Since all servers
used in this study can take advantage of zero-copysendfile and
leverage the file system cache, there are no performance differences
due to data-copying, application-level cache misses, or memory
consumption that can be caused by difference in application-level
caching implementations.

Three different approaches to addingsendfile support to
Capriccio were considered. In each case, asendfile wrapper
was created that is structurally identical to Capriccio’s existing disk
I/O wrappers, and each implementation required additional Capric-
cio changes (becausesendfile could potentially block on socket
I/O or disk I/O). As a result, Knot uses the same application-level
code in each case. At a high-level, the three different approaches
can be divided into two categories, based on whether or not the
socket is innon-blockingor blockingmode.

For thenon-blocking sendfileimplementation, two implementa-
tions were tried. The first implementation leaves the socket in non-
blocking mode. The application-level call tosendfile invokes
a wrapper that adds the socket to the poll interest set, suspends
the user-level thread and context switches to the scheduler thread.
When a subsequent call topoll by the scheduler thread indicates
that the socket is writable, the actualsendfile system call is
performed by a worker thread. The worker thread only blocks if
disk I/O is required. However, if the file’s blocks are present in the
file system cache, no disk I/O is required. Data is transmitted on
the outgoing socket until either the socket blocks or the operation
completes. In either case, the system call returns and the user-level
thread is returned to the scheduler’s list of ready threads. When the
user-level thread restarts in the wrapper, the result from the worker
thread is returned to the application, which either makes additional
sendfile calls if all the bytes are not sent, retries the call, or fails
with an error. Under some conditions, this version is susceptible to
quite high polling overhead. Hence, all of the results reported use
our second non-blocking implementation.

The second implementation leaves the socket in non-blocking
mode. The application-level call tosendfile invokes a wrap-
per that adds the request to the worker-thread queue, suspends
the user-level thread, and context switches to the scheduler thread.
The actualsendfile system call is performed in Capriccio by a
worker thread on behalf of the user-level thread. If the call suc-
cessfully sends any portion of the data, the user-level thread is re-
turned to the scheduler’s ready queue. When the user-level thread
restarts, the application examines the number of bytes sent, and
decides if additionalsendfile calls are needed. If the system
call is unable to write data to the socket without blocking,errno
is set toEWOULDBLOCK, and the worker thread blocks by calling
poll on that socket, with a one second timeout. The timeout pre-
vents the worker thread from being blocked for extended periods
of time waiting for the socket to become ready. When the socket
becomes writable or one second has elapsed, the worker thread un-
blocks. If the socket becomes writable before the timeout, another

sendfile call is performed and the result of thesendfile is
returned. If thepoll call times out,EWOULDBLOCK is returned.
In both cases, the user-level thread is returned to the scheduler’s
ready queue. When the user-level thread restarts, the application
examines the result and either makes additionalsendfile calls
if necessary, retries the call, or fails with an error.

For theblocking-sendfileimplementation, the application-level
call to sendfile invokes a wrapper, which sets the socket to
blocking mode, adds the request to the worker-thread queue, sus-
pends the user-level thread, and context switches to the sched-
uler thread. The actualsendfile system call is performed by
a worker thread. If thesendfile call blocks on either socket or
disk I/O, the worker thread blocks until the call completes. As a
result, only onesendfile call is required to write an entire file.
Once the call completes, the associated user-level thread is returned
to the scheduler’s ready queue. When the user-level thread restarts,
the application only needs to check for errors.

We modified Knot to make use of the new Capricciosendfile
wrapper for writing the file portion of HTTP replies and tuned the
number of user-level threads and worker threads for each of the
sendfile implementations.

4.4 Tuning Knot
To tune the three versions of the Knot server, called knot-c

(application-level caching), knot-nb (non-blockingsendfile)
and knot-b (blockingsendfile), an extensive set of experiments
were run for each version varying the independent parameters:
cache size for knot-c, number of threads (i.e., maximum simultane-
ous connections), and number of workers. In general, only a small
subset of our experimental results are presented in order to illus-
trate some of the tradeoffs in tuning a thread-per-connection server
like Knot.

Figure 1 shows how varying the cache-size parameter affects
throughput for the application-level caching version of Knot (knot-
c). A legend label, such asknot-c-20K-100w-1000MB, means
20,000 threads (20K), 100 workers (100w), and a 1000 MB cache
(1000MB) were used. All graphs follow a similar labelling con-
vention. Our tuning experiments found that 20,000 threads, 100
workers and a 1000 MB cache was one configuration that produced
the best performance for knot-c, so we concentrate on how varying
the cache size changes performance while maintaining the same
number of threads and workers. The question of how the num-
ber of threads and workers affect performance is explored in other
server configurations. The graph shows throughput is relatively in-
sensitive to the size of the application-level cache in the range 100
to 1000 MB, with performance rising to a sustained level close to
1100 Mbps with a peak of 1085 Mbps for configurationknot-c-
20K-100w-1000MB. Only when a very small cache size (e.g., 10
MB) is used does throughput begin to degrade. As shown in up-
coming experiments, the performance of knot-c turns out to be rel-
atively good even with considerable amounts of data copying re-
quired to move data between the application-level cache and the
kernel.

Figure 2 shows how varying the number of user-level and worker
threads affects throughput for the non-blockingsendfile ver-
sion of Knot (knot-nb). With respect to the number of threads,
the graph shows that too few threads hinders performance. With
10,000 (or fewer) threads and any number of workers, throughput
never exceeded 930 Mbps. In this case, performance for knot-nb
is limited because it is not supporting a sufficiently large number
of simultaneous connections. As will be seen in subsequent exper-
iments with all other servers, their performance is also limited to
around 930 Mbps when the number of simultaneous connections is

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 0 5000 10000 15000 20000 25000 30000

M
b

p
s

Requests/s

knot-c-20K-100w-1000MB
knot-c-20K-100w-500MB
knot-c-20K-100w-100MB

knot-c-20K-100w-10MB

Figure 1: Tuning Knot – application-level caching

capped at 10,000.

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 0 5000 10000 15000 20000 25000 30000

M
b

p
s

Requests/s

knot-nb-20K-50w
knot-nb-15K-50w
knot-nb-15K-25w

knot-nb-15K-5w
knot-nb-10K-25w

knot-nb-10K-5w

Figure 2: Tuning Knot – non-blocking sendfile

Increasing the number of threads to 15,000 while using 5 work-
ers (knot-nb-15K-5w) results in an increase in peak performance at
a request rate of 10,000 requests per second but performance drops
as the request rate is increased. By increasing the number of work-
ers to 25 performance improves substantially. No significant per-
formance improvements were realized by increasing the number of
threads or workers above 15,000 threads and 25 workers, indicating
this server implementation has reached its maximum capacity for
this workload (a sustained throughput of 1165 Mbps with a peak of
1200 Mbps).

Figure 3 shows how varying the number of user-level and worker
threads affects throughput for the blockingsendfile version of
Knot (knot-b). With respect to the number of threads, the graph
shows that too few threads hinders performance. Again, with
10,000 (or less) threads and any number of workers, throughput is
in most cases around 930 Mbps and never exceeds 960 Mbps. By
increasing the maximum number of connections performance im-
proves to a sustained level above 1200 Mbps with a peak of 1230
Mbps usingknot-b-20K-100w.

For all Knot servers, it is crucial to match the number of threads
and workers to achieve good performance. This effect is illus-
trated in knot-nb by a performance drop after the peak forknot-
nb-15K-5wbecause there are insufficient worker threads to support
the demands of the 15,000 user-level threads. Theknot-b-20K-50w

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 0 5000 10000 15000 20000 25000 30000

M
b

p
s

Requests/s

knot-b-20K-100w
knot-b-20K-50w
knot-b-40K-50w

knot-b-10K-100w
knot-b-10K-50w

Figure 3: Tuning Knot – blocking sendfile

configuration has the same problem. Comparing the performance
of configurationsknot-b-20K-50wandknot-b-40K-50w, the perfor-
mance degradation due to the lack of sufficient worker threads is
even more pronounced in theknot-b-40K-50wcase. A consequence
of not having enough worker threads is that the poll set becomes
large, significantly increasing the cost of apoll call. Knot-b is
examined in detail to illustrate this point.

Statistics collected in the server show the number of calls to poll
do not increase significantly as the request rates increase. How-
ever, the poll overheads forknot-b-20K-50ware 8%, 15% and 22%
at request rates of 12,000, 25,000 and 30,000, respectively. The in-
crease is even greater in theknot-b-40K-50wcase, with poll over-
heads of 8%, 25% and 29% at request rates of 12,000, 25,000 and
30,000, respectively. The cause of this overhead is an increase in
the average number of file descriptors (fds) in the poll set. In these
two configurations the average number of fds is just under 100 for
request rates of 15,000 requests per second. With 20,000 connec-
tions this increases to 243 and 432 and with 40,000 connections this
increases to 459 and 609 at 25,000 and 30,000 requests per second,
respectively. Because each file descriptor must be checked to see if
there are events of interest available, the time spent in poll increases
as the number of fds of interest increases. Increasing the number
of workers from 50 to 100 is sufficient to support the number of
threads and eliminates the dramatic decline in throughput as the
request rate increases. With 20,000 threads and 100 workers (knot-
b-20K-100w) a sustained throughput above 1200 Mbps is reached
for the higher request rates. In this case, poll overhead is 8%, 6%
and 5% at request rates of 12,000, 25,000 and 30,000, respectively.

5. THE µSERVER
The µserver can function as either a single process event-

driven (SPED) server, a symmetric multiple process event-driven
(SYMPED) server, or a shared symmetric multiple process event-
driven (shared-SYMPED) server.

5.1 SYMPED Architecture
The µserver uses an event notification mechanism such as

select, poll, or epoll to obtain events of interest from the
operating system. These events typically indicate that a particular
socket is readable or writable, or that there are pending connections
on the listening socket. For each such event, theµserver invokes an
event-handler that processes the event using non-blocking socket
I/O. Once all events have been processed, theµserver retrieves a
new batch of events and repeats the cycle.

In SYMPED mode, theµserver consists of multiple SPED pro-
cesses. Each process is a fully functional web server that accepts
new connections, reads HTTP requests, and writes HTTP replies.
However, when one SPED process blocks due to disk I/O, the oper-
ating system context switches to another SPED process that is ready
to run. This approach allows a high-performance SPED server to
be used in environments where a single copy of the server blocks
due to disk I/O. In our implementation, with the exception of shar-
ing common listening sockets, all SPED processes are completely
independent. As a result no coordination or synchronization is re-
quired among processes. Currently the number of SPED processes
is specified as a command-line parameter, although we plan to im-
plement dynamic tuning of this parameter in the near future.

The SYMPED model is similar to what has been previously de-
scribed as theN -copy approach [25]. TheN -copy model was used
and evaluated as a means of enabling a SPED web server to lever-
age multiple CPUs in a multi-processor environment. The name is
derived from the fact that on a host withN processors,N copies of
a SPED web server are run. In the experiments conducted by Zel-
dovich et al. [25], they configured each copy to handle connections
on a different port. Their experimental evaluation showed that this
approach is highly effective in environments where communication
is not required among the different copies of the web server. Uti-
lizing the N -copy approach in production environments requires
some method for efficiently multiplexing clients to different ports
in a fashion that balances the load across allN copies.

Unlike theN -copy model, the SYMPED architecture allows all
processes to share listening sockets by having the main server pro-
cess calllisten before creating (forking) multiple copies of the
server. This permits the use of standard port numbers and obvi-
ates the need for port demultiplexing and load balancing. We be-
lieve that the SYMPED model is beneficial for both ensuring that
progress can be made when one copy of the SPED server blocks
due to disk I/O and for effectively utilizing multiple processors.
Our results in this paper demonstrate that on a single CPU, with a
workload that causes a single SPED server to block, a SYMPED
server can fully and efficiently utilize the CPU.

In contrast with Knot (knot-c), theµserver is able to take advan-
tage of zero-copysendfile, and only caches HTTP headers and
open file descriptors. As a result, there was no need for immediate
modifications to theµserver code base.

5.2 Shared-SYMPED Architecture
While it was easy to convert our SPED server into a SYMPED

server, this results in several processes each executing in their own
address space. The advantage of this approach is that these pro-
cesses execute independently of each other. The drawback is that
each process maintains its own copy of the cache of open file de-
scriptors and result headers, resulting in increased memory con-
sumption and a possibly large number of open file descriptors. For
example, with 25,000 open files in the cache and 200 SPED pro-
cesses, the server requires 5,000,000 file descriptors to keep a cache
of open files. Because this resource requirement could put a strain
on the operating system when large numbers of processes are re-
quired, we implemented a shared SYMPED architecture in which
each SYMPED server is augmented with shared-memory to store
the shared cache of open file descriptors and result headers. These
modifications were relatively straightforward usingmmap to share
application-level cache memory,clone to share a single open file
table among processes and a futex [10] to provide mutually exclu-
sive access to the shared cache. This approach significantly reduces
the total number of required open file descriptors and also reduce
the memory footprint of eachµserver process.

5.3 Tuning theµserver
The mainµserver parameters of interest for this workload are the

number of SPED processes being run and the maximum number of
simultaneous connections allowed per process (max-conn parame-
ter). Both parameters were independently tuned. Additionally, we
were interested to see how a version using blocking socket I/O calls
would perform against the blocking-sendfile version of Knot. Fig-
ures 4 and 5 present results from several of the more interesting
experiments.

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 0 5000 10000 15000 20000 25000 30000

M
b

p
s

Requests/s

userver-nb-30K-4p
userver-nb-30K-3p
userver-nb-30K-2p
userver-nb-30K-1p
userver-nb-10K-1p
userver-nb-10K-2p

Figure 4: Tuning theµserver – non-blocking sendfile

Figure 4 shows how theµserver’s throughput changes as the
number of connections and SPED processes is increased. In these
experiments, all socket I/O is non-blocking and the maximum con-
nections permitted (max-conn value) is 10,000 or 30,000. Figure
4 also shows the throughputs obtained with 1, 2, 3, and 4 pro-
cesses. For example, the line labelleduserver-nb-30K-3prepre-
sents theµserver being run with a maximum of 30,000 concurrent
connections across 3 server processes (i.e., 10,000 connectionsper
process) and the line labelleduserver-nb-10K-2puses 10,000 con-
nections across 2 processes (i.e., 5,000 connections per process).
Other configurations are labelled similarly. In practice, the actual
connection count may be lower than the upper bound set by the
max-conn value. The results in Figure 4 again demonstrate the im-
portance of supporting a sufficiently large number of concurrent
connections. It also shows that a sufficient number of symmetric
server processes must be used to ensure they are not all blocked
waiting on I/O.

The better performing 30,000 connection cases are discussed
first. The results from theuserver-nb-30K-1panduserver-nb-30K-
2p configurations show how the extra server process boosts peak
throughput by 38% at 15,000 requests per second and by 47% at
30,000 requests per second. The key to this increase lies in the
reduction of I/O waiting times. With a single process (userver-nb-
30K-1p), under a load of 15,000 requests per second, the processor
is idle for 33% of the time while theµserver is blocked waiting for
I/O requests to complete. Because there is no other server process
to run, this essentially robs the server of 33% of its execution time.
However, adding a second process lowers CPU waiting time to 8%,
which leads to the aforementioned increases in throughput.

A subsequent increase to the number of SPED processes contin-
ues to improve performance. With 3 server processes, theµserver
spends just 5% of the CPU time waiting for I/O, and with 4 server
processes waiting time is reduced to 4%. However, at this point
adding more processes does not improve performance (experiments
not shown). For this workload, relatively few processes are needed

to ensure the server is able to continue to make progress because
many requests are serviced without requiring blocking disk I/O
(they are found in the file system cache). Recall that the file set
is not that large (3.2 GB) relative to the amount of memory in the
system (2.0 GB) and because file references follow a Zipf distribu-
tion [21] most of the requests are for a small number of files.

The poorer performing 10,000 connections cases are included to
illustrate that the small number of connections limits the through-
put of theµserver just as is the case for knot-nb and knot-b (see
Figures 2 and 3). It is also interesting to see that when compar-
ing userver-nb-10K-1panduserver-nb-10K-2pthe addition of one
more process actually slightly degrades performance. In fact, con-
tinuing to add more processes (results not shown) continues to de-
grade performance due to significant increases inpoll overhead.
As the number of processes is increased, the number of connec-
tions managed by each process decreases. As a result for each call
to poll fewer file descriptors are returned, which both decreases
the amount of processing done between calls topoll and increases
the number of calls topoll. The results shown in this figure again
emphasize the fact that the number of connections and processes
significantly affects performance and that they must be properly
tuned.

Figure 5 shows the results of several interesting experiments with
the µserver using blocking sockets forsendfile calls. Note,
more processes are required to handle the same workload (75 to
200 compared with 3 or 4 in the non-blocking case) because calls
to sendfile can now block due to file-system cache misses and
because socket buffers are full.

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 0 5000 10000 15000 20000 25000 30000

M
b

p
s

Requests/s

userver-b-30K-100p
userver-b-50K-200p
userver-b-50K-100p
userver-b-30K-75p

userver-b-30K-200p
userver-b-50K-75p

Figure 5: Tuning theµserver – blocking sendfile

Figure 5 shows the important interplay between the number of
simultaneous connections and the number of processes. Compar-
ing configurationsuserver-b-30K-75panduserver-b-50K-75pwith
75 processes, performance is significantly better with 30,000 con-
nections than with 50,000 connections. In this case, 50,000 con-
nections is too many for the 75 processes to handle. Increasing the
number of processes to 100 increases throughput for both 30,000
and 50,000 connections (userver-b-30K-100panduserver-b-50K-
100p), which indicates 75 processes is insufficient in both cases. In-
creasing the number of processes in the 30,000 connections case to
200 actually hurts throughput (userver-b-30K-200p). In this case,
there are now too many processes for the number of connections
and the extra processes consume resources (e.g., memory) with-
out providing additional benefits. However, increasing the num-
ber of processes to 200 in the 50,000 connections case provides
quite good throughput (userver-b-50K-200p) with throughput be-

ing close to but slightly lower than theuserver-b-30K-100pcase.
Experiments conducted with the shared-SYMPED version of the

µserver performed as well as the best performing SYMPED con-
figurations. Due to differences in tuning parameters and the lack of
memory pressure in the environment, the benefits of requiring less
memory in the shared-SYMPED case are not seen. Furthermore,
in this environment lock overhead and contention in the shared-
SYMPED case are not an issue.

6. WATPIPE SERVER
A pipeline architecture transforms the steps for processing an

HTTP request into a series of stages. These stages are typically
self-contained and linked using a communication mechanism such
as queues. Each stage is serviced by one or more threads, which
can be part of per stage or shared thread pools. The most well
known pipeline architecture is SEDA [24]. However, other types
of pipeline architecture are possible.

WatPipe is our server based on a specific pipeline architecture.
It is implemented in C++ and is built from theµserver source, so
much of the code base is the same or similar; however, the compo-
nents are restructured into a pipeline architecture. While SEDA is
designed to allow for the creation of well-conditioned servers via
dynamic resource controllers, WatPipe eliminates these controllers
to simplify design while still achieving good performance. WatPipe
uses a short pipeline with only a small number of threads in each
stage. Next, it usesselect to wait for events. Rather than us-
ing explicit event queues, each stage maintains its own read and/or
write fd sets. Periodically, the stages synchronize and merge
their respectivefd sets. The idea is for each stage to perform a
batch of work and then to synchronize with the next stage. Finally,
Pthreads are used to create multiple threads within the same ad-
dress space. WatPipe relies on Pthread’s use of kernel threads, so
each thread may block for system calls; hence, no wrapping of sys-
tem calls is necessary. Like theµserver, WatPipe takes advantage
of zero-copysendfile and uses the same code as theµserver to
cache HTTP reply-headers and open-file descriptors. As well, only
a non-blockingsendfile version is implemented.

In contrast, SEDA and Haboob are implemented in Java. Haboob
has a longer pipeline and utilizes dynamic resource controllers to
perform admission control to overloaded stages. We believe Wat-
Pipe’s careful batching of events and shortened pipeline should lead
to fewer context switches. Specifically, the implementation con-
sists of 4 stages. The first 3 stages have one thread each, simplify-
ing these stages as there is no concurrency within a stage, and stage
4 has a variable number of threads. Synchronization and mutual ex-
clusion is required when communicating between stages and when
accessing global data (e.g., the open file descriptors cache). Stage
1 accepts connections and passes newly accepted connections to
stage 2. Stage 2 usesselect to determine which active connec-
tions can be read and then performs reads on these connections.
Valid requests are passed to stage 3. Stage 3 usesselect to de-
termine which connections are available for writing. Once stage 3
determines the connections that can be written, the threads in stage
4 perform the actual writes. Stage 3 and stage 4 are synchronized
so only one stage is active at a time. Becausesendfile is non-
blocking, an fd may cycle between stages 3 and 4 until all bytes are
written. After all the data is written, the connection is passed back
to stage 2 to handle the next request, if necessary. Having multiple
threads performing the writing allows processing to continue even
when a thread is blocked waiting for disk I/O to occur.

6.1 Tuning WatPipe
The main WatPipe parameters of interest for this workload are

the number of writer threads in stage 4 and the maximum number
of simultaneous connections allowed (max-conn parameter). Both
parameters were independently tuned.

Figure 6 shows how WatPipe’s throughput changes as the num-
ber of connections and writer threads are varied. The bottom two
lines show the results obtained with a maximum of 10,000 con-
current connections, while varying the number of writer threads.
The top three lines show the results obtained with a maximum of
20,000 concurrent connections, while varying the number of writer
threads.

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 0 5000 10000 15000 20000 25000 30000

M
b

p
s

Requests/s

WatPipe-20K-50p
WatPipe-20K-25p
WatPipe-20K-5p

WatPipe-10K-25p
WatPipe-10K-5p

Figure 6: Tuning WatPipe

For this workload, 10,000 connections is insufficient. With 5
writer threads, increasing the number of connections from 10,000
to 20,000 boosts peak throughput by 33% at 15,000 requests per
second and by 38% at 30,000 requests per second. However, in-
creasing the number of connections above 20,000 did not result in
further improvements (experiments not shown). Experiments were
run for connections greater than 20,000; however, these experi-
ments either did not improve performance or failed verification.
Hence, adding further connections does not help as time is spent
working on connections that eventually timeout.

The number of writer threads in stage 4 was varied to test the
affect on performance. At 10,000 connections, increasing the num-
ber of threads has no affect because of the insufficient number of
connections. With more connections, increasing the number of
threads results in a performance improvement. For example, with a
maximum of 20,000 connections, increasing the number of writer
threads from 5 to 25 improves peak throughput by 12% at 15,000
requests per second and by 10% at 30,000 requests per second.
The percentage of time the CPU was idle because processes were
blocked waiting for disk I/O (as observed using vmstat) at 15,000
requests per second for 5 writer threads is 14%, and it deceases to
1% with 25 writers. This improvement is therefore attributed to the
reduction in I/O wait times by having more writer threads that are
ready to be run. However, further increasing the number of writer
threads to 50 yielded the same results. Hence, adding more threads
does not help because the I/O wait time has essentially been elimi-
nated with 25 writers.

7. SERVER COMPARISON
In this section, a comparison is made among Knot, includ-

ing both sendfile implementations, SYMPED and shared-

SYMPED versions of theµserver, and WatPipe. In comparing
these servers, special attention is paid to the tuning and configu-
ration of each server. In all comparisons, the best tuning configura-
tion for each server is used.

We have sought to eliminate the effects of confounding factors
such as caching strategies, hashing functions, event mechanisms,
or the use of zero-copysendfile. As such, all the servers except
for knot-c share similar caching strategies (caching open file de-
scriptors and HTTP headers using essentially the same code), and
all the servers use the same function for hashing URIs. In addition,
all servers use thepoll system call to obtain event notifications
from the operating system, except WatPipe (which usesselect).
All servers except knot-c also use the Linux zero-copysendfile
system call for writing the file portion of the HTTP reply.

Our previous work [5] showed that a server’s accept strategy
(the method used to determine how aggressively a server accepts
new connections) can influence performance by changing the rate
at which the server accepts new connections. Because our HTTP
workload has been designed to place high connection loads on the
server, each server’s accept strategy was chosen based on our prior
experience. Theµserver uses a strategy that repeatedly calls ac-
cept in non-blocking mode until the call fails (settingerrno to
EWOULDBLOCK). For Knot we use what is called the Knot-C con-
figuration that favours the processing of existing connections over
the accepting of new connections [22]. WatPipe uses a separate
thread in the pipeline that is dedicated to accepting new connec-
tions. Therefore, we believe the differences in performance pre-
sented here are due primarily to specific architectural efficiencies,
rather than tuning or configuration details.

Figure 7 presents the best performance tuning for each
server architecture: caching Knot (knot-c), blocking Knot
(knot-b), non-blocking Knot (knot-nb), non-blocking SYMPED
µserver (userver-nb), blocking SYMPEDµserver (userver-b), non-
blocking shared-SYMPEDµserver (userver-shared-nb), and Wat-
Pipe (WatPipe). In addition, a SPED server, which is the SYMPED
server with one process, is shown as a baseline (userver-nb-30K-
1p). The legend in Figure 7 is ordered from the best performing
server at the top to the worst at the bottom.

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 0 5000 10000 15000 20000 25000 30000

M
b

p
s

Requests/s

userver-shared-nb-30K-10p
WatPipe-20K-25p

userver-nb-30K-4p
userver-b-30K-100p

knot-b-20K-100w
knot-nb-15K-50w

knot-c-20K-100w-1GB
userver-nb-30K-1p

Figure 7: Throughput of different architectures

The top three servers have approximately equivalent perfor-
mance. The fourth server, userver-b, has the same peak at 15,000
requests per second, but its performance deteriorates somewhat af-
ter saturation (e.g., there is a 12% drop in throughput when com-
pared with userver-shared-nb at 30,000 requests). The next three
servers are knot-b, knot-nb and knot-c, with knot-b having 13%

higher throughput than knot-c and 7% higher throughput than knot-
nb at 15,000 requests per second. None of these servers achieved
the peak obtained by the top four servers. The userver-shared-nb
server provides 18% higher throughput than the best of the Knot
servers (knot-b) at 15,000 requests per second and 34% higher
throughput than knot-c at the same request rate. The worst per-
forming server is the baseline SPED server (userver-nb-30K-1p),
which shows how a single process event-driven server compares to
the more complex servers. It can also be used to gauge the intensity
of disk activity caused by the workload. Under this workload, the
SPED server is within 37% of the peak despite spending 33% of its
time blocked waiting for I/O.

In order to understand the performance differences among the
servers, in depth profiling was performed for some of the best
server configurations. In particular, each server was subjected to
a load of 12,000 requests per second, while running OProfile and
vmstat. This rate captures peak performance with OProfile over-
heads, yet ensures that all runs pass verification. OProfile performs
call analysis via sampling. Statistics are also gathered directly from
each server. The resulting data are summarized in Table 1, which
is divided into four sections.

The first section lists the architecture, configuration, reply rate,
and throughput in megabits per second for each server. Under
the architecture row (labelled “Arch”) the entry “T/Conn” refers
to a thread-per-connection architecture and “s-symped” refers to
a shared-SYMPED architecture. The second section provides a
breakdown of CPU utilization as reported by the OProfile sys-
tem profiler. OProfile produces a listing of kernel and application
functions and the percentage of CPU time spent in each function.
These functions are divided among Linux kernel (vmlinux), Eth-
ernet driver (e1000), application (user space), and C library (libc).
All remaining functions fall into the “other” category. This cate-
gory mostly represents OProfile execution. Within these categories,
each function is then assigned to one of the listed sub-categories.
Categorization is automated by generating ctags files to define the
members of each sub-category. In the user-space category, thread-
ing overhead denotes time spent in the threading library (Capric-
cio for Knot and Pthreads for WatPipe) executing code related to
scheduling, context-switching, and synchronization of user-level
threads. It also includes communication and synchronization be-
tween user and kernel threads for Knot. The event overhead refers
to the server CPU time spent managing event interest-sets, process-
ing event notifications from the operating system, and invoking ap-
propriate event handlers for each retrieved event. The application
sub-category includes the time not spent in thread and event over-
head. The third section presents data gathered by vmstat during
an experiment. The vmstat utility periodically samples the system
state and reports data at a user-configured interval, which is set to
five seconds in our experiments. A table entry is the average of the
sampled values during an experiment. The row labelled “file sys-
tem cache” gives the average size of the Linux file-system cache.
The row labelled “ctx-sw/sec” gives the average number of context
switches per second performed by the kernel. The last section con-
tains the number of user-level context switches gathered directly
from Capriccio. For each server, we discuss only the values where
there is a significant difference among the servers.

Under this workload, Knot requires a large number of user-level
threads (≥ 10,000) to achieve good performance. As a result, all
the Knot servers have an additional user-level threading overhead
(from 7% to 11%), including user-level thread management, syn-
chronization, and context switches. This overhead reduces the time
available for servicing requests. As well, all Knot servers spend
more time (2 to 4% more) in the application than the other servers.

The OProfile data for the knot-c configuration reveals large over-
heads due to kernel data copying (17.73%) and user-level thread-
ing (6.84%). Together these overheads account for 24.57% of
CPU time, reducing the time available for servicing requests. The
high data-copying overhead underscores the need for reducing data
copying between the application and the kernel. Our modifica-
tions to Capriccio and Knot to utilizesendfile virtually elimi-
nate data-copying overhead for knot-nb and knot-b. Finally, knot-c
has lower network and e1000 overhead than all the other servers
because of its reduced throughput.

The OProfile data for both knot-nb and knot-b show reduced
data-copying overhead compared with knot-c, without any increase
in the polling overhead; hence thesendfile modification does
produce an increase in throughput. Note the increase in kernel
context-switches in the knot-b case, when compared with the knot-
nb case. In the knot-b case each of the many threads performs a
blockingsendfile call resulting in a worker process potentially
blocking. However, the context switching resulting from these op-
erations seems to produce only a small increase in the scheduling
overhead (1.64% versus 0.81%).

The remaining four servers all achieve higher throughput than
Knot, independent of the their specific architecture. All of the
servers in this group have lower user-space time than the Knot
servers, mainly because they have little or no user-level threading
overhead. Instead, a small amount of event overhead appears in
the last four servers. Both userver-shared-nb and WatPipe have a
small amount of threading overhead because each requires some
synchronization to access shared data. Unfortunately, some of the
futex routines used by userver-shared-nb are inlined, and hence,
do not appear in the threading overhead; instead, these overheads
appear in “application” time.

The userver-shared-nb (“s-symped”) OProfile data does not
show any anomalies. Performance of this version is equal to the
best of all architectures and is reflected in the OProfile data.

The userver-nb OProfile data shows that polling overhead is
twice as large as the userver-b overhead. This difference appears to
be correlated to the larger size of the poll set required for userver-
nb when compared with userver-b. When blocking socket I/O is
used,sendfile only needs to be called once, and as a result, the
socket being used does not need to be in the interest set, which can
significantly reduce the size of the interest set. When comparing the
architecture of the non-blockingµservers with their blocking coun-
terparts, the non-blocking versions have the advantage of requiring
fewer processes (e.g., 10 or 4 processes versus 100) resulting in
a smaller memory footprint, which makes more memory available
for the file system cache. Specifically, the vmstat data reported in
Table 1 shows that with userver-nb the size of the file system cache
is 1,803,570 megabytes versus 1,548,183 megabytes with userver-
b. This advantage appears to have few or no implications under this
workload in our environment, however it may be an important issue
in a more memory constrained environment. As well, non-blocking
versions incur less kernel context switching overhead.

The WatPipe OProfile data does not show any anomalies. De-
spite having a radically different architecture from the SYMPED
servers, WatPipe has performance that is similar across all mea-
sured categories. However, while WatPipe does use non-blocking
sendfile, it requires 25 writer threads to achieve the same
performance as the non-blocking 10 processorµserver. We be-
lieve this results from a non-uniform distribution of requests across
writer threads in the WatPipe implementation.

We also note that both userver-b and WatPipe have a medium
number of kernel context switches. However, as is the case with
the Knot servers, these context switches do not appear to have an

Server Knot-cache Knot Knot userver userver userver WatPipe
Arch T/Conn T/Conn T/Conn s-symped symped symped SEDA-like
Write Sockets non-block non-block block non-block non-block block non-block
Max Conns 20K 15K 20K 30K 30K 30K 20K
Workers/Processes 100w 50w 100w 10p 4p 100p 25p
Other Config 1 GB cache
Reply rate 8,394 8,852 9,238 10,712 10,122 10,201 10,691
Tput (Mbps) 1,001 1,055 1,102 1,280 1,207 1,217 1,276

OPROFILE DATA
vmlinux total 68.68 62.65 63.42 67.32 69.40 68.38 67.81

networking 21.72 28.59 27.74 30.94 28.81 29.95 33.26
memory-mgmt 6.90 7.48 6.94 7.65 6.95 8.32 9.00
file system 5.17 7.42 7.55 8.22 9.32 8.18 6.65
kernel+arch 4.72 5.15 5.47 6.11 5.84 7.74 6.21
poll overhead 6.88 7.82 7.91 8.29 13.06 6.16 6.52
data copying 17.73 0.71 0.77 1.04 1.01 1.04 1.00
sched overhead 0.86 0.81 1.64 0.15 0.06 1.06 0.29
others 4.70 4.67 5.40 4.92 4.35 5.93 4.88

e1000 total 13.85 16.42 15.77 17.80 16.74 16.77 19.17
user-space total 15.17 18.56 18.38 10.22 9.54 8.42 9.24

thread overhead 6.84 10.52 10.20 0.01 0.00 0.00 2.29
event overhead 0.00 0.00 0.00 5.09 5.06 3.60 3.34
application 8.33 8.04 8.18 5.12 4.48 4.82 3.61

libc total 0.03 0.03 0.03 2.60 2.47 4.15 1.65
other total 2.27 2.34 2.40 2.06 1.85 2.28 2.13

VMSTAT DATA
file system cache 750,957 1,773,020 1,748,075 1,817,925 1,803,570 1,548,183 1,777,199
ctx-sw/sec (kernel) 1,947 5,320 8,928 330 107 4,394 1,148

SERVER STATS
ctx-sw/sec (user) 12,345 20,836 19,158 0 0 0 0

Table 1: Server performance statistics gathered under a load of 12,000 requests per second

effect on throughput.
The OProfile data shows that one configuration (userver-

symped-nb-30K-4p) incurs noticeably higherpoll overheads than
the other server configurations. Preliminary experiments with
epoll yielded throughput that is as good as but no better than
with poll, even though overheads directly attributable toepoll
were noticeably reduced. Although previous experiments have also
observed thatepoll does not necessarily provide benefits when
compared withpoll [11], it would be interesting to examine
whether or notepoll could provide benefits to the servers used
in this study.

8. RESPONSE TIMES
For completeness, response time data was collected for each

server configuration. In particular, we measured the average time
taken for a client to establish a connection, send an HTTP request,
and receive the corresponding reply. For HTTP 1.1 connections
with multiple requests, the connection time is divided among the
replies received on that connection. Figure 8 shows average re-
sponse times for all of the server configurations shown in Figure 7.

This graph shows that each server architecture performs reason-
ably with respect to mean response times. Except foruserver-nb-
30K-4p, response times are lower at lower request rates and in-
crease noticeably when the server reaches its saturation point (be-
tween 10,000 and 15,000 requests per second).

In the three cases where mean response times are higher

 0

 500

 1000

 1500

 2000

 2500

 3000

 0 5000 10000 15000 20000 25000 30000

R
es

p
o

n
se

 T
im

e
(m

se
c)

Requests/s

userver-b-30K-100p
userver-shared-nb-30K-10p

userver-nb-30K-4p
WatPipe-20K-25p
knot-b-20K-100w
knot-nb-15K-50w

knot-c-20K-100w-1GB
userver-nb-30K-1p

Figure 8: Response times of different architectures

(userver-b-30K-100p, userver-shared-nb-30K-10p, and userver-
nb-30K-4p), it is due to the larger number of simultaneous con-
nections. Each of these permits up to 30,000 connections and mul-
tiplexing across larger numbers of connections increases response
time relative to multiplexing across a smaller number of connec-
tion. Reducing the maximum number of connections to 20,000
reduces response times to those of the other server configurations;
however, this does slightly reduce throughput. With further tuning,

we might be able to obtain both high throughput and low response
times (e.g., somewhere between 20,000 and 30,000 connections).

Although theuserver-nb-30K-1ppermits a maximum of 30,000
connections, at 30,000 requests per second, a maximum of only
2,615 connections are active at one time. This is due to the sin-
gle process blocking on disk I/O and not being able to accept and
process connections at the same rate as other server configurations.
The result is lower throughput and slightly lower response times at
higher request rates than the other configurations.

9. DISCUSSION
Our findings are substantially different from the conclusions

reached in the comparison of the thread-per-connection Knot and
the SEDA-based Haboob servers [22, 23]. One of the main differ-
ences is that we use efficient, scalable, event-driven and pipeline-
based servers in our study. Theµserver is implemented in C and
features an event-driven core that when using the SYMPED or
shared-SYMPED architecture scales to large numbers of concur-
rent connections. WatPipe is implemented in C++ and its simple
hybrid design is able to keep both event and threading overheads
low while being able to service large numbers of connections. In
contrast, Haboob is implemented in Java and uses thread pools with
complex resource controllers to process SEDA events.

The workload used in this paper is also substantially different
from that used in the previous study. Our workload uses the httperf
workload generator [16] to model a partially open system [20] and
to force the server to handle overload conditions [2]. In addition,
our HTTP workload models user think-times, as well as browser
and network delays. The above factors create a workload that re-
quires the server to efficiently scale to large numbers of concurrent
connections.

We believe that there may be workloads for which thread-per-
connection servers may provide performance equal to that offered
by the other server architectures examined in this paper. An exam-
ple is a workload comprised of short lived connections (i.e., each
connection requests a small number of files with little or no delay
between requests), where the requested files are serviced from the
operating system file cache. This scenario does not require sup-
port for a large number of simultaneous connections, permitting
a thread-per-connection server to execute with a relatively small
number of threads, thus limiting overheads incurred when multi-
plexing between connections. However, on the workload used in
our experiments, which requires a server to scale to large numbers
of connections, there is a noticeable gap in performance. We also
expect that this gap may increase if the workload forces the server
to support an even larger number of simultaneous connections.

While the pros and cons of different server architectures have
been covered extensively [15, 17, 12, 18, 8, 1, 25, 22, 9, 7],
we believe that insufficient attention has been devoted to the fact
that a user-level thread library like Capriccio is built on an event-
driven foundation. As a result, the user-level thread-library in-
curs overheads that are most often only associated with event-
driven applications. The threading layer then adds overheads for
context-switching, scheduling, and synchronization. For file sys-
tem I/O, the use of kernel worker threads to perform blocking op-
erations adds further overheads for communication and synchro-
nization between user-level threads and worker threads. In thread-
per-connection servers that require lots of threads to support a large
number of simultaneous connections these overheads can be sig-
nificant. Our profiling data demonstrates that Capriccio’s threading
overheads consume 6% – 10% of available CPU time, thus ham-
pering Knot’s performance. The results obtained using theµserver
and WatPipe show that architectures that do not require one thread

for each connection do not incur such overheads, and as a result,
provide better throughput.

We believe the performance of Knot and Capriccio can be fur-
ther improved and it will be interesting to see if the current ef-
ficiencies in Capriccio can be maintained in an environment that
supports multiprocessors or if such support necessarily introduces
new inefficiencies. However, we also believe that as long as thread-
ing libraries rely on an underlying event-driven layer, the over-
head incurred due to managing both events and a large number of
threads will make it very difficult for thread-per-connection servers
to match (let alone exceed) the performance of well implemented
event-driven and pipeline-based servers under workloads that force
servers to scale to a large number of concurrent connections.

10. CONCLUSIONS
This paper presents a performance-oriented comparison of

event-driven, thread-per-connection, and hybrid pipelined server
architectures. Theµserver represents an event-driven design, the
Knot server represents a thread-per-connection design, and Wat-
Pipe represents a pipeline-based approach. Theµserver and Knot
(with the Capriccio thread library) each represent the state-of-the-
art in terms of performance in their respective categories. Because
the previously best performing implementation of a pipeline-based
architecture, Haboob, has not performed well in recent studies [23,
6, 19], we implement a simplified pipeline-based server in C++
based on theµserver.

We modify Capriccio and Knot to utilize zero-copysendfile
calls in Linux, implementing different approaches and compar-
ing their performance with the original version that does not use
sendfile but instead relies on an application-level cache im-
plemented in Knot. We observe that the approach that uses non-
blockingsendfile calls provides about 7 – 9% better through-
put than the original version which uses an application-level cache
(for request rates in the range of 12,500 to 30,000 requests per sec-
ond). The approach that uses blockingsendfile calls in Capric-
cio produces 11 – 18% higher throughput than the original ver-
sion of Knot that uses an application-level cache over the same
range of rates. Interestingly, the performance of the non-blocking
sendfile version is lower than that of the version that uses
blockingsendfile calls.

We demonstrate the importance of properly tuning each server.
For the workload used in this study, we show that a proper combina-
tion of the number of connections and kernel-level worker threads
(or processes) is required. When comparing the experimental re-
sults obtained using the best tuning for each server the experimental
results demonstrate that the event-drivenµserver and the pipeline-
based WatPipe achieve up to 18% higher throughput than the best
implementation and tuning of Knot. Our detailed analysis reveals
that Knot’s throughput is hampered by overheads in Capriccio.

In the future, we plan to carry out similar studies with workloads
that require both less and more disk activity to better understand
how the performance of these architectures might be influenced.
Ideally, this work could be done after or in conjunction with work
that enables servers to automatically and dynamically tune them-
selves to efficiently execute the offered workload. We also hope
to compare these architectures to other approaches such as Lazy
Asynchronous I/O [9], which utilizes scheduler activations to im-
prove the performance of event-driven servers under I/O intensive
workloads. Finally, we intend to explore the performance of vari-
ous server architectures using workloads containing dynamic con-
tent, and on multi-core, multi-processor hardware.

11. ACKNOWLEDGEMENTS
Funding for this project was provided by Hewlett-Packard, In-

tel, Gelato, the Natural Sciences and Engineering Research Council
of Canada, and the Ontario Research and Development Challenge
Fund. We thank Alan Cox and the anonymous reviewers for helpful
comments and suggestions on earlier versions of this paper.

12. REFERENCES
[1] A. Adya, J. Howell, M. Theimer, W. J. Bolosky, and J. R.

Douceur. Cooperative task management without manual
stack management or, event-driven programming is not the
opposite of threaded programming. InProceedings of the
2002 USENIX Annual Technical Conference, June 2002.

[2] G. Banga and P. Druschel. Measuring the capacity of a web
server. InProceedings of the USENIX Symposium on Internet
Technologies and Systems (USITS), Monterey CA, December
1997.

[3] G. Banga, J. Mogul, and P. Druschel. A scalable and explicit
event delivery mechanism for UNIX. InProceedings of the
1999 USENIX Annual Technical Conference, Monterey, CA,
June 1999.

[4] P. Barford and M. Crovella. Generating representative web
workloads for network and server performance evaluation. In
Proceedings of ACM SIGMETRICS 1998, Madison,
Wisconsin, 1998.

[5] T. Brecht, D. Pariag, and L. Gammo. accept()able strategies
for improving web server performance. InProceedings of the
2004 USENIX Annual Technical Conference, June 2004.

[6] B. Burns, K. Grimaldi, A. Kostadinov, E. Berger, and
M. Corner. Flux: A language for programming
high-performance servers. InProceedings of the 2006
USENIX Annual Technical Conference, pages 129–142,
2006.

[7] R. Cunningham and E. Kohler. Making events less slippery
with eel. In10th Workshop on Hot Topics in Operating
Systems (HotOS X), 2005.

[8] F. Dabek, N. Zeldovich, M. F. Kaashoek, D. Mazires, and
R. Morris. Event-driven programming for robust software. In
Proceedings of the 10th ACM SIGOPS European Workshop,
pages 186–189, September 2002.

[9] K. Elmeleegy, A. Chanda, A. L. Cox, and W. Zwaenepoel.
Lazy asynchronous i/o for event-driven servers. In
Proceedings of the 2004 USENIX Annual Technical
Conference, June 2004.

[10] H. Franke, R. Russell, and M. Kirkwood. Fuss, futexes and
furwocks: Fast user-level locking in linux. InOttawa Linux
Symposium, June 2002.

[11] L. Gammo, T. Brecht, A. Shukla, and D. Pariag. Comparing
and evaluating epoll, select, and poll event mechanisms. In
Proceedings of the 6th Annual Ottawa Linux Symposium,
July 2004.

[12] J. Hu, I. Pyarali, and D. Schmidt. Measuring the impact of
event dispatching and concurrency models on web server
performance over high-speed networks. InProceedings of
the 2nd Global Internet Conference. IEEE, November 1997.

[13] H. Jamjoom and K. G. Shin. Persistent dropping: An
efficient control of traffic aggregates. InProceedings of ACM
SIGCOMM 2003, Karlsruhe, Germany, August 2003.

[14] P. Joubert, R. King, R. Neves, M. Russinovich, and J. Tracey.
High-performance memory-based Web servers: Kernel and
user-space performance. InProceedings of the USENIX 2001
Annual Technical Conference, pages 175–188, 2001.

[15] H. Lauer and R. Needham. On the duality of operating
systems structures. InProceedings of the 2nd International
Symposium on Operating Systems, IRIA, October 1978.

[16] D. Mosberger and T. Jin. httperf: A tool for measuring web
server performance. InThe First Workshop on Internet
Server Performance, pages 59—67, Madison, WI, June
1998.

[17] J. Ousterhout. Why threads are a bad idea (for most
purposes), January 1996. Presentation given at the 1996
USENIX Annual Technical Conference.

[18] V. S. Pai, P. Druschel, and W. Zwaenepoel. Flash: An
efficient and portable Web server. InProceedings of the
USENIX 1999 Annual Technical Conference, Monterey, CA,
June 1999.

[19] K. Park and V. S. Pai. Connection conditioning:
Architecture-independent support for simple, robust servers.
In Network Systems Design and Implementation, 2006.

[20] B. Schroeder, A. Wierman, and M. Harchol-Balter. Closed
versus open system models: a cautionary tale. InNetwork
System Design and Implementation, 2006.

[21] Standard Performance Evaluation Corporation.SPECWeb99
Benchmark, 1999. http://www.specbench.org/osg/web99.

[22] R. von Behren, J. Condit, and E. Brewer. Why events are a
bad idea for high-concurrency servers. In9th Workshop on
Hot Topics in Operating Systems (HotOS IX), 2003.

[23] R. von Behren, J. Condit, F. Zhou, G. C. Necula, and
E. Brewer. Capriccio: Scalable threads for internet services.
In Proceedings of the 19th ACM Symposium on Operating
Systems Principles, 2003.

[24] M. Welsh, D. Culler, and E. Brewer. SEDA: An architecture
for well-conditioned, scalable Internet services. In
Proceedings of the Eighteenth Symposium on Operating
Systems Principles, Banff, Oct. 2001.

[25] N. Zeldovich, A. Yip, F. Dabek, R. T. Morris, D. Mazieres,
and F. Kaashoek. Multiprocessor support for event-driven
programs. InProceedings of the USENIX 2003 Annual
Technical Conference, June 2003.

