
Locality-Aware Request Distribution in Cluster-based Network Servers

Vivek S. Pail, Mohit Aront, Gaurav Bangat,
Michael Svendsent, Peter Druschelt, Willy Zwaenepoelt, Erich Nahumq

$ Depa,rtment of Electrical and Computer Engineering, Rice University
t Department of Computer Science, Rice University

(IBM T.J. Watson Research Center

Abstract

We consider cluster-based network servers in which a
front-end directs incoming requests to one of a num-
ber of back-ends. Specifically, we consider content-based
request distribution: the front-end uses the content re-
quested, in addition to information about the load on
the back-end nodes, to choose which back-end will han-
dle this request. Content-based request distribution can
improve locality in the back-ends’ main memory caches,
increase secondary storage scalability by partitioning
the server’s database, and provide the ability to employ
back-end nodes that are specialized for certain types of
requests.

As a specific policy for content-based request dis-
tribution, we introduce a simple, practical strategy
for locality-aware request distribution (LARD). With
LARD, the front-end distributes incoming requests in
a manner that achieves high locality in the back-ends’
main memory caches as well as load balancing. Local-
ity is increased by dynamically subdividing the server’s
working set over the back-ends. Trace-based simulation
results and measurements on a prototype implemen-
tation demonstrate substantial performance improve-
ments over state-of-the-art approaches that use only
load information to distribute requests. On workloads
with working sets that do not fit in a single server node’s
main memory cache, the achieved throughput exceeds
that of the state-of-the-art approach by a factor of two
to four.

With content-based distribution, incoming requests
must be handed off to a back-end in a manner trans-
parent to the client, after the front-end has inspected
the content of the request. To this end, we introduce an
efficient TCP handoflprotocol that can hand off an es-
tablished TCP connection in a client-transparent man-
ner.
Permission to make digital or hard copses of all or part of this work for
personal or classroom use IS granted without fee provided that
copes are not made or dlstrlbuted for pr,oflt or commercaal advan-
tage and that copes bear this notice and the full cltatnn on the first page.
To copy otherwse, to republish, to post on servers or to
redistribute to Itsts. requires prior specific permission and/or a fee.
ASPLOS VIII lo/98 CA, USA
0 1998 ACM 1.58113.107.0/98/0010...$5.00

1 Introduction

Network servers based on clusters of commodity work-
stations or PCs connected by high-speed LANs combine
cutting-edge performance and low cost. A cluster-based
network server consists of a front-end, responsible for re-
quest distribution, and a number of back-end nodes, re-
sponsible for request processing. The use of a front-end
makes the distributed nature of the server transparent
to the clients. In most current cluster servers the front-
end distributes requests to back-end nodes without re-
gard to the type of service or the content requested.
That is, all back-end nodes are considered equally capa-
ble of serving a given request and the only factor guiding
the request distribution is the current load of the back-
end nodes.

With content-based request distribution, the front-
end takes into account both the service/content re-
quested and the current load on the back-end nodes
when deciding which back-end node should serve a given
request. The potential advantages of content-based re-
quest distribution are: (1) increased performance due
to improved hit rates in the back-end’s main memory
caches, (2) increased secondary storage scalability due
to the ability to partition the server’s database over the
different back-end nodes, and (3) the ability to employ
back-end nodes that are specialized for certain types of
requests (e.g., audio and video).

The locality-aware request distribution(LARD) strat-
egy presented in this paper is a form of content-based
request distribution, focusing on obtaining the first of
the advantages cited above, namely improved cache hit
rates in the back-ends. Secondary storage scalability
and special-purpose back-end nodes are not discussed
any further in this paper.

Figure 1 illustrates the principle of LARD in a simple
server with two back-ends and three targets’ (A,B,C) in
the incoming request stream. The front-end directs all
requests for A to back-end 1, and all requests for B and
C to back-end 2. By doing so, there is an increased like-
lihood that the request finds the requested target in the
cache at the back-end. In contrast, with a round-robin
distribution of incoming requests, requests of all three

‘In the following discussion, the term target is being used
to refer to a specific object requested from a server. For an
HTTP server, for instance, a target is specified by a URL and
any applicable arguments to the HTTP GET command.

205

Front-end node

A

0

A

@I

A

0

A

0

Figure 1: Locality-Aware Request Distribution

targets will arrive at both back-ends. This increases the
likelihood of a cache miss, if the sum of the sizes of the
three targets, or, more generally, if the size of the work-
ing set exceeds the size of the main memory cache at an
individual back-end node.

Of course, by naively distributing incoming requests
in a content-based manner as suggested in Figure 1, the
load between different back-ends might become unbal-
anced, resulting in worse performance. The first ma-
jor challenge in building a LARD clust,er is therefore to
design a practical and efficient strategy that simultane-
ously achieves load balancing and high cache hit rates
on the back-ends. The second challenge stems from the
need for a protocol that allows the front-end to hand off
an established client connection to a back-end node, in
a manner that is transparent to clients and is efficient
enough not to render the front-end a bottleneck. This
requirement results from the front-end’s need to inspect
the target content of a request prior to assigning the
request to a back-end node. This paper demonstrates
t,hat these challenges can be met, and that LARD pro-
duces substantially higher throughput than the state-of-
the-art approaches where request distribution is solely
based on load balancing, for workloads whose working
set exceeds the size of the individual node caches.

Increasing a server’s cache effectiveness is an impor-
tant step towards meeting the demands placed on cur-
rent and future network servers. Being able to cache the
working set is critical to achieving high throughput, as
a state-of-the-art disk device can deliver no more than
120 block requests/set, while high-end network servers
will be expected to serve thousands of document re-
quests per second. Moreover, typical working set sizes
of web servers can be expected to grow over time, for
two reasons. First, the amount of content made avail-
able by a single organization is typically growing over
time. Second, there is a trend towards centralization
of web servers within organizations. Issues such as cost
and ease of administration, availability, security, and
high-capacity backbone network access cause organiza-
tions to move towards large, centralized network servers
that handle all of the organization’s web presence. Such
servers have to handle the combined working sets of all
the servers they supersede.

With round-robin distribution, a cluster does not
scale well to larger working sets, as each node’s main
memory cache has to fit the entire working set. With
LARD, the effective cache size approaches the sum of
t,he node cache sizes. Thus, adding nodes to a cluster
can accommodate both increased traffic (due to addi-
t,ional CPU power) and larger working sets (due to the
increased effective cache size).

This paper presents the following contributions:
1. a practical and efficient LARD strategy that achieves
high cache hit rates and good load balancing,

Back-end nodes

2. a trace-driven simulation that demonstrates the per-
formance potential of locality-aware request distribu-
tion,

3. an efficient TCP ha&o@ protocol, that enables
content-based request distribution by providing client-
transparent connection handoff for TCP-based network
services, and

4. a performance evaluation of a prototype LARD
server cluster, incorporating the TCP handoff protocol
and the LARD strategy.

The outline of the rest of this paper is as follows:
In Section 2 we develop our strategy for locality-aware
request distribution. In Section 3 we describe the model
used to simulate the performance of LARD in compari-
son to other request distribution strategies. In Section 4
we present the results of the simulation. In Section 5
we move on to the practical implementation of LARD,
particularly the TCP handoff protocol. We describe the
experimental environment in which our LARD server
is implemented and its measured performance in Sec-
tion 6. We describe related work in Section 7 and we
conclude in Section 8.

2 Strategies for Request Distribution

2.1 Assumptions

The following assumptions hold for a11 request distribu-
tion strategies considered in this paper:
l The front-end is responsible for handing off new con-
nections and passing incoming data from the client to
the back-end nodes. As a result, it must keep track of
open and closed connections, and it can use this infor-
mation in making load balancing decisions. The front-
end is not involved in handling outgoing data, which is
sent directly from the back-ends to the clients.

l The front-end limits the number of outstanding re-
quests at the back-ends. This approach allows the front-
end more flexibility in responding to changing load on
the back-ends, since waiting requests can be directed to
back-ends as capacity becomes available. In contrast,
if we queued requests only on the back-end nodes, a
slow node could cause many requests to be delayed even
though other nodes might have free capacity.
. Any back-end node is capable of serving any target,
although in certain request distribution strategies, the
front-end may direct a request only to a subset of the
back-ends.

2.2 Aiming for Balanced Load

In stat,e-of-the-art cluster servers, the front-end uses
,we%ghled round-robin request distribution [7, 141. The

206

incoming requests are distributed in round-robin fash-
ion, weighted by some measure of the load on the differ-
ent back-ends. For instance, the CPU and disk utiliza-
tion, or the number of open connections in each back-
end may be used as an estimate of the load.

This strategy produces good load balancing among

the back-ends. However, since it does not consider the
type of service or requested document in choosing a
back-end node, each back-end node is equally likely to
receive a given t,ype of request. Therefore, each hack-
end node receives an approximately identical working
set of requests, and caches an approximately identical
set of documents. If this working set exceeds the size of
main memory available for caching documents, frequent
cache misses will occur.

2.3 Aiming for Locality

In order to improve locality in the back-end’s cache,
a simple front-end strategy consists of partitioning the
name space of the database in some way, and assign-
ing request for all targets in a particular partition to a
particular back-end. For instance, a hash function can
be used to perform the partitioning. We will call this
strategy locakity-based [LB].

A good hashing function partitions both the name
space and the working set more or less evenly among the
back-ends. If this is the case, the cache in each back-end
should achieve a much higher hit rate, since it is only
trying to cache its subset of the working set, rather than
the entire working set, as with load balancing based
approaches. What is a good partitioning for locality
may, however, easily prove a poor choice of partitioning
for load balancing. For example, if a small set of targets
in the working set account for a large fraction of the
incoming requests, the back-ends serving those targets
will be far more loaded than others.

2.4 Basic Locality-Aware Request Distribution

The goal of LARD is to combine good load balancing
and high locality. We develop our strategy in two steps.
The basic strategy, described in this subsection, always
assigns a single back-end node to serve a given target,
thus making the idealized assumption that a single tar-
get cannot by itself exceed the capacity of one node.
This restriction is removed in the next subsection, where
we present the complete strategy.

Figure 2 presents pseudo-code for the basic LARD.
The front-end maintains a one-to-one mapping of tar-
gets to back-end nodes in the server array. When the
first request arrives for a given target, it is assigned a
back-end node by choosing a lightly loaded back-end
node. Subsequent requests are directed to a target’s as-
signed back-end node, unless that node is overloaded.
In the latter case, the target is assigned a new back-end
node from,the current set of lightly loaded nodes.

A node’s load is measured as the number of active
connections, i.e., connections that have been handed off
to the node, have not yet completed, and are show-
ing request activity. Observe that an overloaded node
will fall behind and the resulting queuing of requests
will cause its number of active connections to increase,
while the number of active connections at an under-
loaded node will tend to zero. Monitoring the relative

while (true)
fetch next request r;
if server[r.target] = null then

n, server[r.target] t {least, loaded node};
else

n C server[r.target];
if (n.load > TtLtgh &&. 3 node with load < X,,) 11

n.load 2 2 * Thzsh then
n, server[r.target] t {least loaded node};

send r to n;

Figure 2: The Basic LARD Strategy

number of active connections allows the front-end to es-
timate the amount of “outstanding work” and thus the
relative load on a back-end without requiring explicit
communication with the back-end node.

The intuition for the basic LARD strategy is as fol-
lows: The distribution of targets when they are first re-
quested leads to a partitioning of the name space of the
database, and indirectly to a partitioning of the working
set, much in the same way as with the strategy purely
aiming for locality. It also derives similar locality gains
from doing so. Only when there is a significant load im-
balance do we diverge from this strategy and re-assign
targets. The definition of a “significant load imbalance”
tries to reconcile two competing goals. On one hand, we
do not want greatly diverging load values on different
back-ends. On the other hand, given the cache misses
and disk activity resulting from re-assignment, we do
not want to re-assign targets to smooth out only minor
or temporary load imbalances. It suffices to make sure
that no node has idle resources while another back-end
is dropping behind.

We define TL,, as the load (in number of active con-
nections) below which a back-end is likely to have idle
resources. We define Thrgh as the load above which a
node is likely to cause substantial delay in serving re-
quests. If a situation is detected where a node has a
load larger than lilg,, while another node has a load
less than Tl,,, a target is moved from the high-load to
the low-load back-end. In addition, to limit the delay
variance among different nodes, once a node reaches a
load of 2Thrghr a target is moved to a less loaded node,
even if no node has a load of less than Tt,,.

If the front-end did not limit the total number of ac-
tive connections admitted into the cluster, the load on
all nodes could rise to 2ThEgh, and LARD would then
behave like WRR. To prevent this, the front-end Iim-
its the sum total of connections handed to all back-end
nodes to the value S = (n - 1) * Thrgh + x0, - 1, where
ra is the number of back-end nodes. Setting S to this
value ensures that at most n - 2 nodes can have a load
> Th,sh, while no node has load < T&,. At the same
time, enough connections are admitted to ensure all n
nodes can have a load above Tl,, (i.e., be fully utilized)
and still leave room for a limited amount of load imbal-
ance between the nodes (to prevent unnecessary target
reassignments in the interest of locality).

The two conditions for deciding when to move a tar-
get attempt to ensure that the cost of moving is incurred
onlv when the load difference is substantial enough to
warrant doing so. Whenever a target gets reassigned,
our two tests combined with the definition of S ensure
that t#he load difference between the old and new tar-

207

gets is at least 7jllgh - Tl,,,. To see this, note that the
definition of S implies that there must always exist a
node with a load < Th+. The maximal load imbalance
that can arise is 2Thtgh - Tl,,.

The appropriate setting for X,, depends on the
speed of the back-end nodes. In practice, TL,, should be
chosen high enough to avoid idle resources on back-end
nodes, which could cause throughput loss. Given Ti,,,
choosing Thrgh involves a tradeoff. Thtgh - Tl,, should
be low enough to limit the delay variance among the
back-ends to acceptable levels, but high enough to tol-
erate limited load imbalance and short-term load fluc-
tuations without destroying locality.

Simulations to test the sensitivity of our strategy to
these parameter settings show that the maximal delay
difference increases approximately linearly with ThEgh -
X,,. The throughput increases mildly and eventually
flattens as Thrgh -Ti,, increases. Therefore, Thigh should
be set to the largest possible value that still satisfies the
desired bound on the delay difference between back-end
nodes. Given a desired maximal delay difference of D
sets and an average request service time of R sets, Thigh
should be set to (Tl,, + D/R)/2, subject to the obvi-
ous constraint that Thigh > Tl,,. The setting of Tl,,
can be conservatively high with no adverse impact on
throughput and only a mild increase in the average de-
lay. Furthermore, if desired, the setting of x,, can be
easily automated by requesting explicit load information
from the back-end nodes during a “training phase”. In
our simulations and in the prototype, we have found set-
tings of Tr,, = 25 and Th,sh = 65 active connections to
give good performance across all workloads we tested.

2.5 LARD with Replication

A potential problem with the basic LARD strategy is
that a given target is served by only a single node at any
given time. However, if a single target causes a back-end
to go into an overload situation, the desirable action is
to assign several back-end nodes to serve that document,
and to distribute requests for that target among the
serving nodes. This leads us to the second version of
our strategy, which allows replication.

Pseudo-code for this strategy is shown in Figure 3.
It differs from the original one as follows: The front-end
maintains a mapping from targets to a set of nodes that
serve the target. Requests for a target are assigned to
the least loaded node in the target’s server set. If a load
imbalance occurs, the front-end checks if the requested
document’s server set has changed recently (within 11~
seconds). If so, it picks a lightly loaded node and adds
that node to the server set for the target. On the other
hand, if a request target has multiple servers and has
not moved or had a server node added for some time
(K seconds), the front-end removes one node from the
target’s server set. This ensures that the degree of repli-
cation for a target does not remain unnecessarily high
once it is requested less often. In our experiments, we
used values of 1~~ = XI sets.

2.6 Discussion

As will be seen in Sections 4 and 6, the LARD strate-
gies result in a good combination of load balancing and
locality. In addition, the strategies outlined above have

while (true)
fetch next request r;
if serverSet[r.target] = 0 then

n, serverSet[r.target] t {least loaded node};
else

n t {least loaded node in serverSet[r.target]};
m t {most loaded node in serverSet[r.target]};
if (n.load > Thtgh && 3 node with load < Ti,,) 11

nload > 2Thrgh then
p t {least loaded node};
add p to serverSet[r.target];
n + P;

if]serverSet[r.target]] > 1 &&
time0 - serverSet[r.target].lastMod > K then

remove m from serverSet[r.target];
send r to n
if serverSet[r.target] changed in this iteration then

serverSet[r.target].lastMod t time();

Figure 3: LARD with Replication

several desirable features. First, they do not require
any extra communication between the front-end and the
back-ends. Second, the front-end need not keep track
of any frequency of access information or try to model
the contents of the caches of the back-ends. In particu-
lar, the strategy is independent of the local replacement
policy used by the back-ends. Third, the absence of
elaborate state in the front-end makes it rather straight-
forward to recover from a back-end node failure. The
front-end simply re-assigns targets assigned to the failed
back-end as if they had not been assigned before. For
all these reasons, we argue that the proposed strategy
can be implemented without undue complexity.

In a simple implementation of the two strategies, the
size of the server or serverset arrays, respectively, can
grow to the number of targets in the server’s database.
Despite the low storage overhead per target, this can
be of concern in servers with very large databases. In
this case, the mappings can be maintained in an LRU
cache, where assignments for targets that have not been
accessed recently are discarded. Discarding mappings
for such targets is of little consequence, as these targets
have most likely been evicted from the back-end nodes’
caches anyway.

3 Simulation

To study various request distribution policies for a range
of cluster sizes under different assumptions for CPU
speed, amount of memory, number of disks and other
parameters, we developed a configurable web server clus-
ter simulator. We also implemented a prototype of a
LARD-based cluster, which is described in Section 6.

3.1 Simulation Model

The simulation model is depicted in Figure 4. Each
back-end node consists of a CPU and locally-attached
disk(s), with separate queues for each. In addition, each
node maintains its own main memory cache of con-
figurable size and replacement policy. For simplicity,
caching is performed on a whole-file basis.

Processing a request requires the following steps:

208

magnified backend node ----------------7,

I done-r---(cpul I I I I I I
-r---‘-

reqs i ---- im front-end

cache miss “S I I

read finished active holding
I ,-,,-,--,--,----’ queue queue

Figure 4: Cluster Simulation Model

connection establishment, disk reads (if needed), target
data transmission, and connection teardown. The as-
sumption is that front-end and networks are fast enough
not to limit the cluster’s performance, thus fully expos-
ing the throughput limits of the back-ends. Therefore,
the front-end is assumed to have no overhead and all
networks have infinite capacity in the simulations.

get being served. Associated with each token is a target
size in bytes. This tokenized stream can be syntheti-
cally created, or it can be generated by processing logs
from existing web servers.

The individual processing steps for a given request
must be performed in sequence, but the CPU and disk
times for differing requests can be overlapped. Also,
large file reads are blocked, such that the data transmis-
sion immediately follows the disk read for each block.
Multiple requests waiting on the same file from disk
can be satisfied with only one disk read, since all the re-
quests can access the data once it is cached in memory.

One of the traces we use was generated by combin-
ing logs from multiple departmental web servers at Rice
University. This trace spans a two-month period. An-
other trace comes from IBM Corporation’s main web
server (www.ibm.com) and represents server logs for a
period of 3.5 days starting at midnight, June 1, 1998.

The costs for the basic request processing steps
used in our simulations were derived by performing
measurements on a 300 Mhz Pentium 11 machine run-
ning FreeBSD 2.2.5 and an aggressive experimental web
server. Connection establishment and teardown costs
are set at 145~s of CPU time each, while transmit pro-
cessing incurs 40~s per 512 bytes. Using these num-
bers, an 8 KByte document can be served from the
main memory cache at a rate of approximately 1075
requests/set.

If disk access is required, reading a file from disk has
a latency of 28 ms (2 seeks + rotational latency). The
disk transfer time is 410~s per 4 KByte (resulting in
approximately 10 MBytes/set peak transfer rate). For
hles larger than 44 KBytes, an additional 14 ms (seek
plus rotational latency) is charged for every 44 KBytes
of file length in excess of 44 KBytes. 44 KBytes was
measured as the average disk transfer size between seeks
in our experimental server. Unless otherwise stated,
each back-end node has one disk.

Figures 5 and 6 show the cumulative distributions of
request frequency and size for the Rice University trace
and the IBM trace, respectively. Shown on the x-axis
is the set of target files in the trace, sorted in decreas-
ing order of request frequency. The y-axis shows the
cumulative fraction of requests and target sizes, nor-
malized to the total number of requests and total data
set size, respectively. The data set for the Rice Univer-
sity trace consist of 37703 targets covering 1418 MB of
space, whereas the IBM trace consists of 38527 targets
and 1029 MB of space. While the data sets in both
traces are of a comparable size, it is evident from the
graphs that the Rice trace has much less locality than
the IBM trace. In the Rice trace, 560/705/927 MB of
memory is needed to cover 97/98/99% of all requests,
respectively, while only 51/80/182 MB are needed to
cover the same fractions of requests in the IBM trace.

This difference is likely to be caused in part by the
different time spans that each trace covers. Also, the
IBM trace is from a single high-traffic server, where the
content designers have likely spent effort to minimize
the sizes of high frequency documents in the interest of
performance. The Rice trace, on the other hand, was
merged from the logs of several departmental servers.

The cache replacement policy we chose for all sim-
ulations is Greedy-Dual-Size (GDS), as it appears to
be the best known policy for Web workloads [5]. We
have also performed simulations with LRU, where files
with a size of more than 500KB are never cached. The
relative performance of the various distribution strate-
gies remained largely unaffected. However, the absolute
throughput results were up to 30% lower with LRU than
with GDS.

As with all caching studies, interesting effects can
only be observed if the size of the working set exceeds
that of the cache. Since even our larger trace has a rel-
atively small data set (and thus a small working set),
and also to anticipate future trends in working set sizes,
we chose to set the default node cache size in our simu-
lations to 32 MB. Since in reality, the cache has to share
main memory with OS kernel and server applications,
this typically requires at least 64 MB of memory in an
actual server node.

3.2 Simulation Inputs 3.3 Simulation Outputs

The input to the simulator is a stream of tokenized tar-
get requests, where each token represents a unique tar-

The simulator calculates overall throughput, hit rate,
and underutilization time. Throughput is the number

209

0 0.2 0.4 0.6 0.8 I
Files by request frequency (normalized)

Figure 5: Rice [Jniversity Trace

of request#s in the trace that were served per second by
the entire cluster, calculated as the number of requests
in the trace divided by the simulated time it took to
finish serving all the requests in the trace. The request
arrival rate was matched t,o the aggregate throughput
of the server.

The cache hit ratio is the number of requests that
hit in a back-end node’s main memory cache divided
by the number of requests in the trace. The idle time
was measured as the fraction of simulated time during
which a back-end node was underutilized, averaged over
all back-end nodes.

Node underutilization is defined as the time that a
node’s load is less than 40% of Tl,,. This value was
determined by inspection of the simulator’s disk and
CPU activity statistics as a point below which a node’s
disk and CPU both had some idle time in virtually all
cases. The overall throughput is the best summary met-
ric, since it is affected by all factors. The cache hit
rate gives an indication of how well locality is being
maintained, and the node underutilization times indi-
cate how well load balancing is maintained.

4 Simulation Results

We simulate the four different request distribution strate-
gies presented in Section 2.

1. weighted round-robin [WRR],

2. locality-based [LB],

3. basic LARD [LARD], and

4. LARD with replication [LARD/R].
In addition, observing the large amount of interest gen-
erated by global memory systems (GMS) and coopera-
tive caching to improve hit rates in cluster main mem-
ory caches [8, 11, 171, we simulate a weighted round-
robin strategy in the presence of a global memory sys-
tem on the back-end nodes. We refer to this system as
WRR/GMS. The GMS in WRR/GMS is loosely based
on the GMS described in Feeley et al. [ll].

We also simulate an idealized locality-based strategy,
termed LB/GC, where the front-end keeps track of each
back-end’s cache state to achieve the effect of a global
cache. On a cache hit,, the front-end sends the request,s
to the back-end that caches the target. On a miss, the
front-end sends the request to the back-end that caches
the globally “oldest” target, thus causing eviction of
that target.

: 1029 MB total

“0 0.2 0.4 0.6 0.8 I
Files by request frequency (normalized)

Figure 6: IBM Trace

4.1 Rice University Trace

10000
0 LARD/R

5 IO
nodes in cluster

Figure 7: Throughput

25 OWRR ' *LARD +LB
xWRR/GMS 0 LARD/R OLB/GC

5 IO
nodes in cluster

Figure 8: Cache Miss Ratio

Figures 7, 8, and 9 show the aggregate throughput,
cache miss ratio, and idle time as a function of the num-
ber of back-end nodes for the combined Rice University
trace. WRR achieves the lowest throughput, the highest
cache miss ratio, but also the lowest idle time (i.e., the
highest back-end node utilization) of all strategies. This
confirms our reasoning that the weighted round-robin
scheme achieves good load balancing (thus minimizing
idle time). However, since it ignores locality, it suffers
many cache misses. This latter effect dominates, and
the net effect is that the server’s throughput is limited
by disk accesses. With WRR, the effective size of the
server cache remains at the size of the individual node

210

+LB
0 LARD/R

xWRR/GMS

5 10
nodes in cluster

Figure 9: Idle Time

cache, independent of the number of nodes. This can be
clearly seen in the flat cache miss ratio curve for WRR.

As expected, both LB schemes achieve a decrease in
cache miss ratio as the number of nodes increases. This
reflects the aggregation of effective cache size. However,
this advantage is largely offset by a loss in load balancing
(as evidenced by the increased idle time), resulting in
only a modest throughput advantage over WRR.

An interesting result is that LB/GC, despite its
greater complexity and sophistication, does not yield
a significant advantage over the much simpler LB. This
suggests that the hashing scheme used in LB achieves a
fairly even partitioning of the server’s working set, and
that maintaining cache state in the front-end may not
be necessary lo achieve good cache hit ratios across the
back-end nodes. This partly validates t)he approach we
took in the design of LARD, which does not attempt to
model the state of the back-end caches.

The throughput achieved with LARD/R exceeds that
of the state-of-the-art WRR on this trace by a factor of
3.9 for a cluster size of eight nodes, and by about 4.5
for sixteen nodes. The Rice trace requires the combined
cache size of eight to ten nodes to hold the working set.
Since WRR cannot aggregate the cache size, the server
remains disk bound for all cluster sizes. LARD and
LARD/R, on the other hand, cause the system to be-
come increasingly CPU bound for eight or more nodes,
resulting in superlinear speedup in the l-10 node re-
gion, with linear, but steeper speedup for more than
ten nodes. Another way to read this result is that with
WRR, it would take a ten times larger cache in each
node to match the performance of LARD on this par-
ticular trace. We have verified this fact by simulating
WRR with a tenfold node cache size.

The reason for the increased throughput and speedup
can also be clearly seen in the graphs for idle time and
cache miss ratio. LARD and LARD/R achieve average
idle times around I%, while achieving cache miss ratios
that decrease with increasing cluster size and reach val-
ues below 4% for eight and more nodes in the case of
LARD, going down to 2% at sixteen nodes in the case
of LARD/R. Thus, LARD and LARD/R come close to
WRR in terms of load balancing while simultaneously
achieving cache miss ratios close to those obtained with
LB/GC. Thus, LARD and LARD/R are able to trans-
late most of the locality advantages of LB/GC into ad-
ditional server throughput.

The throughput achieved with LARD/R exceeds that

of LARD slightly for seven or more nodes, while achiev-
ing lower cache miss ratio and lower idle time. While
WRR/GMS achieves a substantial performance advan-
tage over WRR, its throughput remains below 50% of
LARD and LARD/R’s throughput for all cluster sizes.

4.2 Other Workloads

0 5 IO 15
nodes in cluster

Figure 10: Throughput on IBM Trace

Figure 10 shows the throughput results obtained for the
various strategies on the IBM trace (www.ibm.com). In
this trace, the average file size is smaller than in the
Rice trace, resulting in much larger throughput num-
bers for all strategies. The higher locality of the IBM
trace demands a smaller effective cache size to cache the
working set. Thus, LARD and LARD/R achieve super-
linear speedup only up to 4 nodes in this trace, resulting
in a throughput that is slighly more than twice that of
WRR for 4 nodes and above.

WRR/GMS achieves much better relative perfor-
mance on this trace than on the Rice trace and comes
within 15% of LARD/R’s throughput at 16 nodes. How-
ever, t,his result has to be seen in light of the very gen-
erous assumptions made in the simulations about the
performance of the WRR/GMS system. It was assumed
that maintaining the global cache directory and imple-
menting global cache replacement has no cost.

The performance of LARD/R only slightly exceeds
that of LARD on the Rice trace and matches that of
LARD on the IBM trace. The reason is that neither
trace contains high-frequency targets that can benefit
from replication. The highest frequency files in the Rice
and IBM traces account for only 2% and 5%, respec-
tively, of all requests in the traces. However, it is clear
that real workloads exist that contain targets with much
higher request frequency (e.g. www.netscape.com). To
evaluate LARD and LARD/R on such workloads, we
modified the Rice trace to include a small number of
artifical high-frequency targets and varied their request
rate between 5 and 75% of the total number of re-
quests in the trace. With this workload, the throughput
achieved with LARD/R exceeds that of LARD by O-
15%. The most significant increase occurs when the size
of the “hot” targets is larger than 20 KBytes and the
combined access frequency of all hot targets accounts
for lo-60% of the total number of requests.

We also ran simulations on a trace from the IBM web
server hosting the Deep Blue/Kasparov Chess match in

211

35000, 1

0 4x

6 30000

CPU, 3x mem
X 3x CPU, 2x mem

; 25000 +2x CPU, I .5x mem
E 0 lx cpu 20000 -

5 IO
nodes in cluster

15 5 10
nodes in cluster

Figure 11: WRR vs CPU Figure 12: LARD vs CPU

May 1997. This trace is characterized by large numbers
of requests to a small set of targets. The working set
of this trace is very small and achieves a low miss ratio
with a main memory cache of a single node (32 MB).
This trace presents a best-case scenario for WRR and
a worst-case scenario for LARD, as there is nothing to
be gained from an aggregation of cache size, but there
is the potential to lose performance due to imperfect
load balancing. Our results show that both LARD and
LARD/R closely match the performance of WRR on
this trace. This is reassuring, as it demonstrates that
our strategy can match the performance of WRR even
under conditions that are favorable to WRR.

In our final set of simulations, we explore the impact
of using multiple disks in each back-end node on the rel-
ative performance of LARD/R versus WRR. Figures 13
and 14, respectively, show the throughput results for
WRR and LARD/R on the combined Rice University
trace with different numbers of disks per back-end node.
With LARD/R, a second disk per node yields a mild
throughput gain, but additional disks do not achieve
any further benefit. This can be expected, as the in-
creased cache effectiveness of LARD/R causes a reduced
dependence on disk speed.

WRR, on the other hand, greatly benefits from mul-
tiple disks as its throughput is mainly bound by the
performance of the disk subsystem. In fact, with four
disks per node and 16 nodes, WRR comes within 15% of
LARD/R’s throughput. However, the are several things
to note about this result. First, the assumptions made
in the simulations about the performance of multiple
disks are generous. It is assumed that both seek and
disk transfer operations can be fully overlapped among
all disks. In practice, this would require that each disk
is attached through a separate SCSI bus/controller.

4.3 Sensitivity to CPU and Disk Speed

In our next set of simulations, we explore the impact of
CPU speed on the relative performance of LARD versus
the state-of-the-art WRR. We performed simulations on
the Rice trace with the default CPU speed setting ex-
plained in Section 3, and with twice, three and four
times the default speed setting. The [lx] speed setting
represents a state-of-the-art inexpensive high-end PC
(300 MHz Pentium II), and the higher speed settings
project the speed of high-end PCs likely to be available
in the the next few years. As the CPU speed increases
while disk speed remains constant, higher cache hit rates
are necessary to remain CPU bound at a given cluster
size, requiring larger per-node caches. We made this
adjustment by setting the node memory size to 1.5, 2,
and 3 times the base amount (32 MB) for the [2x], [3x]
and [4x] CPU speed settings, respectively.

As CPU speeds are expected to improve at a much
faster rate than disk speeds, one would expect that the
importance of caching and locality increases. Indeed,
our simulations confirm this. Figures 11 and 12, re-
spectively, show the throughput results for WRR and
LARD/R on the combined Rice University trace with
different CPU speed assumptions. It is clear that WRR
cannot benefit from added CPU at all, since it is disk-
bound on this trace. LARD and LARD/R, on the other
hand, can capitalize on the added CPU power, because
their cache aggregation makes the system increasingly
CPU bound as nodes are added to the system. In ad-
dition, the results indicate the throughput advantage of
LARD/R over LARD increases with CPU speed, even
on a workload that presents little opportunity for repli-
cation.

0 4x cpu, 3x mem
X 3x cpu, 2x mem
+2x cpu, 1.5x mem

Second, it is assumed that the database is striped
across the multiple disks in a manner that achieves good
load balancing among the disks with respect to the work-
load (trace). In our simulations, the files were dis-
tributed across the disks in round-robin fashion based
on decreasing order of request frequency in the trace2.

Finally, WRR has the same scalability problems with
respect to disks as it has with memory. To upgrade a
cluster with WRR, it is not sufficient to add nodes as
with LARD/R. Additional disks (and memory) have to
be added to all nodes to achieve higher performance.

4.4 Delay

While most of our simulations focus on the server’s
throughput limits, we also monitored request delay in
our simulations for both the Rice University trace as
well as the IBM trace. On the Rice University trace,
the average request delay for LARD/R is less than 25%
that of WRR. With the IBM trace, LARD/R’s average
delay is one half that of WRR.

‘Note that replicating the entire database on each disk as an
approach to achieving disk load balancing would require special
OS support to avoid double buffering and caching of replicated
files and to assign requests to disks dynamically based on load.

212

5 10
nodes in cluster

Figure 13: WRR vs disks

5 TCP Connection Handoff

In this section, we briefly discuss our TCP handoff pro-
tocol and present some performance results with a pro-
totype implementation. A full description of the proto-
col is beyond the scope of this paper. The TCP handoff
protocol is used to hand off established client TCP [23]
connections between the front-end and the back-end of
a cluster server that, employs content-based request dis-
tribution.

A handoff protocol is necessary to enable content-
based request distribution in a client-transparent man-
ner. This is true for any service (like HTTP) that
relies on a connection-oriented transport protocol like
TCP. The front-end must establish a connection with
the client to inspect the target content of a request prior
to assigning the connection to a back-end node. The
established connection must then be handed to the cho-
sen back-end node. State-of-the-art commercial clus-
ter front-ends (e.g., [7, 141) assign requests without re-
gard to the requested content and can therefore forward
client requests to a back-end node prior to establishing
a connection with the client.

Our handoff protocol is transparent to clients and
also to the server applications running on the back-end
nodes. That, is, no changes are needed on the client side,
and server applications can run unmodified on the back-
end nodes. Figure 15 depicts the protocol stacks on
the clients, front-end, and back-ends, respectively. The
handoff protocol is layered on top of TCP and runs on
the front-end and back-end nodes. Once a connection
is handed off to a back-end node, incoming traffic on
that connection (principally acknowledgment packets)
is forwarded by an efficient. forwarding module at the
bottom of the front-end’s protocol stack.

The TCP implementation running on the front-end
and back-ends needs a small amount of additional sup-
port for handoff. In particular, the protocol module
needs t,o support an operat,ion that allows the TCP
handoff protocol to create a TCP connection at the
back-end without going through the TCP three-way
handshake. Likewise, an operation is required that re-
trieves the state of an established connection and de-
stroys the connection state without going through the
normal message handshake required to close a TCP con-
nection.

Figure 15 depicts a typical scenario: (1) a client con-
nects to the front-end, (2) the dispatcher at the front-

8000
3

8 6000

j+ 4000

z

g 2000

n

q 4 disks ea.
x 3 disks ea.
+ 2 disks ea.
0 1 disk each

“0 5 10 15
nodes in cluster

Figure 14: LARD/R vs disks

I
(I) :

Dispatcher 1 (4) (5) Kernel

(2) I

Y I Handoff ’ ‘(3) -Ha”dfl 4
4

TCWIP ’ TCPflP TCPilP

handoff
“9

ack

Client host Front-End Back-End

Figure 15: TCP connection handoff

end accepts the connection and hands it off to a back-
end using the handoff protocol, (3) the back-end takes
over the established connection received by the hand-
off protocols, (4) the server at the back-end accepts the
created connection, and (5) the server at the back-end
sends replies directly to the client. The dispatcher is a
software module that implements the distribution pol-
icy, e.g. LARD.

Once a connection is handed off to a back-end node,
the front-end must forward packets from the client to
the appropriate back-end node. A single back-end node
that fully utilizes a 100 Mb/s network sending data to
clients will receive at least 4128 acknowledgments per
second (assuming an IP packet size of 1500 and delayed
TCP ACKs). Therefore, it is crucial that this packet
forwarding is fast.

The forwarding module is designed to allow very fast
forwarding of acknowledgment packets. The module op-
erates directly above the network interface and executes
in the context of the network interface interrupt han-
dler. A simple hash table lookup is required to deter-
mine whether a packet should be forwarded. If so, the
packet’s header is updated and it is directly transmit-
ted on the appropriate interface. Otherwise, the packet
traverses the normal protocol stack.

Results of performance measurements with an im-
plementation of the handoff protocol are presented in
Section 6.2.

The design of our TCP handoff protocol includes
provisions for HTTP 1.1 persistent connections, which
allow a client to issue multiple requests. The protocol
allows the front-end to either let one back-end serve all
of the requests on a persistent connection, or to hand off
a connection multiple times, so that different requests

213

on the same connection can he served by different back-
ends. However, further research is needed to determine
the appropriate policy for handling persistent connec-
tions in a cluster with LARD. We have not yet experi-
mented with HTTP 1. I connections as part of this work.

6 Prototype Cluster Performance

In this section, we present performance results obtained
with a prototype cluster that uses locality-aware request
distribution. We describe the experimental setup used
in the experiments, and then present the results.

6.1 Experimental Environment

Our testbed consists of 7 client machines connected to
a cluster server. The configuration is shown in Fig-
ure 16. Traffic from the clients flows to the front-end
(I) and is forwarded to the back-ends (2). Data pack-
ets t,ransmitted from the back-ends to the clients bypass
the front-end (3).

The front-end of the server cluster is a 3OOMHz In-
tel Pentium I1 based PC with 128MB of memory. The
cluster back-end consists of six PCs of the same type
and configurat,ion as the front-end. All machines run
FreeBSD 2.2.5. A loadable kernel module was added to
the OS of the front-end and back-end nodes that im-
plements the TCP handoff protocol, and, in the case
of the fron,-end, the forwarding module. The clients
are 166MHz lntel Pentium Pro PCs, each with 64MB of
memory.

The clients and back-end nodes in the cluster are
connected using switched Fast Ethernet (1OOMbps). The
front-end is equipped with two network interfaces, one
for communication with the clients, one for commu-
nication with the back-ends. Clients, front-end, and
back-end are connected through a single 24-port switch.
All network int#erfaces are Intel EtherExpress Pro/lOOB
running in full-duplex mode.

The Apache-1.2.4 [2] server was used on the back-end
nodes. Our client software is an event-driven program
that simulates multiple HTTP clients. Each simulated
HTTP client makes HTTP requests as fast as the server
cluster can handle them.

BACKEND
SERVERS

CLUSTER SERVER I

SWITCH 1 1

CLIENTS

6.2 Front-end Performance Results

Measurements were performed to evaluate the perfor-
mance and overhead of the TCP handoff protocol and
packet forwarding in the front-end. Handoff latency is
the added latency a client experiences as a result of
TCP handoff. Handoff throughput is the maximal rate
at which the front-end can accept, handoff, and close
connections. Forwarding throughput refers to the max-
imal aggregate rate of data transfers from all back-end
nodes to clients. Since this data bypasses the front-end,
this figure is limited only by the front-end’s ability to
forward acknowledgments from the clients to the back-
ends.

The measured handoff latency is 194 psecs and the
maximal handoff throughput is approximately 5000 con-
Ilect,ions per second. Note that the added handoff la-
tency is insignificant, given the connection establish-
ment delay over a wide-area network. The measured
ACK forwarding overhead is 9 psecs, resulting in a
theoretical maximal forwarding throughput of over 2.5
Gbits/s. We have not been able to measure such high
throughput directly due to lack of network resources,
but the measured remaining CPU idle time in the front-
end at lower throughput is consistent with this figure.
Further measurements indicate that with the Rice Uni-
versity trace as the workload, the handoff throughput
and forwarding throughput are sufficient to support 10
back-end nodes of the same CPU speed as the front-end.

Moreover, the front-end can be relatively easily scaled
to larger clusters either by upgrading to a faster CPU,
or by employing an SMP machine. Connection estab-
lishment, handoff, and forwarding are independent for
different connections, and can be easily parallelized [24].
The dispatcher, on the other hand, requires shared state
and thus synchronization among the CPUs. However,
with a simple policy such as LARD/R, the time spent
in the dispatcher amounts to only a small fraction of the
handoff overhead (lo-20%). Therefore, we fully expect
that the front-end performance can be scaled to larger
clusters effectively using an inexpensive SMP platform
equipped with multiple network interfaces.

6.3 Cluster Performance Results

A segment of the Rice University trace was used to drive
the prototype cluster. A single back-end node running
Apache can deliver about 167 req/sec on this trace. On
cached, small files (less than 8 I(B), an Apache back-end
can complete about 800 req/sec.

The Apache Web server relies on the file caching
services of the underlying operating system. FreeBSD
uses a unified buffer cache, where cached files are com-
peting with user processes for physical memory pages.
All page replacement is controlled by FreeBSD’s page-
out daemon, which implements a variant of the clock
algorithm [20]. The cache size is variable and depends
on main memory pressure from user applications. In
our 128 MB back-ends, memory demands from kernel
and Apache server processes leave about 100 MB of free
memory. In practice, we observed fle cache sizes be-
tween 70 and 97 MB.

We measure the total HTTP throughput of the
server cluster with increasing numbers of back-end
nodes and with the front-end implementing either WRR

Figure 16: Experimental Testbed

214

“I 2 3
nodes in cluster

Figure 17: HTTP Throughput (Apache)

or LARD/R. The results are shown in Figure 17 and
confirm the predictions of the simulator. The through-
put achieved with LARD/R exceeds that of WRR by
a factor of 2.5 for six nodes. Running LARD/R on a
cluster with six nodes at maximal throughput and an
aggregate server bandwidth of over 280 Mb/s, the front,-
end CPU was 60% utilized. This is consistent with our
earlier projection that a single CPU front-end can sup-
port 10 back-ends of equal CPU speed.

7 Related Work

Much current research addresses the scalability prob-
lems posed by the Web. The work includes cooperative
caching proxies inside the network, push-based docu-
ment distribution, and other innovative techniques [3,
6, 10, 16, 19, 221. Our proposal addresses the com-
plementary issue of providing support for cost-effective,
scalable network servers.

Network servers based on clusters of workstations
are starting to be widely used [la]. Several products
are available or have been announced for use as front-
end nodes in such cluster servers [7, 141. To the best of
our knowledge, the request distribution strategies used
in the cluster front-ends are all variations of weighted
round-robin, and do not take into account a request’s
target content. An exception is the Dispatch product
by Resonate, Inc., which supports content-based request
distribution [21]. The product does not appear to use
any dynamic distribution policies based on content and
no attempt is made to achieve cache aggregation via
content-based request distribution.

Hunt et al. proposed a TCP option designed to
enable content-based load distribution in a cluster
server [13]. The design has not been implemented and
the performance potential of content-based distribution
has not been evaluated as part of that work. Also, no
policies for content-based load distribution were pro-
posed. Our TCP handoff protocol design was informed
by Hunt et al.‘s design, but chooses the different ap-
proach of layering a separate handoff protocol on top of
TCP.

Fox et al. [12] report on the cluster server technology
used in the Inkt,omi search engine. ‘I’he work focuses on
the reliability and scalability aspects of the system and
is complementary to our work. The request distribution
policy used in their systems is based on weighted round-

robin.
Loosely-coupled distributed servers are widely de-

ployed on the Internet. Such servers use various tech-
niques for load balancing including DNS round-robin [4],
HTTP client re-direction [I], Smart clients [25], source-
based forwarding [9] and hardware translation of net-
work addresses [7]. Some of these schemes have proh-
lems related to the quality of the load balance achieved
and the increased request latency. A detailed discussion
of these issues can be found in Goldszmidt and Hunt [14]
and Damani et al. [9]. None of these schemes support
content-based request distribution.

IBM’s Lava project [18] loses the concept, of a “hit
server”. The hit server is a specially configured server
node responsible for serving cached content. Its spe-
cialized OS and client-server protocols give it superior
performance for handling HTTP requests of cached doc-
uments, but limits it to private lntranets. Requests
for uncached documents and dynamic content are dele-
gat,ed t,o a separate, conventional HTTP server node.
Our work shares some of the same goals, but main-
tains standard client-server protocols, maintains sup-
port for dynamic content generation, and focuses on
cluster servers.

8 Conclusion

We present and evaluate a practical and efficient
locality-aware request distribution (LARD) strategy
that achieves high cache hit rates and good load balanc-
ing in a cluster server. Trace-driven simulations show
that the performance of our strategy exceeds that of
the state-of-the-art weighted round-robin (WRR) strat-
egy substantially. On workloads with a working set that
does not fit in a single server node’s main memory cache,
the achieved throughput exceeds that of WRR by a fac-
tor of two to four.

Additional simulations show that the performance
advantages of LARD over WRR increase with the dis-
parity between CPU and disk speeds. Also, our results
indicate that the performance of a hypothetical cluster
with WRR distribution and a global memory system
(GMS) falls short of LARD under all workloads con-
sidered, despite generous assumptions about the perfor-
mance of a GMS system.

We also propose and evaluate an efficient TCP hand-
off protocol that enables LARD and other content-
based request distribution strategies by providing client-
transparent connection handoff for TCP-based network
services, like HTTP. Performance results indicate that
in our prototype cluster environment and on our work-
loads, a single CPU front-end can support 10 back-end
nodes with equal CPU speed as the front-end. More-
over, the design of the handoff protocols is expected
to yield scalable performance on SMP-based front-ends,
thus supporting larger clusters.

Finally, we present performance results from a pro-
totype LARD server cluster that incorporates the TCP
handoff protocol and the LARD strategy. The measured
results confirm the simulation results with respect to the
relative performance of LARD and WRR.

In this paper, we have focused on studying HTTP
servers that serve static content. However, caching cau
also be effective for dynamically generated content [15].

215

Moreover, resources required for dynamic content gen-
eration like server processes, executables, and primary
data files are also cacheable. While further research is
required, we expect that increased locality can benefit
dynamic content serving, and that therefore the advan-
t-ages of LARD also apply to dynamic content.

9 Acknowledgments

Thanks to Ed Costello, Cameron Ferstat, Alister Lewis-
Bowen and Chct Murthy, for their help in obtaining the
IBM server logs.

References

PI

121
[31

[41

PI

PI

PI

PI

PI

[lOI

illI

D. Andresen et al. SWEB: Towards a Scalable
WWW Server on MultiComputers. In Proceedings
of the 10th International Parallel Processing Sym-
posium, Apr. 1996.

Apache. http://www.apache.org/.

G. Banga, F. Douglis, and M. Rabinovich. Opti-
mistic Deltas for WWW Lat,ency Reduction. In
Proceedings of the 19.97 Usenix Technical Confer-

ence, Jan. 1997.

T. 13risco. DNS Support for Load Balancing. RFC
1794, Apr. 1995.

P. Cao and S. Irani. Cost-aware WWW proxy
caching algorithms. In Proceedings of the USENIX
Symposium on Internet Technologies and Systems
(USITS), Monterey, CA, Dec. 1997.

A. Chankhunthod, P. B. Danzig, C. Neerdaels,
M. F. Schwartz, and K. J. Worrell. A Hierarchi-
cal Internet Object Cache. In Proceedings of the
1996 Usenix Technical Conference, Jan. 1996.

Cisco Systems Inc. LocalDirector.
http:// www.cisco.com.

M. Dahlin, R. Yang, T. Anderson, and D. Pat-
terson. Cooperative caching: Using remote client
memory to improve file system performance. In
Proc. Symp. on Operating Systems Design and Im-
plementation, Monterey, CA, Nov. 1994.

0. I’. Damani, P.-Y. E. Chung, Y. Huang, C. Kin-
tala, and Y.-M. Wang. ONE-IP: Techniques for
hosting a service on a cluster of machines. Com-

puter Networks and ISDN Systems, 29:1019-1027,
1997.

P. Danzig, R. Hall, and M. Schwartz. A case for
caching file objects inside internetworks. In Pro-
ceedings of the SIGCOMM ‘93 Conference, Sept.
1993.

M. J. Fceley, W. E. Morgan, F. H. Pighin, A. R.
Karlin, II. M. Levy, and C. A. Thekkath. Imple-
menting global memory management in a worksta-
tion cluster. In Proceedings of the Fifteenth ACM
Symposium on Operating System Principles, Cop-
per Mountain, CO, Dec. 1995.

[121

[131

[141

[151

[I61

[171

I181

[191

PO1

[alI

[221

[231

[241

[251

A. Fox, S. D. Gribble, Y. Chawathe, E. A. Brewer,
and P. Gauthier. Cluster-based scalable network
services. In Proceedings of the Sixteenth A CM Sym-

posium on Operating System Principles, San Malo,
France, Oct. 1997.

G. Hunt, E. Nahum, and J. Tracey. Enabling
content,-based load distribution for scalable ser-
vices. Technical report, IBM T. J. Watson Research
Center, May 1997.

IBM Corporation. IBM interactive network
dispatcher.
http://www.ics.raleigh.ibm.com/ics/isslearn.htm.

A. Iyengar and J. Challenger. Improving web server
performance by caching dynamic data. In Proceed-
ings of the USENIX Symposium on Internet Tech-
nologies and Systems (USITS), Monterey, CA, Dec.
1997.

T. M. Kroeger, D. D. Long, and J. C. Mogul.
Exploring the bounds of Web latency reduction
from caching and prefetching. In Proceedings of
the IJSENIX Symposium on Internet Technologies
and Systems (USITS), Monterey, CA, Dec. 1997.

H. Levy, G. Voelker, A. Karlin, E. Anderson, and
T. Kimbrel. Implementing Cooperative Prefetch-
ing and Caching in a Globally-Managed Memory
System. In Proceedings of the ACM SIGMETRICS
‘98 Conference, Madison, WI, June 1998.

J. Liedtke, V. Panteleenko, T. Jaeger, and N. Islam.
High-performance caching with the Lava hit-server.
In Proceedings of the USENIX 1998 Annual Tech-
nical Conference, New Orleans, LA, June 1998.

G. R. Malan, F. Jahanian, and S. Subramanian.
Salamander: A push-based distribution substrate
for Internet applications. In Proceedings of the
USENIX Symposium on Internet Technologies and
Systems (USITS), Monterey, CA, Dec. 1997.

M. K. McKusick, K. Bostic, M. J. Karels, and
J. S. Quarterman. The Design and Implementation
of the 4.4BSD Operating System. Addison-Wesley
Publishing Company, 1996.

Resonate Inc. Resonate dispatch.
http://www.resonateinc.com.

M. Seltzer and J. Gwertzman. The Case for Geo-
graphical Pushcaching. In Proceedings of the 1995
Workahop on Hot Topics in Operating Systems,
1995.

G. Wright and W. Stevens. TCP/IP Illustrated
Volume 2. Addison-Wesley, Reading, MA, 1995.

D. J. Yates, E. M. Nahum, J. F. Kurose, and
D. Towsley. Networking support for large scale mul-
tiprocessor servers. In Proceedings of the A CM Sig-
metrics Conference on Measurement and Modeling
of Computer Systems, Philadelphia, Pennsylvania,
May 1996.

B. Yoshikawa et al. Using Smart Clients to Build
Scalable Services. In Proceedings of the 1997 Usenix
Technical Conference, Jan. 1997.

216

