
Replication for Web Hosting Systems

SWAMINATHAN SIVASUBRAMANIAN, MICHAL� SZYMANIAK, GUILLAUME PIERRE,
and MAARTEN VAN STEEN

Vrije Universiteit, Amsterdam

Replication is a well-known technique to improve the accessibility of Web sites. It
generally offers reduced client latencies and increases a site’s availability. However,
applying replication techniques is not trivial, and various Content Delivery Networks
(CDNs) have been created to facilitate replication for digital content providers. The
success of these CDNs has triggered further research efforts into developing advanced
Web replica hosting systems. These are systems that host the documents of a website
and manage replication automatically. To identify the key issues in designing a
wide-area replica hosting system, we present an architectural framework. The
framework assists in characterizing different systems in a systematic manner. We
categorize different research efforts and review their relative merits and demerits. As
an important side-effect, this review and characterization shows that there a number of
interesting research questions that have not received much attention yet, but which
deserve exploration by the research community.

Categories and Subject Descriptors: C.2.4 [Computer-Communication Networks]:
Distributed Systems; C.4 [Performance of Systems]: Design Studies; H.3.5
[Information Storage and Retrieval]: Online Information Service—Web-based
services

General Terms: Design, Measurement, Performance

Additional Key Words and Phrases: Web replication, content delivery networks

1. INTRODUCTION

Replication is a technique that allows to
improve the quality of distributed ser-
vices. In the past few years, it has been
increasingly applied to Web services, no-
tably for hosting Web sites. In such cases,
replication involves creating copies of a
site’s Web documents, and placing these
document copies at well-chosen locations.
In addition, various measures are taken
to ensure (possibly different levels of) con-
sistency when a replicated document is

Authors’ address: Department of Computer Science, Vrije Universiteit, Amsterdam, The Netherlands; email:
{swami,michal,gpierre,steen}@cs.vu.nl
Permission to make digital/hard copy of part or all of this work for personal or classroom use is granted
without fee provided that the copies are not made or distributed for profit or commercial advantage, the
copyright notice, the title of the publication, and its date appear, and notice is given that copying is by
permission of ACM, Inc. To copy otherwise, to republish, to post on servers, or to redistribute to lists requires
prior specific permission and/or a fee.
c©2004 ACM 0360-0300/04/0900-0291 $5.00

updated. Finally, effort is put into redi-
recting a client to a server hosting a
document copy such that the client is opti-
mally served. Replication can lead to re-
duced client latency and network traffic
by redirecting client requests to a replica
closest to that client. It can also improve
the availability of the system, as the fail-
ure of one replica does not result in entire
service outage.

These advantages motivate many Web
content providers to offer their ser-
vices using systems that use replication

ACM Computing Surveys, Vol. 36, No. 3, September 2004, pp. 291–334.

292 S. Sivasubramanian et al.

techniques. We refer to systems providing
such hosting services as replica hosting
systems. The design space for replica host-
ing systems is big and seemingly complex.
In this article, we concentrate on organiz-
ing this design space and review several
important research efforts concerning the
development of Web replica hosting sys-
tems. A typical example of such a system is
a Content Delivery Network (CDN) [Hull
2002; Rabinovich and Spastscheck 2002;
Verma 2002].

There exists a wide range of articles dis-
cussing selected aspects of Web replica-
tion. However, to the best of our knowl-
edge, there is no single framework that
aids in understanding, analyzing and com-
paring the efforts conducted in this area.
In this article, we provide a framework
that covers the important issues that need
to be addressed in the design of a Web
replica hosting system. The framework is
built around an objective function–a gen-
eral method for evaluating the system per-
formance. Using this objective function,
we define the role of the different system
components that address separate issues
in building a replica hosting system.

The Web replica hosting systems we
consider are scattered across a large ge-
ographical area, notably the Internet.
When designing such a system, at least the
following five issues need to be addressed:

(1) How do we select and estimate the met-
rics for taking replication decisions?

(2) When do we replicate a given Web doc-
ument?

(3) Where do we place the replicas of a
given document?

(4) How do we ensure consistency of all
replicas of the same document?

(5) How do we route client requests to ap-
propriate replicas?

Each of these five issues is to a large ex-
tent independent from the others. Once
grouped together, they address all the
issues constituting a generalized frame-
work of a Web replica hosting system.
Given this framework, we compare and
combine several existing research efforts,
and identify problems that have not been

addressed by the research community
before.

Another issue that should also be ad-
dressed separately is selecting the objects
to replicate. Object selection is directly
related to the granularity of replication.
In practice, whole websites are taken as
the unit for replication, but Chen et al.
[2002b, 2003] show that grouping Web
documents can considerably improve the
performance of replication schemes at rel-
atively low costs. However, as not much
work has been done in this area, we have
chosen to exclude object selection from our
study.

We further note that Web caching is
an area closely related to replication. In
caching, whenever a client requests a
document for the first time, the client
process or the local server handling the
request will fetch a copy from the doc-
ument’s server. Before passing it to the
client, the document is stored locally in
a cache. Whenever that document is re-
quested again, it can be fetched from the
cache locally. In replication, a document’s
server proactively places copies of docu-
ment at various servers, anticipating that
enough clients will make use of this copy.
Caching and replication thus differ only in
the method of creation of copies. Hence, we
perceive caching infrastructures (like, e.g.,
Akamai [Dilley et al. 2002]) also as replica
hosting systems, as document distribu-
tion is initiated by the server. For more
information on traditional Web caching,
see Wang [1999]. A survey on hierarchical
and distributed Web caching can be found
in Rodriguez et al. [2001].

A complete design of a Web replica host-
ing system cannot restrict itself to ad-
dressing the above five issues, but should
also consider other aspects. The two most
important ones are security and fault tol-
erance. From a security perspective, Web
replica hosting systems provide a solution
to denial-of-service (DoS) attacks. By sim-
ply replicating content, it becomes much
more difficult to prevent access to specific
Web content. On the other hand, mak-
ing a Web replica hosting system secure
is currently done by using the same tech-
niques as available for website security.

ACM Computing Surveys, Vol. 36, No. 3, September 2004.

Replication for Web Hosting Systems 293

Obviously, wide-spread Web content repli-
cation poses numerous security issues, but
these have not been sufficiently studied to
warrant inclusion in a survey such as this.

In contrast, when considering fault tol-
erance, we face problems that have been
extensively studied in the past decades
with many solutions that are now being in-
corporated into highly replicated systems
such as those studied here. Notably the
solutions for achieving high availability
and fault tolerance of a single site are or-
thogonal to achieving higher performance
and accessibility in Web replica hosting
systems. These solutions have been ex-
tensively documented in the literature
([Schneider 1990; Jalote 1994; Pradhan
1996; Alvisi and Marzullo 1998; Elnozahy
et al. 2002]); for which reason, we do
not explicitly address them in our current
study.

1.1. Motivating Example

To obtain a first impression of the size
of the design space, let us consider a few
existing systems. We adopt the follow-
ing model. An object encapsulates a (par-
tial) implementation of a service. Exam-
ples of an object are a collection of Web
documents (such as HTML pages and im-
ages) and server scripts (such as ASPs,
PHPs) along with their databases. An ob-
ject can exist in multiple copies, called
replicas. Replicas are stored on replica
servers, which together form a replica host-
ing system. The replica hosting system de-
livers appropriate responses to its clients.
The response usually comprises a set of
documents generated by the replica, stat-
ically or dynamically. The time between a
client issuing a request and receiving the
corresponding response is defined as client
latency. When the state of a replica is up-
dated, then this update needs to propagate
to other replicas so that no stale document
is delivered to the clients. We refer to the
process of ensuring that all replicas of an
object have the same state amidst updates
as consistency enforcement.

Now consider the following four differ-
ent CDNs, which we discuss in more detail
below. Akamai is one of the largest CDNs

currently deployed, with tens of thousands
of replica servers placed all over the Inter-
net [Dilley et al. 2002]. To a large extent,
Akamai uses well-known technology to
replicate content, notably a combination
of DNS-based redirection and proxy-
caching techniques. A different approach
is followed by Radar, a CDN developed at
AT&T [Rabinovich and Aggarwal 1999].
A distinguishing feature of Radar is
that it can also perform migration
of content in addition to replication.
SPREAD [Rodriguez and Sibal 2000]
is a CDN also developed at AT&T that
attempts to transparently replicate con-
tent through interception of network
traffic. Its network-level approach leads
to the application of different techniques.
Finally, the Globule system is a research
CDN aiming to support large-scale user-
initiated content distribution [Pierre and
van Steen 2001, 2003].

Table I gives an overview of how these
four systems deal with the aforementioned
five issues: replica placement, consistency
enforcement, request routing, and adap-
tation triggering. Let us consider each of
these entries in more detail.

When considering replica placement, it
turns out that this is not really an is-
sue for Akamai because it essentially fol-
lows a caching strategy. However, with
this scheme, client redirection is an im-
portant issue as we shall see. Radar fol-
lows a strategy that assumes that servers
are readily available. In this case, replica
placement shifts to the problem of decid-
ing what the best server is to place con-
tent. Radar simply replicates or migrates
content close to where many clients are.
SPREAD considers the network path be-
tween clients and the original document
server and makes an attempt to create
replicas on that path. Globule, finally, also
assumes that servers are readily avail-
able, but performs a global evaluation tak-
ing into account, for example, that the
number of replicas needs to be restricted.
Moreover, it does such evaluations on a
per-document basis.

Consistency enforcement deals with the
techniques that are used to keep repli-
cas consistent. Akamai uses an elegant

ACM Computing Surveys, Vol. 36, No. 3, September 2004.

294 S. Sivasubramanian et al.

Table I. Summary of Strategies Adopted by Four Different CDNs
Design Issue Akamai Radar SPREAD Globule
Replica
placement

Caching Content is shipped
to replica servers
located closer to
clients

Replicas created
on paths between
clients and the
original document
server

Selects the best
replication
strategy
regularly upon
evaluating
different
strategies

Consistency
enforcement

Consistency based
on replica
versioning

Primary-copy
approach

Different
strategies, chosen
on a per-document
basis

Adaptive
consistency
policies

Adaptation
triggering

Primarily
server-triggered

Server-triggered Router-triggered Server-triggered

Request
routing

Two-tier DNS
redirection
combined with
URL rewriting,
considering server
load and
network-related
metrics

Proprietary
redirection
mechanism,
considering server
load and proximity

Packet-handoff,
considering
hop-based
proximity

Single-tier DNS
redirection,
considering
AS-based
proximity

versioning scheme by which the version
is encoded in a document’s name. This
approach creates a cache miss in the
replica server whenever a new version is
created, so that the replica server will
fetch it from the document’s main server.
Radar simply applies a primary-copy pro-
tocol to keep replicas consistent. SPREAD
deploys different techniques, and has in
common with Globule that different tech-
niques can be used for different docu-
ments. Globule, finally, evaluates whether
consistency requirements are continued
to be met, and, if necessary, switches
to a different technique for consistency
enforcement.

Adaptation triggering concerns select-
ing the component that is responsible for
monitoring system conditions, and, if nec-
essary, initiating adaptations to, for exam-
ple, consistency enforcement and replica
placement. All systems except SPREAD
put servers in control for monitoring
and adaptation triggering. SPREAD uses
routers for this purpose.

Request routing deals with redirect-
ing a client to the best replica for
handling its request. There are several
ways to do this redirection. Akamai and
Globule both use the Domain Name Sys-
tem (DNS [Mockapetris 1987a]) for this
purpose, but in a different way. Akamai

takes into account server load and various
network metrics, whereas Globule cur-
rently measures only the number of au-
tonomous systems that a request needs
to pass through. Radar deploys a propri-
etary solution taking into account server
load and a Radar-specific proximity mea-
sure. Finally, SPREAD deploys a network
packet-handoff mechanism, actually us-
ing router hops as its distance metric.

Without having gone into the details
of these systems, it can be observed that
approaches to organizing a CDN differ
widely. As we discuss in this article, there
are numerous solutions to the various de-
sign questions that need to be addressed
when developing a replica hosting service.
These questions and their solutions are
the topic of this article.

1.2. Contributions and Organization

The main contributions of this article are
three-fold. First, we identify and enumer-
ate the issues in building a Web replica
hosting system. Second, we propose an ar-
chitectural framework for such systems
and review important research work in the
context of the proposed framework. Third,
we identify some of the problems that have
not been addressed by the research com-
munity until now, but whose solutions can

ACM Computing Surveys, Vol. 36, No. 3, September 2004.

Replication for Web Hosting Systems 295

be of value in building a large-scale replica
hosting system.

The rest of the article is organized as fol-
lows. In Section 2, we present our frame-
work of wide-area replica hosting systems.
In Sections 3 to 7, we discuss each of the
above mentioned five problems forming
the framework. For each problem, we re-
fer to some of the significant related re-
search efforts, and show how the problem
was tackled. We draw our conclusions in
Section 8.

2. FRAMEWORK

The goal of a replica hosting system is
to provide its clients with the best avail-
able performance while consuming as lit-
tle resources as possible. For example,
hosting replicas on many servers spread
throughout the Internet can decrease the
client end-to-end latency, but is bound to
increase the operational cost of the sys-
tem. Replication can also introduce costs
and difficulties in maintaining consistency
among replicas, but the system should al-
ways continue to meet application-specific
consistency constraints. The design of a
replica hosting system is the result of com-
promises between performance, cost, and
application requirements.

2.1. Objective Function

In a sense, we are dealing with an opti-
mization problem, which can be modeled
by means of an abstract objective function,
Fideal, whose value λ is dependent on many
input parameters:

λ = Fideal(p1, p2, p3, . . . , pn).

In our case, the objective function takes
two types of input parameters. The first
type consists of uncontrollable system
parameters, which cannot be directly con-
trolled by the replica hosting system. Typ-
ical examples of such uncontrollable pa-
rameters are client request rates, update
rates for Web documents, and available
network bandwidth. The second type of
input parameters are those whose value
can be controlled by the system. Examples

Fig. 1. The feedback control loop for a replica host-
ing system.

of such parameters include the number of
replicas, the location of replicas, and the
adopted consistency protocols.

One of the problems that replica host-
ing systems are confronted with, is that
to achieve optimal performance, only the
controllable parameters can be manipu-
lated. As a result, continuous feedback is
necessary, resulting in a traditional feed-
back control system as shown in Figure 1.

Unfortunately, the actual objective func-
tion Fideal represents an ideal situation,
in the sense that the function is gener-
ally only implicitly known. For example,
the actual dimension of λ may be a com-
plex combination of monetary revenues,
network performance metrics, and so on.
Moreover, the exact relationship between
input parameters and the observed value
λ may be impossible to derive. Therefore,
a different approach is always followed
by constructing an objective function F
whose output λ is compared to an assumed
optimal value λ∗ of Fideal. The closer λ is
to λ∗, the better. In general, the system is
considered to be in an acceptable state, if
|λ∗ − λ| ≤ δ, for some system-dependent
value δ.

We perceive any large-scale Web replica
hosting system to be constantly adjust-
ing its controllable parameters to keep λ
within the acceptable interval around λ∗.
For example, during a flash crowd (a sud-
den and huge increase in the client re-
quest rate), a server’s load increases, in
turn increasing the time needed to ser-
vice a client. These effects may result
in λ falling out of the acceptable inter-
val and that the system must adjust its
controllable parameters to bring λ back
to an acceptable value. The actions on
controllable parameters can be such as

ACM Computing Surveys, Vol. 36, No. 3, September 2004.

296 S. Sivasubramanian et al.

Fig. 2. A framework for evaluating wide-area replica hosting systems.

increasing the number of replicas, or plac-
ing replicas close to the locations that
generate most requests. The exact defi-
nition of the objective function F , its in-
put parameters, the optimal value λ∗, and
the value of δ are defined by the system
designers and will generally be based on
application requirements and constraints
such as cost.

In this article, we use this notion of an
objective function to describe the differ-
ent components of a replica hosting sys-
tem, corresponding to the different parts
of the system design. These components
cooperate with each other to optimize λ.
They operate on the controllable param-
eters of the objective function, or observe
its uncontrollable parameters.

2.2. Framework Elements

We identify five main issues that have
to be considered during the design of a
replica hosting system: metric determina-
tion, adaptation triggering, replica place-
ment, consistency enforcement, and re-
quest routing. These issues can be treated
as chronologically ordered steps that have
to be taken when transforming a central-
ized service into a replicated one. Our pro-
posed framework of a replica hosting sys-
tem matches these five issues as depicted
in Figure 2. Below, we discuss the five is-
sues and show how each of them is related
to the objective function.

In metric determination, we address
the question how to find and estimate the
metrics required by different components
of the system. Metric determination is the

problem of estimating the value of the ob-
jective function parameters. We discuss
two important issues related to metric es-
timation that need to be addressed to build
a good replica hosting system. The first is-
sue is metric identification: the process of
identifying the metrics that constitute the
objective function the system aims to op-
timize. For example, a system might want
to minimize client latency to attract more
customers, or might want to minimize the
cost of replication. The other important
issue is the process of metric estimation.
This involves the design of mechanisms
and services related to estimation or mea-
surement of metrics in a scalable manner.
As a concrete example, measuring client
latency to every client is generally not scal-
able. In this case, we need to group clients
into clusters and measure client-related
metrics on a per-cluster basis instead of
on a per-client basis (we call this process
of grouping clients client clustering). In
general, the metric estimation component
measures various metrics needed by other
components of the replica hosting system.

Adaptation triggering addresses the
question when to adjust or adapt the sys-
tem configuration. In other words, we de-
fine when and how we can detect that λ
has drifted too much from λ∗. Consider
a flash crowd causing poor client latency.
The system must identify such a situation
and react, for example, by increasing the
number of replicas to handle the increase
in the number of requests. Similarly, con-
gestion in a network where a replica is
hosted can result in poor accessibility of
that replica. The system must identify

ACM Computing Surveys, Vol. 36, No. 3, September 2004.

Replication for Web Hosting Systems 297

such a situation and possibly move that
replica to another server. The adaptation-
triggering mechanisms do not form an
input parameter of the objective func-
tion. Instead, they form the heart of the
feedback element in Figure 1, thus indi-
rectly control λ and maintain the system
in an acceptable state.

With replica placement, we address
the question where to place replicas. This
issue mainly concerns two problems: selec-
tion of locations to install replica servers
that can host replicas (replica server place-
ment) and selection of replica servers to
host replicas of a given object (replica
content placement). The server placement
problem must be addressed during the ini-
tial infrastructure installation and dur-
ing the hosting infrastructure upgrading.
The replica content placement algorithms
are executed to ensure that content place-
ment results in an acceptable value of
λ, given a set of replica servers. Replica
placement components use metric estima-
tion services to get the value of metrics
required by their placement algorithms.
Both replica server placement and replica
content placement form controllable input
parameters of the objective function.

With consistency enforcement, we
consider how to keep the replicas of a
given object consistent. Maintaining con-
sistency among replicas adds overhead
to the system, particularly when the
application requires strong consistency
(meaning clients are intolerant to stale
data) and the number of replicas is large.
The problem of consistency enforcement
is defined as follows. Given certain ap-
plication consistency requirements, we
must decide what consistency models,
consistency policies and content distribu-
tion mechanisms can meet these require-
ments. A consistency model dictates the
consistency-related properties of content
delivered by the systems to its clients.
These models define consistency proper-
ties of objects based on time, value, or
the order of transactions executed on the
object. A consistency model is usually
adopted by consistency policies, which de-
fine how, when, and which content distri-
bution mechanisms must be applied. The

content distribution mechanisms specify
the protocols by which replica servers ex-
change updates. For example, a system
can adopt a time-based consistency model
and employ a policy where it guarantees
its clients that it will never serve a replica
that is more than an hour older than the
most recent state of the object. This policy
can be enforced by different mechanisms.

Request routing is about deciding
how to direct clients to the replicas they
need. We choose from a variety of redi-
rection policies and redirection mecha-
nisms. Whereas the mechanisms provide a
method for informing clients about replica
locations, the policies are responsible for
determining which replica must serve a
client. The request routing problem is
complementary to the placement problem,
as the assumptions made when solving
the latter are implemented by the former.
For example, we can place replica servers
close to our clients, assuming that the redi-
rection policy directs the clients to their
nearby replica servers. However, deliber-
ately drifting away from these assump-
tions can sometimes help in optimizing the
objective function. For example, we may
decide to direct some client requests to
more distant replica servers to offload the
client-closest one. Therefore, we treat re-
quest routing as one of the (controllable)
objective function parameters.

Each of the above design issues
corresponds to a single logical system
component. How each of them is actu-
ally realized can be very different. The
five components together should form a
scalable Web replica hosting system. The
interaction between these components
is depicted in Figure 3, which is a re-
finement of our initial feedback control
system shown in Figure 1. We assume
that λ∗ is a function of the uncontrollable
input parameters, that is:

λ∗ = min
pk+1,..., pn

F (p1, . . . , pk︸ ︷︷ ︸
Uncontrollable

parameters

, pk+1, . . . , pn︸ ︷︷ ︸
Controllable
parameters

).

Its value is used for adaptation trigger-
ing. If the difference with the computed

ACM Computing Surveys, Vol. 36, No. 3, September 2004.

298 S. Sivasubramanian et al.

Fig. 3. Interactions between different components of a wide-area replica
hosting system.

value λ is too high, the triggering com-
ponent initiates changes in one or more
of the three control components: replica
placement, consistency enforcement, or
request routing. These different compo-
nents strive to maintain λ close to λ∗. They
manage the controllable parameters of the
objective function, now represented by the
actually built system. Of course, the sys-
tem conditions are also influenced by the
uncontrollable parameters. The system
condition is measured by the metric esti-
mation services. They produce the current
system value λ, which is then passed to the
adaptation triggering component for sub-
sequent comparison. This process of adap-
tation continues throughout the system’s
lifetime.

Note that the metric estimation ser-
vices are also being used by components
for replica placement, consistency enforce-
ment, and request routing, respectively,
for deciding on the quality of their deci-
sions. These interactions are not shown in
the figure for sake of clarity.

3. METRIC DETERMINATION

All replica hosting systems need to adapt
their configuration in an effort to main-
tain high performance while meeting ap-
plication constraints at minimum cost.
The metric determination component is
required to measure the system condi-
tion, and thus allow the system to de-
tect when the system quality drifts away
from the acceptable interval so that the

system can adapt its configuration if
necessary.

Another purpose of the metric determi-
nation component is to provide each of the
three control components with measure-
ments of their input data. For example,
replica placement algorithms may need la-
tency measurements in order to generate
a placement that is likely to minimize the
average latency suffered by the clients.
Similarly, consistency enforcement al-
gorithms might require information on
object staleness in order to react with
switching to stricter consistency mech-
anisms. Finally, request routing policies
may need to know the current load of
replica servers in order to distribute
the requests currently targeting heavily
loaded servers to less loaded ones.

In this section, we discuss three issues
that have to be addressed to enable scal-
able metric determination. The first issue
is metric selection. Depending on the per-
formance optimization criteria, a number
of metrics must be carefully selected to ac-
curately reflect the behavior of the system.
Section 3.1 discusses metrics related to
client latency, network distance, network
usage, object hosting cost, and consistency
enforcement.

The second issue is client clustering.
Some client-related metrics should ideally
be measured separately for each client.
However, this can lead to scalability prob-
lems as the number of clients for a typi-
cal wide-area replica hosting system can
be in the order of millions. A common

ACM Computing Surveys, Vol. 36, No. 3, September 2004.

Replication for Web Hosting Systems 299

solution to address this problem is to
group clients into clusters and measure
client-related metrics on a per-cluster ba-
sis. Section 3.2 discusses various client
clustering schemes.

The third issue is metric estimation it-
self. We must choose mechanisms to collect
metric data. These mechanisms typically
use client-clustering schemes to estimate
client-related metrics. Section 3.3 dis-
cusses some popular mechanisms that col-
lect metric data.

3.1. Choice of Metrics

The choice of metrics must reflect all as-
pects of the desired performance. First of
all, the system must evaluate all metrics
that take part in the computation of the
objective function. Additionally, the sys-
tem also needs to measure some extra
metrics needed by the control components.
For example, a map of host-to-host dis-
tances may help the replica placement al-
gorithms, although it does not have to be
used by the objective function.

There exists a wide range of metrics
that can reflect the requirements of both
the system’s clients and the system’s op-
erator. For example, the metrics related
to latency, distance, and consistency can
help evaluate the client-perceived perfor-
mance. Similarly, the metrics related to
network usage and object hosting cost
are required to control the overall system
maintenance cost, which should remain
within bounds defined by the system’s op-
erator. We distinguish five classes of met-
rics, as shown in Table II, and which are
discussed in the following sections.

3.1.1. Temporal Metrics. An important
class of metrics is related to the time it
takes for peers to communicate, generally
referred to as latency metrics. Latency can
be defined in different ways. To explain,
we consider a client-server system and fol-
low the approach described in Dykes et al.
[2000] by modeling the total time to pro-
cess a request, as seen from the client’s
perspective, as

T = TDNS + Tconn + Tres + Trest.

Table II. Five Different Classes of Metrics Used to
Evaluate Performance in Replica Hosting Systems
Class Description
Temporal The metric reflects how long a

certain action takes
Spatial The metric is expressed in terms

of a distance that is related to
the topology of the underlying
network, or region in which the
network lies

Usage The metric is expressed in terms
of usage of resources of the
underlying network, notably
consumed bandwidth

Financial Financial metrics are expressed
in terms of a monetary unit,
reflecting the monetary costs of
deploying or using services of the
replica hosting system

Consistency The metrics express to what
extent a replica’s value may
differ from the master copy

TDNS is the DNS lookup time needed to
find the server’s network address. As re-
ported by Cohen and Kaplan [2001], DNS
lookup time can vary tremendously due
to cache misses (i.e., the client’s local
DNS server does not have the address
of the requested host in its cache), al-
though in many cases it stays below 500
milliseconds.

Tconn is the time needed to establish
a TCP connection, which, depending on
the type of protocols used in a replica
hosting system, may be relevant to take
into account. Zari et al. [2001] report that
Tconn will often be below 200 milliseconds,
but that, like in the DNS case, very high
values up to even 10 seconds may also
occur.

Tres is the time needed to transfer a re-
quest from the client to the server and re-
ceiving the first byte of the response. This
metric is comparable to measuring the
round-trip time (RTT) between two nodes,
but includes the time the server needs to
handle the incoming request. Finally, Trest
is the time needed to complete the transfer
of the entire response.

When considering latency, two different
versions are often considered. The end-to-
end latency is taken as the time needed
to send a request to the server, and is
often taken as 0.5Tres, possibly including

ACM Computing Surveys, Vol. 36, No. 3, September 2004.

300 S. Sivasubramanian et al.

the time Tconn to setup a connection. The
client-perceived latency is defined as T −
Trest. This latter latency metric reflects the
real delay observed by a user.

Obtaining accurate values for latency
metrics is not a trivial task as it may
require specialized mechanisms, or even
a complete infrastructure. One particu-
lar problem is predicting client-perceived
latency, which not only involves mea-
suring the round-trip delay between two
nodes (which is independent of the size
of the response), but may also require
measuring bandwidth to determine Trest.
The latter has shown to be particularly
cumbersome requiring sophisticated tech-
niques [Lai and Baker 1999]. We discuss
the problem of latency measurement fur-
ther in Section 3.3.

3.1.2. Spatial Metrics. As an alternative
to temporal metrics, many systems con-
sider a spatial metric such as number of
network-level hops or hops between au-
tonomous systems, or even the geograph-
ical distance between two nodes. In these
cases, the underlying assumption is gen-
erally that there exists a map of the net-
work in which the spatial metric can be
expressed.

Maps can have different levels of accu-
racy. Some maps depict the Internet as
a graph of Autonomous Systems (ASes),
thus unifying all machines belonging to
the same AS. They are used for example
by Pierre et al. [2002]. The graph of ASes
is relatively simple and easy to operate
on. However, because ASes significantly
vary in size, this approach can suffer from
inaccuracy. Other maps depict the Inter-
net as a graph of routers, thus unifying
all machines connected to the same router
[Pansiot and Grad 1998]. These maps are
more detailed than the AS-based ones, but
are not satisfying predictors for latency.
For example, Huffaker et al. [2002] found
that the number of router hops is accu-
rate in selecting the closest server in only
60% of the cases. The accuracy of router-
level maps can be expected to decrease in
the future with the adoption of new rout-
ing technologies such as Multi-Protocol

Label Switching (MPLS) [Pepelnjak and
Guichard 2001], which can hide the rout-
ing paths within a network. Finally, some
systems use proprietary distance calcula-
tion schemes, for example by combining
the two above approaches [Rabinovich and
Aggarwal 1999].

Huffaker et al. [2002] examined to what
extent geographical distance could be used
instead of latency metrics. They showed
that there is generally a close correlation
between geographical distance and RTT.
An earlier study using simple network
measurement tools by Ballintijn et al.
[2000], however, reported only a weak
correlation between geographical distance
and RTT. This difference may be caused
by the fact that many more monitoring
points outside the U.S. were used, but that
many physical connections actually cross
through networks located in the U.S. This
phenomenon also caused large deviations
in the results by Huffaker et al. [2002].

An interesting approach based on
geographical distance is followed in
the Global Network Positioning (GNP)
project [Ng and Zhang 2002]. In this
case, the Internet is modeled as an N -
dimensional geometric space. GNP is used
to estimate the latency between two ar-
bitrary nodes. We describe GNP and its
several variants in more detail in Sec-
tion 3.3 when discussing metric estima-
tion services.

Constructing and exploiting a map
of the Internet is easier than running
an infrastructure for latency measu-
rements. The maps can be derived,
for example, from routing tables.
Interestingly, Crovella and Carter [1995]
reported that the correlation between the
distance in terms of hops and the latency
is quite poor. However, other studies show
that the situation has changed. McManus
[1999] shows that the number of hops
between ASes can be used as an indicator
for client-perceived latency. Research
reported in Obraczka and Silva [2000]
revealed that the correlation between the
number of network-level or AS-level hops
and round-trip times (RTTs) has further
increased, but that RTT still remains the
best choice when a single latency metric

ACM Computing Surveys, Vol. 36, No. 3, September 2004.

Replication for Web Hosting Systems 301

is needed for measuring client-perceived
performance.

3.1.3. Network Usage Metrics. Another
important metric is the total amount of
consumed network resources. Such re-
sources could include routers and other
network elements, but often entails only
the consumed bandwidth. The total net-
work usage can be classified into two
types. Internal usage is caused by the
communication between replica servers
to keep replicas consistent. External us-
age is caused by communication between
clients and replica servers. Preferably, the
ratio between external and internal us-
age is high, as internal usage can be
viewed as a form of overhead introduced
merely to keep replicas consistent. On the
other hand, overall network usage may de-
crease in comparison to the nonreplicated
case, but may require measuring more
than, for example, consumed bandwidth
only.

To see the problem at hand, consider
a nonreplicated document of size s bytes
that is requested r times per second. The
total consumed bandwidth in this case is
r · s, plus the cost of r separate connec-
tions to the server. The cost of a connec-
tion can typically be expressed as a com-
bination of setup costs and the average
distance that each packet associated with
that connection needs to travel. Assume
that the distance is measured in the num-
ber of hops (which is reasonable when con-
sidering network usage). In that case, if lr
is the average length of a connection, we
can also express the total consumed band-
width for reading the document as r · s · lr .

On the other hand, suppose the doc-
ument is updated w times per second
and that updates are always immediately
pushed to, say, n replicas. If the aver-
age path length for a connection from the
server to a replica is lw, update costs are
w ·s · lw. However, the average path length
of a connection for reading a document will
now be lower in comparison to the non-
replicated case. If we assume that lr = lw,
the total network usage may change by
a factor w/r in comparison to the non-
replicated case.

Of course, more precise models should
be applied in this case, but the exam-
ple illustrates that merely measuring con-
sumed bandwidth may not be enough
to properly determine network usage.
This aspect becomes even more important
given that pricing may be an issue for pro-
viding hosting services, an aspect that we
discuss next.

3.1.4. Financial Metrics. Of a completely
different nature are metrics that deal with
the economics of content delivery net-
works. To date, such metrics form a rel-
atively unexplored area, although there
is clearly interest to increase our insight
(see, e.g., Janiga et al. [2001]). We need
to distinguish at least two different roles.
First, the owner of the hosting service is
confronted with costs for developing and
maintaining the hosting service. In partic-
ular, costs will be concerned with server
placement, server capacity, and network
resources (see, e.g., Chandra et al. [2001]).
This calls for metrics aimed at the hosting
service provider.

The second role is that of customers
of the hosting service. Considering that
we are dealing with shared resources
that are managed by service provider, ac-
counting management by which a pre-
cise record of resource consumption is
developed, is important for billing cus-
tomers [Aboba et al. 2000]. However,
developing pricing models is not triv-
ial and it may turn out that simple
pricing schemes will dominate the so-
phisticated ones, even if application of
the latter are cheaper for customers
[Odlyzko 2001]. For example, Akamai uses
peak consumed bandwidth as its pricing
metric.

The pricing model for hosting an ob-
ject can directly affect the control compo-
nents. For example, a model can mandate
that the number of replicas of an object
is constrained by the money paid by the
object owner. Likewise, there exist vari-
ous models that help in determining object
hosting costs. Examples include a model
with a flat base fee and a price linearly
increasing along with the number of ob-
ject replicas, and a model charging for the

ACM Computing Surveys, Vol. 36, No. 3, September 2004.

302 S. Sivasubramanian et al.

total number of clients serviced by all the
object replicas.

We observe that neither financial met-
rics for the hosting service provider nor
those for consumers have actually been es-
tablished other than in some ad hoc and
specific fashion. We believe that develop-
ing such metrics, and notably the models
to support them, is one of the more chal-
lenging and interesting areas for content
delivery networks.

3.1.5. Consistency Metrics. Consistency
metrics inform to what extent the replicas
retrieved by the clients are consistent
with the replica version that was up-to-
date at the moment of retrieval. Many
consistency metrics have been proposed
and are currently in use, but they are
usually quantified along three different
axes.

In time-based consistency models, the
difference between two replicas A and
B is measured as the time between the
latest update on A and the one on B.
In effect, time-based models measure the
staleness of a replica in comparison to an-
other, more recently updated replica. Tak-
ing time as a consistency metric is popular
in Web-hosting systems as it is easy to im-
plement and independent of the semantics
of the replicated object. Because updates
are generally performed at only a single
primary copy from where they are propa-
gated to secondaries, it is easy to associate
a single timestamp with each update and
to subsequently measure the staleness of
a replica.

In value-based models, it is assumed
that each replica has an associated numer-
ical value that represents its current con-
tent. Consistency is then measured as the
numerical difference between two repli-
cas. This metric requires that the seman-
tics of the replicated object are known or
otherwise it would be impossible to asso-
ciate and compare object values. An exam-
ple of where value-based metrics can be
applied is a stock-market Web document
containing the current values of shares. In
such a case, we could define a Web docu-
ment to be inconsistent if at least one of

the displayed shares differs by more than
2% with the most recent value.

Finally, in order-based models, reads
and writes are perceived as transactions
and replicas can differ only in the order of
execution of write transactions according
to certain constraints. These constraints
can be defined as the allowed number
of out-of-order transactions, but can also
be based on the dependencies between
transactions as is commonly the case for
distributed shared-memory systems [Mos-
berger 1993], or client-centric consistency
models as introduced in Bayou [Terry et al.
1994].

3.1.6. Metric Classification. Metrics can
be classified into two types: static and dy-
namic. Static metrics are those whose esti-
mates do not vary with time, as opposed to
dynamic metrics. Metrics such as the ge-
ographical distance are static in nature,
whereas metrics such as end-to-end la-
tency, number of router hops or network
usage are dynamic. The estimation of dy-
namic metrics can be a difficult problem
as it must be performed regularly to be ac-
curate. Note that determining how often a
metric should be estimated is a problem by
itself. For example, Paxson [1997a] found
that the time periods over which end-to-
end routes persist vary from seconds to
days.

Dynamic metrics can be more useful
when selecting a replica for a given client
as they estimate the current situation.
For example, Crovella and Carter [1995]
conclude that the use of a dynamic met-
ric instead of a static one is more use-
ful for replica selection as the former
can also account for dynamic factors such
as network congestion. Static metrics, in
turn, are likely to be exploited by replica
server placement algorithms as they tend
to be more directed toward a global, long-
lasting situation than an instantaneous
one.

In general, however, any combination of
metrics can be used by any control com-
ponent. For example, the placement al-
gorithms proposed by Radoslavov et al.
[2001] and Qiu et al. [2001] use dynamic

ACM Computing Surveys, Vol. 36, No. 3, September 2004.

Replication for Web Hosting Systems 303

metrics (end-to-end latency and network
usage). Also Dilley et al. [2002] and
Rabinovich and Aggarwal [1999] use end-
to-end latency as a primary metric for
determining the replica location. Finally,
the request-routing algorithm described
in Szymaniak et al. [2003] exploits net-
work distance measurements. We observe
that the existing systems tend to support
a small set of metrics, and use all of them
in each control component.

3.2. Client Clustering

As we noticed before, some metrics should
be ideally measured on a per-client basis.
In a wide-area replica hosting system, for
which we can expect millions of clients,
this poses a scalability problem to the esti-
mation services as well as the components
that need to use them. Hence, there is a
need for scalable mechanisms for metric
estimation.

A popular approach by which scalabil-
ity is achieved is client clustering in which
clients are grouped into clusters. Metrics
are then estimated on a per-cluster basis
instead of on a per-client basis. Although
this solution allows to estimate metrics in
a scalable manner, the efficiency of the es-
timation depends on the accuracy of clus-
tering mechanisms. The underlying as-
sumption here is that the metric value
computed for a cluster is representative of
values that would be computed for each
individual client in that cluster. Accurate
clustering schemes are those which keep
this assumption valid.

The choice of a clustering scheme de-
pends on the metric it aims to estimate.
Below, we present different kinds of clus-
tering schemes that have been proposed in
the literature.

3.2.1. Local Name Servers. Each Internet
client contacts its local DNS server to re-
solve a service host name to its IP ad-
dress(es). The clustering scheme based
on local name servers unifies clients con-
tacting the same name server, as they
are assumed to be located in the same
network-topological region. This is a use-
ful abstraction as DNS-based request-

routing schemes are already used in the
Internet. However, the success of these
schemes relies on the assumption that
clients and local name servers are close to
each other. Shaikh et al. [2001] performed
a study on the proximity of clients and
their name servers based on the HTTP
logs from several commercial websites.
Their study concludes that clients are typ-
ically eight or more hops from their repre-
sentative name servers. The authors also
measured the round trip times both from
the name servers to the servers (name-
server latency) and from the clients to the
servers (client latency). It turns out that
the correlation between the name-server
latency and the actual client latency is
quite poor. They conclude that the latency
measurements to the name servers are
only a weak approximation of the latency
to actual clients. These findings have been
confirmed by Mao et al. [2002].

3.2.2. Autonomous Systems. The Inter-
net has been built as a graph of individ-
ual network domains, called Autonomous
Systems (ASes). The AS clustering scheme
groups together clients located in the same
AS, as is done for example, in Pierre et al.
[2002]. This scheme naturally matches the
AS-based distance metric. Further clus-
tering can be achieved by grouping ASes
into a hierarchy, as proposed by Barford
et al. [2001], which in turn can be used to
place caches.

Although an AS is usually formed out
of a set of networks belonging to a sin-
gle administrative domain, it does not nec-
essarily mean that these networks are
proximal to each other. Therefore, estimat-
ing latencies with an AS-based clustering
scheme can lead to poor results. Further-
more, since ASes are global in scope, mul-
tiple ASes may cover the same geographi-
cal area. It is often the case that some IP
hosts are very close to each other (either in
terms of latency or hops) but belong to dif-
ferent ASes, while other IP hosts are very
far apart but belong to the same AS. This
makes the AS-based clustering schemes
not very effective for proximity-based met-
ric estimations.

ACM Computing Surveys, Vol. 36, No. 3, September 2004.

304 S. Sivasubramanian et al.

3.2.3. Client Proxies. In some cases,
clients connect to the Internet through
proxies, which provide them with services
such as Web caching and prefetching.
Client proxy-based clustering schemes
group together all clients using the same
proxy into a single cluster. Proxy-based
schemes can be useful to measure latency
if the clients are close to their proxy
servers. An important problem with
this scheme is that many clients in the
Internet do not use proxies at all. Thus,
this clustering scheme will create many
clusters consisting of only a single client,
which is inefficient with respect to achiev-
ing scalability for metric estimation.

3.2.4. Network-Aware Clustering. Resear-
chers have proposed another scheme
for clustering Web clients, which is
based on client-network characteristics.
Krishnamurthy and Wang [2000] evaluate
the effectiveness of a simple mechanism
that groups clients having the same first
three bytes of their IP addresses into a sin-
gle cluster. However, this simple mecha-
nism fails in more than 50% of the cases
when checking whether grouped clients
actually belong to the same network. The
authors identify two reasons for failure.
First, their scheme wrongly merges small
clusters that share the same first three
bytes of IP addresses as a single class-C
network. Second, it splits several class-A,
class-B, and CIDR networks into multi-
ple class-C networks. Therefore, the au-
thors propose a novel method to identify
clusters by using the prefixes and net-
work masks information extracted from
the Border Gateway Protocol routing ta-
bles [Rekhter and Li 1995]. The proposed
mechanism consists of the following steps:

(1) Creating a merged prefix table from
routing table snapshots

(2) Performing the longest prefix match-
ing on each client IP address (as
routers do) using the constructed pre-
fix table

(3) Classifying all the clients which have
the same longest prefix into a single
cluster.

The authors demonstrate the effective-
ness of their approach by showing a suc-
cess rate of 99.99% in their validation
tests.

3.2.5. Hierarchical Clustering. Most clus-
tering schemes aim at achieving a scal-
able manner of metric estimation. How-
ever, if the clusters are too coarse grained,
it decreases the accuracy of measurement
simply because the underlying assump-
tion that the difference between the met-
ric estimated to a cluster and to a client is
negligible is no longer valid. Hierarchical
clustering schemes help in estimating
metrics at different levels (such as intr-
acluster and intercluster), thereby aim-
ing at improving the accuracy of measure-
ment, as in IDMaps [Francis et al. 2001]
and Radar [Rabinovich and Aggarwal
1999]. Performing metric estimations at
different levels results not only in better
accuracy, but also in better scalability.

Note that there can be other possible
schemes of client clustering, based not
only on the clients’ network addresses or
their geographical proximities, but also on
their content interests (see, e.g., Xiao and
Zhang [2001]). However, such clustering is
not primarily related to improving scala-
bility through replication, for which rea-
son we further exclude it from our study.

3.3. Metric Estimation Services

Once the clients are grouped into their re-
spective clusters, the next step is to ob-
tain the values for metrics (such as latency
or network overhead). Estimation of met-
rics on a wide area scale such as the In-
ternet is not a trivial task and has been
addressed by several research initiatives
before [Francis et al. 2001; Moore et al.
1996]. In this section, we discuss the chal-
lenges involved in obtaining the value for
these metrics.

Metric estimation services are respon-
sible for providing values for the vari-
ous metrics required by the system. These
services aid the control components in
taking their decisions. For example, these
services can provide replica placement al-
gorithms with a map of the Internet. Also,

ACM Computing Surveys, Vol. 36, No. 3, September 2004.

Replication for Web Hosting Systems 305

metric estimation services can use client-
clustering schemes to achieve scalability.

Metric estimations schemes can be di-
vided into two groups: active and passive
schemes. Active schemes obtain respec-
tive metric data by simulating clients and
measuring the performance observed by
these simulated clients. Active schemes
are usually highly accurate, but these
simulations introduce additional load to
the replica hosting system. Examples of
active mechanisms are Cprobes [Carter
and Crovella 1997] and Packet Bunch
Mode [Paxson 1997b]. Passive mecha-
nisms obtain the metric data from obser-
vations of existing system behavior. Pas-
sive schemes do not introduce additional
load to the network, but deriving the met-
ric data from past events can suffer from
poor accuracy. Examples of passive mecha-
nisms include SPAND [Stemm et al. 2000]
and EtE [Fu et al. 2002].

Different metrics are by nature esti-
mated in different manners. For exam-
ple, metric estimation services are com-
monly used to measure client latency or
network distance. The consistency-related
metrics are not measured by a separate
metric estimation service, but are usu-
ally measured by instrumenting client ap-
plications. In this section, our discussion
of existing research efforts mainly cov-
ers services that estimate network-related
metrics.

3.3.1. IDMaps. IDMaps is an active ser-
vice that aims at providing an archi-
tecture for measuring and disseminating
distance information across the Internet
[Francis et al. 1999, 2001]. IDMaps uses
programs called tracers that collect and
advertise distance information as so-
called distance maps. IDMaps builds its
own client-clustering scheme. It groups
different geographical regions as boxes
and constructs distance maps between
these boxes. The number of boxes in the
Internet is relatively small (in the order
of thousands). Therefore, building a dis-
tance table between these boxes is in-
expensive. To measure client-server dis-
tance, an IDMaps client must calculate the

distance to its own box and the distance
from the target server to this server’s box.
Given these two calculations, and the dis-
tance between the boxes calculated based
on distance maps, the client can discover
its real distance to the server. It must be
noted that the efficiency of IDMaps heav-
ily depends on the size and placement of
boxes.

3.3.2. King. King is an active metric es-
timation method [Gummadi et al. 2002]. It
exploits the global infrastructure of DNS
servers to measure the latency between
two arbitrary hosts. King approximates
the latency between two hosts, H1 and H2,
with the latency between their local DNS
servers, S1 and S2.

Assume that a host X needs to calculate
the latency between hosts H1 and H2. The
latency between their local DNS servers,
LS1 S2 , is calculated based on round-trip
times (RTTs) of two DNS queries. With
the first query, host X queries the DNS
server S1 about some non-existing DNS
name that belongs to a domain hosted by
S1 (see Figure 4(a)). In this way, X discov-
ers its latency to S1:

LXS1 = 1
2

RTT1.

By querying about a nonexisting name,
X ensures that the response is retrieved
from S1, as no cached copy of that response
can be found anywhere in the DNS.

With the second query, host X queries
the DNS server S1 about another nonex-
isting DNS name that this time belongs to
a domain hosted by S2 (see Figure 4(b)).
In this way, X measures the latency of its
route to S2 that goes through S1:

LXS2 = 1
2

RTT2.

A crucial observation is that this latency is
a sum of two partial latencies, one between
X and S1, and the other between S1 and
S2: LXS2 = LXS1 + LS1 S2 Since LXS1 has
been measured by the first DNS query, X
may subtract it from the total latency LXS2

ACM Computing Surveys, Vol. 36, No. 3, September 2004.

306 S. Sivasubramanian et al.

Fig. 4. The two DNS queries of King.

Fig. 5. Positioning in GNP.

to determine the latency between the DNS
servers:

LS1 S2 = LXS2 − LXS1 = 1
2

RTT2 − 1
2

RTT1.

Note that S1 will forward the second
query to S2 only if S1 is configured to ac-
cept so-called “recursive” queries from X
[Mockapetris 1987b].

In essence, King is actively probing with
DNS queries. A potential problem with
this approach is that an extensive use
of King may result in overloading the
global infrastructure of DNS servers. In
that case, the efficiency of DNS is likely
to decrease, which can degrade the perfor-
mance of the entire Internet. Also, accord-
ing to the DNS specification, it is recom-
mended to reject recursive DNS queries
that come from nonlocal clients, which
renders many DNS servers unusable for
King [Mockapetris 1987a].

3.3.3. Network Positioning. The idea of
network positioning has been proposed
in Ng and Zhang [2002], where it is called
Global Network Positioning (GNP). GNP

is a novel approach to the problem of net-
work distance estimation, where the In-
ternet is modeled as an N -dimensional ge-
ometric space [Ng and Zhang 2002]. GNP
approximates the latency between any two
hosts as the Euclidean distance between
their corresponding positions in the geo-
metric space.

GNP relies on the assumption that
latencies can be triangulated in the
Internet. The position of any host X is
computed based on its measured laten-
cies between X and k landmark hosts,
whose positions have been computed ear-
lier (k ≥ N + 1, to ensure that the cal-
culated position is unique). By treating
these latencies as distances, GNP triangu-
lates the position of X (see Figure 5). The
triangulation is implemented by means of
Simplex-downhill, which is a classical op-
timization method for multi-dimensional
functions [Nelder and Mead 1965].

The most important limitation of GNP
is that the set of landmarks can never
change. If any of them becomes un-
available, the latency to that landmark
cannot be measured and GNP is no
longer able to position any more hosts.

ACM Computing Surveys, Vol. 36, No. 3, September 2004.

Replication for Web Hosting Systems 307

Fig. 6. Positioning in Lighthouses.

It makes GNP sensitive to landmark
failures.

This limitation is removed in the Light-
houses system [Pias et al. 2003]. The
authors have shown that hosts can be ac-
curately positioned relative to any previ-
ously positioned hosts, acting as “local”
landmarks. This eliminates the need for
contacting the original landmarks each
time a host is positioned (see Figure 6). It
also allows to improve the positioning ac-
curacy, by selecting some of the local land-
marks close to the positioned host [Castro
et al. 2003a].

SCoLE further improves the scala-
bility of the system by allowing each
host to select its own positioning pa-
rameters, construct its own “private”
space, and position other hosts in that
space [Szymaniak et al. 2004]. This effec-
tively removes the necessity of a global
negotiation to determine positioning
parameters, such as the space dimension,
the selection of global landmarks, and the
positioning algorithm. Such an agreement
is difficult to reach in large-scale systems,
where different hosts can have different
requirements with respect to the latency
estimation process. Latency estimates
performed in different private spaces
have been shown to be highly correlated,
even though these spaces have completely
different parameters.

Another approach is to position all hosts
simultaneously as a result of a global opti-
mization process [Cox et al. 2004; Shavitt
and Tankel 2003; Waldvogel and Rinaldi
2003]. In this case, there is no need to
choose landmarks, since every host is in
fact considered to be a landmark. The
global optimization approach is gener-

ally faster than its iterative counterpart,
which positions hosts one by one. The au-
thors also claim that it leads to better ac-
curacy, and that it is easy to implement
in a completely distributed fashion. How-
ever, because it operates on all the la-
tencies simultaneously, it can potentially
have to be rerun every time new latency
measurements are available. Such a rerun
is likely to be computationally expensive
in large-scale systems, where the num-
ber of performed latency measurements is
high.

3.3.4. SPAND. SPAND is a shared pas-
sive network performance measurement
service [Stemm et al. 2000]. This service
aims at providing network-related mea-
sures such as client end-to-end latency,
available bandwidth, or even application-
specific performance details such as access
time for a Web object. The components of
SPAND are client applications that can
log their performance details, a packet-
capturing host that logs performance de-
tails for SPAND-unaware clients, and per-
formance servers that process the logs
sent by the above two components. The
performance servers can reply to queries
concerning various network-related and
application-specific metrics. SPAND has
an advantage of being able to produce ac-
curate application-specific metrics if there
are several clients using that applica-
tion in the same shared network. Further,
since it employs passive measurement, it
does not introduce any additional traffic.

3.3.5. Network Weather Service. The Net-
work Weather Service (NWS) is an active

ACM Computing Surveys, Vol. 36, No. 3, September 2004.

308 S. Sivasubramanian et al.

measurement service [Wolski et al. 1999].
It is primarily used in for Grid comput-
ing, where decisions regarding schedul-
ing of distributed computations are made
based on the knowledge of server loads
and several network performance metrics,
such as available bandwidth and end-to-
end latency. Apart from measuring these
metrics, it also employs prediction mech-
anisms to forecast their value based on
past events. In NWS, the metrics are mea-
sured using special sensor processes, de-
ployed on every potential server node.
Further, to measure end-to-end latency
active probes are sent between these sen-
sors. NWS uses an adaptive forecast-
ing approach, in which the service dy-
namically identifies the model that gives
the least prediction error. NWS has also
been used for replica selection [McCune
and Andresen 1998]. However, exploit-
ing NWS directly by a wide-area replica
hosting system can be difficult, as this
service does not scale to the level of
the Internet. This is due to the fact
that it runs sensors in every node and
does not use any explicit client clustering
schemes. On the other hand, when com-
bined with a good client clustering scheme
and careful sensor placement, NWS
may become a useful metric estimation
service.

3.3.6. Akamai Metric Estimation. Commer-
cial replica hosting systems often use
their own monitoring or metric estima-
tion services. Akamai has built its own
distributed monitoring service to moni-
tor server resources, network-related met-
rics and overall system performance. The
monitoring system places monitors in ev-
ery replica server to measure server re-
sources. The monitoring system simulates
clients to determine if the overall sys-
tem performance is in an acceptable
state as perceived by clients. It mea-
sures network-related information by em-
ploying agents that communicate with
border routers in the Internet as peers
and derive the distance-related metrics
to be used for its placement decisions
[Dilley et al. 2002].

3.3.7. Other Systems. In addition to the
above wide-area metric estimation sys-
tems, there are different classes of sys-
tems that measure service-related metrics
such as content popularity, client-aborted
transfers, and amount of consumed band-
width. These kinds of systems perform es-
timation in a smaller scale, and mostly
measure metrics as seen by a single server.

Web page instrumentation and associ-
ated code (e.g., in Javascript) is being used
in various commercial tools for measuring
service-related metrics. In these schemes,
instrumentation code is downloaded by
the client browser after which it tracks the
download time for individual objects and
reports performance characteristics to the
website.

EtE is a passive system used for mea-
suring metrics such as access latency, and
content popularity for the contents hosted
by a server [Fu et al. 2002]. This is done
by running a special model near the ana-
lyzed server that monitors all the service-
related traffic. It is capable of determining
sources of delay (distinguishing between
network and server delays), content pop-
ularity, client-aborted transfers and the
impact of remote caching on the server
performance.

3.4. Discussion

In this section, we discussed three is-
sues related to metric estimation: met-
ric selection, client clustering, and metric
estimation.

Metric selection deals with deciding
which metrics are important to evaluate
system performance. In most cases, opti-
mizing latency is considered to be most
important, but the problem is that actu-
ally measuring latencies can be quite dif-
ficult. For this reason, simpler spatial met-
rics are used under the assumption that,
for example, a low number of network-
level hops between two nodes also implies
a relatively low latency between those two
nodes. Spatial metrics are easier to mea-
sure, but also show to be fairly inaccurate
as estimators for latency.

An alternative metric is consumed
bandwidth, which is also used to measure

ACM Computing Surveys, Vol. 36, No. 3, September 2004.

Replication for Web Hosting Systems 309

the efficiency of a system. However, in or-
der to measure the efficiency of a con-
sistency protocol as expressed by the ra-
tio between the consumed bandwidth for
replica updates and the bandwidth deliv-
ered to clients, some distance metric needs
to be taken into account as well. When it
comes to consistency metrics, three differ-
ent types need to be considered: those re-
lated to time, value, and the ordering of
operations. It appears that this differenti-
ation is fairly complete, leaving the actual
implementation of consistency models and
the enforcement of consistency the main
problem to solve.

An interesting observation is that
hardly no systems today use financial met-
rics to evaluate system performance. De-
signing and applying such metrics is not
obvious, but extremely important in the
context of system evaluation.

A scalability problem that these met-
rics introduce is that they, in theory, re-
quire measurements on a per-client ba-
sis. With millions of potential clients, such
measurements are impossible. Therefore,
it is necessary to come to client-clustering
schemes. The goal is to design a cluster
such that measurement at a single client is
representative for any client in that clus-
ter (in a mathematical sense, the clients
should form an equivalence class). Find-
ing the right metric for clustering, and
also one that can be easily established has
shown to be difficult. However, network-
aware clustering by which a prefix of
the network address is taken as criterion
for clustering has lead to very accurate
results.

Once a metric has been chosen, its
value needs to be determined. This is
where metric estimation services come
into place. Various services exist, includ-
ing some very recent ones that can han-
dle difficult problems such as estimating
the latency between two arbitrary nodes
in the Internet. Again, metric estimation
services can turn out to be rather compli-
cated, partly due to the lack of sufficient
acquisition points in the Internet. In this
sense, the approach to model the Inter-
net as a Euclidean N -dimensional space is
very powerful as it allows local computa-

tions concerning remote nodes. However,
this approach can be applied only where
the modeled metric can be triangulated,
making it more difficult when measuring,
for example, bandwidth.

4. ADAPTATION TRIGGERING

The performance of a replica hosting sys-
tem changes with the variations of uncon-
trollable system parameters such as client
access patterns and network conditions.
These changes make the current value of
the system’s λ drift away from the optimal
value λ∗, and fall out of the acceptable in-
terval. The system needs to maintain a de-
sired level of performance by keeping λ in
an acceptable range amidst these changes.
The adaptation triggering component of
the system is responsible for identifying
changes in the system and for adapting
the system configuration to bound λ within
the acceptable range. This adaptation con-
sists of a combination of changes in replica
placement, consistency policy, and request
routing policy.

We classify adaptation triggering com-
ponents along two criteria. First, they can
be classified based on their timing nature.
Second, they can be classified based on
which element of the system actually per-
forms the triggering.

4.1. Time-Based Classification

Taking timing into account, we distin-
guish three different triggering mecha-
nisms: periodic triggers, aperiodic trig-
gers, and triggers that combine these two.

4.1.1. Periodic Triggers. A periodic trig-
gering component analyzes a number of
input variables, or λ itself, at fixed time in-
tervals. If the analysis reveals that λ is too
far from λ∗, the system triggers the adap-
tation. Otherwise, it allows the system
to continue with the same configuration.
Such a periodic evaluation scheme can be
effective for systems that have relatively
stable uncontrollable parameters. How-
ever, if the uncontrollable parameters fluc-
tuate a lot, then it may become very hard
to determine a good evaluation periodicity.

ACM Computing Surveys, Vol. 36, No. 3, September 2004.

310 S. Sivasubramanian et al.

A too short period will lead to considerable
adaptation overhead, whereas a too long
period will result in slow reactions to im-
portant changes.

4.1.2. Aperiodic Triggers. Aperiodic trig-
gers can trigger adaptation at any time. A
trigger is usually due to an event indicat-
ing a possible drift of λ from the acceptable
interval. Such events are often defined as
changes of the uncontrollable parameters,
such as the client request rates or end-to-
end latency, which may reflect issues that
the system has to deal with.

The primary advantage of aperiodic
triggers is their responsiveness to emer-
gency situations such as flash crowds
where the system must be adapted
quickly. However, it requires continuous
monitoring of metrics that can indicate
events in the system, such as server load
or client request rate.

4.1.3. Hybrid Triggers. Periodic and ape-
riodic triggers have opposite qualities
and drawbacks. Periodic triggers are well
suited for detecting slow changes in the
system that aperiodic triggers may not
detect, whereas aperiodic triggers are
well suited to detect emergency situations
where immediate action is required. Con-
sequently, a good approach may be a com-
bination of periodic and aperiodic trig-
gering schemes. For example, Radar and
Globule use both periodic and aperiodic
triggers, which give them the ability to
perform global optimizations and to react
to emergency situations.

In Radar [Rabinovich and Aggarwal
1999], every replica server periodically
runs a replication algorithm that checks
for the number of client accesses to a
particular replica and server load. An
object is deleted for low client accesses
and a migration/replication component is
invoked if the server load is above a
threshold. In addition, a replica server
can detect that it is overloaded and ask
its replication-managing component to of-
fload it. Adaptation in this case consists
either of distributing the load over other
replica servers, or to propagate the request

to another replication-managing compo-
nent in case there are not enough replica
servers available.

In Globule [Pierre and van Steen 2001],
each primary server periodically evalu-
ates recent client access logs. The need
for adapting the replication and consis-
tency policies is determined by this eval-
uation. Similarly to Radar, each replica
server also monitors its request rate and
response times. When a server is over-
loaded, it can request its primary server
to reevaluate the replication strategy.

4.2. Source-Based Classification

Adaptation triggering mechanisms also
vary upon which part of the system actu-
ally performs the triggering. We describe
three different kinds of mechanisms.

4.2.1. Server-Triggered Adaptation. Server-
triggered adaptation schemes consider
that replica servers are in a good posi-
tion to evaluate metrics from the system.
Therefore, the decision that adaptation is
required is taken by one or more replica
servers.

Radar and Globule use server-triggered
adaptation, as they make replica servers
monitor and possibly react to system
conditions.

Server-triggered adaptation is also well
suited for reacting to internal server con-
ditions, such as overloads resulting from
flash crowds or denial-of-service (DoS) at-
tacks. For example, Jung et al. [2002] stud-
ied the characteristics of flash crowds and
DoS attacks. They propose an adaptation
scheme where servers can differentiate
these two kinds of events and react accord-
ingly: increase the number of replicas in
case of a flash crowd, or invoke security
mechanisms in case of a DoS attack.

Server-triggered adaptation is effective
as the servers are in a good position to
determine the need for changes in their
strategies in view of other constraints,
such as total system cost. Also, these
mechanisms do not require running trig-
gering components on elements (hosts,
routers) that may not be under the control
of the replica hosting system.

ACM Computing Surveys, Vol. 36, No. 3, September 2004.

Replication for Web Hosting Systems 311

4.2.2. Client-Triggered Adaptation. Adap-
tation can be triggered by the clients. In
client-triggered schemes, clients or client
representatives can notice that they expe-
rience poor quality of service and request
the system to take the appropriate mea-
sures. Sayal et al. [2003] describe such a
system where smart clients provide the
servers with feedback information to help
take replication decisions.

Client-triggered adaptation can be ef-
ficient in terms of preserving a client’s
QoS. However, it has three important
drawbacks. First, the clients or client
representatives must cooperate with the
replica hosting system. Second, client
transparency is lost, as clients or their rep-
resentatives need to monitor events and
take explicit action. Third, by relying on
individual clients to trigger adaptation,
this scheme may suffer from poor scalabil-
ity in a wide-area network, unless efficient
client clustering methods are used.

4.2.3. Router-Triggered Adaptation. In
router-triggered schemes, adaptation is
initiated by the routers that can inform
the system of network congestion, link
and network failures, or degraded end-
to-end request latencies. These schemes
observe network-related metrics and
operate on them.

Such an adaptation scheme is used in
SPREAD [Rodriguez and Sibal 2000]. In
SPREAD, every network has one spe-
cial router with a distinguished proxy at-
tached to it. If the router notices a TCP
communication from a client to retrieve
data from a primary server, it intercepts
this communication and redirects the re-
quest to the proxy attached to it. The proxy
gets a copy of the referenced object from
the primary server and services this client
and all future requests passing through
its network. By using the network layer to
implement replication, this scheme builds
an architecture that is transparent to the
client.

Router-triggered schemes have the ad-
vantage that routers are in a good posi-
tion to observe network-related metrics,
such as end-to-end latency and consumed

bandwidth while preserving client trans-
parency. Such schemes are useful to de-
tect network congestion or dead links, and
thus may trigger changes in replica loca-
tion. However, they suffer from two disad-
vantages. First, they require the support
of routers, which may not be available to
every enterprise building a replica hosting
system in the Internet. Second, they intro-
duce an overhead to the network infras-
tructure, as they need to isolate the traffic
targeting Web hosting systems, which in-
volves processing all packets received by
the routers.

4.3. Discussion

Deciding when to trigger system adapta-
tion is difficult because explicitly comput-
ing λ and λ∗ may be expensive, if not im-
possible. This calls for schemes that are
both responsive enough to detect the drift
of λ from the acceptable interval and are
computationally inexpensive. This is usu-
ally realized by monitoring simple metrics
which are believed to significantly influ-
ence λ.

Another difficulty is posed by the fact
that it is not obvious which adaptive
components should be triggered. Depend-
ing on the origin of the performance
drift, the optimal adaptation may be
any combination of changes in replica
placement, request routing or consistency
policies.

5. REPLICA PLACEMENT

The task of replica placement algorithms
is to find good locations to host replicas.
As noted earlier, replica placement forms a
controllable input parameter of the objec-
tive function. Changes in uncontrollable
parameters, such as client request rate or
client latencies, may warrant changing the
replica locations. In such case, the adap-
tation triggering component triggers the
replica placement algorithms, which sub-
sequently adapt the current placement to
new conditions.

The problem of replica placement con-
sists of two subproblems: replica server
placement and replica content placement.

ACM Computing Surveys, Vol. 36, No. 3, September 2004.

312 S. Sivasubramanian et al.

Replica server placement is the problem
of finding suitable locations for replica
servers. Replica content placement is the
problem of selecting replica servers that
should host replicas of an object. Both
these placements can be adjusted by the
system to optimize the objective function
value λ.

There are some fundamental differ-
ences between the server and content
placement problems. Server placement
concerns the selection of locations that are
good for hosting replicas of many objects,
whereas content placement deals with the
selection of locations that are good for
replicas of a single object. Furthermore,
these two problems differ in how often and
by whom their respective solutions need
to be applied. The server placement algo-
rithms are used in a larger time scale than
the content placement algorithms. They
are usually used by the system operator
during installation of server infrastruc-
ture or while upgrading the hosting infras-
tructure, and runs once every few months.
The content placement algorithms are run
more often, as they need to react to pos-
sibly rapidly changing situations such as
flash crowds.

We note that Karlsson et al. [2002]
present a framework for evaluating
replica placement algorithms for con-
tent delivery networks and also in other
fields such as distributed file systems and
databases. Their framework can be used
to classify and qualitatively compare the
performance of various algorithms using
a generic set of primitives covering prob-
lem definition and heuristics. They also
provide an analytical model to predict the
decision times of each algorithm. Their
framework is useful for evaluating the
relative performance of different replica
placement algorithms, and as such, com-
plements the material discussed in this
section.

5.1. Replica Server Placement

The problem of replica server placement
is to select K servers out of N poten-
tial sites such that the objective function
is optimized for a given network topol-

ogy, client population, and access patterns.
The objective function used by the server
placement algorithms operates on some of
the metrics defined in Section 3. These
metrics may include, for example, client
latencies for the objects hosted by the
system, and the financial cost of server
infrastructure.

The problem of determining the num-
ber and locations of replica servers, given
a network topology, can be modeled as
the center placement problem. Two vari-
ants used for modeling it are the facil-
ity location problem and the minimum
K -median problem. Both these problems
are NP-hard. They are defined in Shmoys
et al. [1997] and Qiu et al. [2001], and we
describe them here again for the sake of
completeness.

Facility Location Problem. Given a set
of candidate server locations i in which
the replica servers (“facilities”) may be
installed, running a server in location i
incurs a cost of fi. Each client j must
be assigned to one replica server, incur-
ring a cost of d j ci j where d j denotes the
demand of the node j , and ci j denotes
the distance between i and j . The objec-
tive is to find the number and location of
replica servers that minimizes the overall
cost.

Minimum K-Median Problem. Given
N candidate server locations, we must
select K of them (called “centers”), and
then assign each client j to its closest
center. A client j assigned to a center i
incurs a cost of d j ci j . The goal is to se-
lect k centers, so that the overall cost is
minimal.

The difference between the minimum
K -median problem and the facility loca-
tion problem is that the former associates
no cost with opening a center (as with
a facility, which has an operating cost of
fi). Further, in the minimum K -median
problem, the number of servers is bounded
by K .

Some initial work on the problem of
replica server placement has been ad-
dressed in da Cunha [1997]. However, it
has otherwise been seldom addressed by
the research community and only few so-
lutions have been proposed.

ACM Computing Surveys, Vol. 36, No. 3, September 2004.

Replication for Web Hosting Systems 313

Li et al. [1999] propose a placement al-
gorithm based on the assumption that the
underlying network topologies are trees
and solve it using dynamic programming
techniques. The algorithm is designed for
Web proxy placement but is also relevant
to server placement. The algorithm works
by dividing a tree T into smaller subtrees
Ti; the authors show that the best way to
place t proxies is by placing ti proxies for
each Ti such that

∑
ti = t. The algorithm

is shown to be optimal if the underlying
network topology is a tree. However, this
algorithm has the following limitations: (i)
it cannot be applied to a wide-area net-
work such as the Internet whose topology
is not a tree, and (ii) it has a high computa-
tional complexity of O(N 3K 2) where K is
the number of proxies and N is the num-
ber of candidate locations. We note that
the first limitation of this algorithm is due
to its assumption about the presence of a
single origin server and henceforth to find
servers that can host a target Web ser-
vice. This allows to construct only a tree
topology with this origin server as root.
However, a typical Web replica hosting
system will host documents from multiple
origins, falsifying this assumption. This
nature of problem formulation is more rel-
evant for content placement, where ev-
ery document has a single origin Web
server.

Qiu et al. [2001] model the replica place-
ment problem as a minimum K -median
problem and propose a greedy algorithm.
In each iteration, the algorithm selects
one server, which offers the least cost,
where cost is defined as the average dis-
tance between the server and its clients.
In the ith iteration, the algorithm evalu-
ates the cost of hosting a replica at the re-
maining N − i + 1 potential sites in the
presence of already selected i − 1 servers.
The computational cost of the algorithm
is O(N 2K). The authors also present a
hot-spot algorithm, in which the repli-
cas are placed close to the clients gener-
ating most requests. The computational
complexity of the hot-spot algorithm is
N 2 + min(NlogN , NK). The authors eval-
uate the performance of these two algo-
rithms and compare each one with the al-

gorithm proposed in Li et al. [1999]. Their
analysis shows that the greedy algorithm
performs better than the other two algo-
rithms and its performance is only 1.1 to
1.5 times worse than the optimal solution.
The authors note that the placement al-
gorithms need to incorporate the client
topology information and access pattern
information, such as client end-to-end dis-
tances and request rates.

Radoslavov et al. [2001] propose two
replica server placement algorithms that
do not require the knowledge of client loca-
tion but decide on replica location based on
the network topology alone. The proposed
algorithms are max router fanout and
max AS/max router fanout. The first algo-
rithm selects servers closest to the router
having maximum fanout in the network.
The second algorithm first selects the Au-
tonomous System (AS) with the highest
fanout, and then selects a server within
that AS that is closest to the router having
maximum fanout. The performance stud-
ies show that the second algorithm per-
forms only 1.1 to 1.2 times worse than
that of the greedy algorithm proposed in
Qiu et al. [2001]. Based on this, the au-
thors argue that the need for knowledge
of client locations is not essential. How-
ever, it must be noted that these topology-
aware algorithms assume that the clients
are uniformly spread throughout the net-
work, which may not be true. If clients are
not spread uniformly throughout the net-
work, then the algorithm can select replica
servers that are close to routers with high-
est fanout but distant from most of the
clients, resulting in poor client-perceived
performance.

5.2. Replica Content Placement

The problem of replica content place-
ment consists of two sub-problems: content
placement and replica creation. The first
problem concerns the selection of a set of
replica servers that must hold the replica
of a given object. The second problem con-
cerns the selection of a mechanism to in-
form a replica server about the creation of
new replicas.

ACM Computing Surveys, Vol. 36, No. 3, September 2004.

314 S. Sivasubramanian et al.

5.2.1. Content Placement. The content
placement problem consists of selecting K
out of N replica servers to host replicas
of an object, such that the objective func-
tion is optimized under a given client ac-
cess pattern and replica update pattern.
The content placement algorithms select
replica servers in an effort to improve the
quality of service provided to the clients
and minimize the object hosting cost.

Similarly to the server placement, the
content placement problem can be mod-
eled as the facility location placement.
However, such solutions can be computa-
tionally expensive making it difficult to
be applied to this problem, as the con-
tent placement algorithms are run far
more often their server-related counter-
parts. Therefore, existing replica hosting
systems exploit simpler solutions.

In Radar [Rabinovich and Aggarwal
1999], every host runs the replica place-
ment algorithm, which defines two client
request rate thresholds: Rrep for replica
replication, and Rdel for object deletion,
where Rdel < Rrep. A document is deleted
if its client request rate drops below Rdel.
The document is replicated if its client re-
quest rate exceeds Rrep. For request rates
falling between Rdel and Rrep, documents
are migrated to a replica server located
closer to clients that issue more than a
half of requests. The distance is calculated
using a Radar-specific metric called pref-
erence paths. These preference paths are
computed by the servers based on informa-
tion periodically extracted from routers.

In SPREAD, the replica servers peri-
odically calculate the expected number
of requests for an object. Servers decide
to create a local replica if the number
of requests exceeds a certain threshold
[Rodriguez and Sibal 2000]. These servers
remove a replica if the popularity of the ob-
ject decreases. If required, the total num-
ber of replicas of an object can be restricted
by the object owner.

Chen et al. [2002a] propose a dynamic
replica placement algorithm for scalable
content delivery. This algorithm uses
a dissemination-tree-based infrastructure
for content delivery and a peer-to-peer lo-
cation service provided by Tapestry for lo-

cating objects [Zhao et al. 2004]. The algo-
rithm works as follows. It first organizes
the replica servers holding replicas of the
same object into a load-balanced tree.
Then, it starts receiving client requests
which target the origin server contain-
ing some latency constraints. The origin
server services the client, if the server’s
capacity constraints and client’s latency
constraints are met. If any of these con-
ditions fail, it searches for another server
in the dissemination tree that satisfies
these two constraints and creates a replica
at that server. The algorithm aims to
achieve better scalability by quickly lo-
cating the objects using the peer-to-peer
location service. The algorithm is good
in terms of preserving client latency and
server capacity constraints. On the other
hand, it has a considerable overhead
caused by checking QoS requirements for
every client request. In the worst case, a
single client request may result in creat-
ing a new replica. This can significantly
increase the request servicing time.

Kangasharju et al. [2001a] model the
content placement problem as an opti-
mization problem. The problem is to place
K objects in some of N servers, in an effort
to minimize the average number of inter-
AS hops a request must traverse to be ser-
viced, meeting the storage constraints of
each server. The problem is shown to be
NP-complete and three heuristics are pro-
posed to address this problem. The first
heuristic uses popularity of an object as
the only criterion and every server decides
upon the objects it needs to host based on
the objects’ popularity. The second heuris-
tic uses a cost function defined as a product
of object popularity and distance of server
from origin server. In this heuristic, each
server selects the objects to host as the
ones with high cost. The intuition behind
this heuristic is that each server hosts ob-
jects that are highly popular and also that
are far away from their origin server, in
an effort to minimize the client latency.
This heuristic always tries to minimize
the distance of a replica from its origin
server oblivious of the presence of other
replicas. The third heuristic overcomes
this limitation and uses a coordinated

ACM Computing Surveys, Vol. 36, No. 3, September 2004.

Replication for Web Hosting Systems 315

replication strategy where replica loca-
tions are decided in a global/coordinated
fashion for all objects. This heuristic uses
a cost function that is a product of to-
tal request rate for a server, popularity
and shortest distance of a server to a
copy of object. The central server selects
the object and replica pairs that yield
the best cost at every iteration and re-
computes the shortest distance between
servers for each object. Using simulations,
the authors show that the global heuris-
tic outperforms the other two heuristics.
The drawback is its high computational
complexity.

5.2.2. Replica Creation Mechanisms. Vari-
ous mechanisms can be used to inform
a replica server about the creation of a
new replica that it needs to host. The
most widely used mechanisms for this
purpose are pull-based caching and push
replication.

In pull-based caching, replica servers
are not explicitly informed of the creation
of a new replica. When a replica server re-
ceives a request for a document it does not
own, it treats it as a miss and fetches the
replica from the master. As a consequence,
the creation of a new replica is delayed un-
til the first request for this replica. This
scheme is adopted in Akamai [Dilley et al.
2002]. Note that in this case, pull-based
caching is used only as a mechanism for
replica creation. The decision to place a
replica in that server is taken by the sys-
tem, when redirecting client requests to
replica servers.

In push replication, a replica server is
informed of a replica creation by explic-
itly pushing the replica contents to the
server. Similar scheme is used in Glob-
ule [Pierre and van Steen 2001] and Radar
[Rabinovich and Aggarwal 1999].

5.3. Discussion

The problem of replica server and con-
tent placement is not regularly addressed
by the research community. A few recent
works have proposed solution for these
problems [Qiu et al. 2001; Radoslavov
et al. 2001; Chen et al. 2002a; Kan-

gasharju et al. 2001a]. We note that an
explicit distinction between server and
content placement is generally not made.
Rather, work has concentrated on find-
ing server locations to host contents of
a single content provider. However, sep-
arate solutions for server placement and
content placement would be more useful
in a replica hosting system, as these sys-
tems are intended to host different con-
tents with varying client access patterns.

Choosing the best performing content
placement algorithm is not trivial as it
depends on the access characteristics of
the Web content. Pierre and van Steen
[2001] showed there is no single best per-
forming replica placement strategy and it
must be selected on a per-document ba-
sis based on their individual access pat-
terns. Karlsson and Karamanolis [2004]
propose a scheme where different place-
ment heuristics are evaluated off-line and
the best performing heuristic is selected
on a per-document basis. In Pierre and
van Steen [2001] and Sivasubramanian
et al. [2003], the authors propose to per-
form this heuristic selection dynamically
where the system adapts to change in ac-
cess patterns by switching the documents’
replication strategies on-the-fly.

Furthermore, the existing server place-
ment algorithms improve client QoS by
minimizing client latency or distance [Qiu
et al. 2001; Radoslavov et al. 2001]. Even
though client QoS is important to make
placement decisions, in practice the selec-
tion of replica servers is constrained by
administrative reasons, such as business
relationship with an ISP, and financial
cost for installing a replica server. Such a
situation introduces a necessary tradeoff
between financial cost and performance
gain, which are not directly comparable
entities. This drives the need for server
placement solutions that not only takes
into account the financial cost of a par-
ticular server facility but that can also
translate the performance gains into po-
tential monetary benefits. To the best of
our knowledge little work has been done
in this area, which requires building eco-
nomic models that translate the perfor-
mance of replica hosting system into the

ACM Computing Surveys, Vol. 36, No. 3, September 2004.

316 S. Sivasubramanian et al.

monetary profit gained. These kinds of
economic models are imperative to en-
able system designers to make better judg-
ments in server placement and provide
server placement solutions that can be ap-
plied in practice.

6. CONSISTENCY ENFORCEMENT

The consistency enforcement problem con-
cerns selecting consistency models and
implementing them using various consis-
tency policies, which in turn can use sev-
eral content distribution mechanisms. A
consistency model is a contract between a
replica hosting system and its clients that
dictates the consistency-related proper-
ties of the content delivered by the system.
A consistency policy defines how, when,
and to which object replicas the various
content distribution mechanisms are ap-
plied. For each object, a policy adheres to a
certain consistency model defined for that
object. A single model can be implemented
using different policies. A content distri-
bution mechanism is a method by which
replica servers exchange replica updates.
It defines in what form replica updates
are transferred, who initiates the transfer,
and when updates take place.

Although consistency models and mech-
anisms are usually well defined, choosing
a valid one for a given object is a non-
trivial task. The selection of a consistency
model, policies, and mechanisms must en-
sure that the required level of consistency
(defined by various consistency metrics
discussed in Section 3) is met, while keep-
ing the communication overhead to be as
low as possible.

6.1. Consistency Models

Consistency models differ in their strict-
ness of enforcing consistency. By strong
consistency, we mean that the system
guarantees that all replicas are identi-
cal from the perspective of the system’s
clients. If a given replica is not consis-
tent with others, it cannot be accessed by
clients until it is brought up to date. Due to
high replica synchronization costs, strong
consistency is seldom used in wide-area

systems. Weak consistency, in turn, allows
replicas to differ, but ensures that all up-
dates reach all replicas after some (bound)
time. Since this model is resistant to de-
lays in update propagation and incurs less
synchronization overhead, it fits better in
wide-area systems.

6.1.1. Single vs. Multiple Master. Depend-
ing on whether updates originate from a
single site or from several ones, consis-
tency models can be classified as single-
master or multi-master, respectively. The
single-master models define one machine
to be responsible for holding an up-to-
date version of a given object. These mod-
els are simple and fit well in applications
where the objects by nature have a single
source of changes. They are also commonly
used in existing replica hosting systems,
as these systems usually deliver some cen-
trally managed data. For example, Radar
assumes that most of its objects are static
Web objects that are modified rarely and
uses primary-copy mechanisms for enforc-
ing consistency. The multimaster models
allow more than one server to modify the
state of an object. These models are ap-
plicable to replicated Web objects whose
state can be modified as a result of a client
access. However, these models introduce
new problems such as the necessity of solv-
ing update conflicts. Little work has been
done on multi-master models in the con-
text of Web replica hosting systems.

6.1.2. Types of Consistency. As we ex-
plained, consistency models usually de-
fine consistency along three different axes:
time, value, and order.

Time-based consistency models were
formalized in Torres-Rojas et al. [1999]
and define consistency based on real time.
These models require a content distribu-
tion mechanism to ensure that an update
to a replica at time t is visible to the other
replicas and clients before time t + �.
Cate [1992] adopts a time-based consis-
tency model for maintaining consistency
of FTP caches. The consistency policy in
this system guarantees that the only up-
dates that might not yet be reflected in a

ACM Computing Surveys, Vol. 36, No. 3, September 2004.

Replication for Web Hosting Systems 317

site are the ones that have happened in
the last 10% of the reported age of the file.
Time-based consistency is applicable to all
kinds of objects. It can be enforced using
different content distribution mechanisms
such as polling (where a client or replica
polls often to see if there is an update), or
server invalidation (where a server inval-
idates a copy held by other replicas and
clients if it gets updated). These mecha-
nisms are explained in detail in the next
section.

Value-based consistency schemes en-
sure that the difference between the value
of a replica and that of other replicas (and
its clients) is no greater than a certain �.
Value-based schemes can be applied only
to objects that have a precise definition of
value. For example, an object encompass-
ing the details about the number of seats
booked in an aircraft can use such a model.
This scheme can be implemented by us-
ing polling or server invalidation mech-
anisms. Examples of value-based consis-
tency schemes and content distribution
mechanisms can be found in Bhide et al.
[2002].

Order-based consistency schemes
are generally exploited in replicated
databases. These models perceive every
read/write operation as a transaction and
allow the replicas to operate in different
state if the out-of-order transactions
adhere to the rules defined by these
policies. For example, Krishnakumar
and Bernstein [1994] introduce the con-
cept of N -ignorant transactions, where
a transaction can be carried out in a
replica while it is ignorant of N prior
transactions in other replicas. The rules
constraining the order of execution of
transactions can also be defined based
on dependencies among transactions.
Implementing order-based consistency
policies requires content distribution
mechanisms to exchange the transactions
among all replicas, and transactions
need to be timestamped using mecha-
nisms such as logical clocks [Raynal and
Singhal 1996]. This consistency scheme
is applicable to a group of objects that
jointly constitute a regularly updated
database.

A continuous consistency model, inte-
grating the above three schemes, is pre-
sented by Yu and Vahdat [2002]. The un-
derlying premise of this model is that
there is a continuum between strong and
weak consistency models that is semanti-
cally meaningful for a wide range of repli-
cated services, as opposed to traditional
consistency models, which explore either
strong or weak consistency [Bernstein and
Goodman 1983]. The authors explore the
space between these two extremes by mak-
ing applications specify their desired level
of consistency using conits. A conit is de-
fined as a physical or logical unit of consis-
tency. The model uses a three-dimensional
vector to quantify consistency: (numerical
error, order error, staleness). Numerical er-
ror is used to define and implement value-
based consistency, order error is used to
define and implement order-based consis-
tency schemes, and staleness is used for
time-based consistency. If each of these
metrics is bound to zero, then the model
implements strong consistency. Similarly,
if there are no bounds then the model does
not provide any consistency at all. The
conit-based model allows a broad range of
applications to express their consistency
requirements. Also, it can precisely de-
scribe guarantees or bounds with respect
to differences between replicas on a per-
replica basis. This enables replicas having
poor network connectivity to implement
relaxed consistency, whereas replicas with
better connectivity can still benefit from
stronger consistency. The mechanisms im-
plementing this conit-based model are de-
scribed in Yu and Vahdat [2000, 2002].

6.2. Content Distribution Mechanisms

Content distribution mechanisms define
how replica servers exchange updates.
These mechanisms differ on two aspects:
the forms of the update and the direc-
tion in which updates are triggered (from
source of update to other replicas or vice-
versa). The decision about these two as-
pects influences the system’s attainable
level of consistency as well as the commu-
nication overhead introduced to maintain
consistency.

ACM Computing Surveys, Vol. 36, No. 3, September 2004.

318 S. Sivasubramanian et al.

6.2.1. Update Forms. Replica updates
can be transferred in three different forms.
In the first form, called state shipping, a
whole replica is sent. The advantage of
this approach is its simplicity. On the other
hand, it may incur significant communica-
tion overhead, especially noticeable when
a small update is performed on a large
object.

In the second update form, called delta
shipping, only differences with the pre-
vious state are transmitted. It generally
incurs less communication overhead com-
pared to state shipping, but it requires
each replica server to have the previous
replica version available. Furthermore,
delta shipping assumes that the differ-
ences between two object versions can be
quickly computed.

In the third update form, called function
shipping, replica servers exchange the ac-
tions that cause the changes. It generally
incurs the least communication overhead
as the size of description of the action is
usually independent from the object state
and size. However, it forces each replica
server to convey a certain, possibly com-
putationally demanding, operation.

The update form is usually dictated by
the exploited replication scheme and the
object characteristics. For example, in ac-
tive replication requests targeting an ob-
ject are processed by all the replicas of this
object. In such a case, function shipping is
the only choice. In passive replication, in
turn, requests are first processed by a sin-
gle replica, and then the remaining ones
are brought up-to-date. In such a case, the
update form selection depends on the ob-
ject characteristics and the change itself:
whether the object structure allows for
changes to be easily expressed as an oper-
ation (which suggests function shipping),
whether the object size is large compared
to the size of the changed part (which sug-
gests delta shipping), and finally, whether
the object was simply replaced with a com-
pletely new version (which suggests state
shipping).

In general, it is the job of a sys-
tem designer to select the update form
that minimizes the overall communication
overhead. In most replica hosting sys-

tems, updating means simply replacing
the whole replica with its new version.
However, it has been shown that updating
Web objects using delta shipping could re-
duce the communication overhead by up
to 22% compared to commonly used state
shipping [Mogul et al. 1997].

6.2.2. Update Direction. The update
transfer can be initiated either by a
replica server that is in need for a new
version and wants to pull it from one of
its peers, or by the replica server that
holds a new replica version and wants to
push it to its peers. It is also possible to
combine both mechanisms to achieve a
better result.

Pull. In one version of the pull-based
approach, every piece of data is associ-
ated with a Time To Refresh (TTR) at-
tribute, which denotes the next time the
data should be validated. The value of
TTR can be a constant, or can be calcu-
lated from the update rate of the data.
It may also depend on the consistency re-
quirements of the system. Data with high
update rates and strong consistency re-
quirements require a small TTR, whereas
data with less updates can have a large
TTR. Such a mechanism is used in Cate
[1992]. The advantage of the pull-based
scheme is that it does not require replica
servers to store state information, offer-
ing the benefit of higher fault tolerance.
On the other hand, enforcing stricter con-
sistency depends on careful estimation of
TTR: small TTR values will provide good
consistency, but at the cost of unneces-
sary transfers when the document was not
updated.

In another pull-based approach, HTTP
requests targeting an object are extended
with the HTTP if-modified-since field.
This field contains the modification date
of a cached copy of the object. Upon receiv-
ing such a request, a Web server compares
this date with the modification date of the
original object. If the Web server holds a
newer version, the entire object is sent
as the response. Otherwise, only a header
is sent, notifying that the cached copy is

ACM Computing Surveys, Vol. 36, No. 3, September 2004.

Replication for Web Hosting Systems 319

still valid. This approach allows for imple-
menting strong consistency. On the other
hand, it can impose large communication
overhead, as the object home server has to
be contacted for each request, even if the
cached copy is valid.

In practice, a combination of TTR and
checking the validity of a document at the
server is used. Only after the TTR value
expires, will the server contact the doc-
ument’s origin server to see whether the
cached copy is still validate. If it is still
valid, a fresh TTR value is assigned to it
and a next validation check is postponed
until the TTR value expires again.

Push. The push-based scheme ensures
that communication occurs only when
there is an update. The key advantage
of this approach is that it can meet
strong consistency requirements without
introducing the communication overhead
known from the “if-modified-since” ap-
proach: since the replica server that ini-
tiates the update transfer is aware of
changes, it can precisely determine which
changes to push and when. An impor-
tant constraint of the push-based scheme
is that the object home server needs to
keep track of all replica servers to be in-
formed. Although storing this list may
seem costly, it has been shown that it
can be done in an efficient way [Cao and
Liu 1998]. A more important problem
is that the replica holding the state be-
comes a potential single point of failure,
as the failure of this replica affects the
consistency of the system until it is fully
recovered.

Push-based content distribution
schemes can be associated with leases
[Gray and Cheriton 1989]. In such ap-
proaches, a replica server registers its
interest in a particular object for an
associated lease time. The replica server
remains registered at the object home
server until the lease time expires. During
the lease time, the object home server
pushes all updates of the object to the
replica server. When the lease expires,
the replica server can either consider it as
potentially stale or register at the object
home server again.

Leases can be divided into three groups:
age-based, renewal-frequency-based, and
load-based ones [Duvvuri et al. 2000].
In the age-based leases, the lease time
depends on the last time the object was
modified. The underlying assumption is
that objects that have not been modified
for a long time will remain unmodified
for some time to come. In the renewal-
frequency-based leases, the object home
server gives longer leases to replica
servers that ask for replica validation
more often. In this way, the object server
prefers replica servers used by clients
expressing more interest in the object.
Finally, with load-based leases the object
home server tends to give away shorter
lease times when it becomes overloaded.
By doing that, the object home server
reduces the number of replica servers
to which the object updates have to be
pushed, which is expected to reduce the
size of the state held at the object home
server.

Other Schemes. The pull and push ap-
proaches can be combined in different
ways. Bhide et al. [2002] propose three dif-
ferent combination schemes of Push and
Pull. The first scheme, called Push-and-
Pull (PaP), simultaneously employs push
and pull to exchange updates and has
tunable parameters to control the extent
of push and pulls. The second scheme,
Push-or-Pull (PoP), allows a server to
adaptively choose between a push- or
pull-based approach for each connection.
This scheme allows a server to charac-
terize which clients (other replica servers
or proxies to which updates need to be
propagated) should use either of these
two approaches. The characterization can
be based on system dynamics. By default,
clients are forced to use the pull-based
approach. PoP is a more effective solution
than PaP, as the server can determine the
moment of switching between push and
pull, depending on its resource availabil-
ity. The third scheme, called PoPoPaP, is
an extended version of PoP, that chooses
from Push, Pull and PaP. PoPoPaP
improves the resilience of the server

ACM Computing Surveys, Vol. 36, No. 3, September 2004.

320 S. Sivasubramanian et al.

(compared to PoP), offers graceful
degradation, and can maintain strong
consistency.

Another way of combining push and pull
is to allow the former to trigger the latter.
It can be done either explicitly, by means of
invalidations, or implicitly, with version-
ing. Invalidations are pushed by an ob-
ject’s origin server to a replica server. They
inform the replica server or the clients
that the replica it holds is outdated. In
case the replica server needs the cur-
rent version, it pulls it from the origin
server. Invalidations may reduce the net-
work overhead, compared to pushing reg-
ular updates, as the replica servers do not
have to hold the current version for all the
time and can delay its retrieval until it is
really needed. It is particularly useful for
often-updated, rarely-accessed objects.

Versioning techniques are exploited in
Akamai [Dilley et al. 2002; Leighton and
Lewin 2000]. In this approach, every ob-
ject is assigned a version number, in-
creased after each update. The parent doc-
ument that contains a reference to the
object is rewritten after each update as
well, so that it points to the latest version.
The consistency problem is thus reduced
to maintaining the consistency of the par-
ent document. Each time a client retrieves
the document, the object reference is fol-
lowed and a replica server is queried for
that object. If the replica server notices
that it does not have a copy of the refer-
enced version, the new version is pulled in
from the origin server.

Scalable Mechanisms. All the aforesaid
content distribution mechanisms do not
scale for large number of replicas (say, in
the order of thousands). In this case, push-
based mechanisms suffer from the over-
head of storing the state of each replica
and updating them (through separate uni-
cast connections). Pull-based mechanisms
suffer from the disadvantage of creating
a hot spot around the origin server with
thousands of replicas requesting the ori-
gin server (again through separate con-
nections) for an update periodically. Both
mechanisms suffer from excessive net-
work traffic for updating large number

of replicas, as the same updates are sent
to different replicas using separate con-
nections. This also introduces consider-
able overhead on the server, in addition
to increasing the network overhead. These
scalability limitations require the need for
building scalable mechanisms.

Scalable content distribution mecha-
nisms proposed in the literature aim to
solve scalability problems of conventional
push and pull mechanisms by building a
content distribution hierarchy of replicas
or clustering objects.

The first approach is adopted in
Ninan et al. [2002], Tewari et al. [2002]
and Fei [2001]. In this approach, a con-
tent distribution tree of replicas is built
for each object. The origin server sends
its update only to the root of the tree
(instead of the entire set of replicas),
which in turn forwards the update to
the next level of nodes in the tree and
so on. The content distribution tree can
be built either using network multicast-
ing or application-level multicasting solu-
tions. This approach drastically reduces
the overall amount of data shipped by the
origin server. In Ninan et al. [2002], the
authors proposed a scalable lease-based
consistency mechanism where leases are
made with a replica group (with the same
consistency requirement), instead of indi-
vidual replicas. Each lease group has its
own content distribution hierarchy to send
their replica updates. Similarly, Tewari
et al. [2002] propose a mechanism that
builds a content distribution hierarchy
and also uses object clustering to improve
the scalability.

Fei [2001] propose a mechanism that
chooses between update propagation
(through a multicast tree) or invalidation
schemes on a per-object basis, periodically,
based on each object’s update and access
rate. The basic intuition of the mechanism
is to choose propagation if an object is
accessed more than it is updated (thereby
reducing the pull traffic) and invalidation
otherwise (as the overhead for shipping
updates is higher than pulling updates of
an object only when it is accessed). The
mechanism computes the traffic overhead
of the two methods for maintaining

ACM Computing Surveys, Vol. 36, No. 3, September 2004.

Replication for Web Hosting Systems 321

consistency of an object, given its past
update and access rate. It chooses the one
that introduces the least overhead as the
mechanism to be adopted for that object.

Object clustering is the process of clus-
tering various objects with similar proper-
ties (update and/or request patterns) and
treating them as a single clustered object.
It reduces the connection initiation over-
head during the transmission of replica
updates, from a per-object level to per-
cluster level, as updates for a cluster are
sent in a single connection instead of indi-
viduals connection for each object (note the
amount of updates transferred using both
mechanisms are the same). Clustering
also reduces the number of objects to be
maintained by a server, which can help in
reducing the adaptation overhead as a sin-
gle decision will affect more objects. To our
knowledge, object clustering is not used in
any well-known replica hosting system.

6.3. Mechanisms for Dynamically
Generated Objects

In recent years, there has been a sharp
increase in providing Web content using
technologies like ASPs or CGIs that dy-
namically generate Web objects, possibly
from an underlying database. These dy-
namically generated objects affect Web
server performance as their generation
may require many CPU cycles [Iyengar
et al. 1997].

Several systems cache the generated
pages [Challenger et al. 1999; Labrinidis
and Roussopoulos 2000]. Assuming that
the temporal locality of requests is high
and updates to the underlying data are
infrequent, these systems avoid generat-
ing the same document multiple times.
Challenger et al. [1999] additionally pro-
poses to maintain a dependency graph be-
tween cached pages and the underlying
data that are used to generate them. Upon
data updates, all pages depending on the
updated data are invalidated.

Unfortunately, many applications re-
ceive large numbers of unique requests
or must handle frequent data updates.
Such applications can be distributed only
through replication, where the application

code is executed at the replica servers.
This avoids the wide-area network la-
tency for each request and ensures quicker
response time to clients. Replicating a
dynamic Web object requires replicating
both the code (e.g., EJBs, CGI scripts,
PHPs) and the data that the code acts
upon (databases or files). This can reduce
the latency of requests, as the requests can
be answered by the application hosted by
the server located close to the clients.

Replicating applications is relatively
easy provided that the code does not mod-
ify the data [Cao et al. 1998; Rabinovich
et al. 2003]. However, most Web applica-
tions do modify their underlying data. In
this case, it becomes necessary to man-
age data consistency across all replicas.
To our knowledge, there are very few ex-
isting systems that handle consistency
among the replicated data for dynamic
Web objects. Gao et al. [2003] propose an
application-specific edge service architec-
ture, where the object is assumed to take
care of its own replication and consistency.
In such a system, access to the shared data
is abstracted by object interfaces. This
system aims to achieve scalability by us-
ing weaker consistency models tailored to
the application. However, this requires the
application developer to be aware of the
application’s consistency and distribution
semantics.

Further research on these topics would
be very beneficial to replica hosting sys-
tems, as the popularity of dynamic docu-
ments technique is increasing.

6.4. Discussion

In this section, we discussed two
important components of consistency
enforcement namely, consistency models
and content distribution mechanisms. In
consistency models, we listed different
types of consistency models—based on
time, value or transaction orders. In ad-
dition to these models, we also discussed
the continuous consistency model, in
which different network applications can
express the consistency constraints in
any point in the consistency spectrum.
This model is useful to capture the

ACM Computing Surveys, Vol. 36, No. 3, September 2004.

322 S. Sivasubramanian et al.

Table III. A Comparison of Approaches for Enforcing Consistency
Systems Push
and Protocols Inv. Prop. Pull Variants Comments
Akamai X X Uses push-based invalidation for

consistency and pull for distribution
Radar X Uses primary-copy
SPREAD X Chooses strategy on a per-object basis

based on its access and update rate
[Pierre et al. 2002] X Chooses strategy on a per-object basis

based on its access and update rate
[Duvvuri et al. 2000] X Invalidates content until lease is valid
Adaptive Push-Pull X X Chooses between push and pull

strategy on a per-object basis
[Fei 2001] X X Chooses between propagation and

invalidation on a per-object basis

consistency requirements for a broad
range of applications being hosted by
a replica hosting system. However, the
mechanisms proposed to enforce its poli-
cies do not scale with increasing number
of replicas. Similar models need to be
developed for Web replica hosting systems
that can provide bounds on inconsistent
access of its replicas with no loss of
scalability.

In content distribution mechanisms, we
discussed the advantages and disadvan-
tages of push, pull, and other adaptive
mechanisms. These mechanisms can be
broadly classified as server-driven and
client-driven consistency mechanisms, de-
pending on who is responsible for en-
forcing consistency. At the outset, client-
driven mechanisms seems to be a more
scalable option for large-scale hosting sys-
tems, as in this case the server is not over-
loaded with the responsibility of enforcing
consistency. However, in Yin et al. [2002],
the authors have shown that server-driven
consistency protocols can meet the scala-
bility requirements of large-scale dynamic
Web services delivering both static and dy-
namic Web content.

We note that existing systems and pro-
tocols concentrate only on time-based con-
sistency models and very little has been
done on other consistency models. Hence,
in our summary table of consistency ap-
proaches adopted by various systems and
protocols (Table III), we discuss only the
content distribution mechanisms adopted
by them.

Maintaining consistency among dy-
namic documents requires special mecha-
nisms. Existing replication solutions usu-
ally incur high overhead because they
need global synchronization upon updates
of their underlying replicated data. We
consider that optimistic replication mech-
anisms such as those used in Gao et al.
[2003] may allow massively scalable con-
tent distribution mechanisms for dynam-
ically generated documents. An in-depth
survey on optimistic replication tech-
niques can be found in Saito and Shapiro
[2003].

7. REQUEST ROUTING

In request routing, we address the prob-
lem of deciding which replica server shall
best service a given client request, in
terms of the metrics selected in Section 3.
These metrics can be, for example, replica
server load (where we choose the replica
server with the lowest load), end-to-end
latency (where we choose the replica
server that offers the shortest response
time to the client), or distance (where we
choose the replica server that is closest to
the client).

Selecting a replica is difficult, because
the conditions on the replica servers (e.g.,
load) and in the network (e.g., link con-
gestion, thus its latency) change contin-
uously. These changing conditions may
lead to different replica selections, de-
pending on when and for which client
these selections are made. In other words,

ACM Computing Surveys, Vol. 36, No. 3, September 2004.

Replication for Web Hosting Systems 323

a replica optimal for a given client may
not necessarily remain optimal for the
same client forever. Similarly, even if two
clients request the same document simul-
taneously, they may be directed to differ-
ent replicas. In this section, we refer to
these two kinds of conditions as “system
conditions.”

The entire request routing problem can
be split into two: devising a redirection
policy and selecting a redirection mech-
anism. A redirection policy defines how
to select a replica in response to a given
client request. It is basically an algorithm
invoked when the client request is in-
voked. A redirection mechanism, in turn,
is a mean of informing the client about
this selection. It first invokes a redirection
policy, and then provides the client with
the redirecting response that the policy
generates.

A redirection system can be deployed
either on the client side, or on the
server side, or somewhere in the net-
work between these two. It is also possi-
ble to combine client-side and server-side
techniques to achieve better performance
[Karaul et al. 1998]. Interestingly, a study
by Rodriguez et al. [2000] suggests that
clients may easily circumvent the prob-
lem of replica selection by simultane-
ously retrieving their data from several
replica servers. This claim is disputed by
Kangasharju et al. [2001b], who notice
that the delay caused by opening connec-
tions to multiple servers can outweigh the
actual gain in content download time. In
this article, we assume that we leave the
client-side unmodified, as the only soft-
ware that usually works there is a Web
browser. We therefore do not discuss the
details of client-side server-selection tech-
niques, which can be found in Conti et al.
[2002]. Finally, we do not discuss various
Web caching schemes, which have been
thoroughly described in Rodriguez et al.
[2001], as caches are by nature deployed
on the client-side.

In this section, we examine redirection
policies and redirection mechanisms sep-
arately. For each of them, we discuss sev-
eral related research efforts, and summa-
rize with a comparison of these efforts.

7.1. Redirection Policies

A redirection policy can be either adap-
tive or nonadaptive. The former consid-
ers current system conditions while select-
ing a replica, whereas the latter does not.
Adaptive redirection policies are usually
more complex than nonadaptive ones, but
this effort is likely to pay off with higher
system performance. The systems we dis-
cuss below usually implement both types
of policies, and can be configured to use
any combination of them.

7.1.1. Nonadaptive Policies. Nonadaptive
redirection policies select a replica that a
client should access without monitoring
the current system conditions. Instead,
they exploit heuristics that assume cer-
tain properties of these conditions of which
we discuss examples below. Although non-
adaptive policies are usually easier to
implement, the system works efficiently
only when the assumptions made by the
heuristics are met.

An example of a nonadaptive pol-
icy is round-robin. It aims at balancing
the load of replica servers by evenly dis-
tributing all the requests among these
servers [Delgadillo 1999; Radware 2002;
Szymaniak et al. 2003]. The assumption
here is that all the replica servers have
similar processing capabilities, and that
any of them can service any client re-
quest. This simple policy has proved to
work well in clusters, where all the replica
servers are located in the same place [Pai
et al. 1998]. In wide-area systems, how-
ever, replica servers are usually distant
from each other. Since round-robin ig-
nores this aspect, it cannot prevent di-
recting client requests to more distant
replica servers. If it happens, the client-
perceived performance may turn out to
be poor. Another problem is that the aim
of load balancing itself is not necessarily
achieved, as processing different requests
can involve significantly different compu-
tational costs.

A nonadaptive policy exploited in Radar
is the following. All replica servers are
ranked according to their predicted load,
which is derived from the number of

ACM Computing Surveys, Vol. 36, No. 3, September 2004.

324 S. Sivasubramanian et al.

requests each of them has serviced so far.
Then, the policy redirects clients so that
the load is balanced across the replica
servers, and that (additionally) the client-
server distance is as low as possible.
The assumption here is that the replica
server load and the client-server distance
are the main factors influencing the ef-
ficiency of request processing. Aggarwal
and Rabinovich [1998] observe that this
simple policy often performs nearly as
good as its adaptive counterpart, which
we describe below. However, as both of
them ignore network congestion, the re-
sulting client-perceived performance may
still turn out to be poor.

Several interesting nonadaptive poli-
cies were implemented in Cisco Dis-
tributedDirector [Delgadillo 1999]. The
first one defines the percentage of all re-
quests that each replica server receives. In
this way, it can send more requests to more
powerful replica servers and achieve bet-
ter resource utilization. Another policy al-
lows for defining preferences of one replica
server over the other. It may be used
to temporarily relieve a replica server
from service (for maintenance purposes,
for example), and delegate the requests it
would normally service to another server.
Finally, DistributedDirector enables ran-
dom request redirection, which can be
used for comparisons during some system
efficiency tests. Although all these policies
are easy to implement, they completely ig-
nore current system conditions, making
them inadequate to react to emergency
situations.

One can imagine a nonadaptive redirec-
tion policy that statically assigns clients to
replicas based on their geographical loca-
tion. The underlying assumptions are that
the clients are evenly distributed over the
world, and that the geographical distance
to a server reflects the network latency to
that server. Although the former assump-
tion is not likely to be valid in a general
case, the latter has been verified positively
as we discussed earlier. According to Huf-
faker et al. [2002], the correlation between
the geographical distance and the network
latency reaches up to 75%. Still, since this
policy ignores the load of replica servers,

it can redirect clients to overloaded replica
servers, which may lead to substantially
degraded client experience.

Finally, an interesting nonadaptive pol-
icy that has later been used in developing
the Chord peer-to-peer system, is consis-
tent hashing [Karger et al. 1999]. The idea
is straightforward: a URL is hashed to a
value h from a large space of identifiers.
That value is then used to efficiently route
a request along a logical ring consisting
of cache servers with IDs from that same
space. The cache server with the smallest
ID larger than h is responsible for hold-
ing copies of the referenced data. Varia-
tions of this scheme have been extensively
researched in the context of peer-to-peer
file sharing systems [Balikrishnan et al.
2003], including those that take network
proximity into account (see, e.g., Castro
et al. [2003b]).

7.1.2. Adaptive Policies. Adaptive redi-
rection policies discover the current sys-
tem conditions by means of metric estima-
tion mechanisms discussed in Section 3. In
this way, they are able to adjust their be-
havior to situations that normally do not
occur, like flash crowds, and ensure high
system robustness [Wang et al. 2002].

The information that adaptive policies
obtain from metric estimation mecha-
nisms may include, for example, the load
of replica servers or the congestion of se-
lected network links. Apart from these
data, a policy may also need to know
some request-related information. The
bare minimum is what object is requested
and where the client is located. More
advanced replica selection can also take
client QoS requirements into account.

Knowing the system conditions and the
client-related information, adaptive poli-
cies first determine a set of replica servers
that are capable of handling the request
(i.e., they store a replica of the document
and can offer required quality of service).
Then, these policies select one (or more)
of these servers, according to the metrics
they exploit. Adaptive policies may exploit
more than one metric. More importantly,
a selection based on one metric is not nec-
essarily optimal in terms of others. For

ACM Computing Surveys, Vol. 36, No. 3, September 2004.

Replication for Web Hosting Systems 325

example, Johnson et al. [2001] observed
that most CDNs do not always select the
replica server closest to the client.

The adaptive policy used by Globule
selects the replica servers that are clos-
est to the client in terms of network dis-
tance [Szymaniak et al. 2003]. Globule
employs the AS-path length metric, orig-
inally proposed by McManus [1999], and
determines the distance based on a peri-
odically refreshed, AS-based map of the
Internet. Since this approach uses pas-
sive metric estimation services, it does
not introduce any additional traffic to the
network. We consider it to be adaptive,
because the map of the Internet is pe-
riodically rebuilt, which results in (slow)
adaptation to network topology changes.
Unfortunately, the AS-based distance cal-
culations, although simple to perform, are
not very accurate [Huffaker et al. 2002].

A distance-based adaptive pol-
icy is also implicitly exploited by
SPREAD [Rodriguez and Sibal 2000].
In this system, routers simply intercept
requests on their path toward the object
home server, and redirected to a near-by
replica server. Consequently, requests
reach their closest replica servers, and
the resulting client-server paths are
shortened. This policy in a natural way
adapts to changes in routing. Its biggest
disadvantage is the high cost of deploy-
ment, as it requires modifying many
routers.

A combined policy, considering both
replica server load and client-server dis-
tance, is implemented in Radar. The pol-
icy first isolates the replica servers whose
load is below a certain threshold. Then,
from these servers, the client-closest one
is selected. The Radar redirection policy
adapts to changing replica server loads
and tries to direct clients to their clos-
est replica servers. However, by ignoring
network congestion and end-to-end laten-
cies, Radar focuses more on load balanc-
ing than on improving the client-perceived
performance.

Adaptive policies based on the client-
server latency have been proposed by
Ardaiz et al. [2001] and Andrews et al.
[2002]. Based either on the client access

logs, or on passive server-side latency
measurements, respectively, these policies
redirect a client to the replica server that
has recently reported the minimal latency
to the client. The most important advan-
tage of these schemes is that they ex-
ploit latency measurements, which are the
best indicator of actual client experience
[Huffaker et al. 2002]. On the other hand,
both of them require maintaining a cen-
tral database of measurements, which lim-
its the scalability of systems that exploit
these schemes.

A set of adaptive policies is supported
by Web Server Director [Radware 2002].
It monitors the number of clients and the
amount of network traffic serviced by each
replica server. It also takes advantage of
performance metrics specific for Windows
NT, which are included in the Manage-
ment Information Base (MIB). Since this
information is only provided in a commer-
cial white article, it is difficult to evaluate
the efficiency of these solutions.

Another set of adaptive policies is im-
plemented in Cisco DistributedDirector
[Delgadillo 1999]. This system supports
many different metrics, including inter-
AS distance, intra-AS distance, and end-
to-end latency. The redirection policy can
determine the replica server based on
weighted combination of these three met-
rics. Although this policy is clearly more
flexible than a policy that uses only one
metric, measuring all the metrics requires
deploying an “agent” on every replica
server. Also, the exploited active latency
measurements introduce additional traf-
fic to the Internet. Finally, because Dis-
tributedDirector is kept separate from
the replica servers, it cannot probe their
load—it can be approximated only with
the nonadaptive policies discussed above.

A complex adaptive policy is used in
Akamai [Dilley et al. 2002]. It considers a
few additional metrics, like replica server
load, the reliability of routes between the
client and each of the replica servers,
and the bandwidth that is currently avail-
able to a replica server. Unfortunately,
the actual policy is subject to trade se-
cret and cannot be found in the published
literature.

ACM Computing Surveys, Vol. 36, No. 3, September 2004.

326 S. Sivasubramanian et al.

7.2. Redirection Mechanisms

Redirection mechanisms provide clients
with the information generated by the
redirection policies. Redirection mech-
anisms can be classified according to
several criteria. For example, Barbir
et al. [2003], classify redirection mech-
anisms into DNS-based, transport-level,
and application-level ones. The authors
use the term “request routing” to re-
fer to what we call “redirection” in this
article. Such classification is dictated
by the diversity of request processing
stages, where redirection can be incor-
porated: name resolution, packet rout-
ing, and application-specific redirection
implementation.

In this section, we distinguish between
transparent, nontransparent, and com-
bined mechanisms. Transparent redirec-
tion mechanisms hide the redirection from
the clients. In other words, a client can-
not determine which replica server is ser-
vicing it. In nontransparent redirection
mechanisms, the redirection is visible to
the client, which can then explicitly re-
fer to the replica server it is using. Com-
bined redirection mechanisms combine
two previous types. They take the best
from these two types and eliminate their
disadvantages.

As we only focus on wide-area systems,
we do not discuss solutions that are appli-
cable only to local environments. An exam-
ple of such a solution is packet hand-off,
which is thoroughly discussed in a survey
of load-balancing techniques by Cardellini
et al. [1999]. A more recent survey by the
same authors covers other techniques for
local-area Web clusters [Cardellini et al.
2002].

7.2.1. Transparent Mechanisms. Trans-
parent redirection mechanisms perform
client request redirection in a trans-
parent manner. Therefore, they do not
introduce explicit bounds between clients
and replica servers, even if the clients
store references to replicas. It is par-
ticularly important for mobile clients
and for dynamically changing network
environments, as in both these cases, a

replica server now optimal for a given
client can become suboptimal shortly
later.

Several transparent redirection mecha-
nisms are based on DNS [Delgadillo 1999;
Cardellini et al. 2003; Rabinovich and
Aggarwal 1999; Radware 2002; Szyma-
niak et al. 2003]. They exploit specially
modified DNS servers. When a modified
DNS server receives a resolution query for
a replicated service, a redirection policy
is invoked to generate one or more ser-
vice IP addresses, which are returned to
the client. The policy chooses the replica
servers based on the IP address of the
query sender. In DNS-based redirection,
transparency is achieved assuming that
services are referred to by means of their
DNS names, and not their IP addresses.
The entire redirection mechanism is ex-
tremely popular, because of its simplicity
and independence from the actual repli-
cated service—as it is incorporated in the
name resolution service, it can be used by
any Internet application.

On the other hand, DNS-based redirec-
tion has some limitations [Shaikh et al.
2001]. The most important ones are poor
client identification and coarse redirection
granularity. The poor client identification
is caused by the fact that a DNS query
does not carry the addresses of the query-
ing client. The query can pass through
several DNS servers before it reaches
the one that knows the answer. However,
any of these DNS servers knows only the
DNS server with which it directly com-
municates, and not the querying client.
Consequently, using the DNS-based redi-
rection mechanisms forces the system to
use the clustering scheme based on local
DNS servers, which was discussed in Sec-
tion 3. The coarse redirection granularity
is caused by the granularity of DNS itself:
as it deals only with machine names, it can
redirect based only on that part of an ob-
ject URL that is related to the machine
name. Therefore, as long as two URLs re-
fer to the same machine name, they are
identical for the DNS-based redirection
mechanism, which makes it difficult to use
different distribution schemes for differ-
ent objects.

ACM Computing Surveys, Vol. 36, No. 3, September 2004.

Replication for Web Hosting Systems 327

A scalable version of the DNS-based
redirection is implemented in Akamai.
This system improves the scalability of
the redirection mechanism by maintain-
ing two groups of DNS servers: top- and
low-level ones. Whereas the former share
one location, the latter are scattered over
several Internet data centers, and are usu-
ally accompanied by replica servers. A
top-level DNS servers redirects a client
query to a low-level DNS server proxi-
mal to the query sender. Then, the low-
level DNS server redirects the sender to
an actual replica server, usually placed
in the same Internet data center. What
is important, however, is that the top-
to-low level redirection occurs only pe-
riodically (about once per hour) and re-
mains valid during all that time. For
this reason, the queries are usually han-
dled by proximal low-level DNS servers,
which results in short name-resolution la-
tency. Also, because the low-level DNS
servers and the replica servers share the
same Internet data center, the former may
have accurate system condition informa-
tion about the latter. Therefore, the low-
level DNS servers may quickly react to
sudden changes, such as flash crowds or
replica server failures.

An original transparent redirection
scheme is exploited in SPREAD, which
makes proxies responsible for client
redirection [Rodriguez and Sibal 2000].
SPREAD assumes the existence of a dis-
tributed infrastructure of proxies, each
handling all HTTP traffic in its neigh-
borhood. Each proxy works as follows.
It inspects the HTTP-carrying IP pack-
ets and isolates those that are target-
ing replicated services. All other packets
are routed traditionally. If the requested
replica is not available locally, the service-
related packets are forwarded to another
proxy along the path toward the origi-
nal service site. Otherwise, the proxy ser-
vices them and generates IP packets car-
rying the response. The proxy rewrites
source addresses in these packets, so that
the client thought that the response orig-
inates from the original service site. The
SPREAD scheme can be perceived as a dis-
tributed packet hand-off. It is transparent

to the clients, but it requires a whole in-
frastructure of proxies.

7.2.2. Nontransparent Mechanisms. Non-
transparent redirection mechanisms
reveal the redirection to the clients. In
this way, these mechanisms introduce an
explicit binding between a client and a
given replica server. On the other hand,
nontransparent redirection mechanisms
are easier to implement than their trans-
parent counterparts. They also offer fine
redirection granularity (per object),
thus allowing for more flexible content
management.

The simplest method that gives the ef-
fect of nontransparent redirection is to
allow a client to choose from a list of
available replica servers. This approach is
called “manual redirection” and can often
be found on Web services of widely known
corporations. However, since this method
is entirely manual, it is of little use for
replica hosting systems, which require an
automated client redirection scheme.

Nontransparent redirection can be im-
plemented with HTTP. It is another redi-
rection mechanism supported by Web
Server Director [Radware 2002]. An
HTTP-based mechanism can redirect
clients by rewriting object URLs inside
HTML documents, so that these URLs
point at object replicas stored on some
replica servers. It is possible to treat
each object URL separately, which allows
for using virtually any replica placement.
The two biggest advantages of the HTTP-
based redirection are flexibility and sim-
plicity. Its biggest drawback is the lack of
transparency.

Cisco DistributedDirector also supports
the HTTP-based redirection, although in
a different manner [Delgadillo 1999]. In-
stead of rewriting URLs, this system ex-
ploits the HTTP 302 (temporary moved)
response code. In this way, the redirect-
ing machine does not need to store any
service-related content—all it does is ac-
tivate the redirection policy and redirect
client to a replica server. On the other
hand, this solution can efficiently redirect
only per entire Web service, and not per
object.

ACM Computing Surveys, Vol. 36, No. 3, September 2004.

328 S. Sivasubramanian et al.

7.2.3. Combined Mechanisms. It is
possible to combine transparent and
non-transparent redirection mechanisms
to achieve a better result. Such ap-
proaches are followed by Akamai [Dilley
et al. 2002], Cisco DistributedDirector
[Radware 2002] and Web Server Director
[Delgadillo 1999]. These systems allow
to redirect clients using a “cascade” of
different redirection mechanisms.

The first mechanism in the cascade is
HTTP. A replica server may rewrite URLs
inside an HTML document so that the
URLs of different embedded objects con-
tain different DNS names. Each DNS
name identifies a group of replica servers
that store a given object.

Although it is in general not recom-
mended to scatter objects embedded in a
single Web page over too many servers
[Kangasharju et al. 2001b], it may be
sometimes beneficial to host objects of
different types on separate groups of
replica servers. For example, as video
hosting may require specialized replica
server resources, it may be reasonable
to serve video streams with dedicated
video servers, while providing images
with other, regular ones. In such cases,
video-related URLs contain a differ-
ent DNS name (like “video.cdn.com”)
than the image-related URLs (like
“images.cdn.com”).

URL rewriting weakens the trans-
parency, as the clients are able to dis-
cover that the content is retrieved from
different replica servers. However, be-
cause the rewritten URLs contain DNS
names that point to groups of replica
servers, the clients are not bound to
any single replica server. In this way,
the system preserves the most impor-
tant property of transparent redirection
systems.

The second mechanism in the cas-
cade is DNS. The DNS redirection sys-
tem chooses the best replica server
within each group by resolving the group-
corresponding DNS name. In this way,
the same DNS-based mechanism can be
used to redirect a client to its several best
replica servers, each belonging to a sepa-
rate group.

By using DNS, the redirection system
remains scalable, as it happens in the
case of pure DNS-based mechanisms. By
combining DNS with URL rewriting, how-
ever, the system may offer finer redirection
granularity and thus allow for more flexi-
ble replica placement strategies.

The third mechanism in the cascade is
packet-handoff. The processing capabili-
ties of a replica server may be improved by
deploying the replica server as a cluster of
machines that share the same IP address.
In this case, the packet-handoff is imple-
mented locally to scatter client requests
across several machines.

Similarly to pure packet-handoff tech-
niques, this part of the redirection cascade
remains transparent for the clients. How-
ever, since packet-handoff is implemented
only locally, the scalability of the redirec-
tion system is maintained.

As can be observed, combining differ-
ent redirection mechanisms leads to con-
structing a redirection system that is si-
multaneously fine-grained, transparent,
and scalable. The only potential problem
is that deploying and maintaining such a
mechanism is a complex task. In practice,
however, this problem turns out to be just
one more task of a replica hosting system
operator. The duties like maintaining a set
of reliable replica servers, managing mul-
tiple replicas of many objects, and making
these replicas consistent, are likely to be at
similar (if not higher) level of complexity.

7.3. Discussion

The problem of request routing can be
divided into two subproblems: devising
a redirection policy and selecting a redi-
rection mechanism. The policy decides to
which replica a given client should be redi-
rected, whereas the mechanism takes care
of delivering this decision to the client.

We classify redirection policies into two
groups: adaptive and non-adaptive ones.
Non-adaptive policies perform well only
when the system conditions do not change.
If they do change, the system perfor-
mance may turn out to be poor. Adaptive
policies solve this problem by monitoring
the system conditions and adjusting their

ACM Computing Surveys, Vol. 36, No. 3, September 2004.

Replication for Web Hosting Systems 329

Table IV. The Comparison of Representative Implementations of a Redirection System
Redirection

Policies Mechanisms
Adaptive Non-Adaptive TCP DNS HTTP Comb.

System DST LAT NLD CPU USR OTH RR %RQ PRF RND PLD CNT DST 1LV 2LV

Akamai X X X X X X X X
Globule X X X X
Radar X X X X
SPREAD X X
Cisco DD X X X X X X X X X X
Web Direct X X X X X X X X

DST : Network distance OTH: Other metrics PLD: Predicted load
LAT : End-to-end latency RR : Round robin CNT: Centralized
NLD: Network load %RQ: Percentage of requests DST: Distributed
CPU: Replica server CPU load PRF : Server preference 1LV : One-level
USR: Number of users RND: Random selection 2LV : Two-level

behavior accordingly. However, they make
the system more complex, as they need
specialized metric estimation services. We
note that all the investigated systems im-
plement both adaptive and nonadaptive
policies (see Table IV).

We classify redirection mechanisms
into three groups: transparent, non-
transparent, and combined ones. Trans-
parent mechanisms can be based on DNS
or packet-handoff. As can be observed
in Table IV, DNS-based mechanisms are
very popular. Among them, a particularly
interesting is the scalable DNS-based
mechanism built by Akamai. As for
packet-handoff, its traditional limitation
to clusters can be alleviated by means
of a global infrastructure, as it is done
in SPREAD. Nontransparent mechanisms
are based on HTTP. They achieve finer
redirection granularity, on the cost of in-
troducing an explicit binding between a
client and a replica server. Transparent
and nontransparent mechanisms can be
combined. Resulting hybrids offer fine-
grained, transparent, and scalable redi-
rection at the cost of higher complexity.

We observe that the request routing
component has to cooperate with the met-
ric estimation services to work efficiently.
Consequently, the quality of the request
routing component depends on the accu-
racy of the data provided by the metric es-
timation service.

Further, we note that simple, unadap-
tive policies sometimes work nearly as ef-

ficient as their adaptive counterparts. Al-
though this phenomenon may justify us-
ing only non-adaptive policies in simple
systems, we do believe that monitoring
system conditions is of a key value for
efficient request routing in large infras-
tructures. Moreover, combining several
different metrics in the process of replica
selection may additionally improve the
system performance.

Finally, we are convinced that using
combined redirection mechanisms is in-
evitable for large-scale wide-area systems.
These mechanisms offer fine-grained,
transparent, and scalable redirection on
the cost of higher complexity. The result-
ing complexity, however, is not signifi-
cantly larger compared to that of other
parts of a replica hosting system. Since the
ability to support millions of clients can be
of fundamental importance, using a com-
bined redirection mechanism is definitely
worth the effort.

8. CONCLUSION

In this article, we have discussed the most
important aspects of replica hosting sys-
tem development. We have provided a
generalized framework for such systems,
which consists of five components: metric
estimation, adaptation triggering, replica
placement, consistency enforcement, and
request routing. The framework has been
built around an objective function, which
allows to formally express the goals of

ACM Computing Surveys, Vol. 36, No. 3, September 2004.

330 S. Sivasubramanian et al.

replica hosting system development. For
each of the framework components, we
have discussed its corresponding prob-
lems, described several solutions for them,
and reviewed some representative re-
search efforts.

We observe that the work done on var-
ious problems related to a single com-
ponent tends to be imbalanced. In met-
ric estimation, for example, many papers
focus on network-related metrics, such
as distance and latency, whereas very
little has been written about financial
and consistency metrics. Similarly, in con-
sistency enforcement, usually only time-
based schemes are investigated, although
their value- and order-based counterparts
can also be useful. The reason for this situ-
ation may be that these ignored problems
are rather non-technical, and addressing
them requires knowledge exceeding the
field of computer systems.

Another observation is that researchers
seldom distinguish between the prob-
lems of server and content placement.
Consequently, the proposed solutions are
harder to apply to each of these prob-
lems separately—as these problems are
usually tackled in very different circum-
stances, it seems to be unlikely that
a single solution solves both of them.
We find that a clear distinction between
server and content placement should be
more common among future research
efforts.

Furthermore, there is a need for build-
ing economic models that enables com-
parison of orthogonal metrics like perfor-
mance gain and financial returns. Such
a model would enable the designer of a
replica-hosting system to provide mech-
anisms that can capture the tradeoff be-
tween financial cost (of running and main-
taining a new replica server) and possible
performance gain (obtained by the new in-
frastructure).

We also notice that the amount of re-
search effort devoted to different frame-
work components is imbalanced as well.
Particularly neglected ones are object
selection and adaptation triggering, for
which hardly any paper can be found.
These problems can only be investigated

in the context of an entire replica host-
ing system (and the applications that ex-
ploit it). This drives the need for more
research efforts that do not assume the
components to be independent from each
other. Instead, they should investigate
the components in the context of an en-
tire system, with special attention paid
to interactions and dependencies among
them.

REFERENCES

ABOBA, B., ARKKO, J., AND HARRINGTON, D. 2000.
Introduction to Accounting Management. RFC
2975.

AGGARWAL, A. AND RABINOVICH, M. 1998. Perfor-
mance of replication schemes for an internet
hosting service. Tech. Rep. HA6177000-981030-
01-TM, AT&T Research Labs, Florham Park, NJ.
Oct.

ALVISI, L. AND MARZULLO, K. 1998. Message log-
ging: Pessimistic, optimistic, causal, and opti-
mal. IEEE Trans. Softw. Eng. 24, 2 (Feb.), 149–
159.

ANDREWS, M., SHEPHERD, B., SRINIVASAN, A., WINKLER,
P., AND ZANE, F. 2002. Clustering and server
selection using passive monitoring. In Proc. 21st
INFOCOM Conference (New York, NY). IEEE
Computer Society Press, Los Alamitos, CA.

ARDAIZ, O., FREITAG, F., AND NAVARRO, L. 2001. Im-
proving the service time of web clients using
server redirection. In Proc. 2nd Workshop on
Performance and Architecture of Web Servers
(Cambridge, MA). ACM, New York, NY.

BALIKRISHNAN, H., KAASHOEK, M. F., KARGER, D.,
MORRIS, R., AND STOICA, I. 2003. Looking up
data in P2P systems. Commun. ACM 46, 2 (Feb.),
43–48.

BALLINTIJN, G., VAN STEEN, M., AND TANENBAUM, A.
2000. Characterizing internet performance to
support wide-area application development.
Oper. Syst. Rev. 34, 4 (Oct.), 41–47.

BARBIR, A., CAIN, B., NAIR, R., AND SPATSCHECK, O.
2003. Known content network (CN) request-
routing mechanisms. RFC 3568.

BARFORD, P., CAI, J.-Y., AND GAST, J. 2001. Cache
placement methods based on client demand
clustering. Tech. Rep. TR1437, University of
Wisconsin at Madison. July.

BERNSTEIN, P. A. AND GOODMAN, N. 1983. The failure
and recovery problem for replicated databases.
In Proc. 2nd Symposium on Principles of Dis-
tributed Computing (Montreal, Ont., Canada).
ACM, New York, 114–122.

BHIDE, M., DEOLASEE, P., KATKAR, A., PANCHBUDHE, A.,
RAMAMRITHAM, K., AND SHENOY, P. 2002. Adap-
tive push-pull: Disseminating dynamic web
data. IEEE Trans. Comput. 51, 6 (June), 652–
668.

ACM Computing Surveys, Vol. 36, No. 3, September 2004.

Replication for Web Hosting Systems 331

CAO, P. AND LIU, C. 1998. Maintaining strong cache
consistency in the world wide web. IEEE Trans.
Comput. 47, 4 (Apr.), 445–457.

CAO, P., ZHANG, J., AND BEACH, K. 1998. Active
cache: Caching dynamic contents on the web.
In Proc. Middleware ’98 (The Lake District,
England). Springer-Verlag, Berlin, 373–388.

CARDELLINI, V., CASALICCHIO, E., COLAJANNI, M., AND

YU, P. 2002. The state of the art in locally
distributed web-server systems. ACM Comput.
Surv. 34, 2 (June), 263–311.

CARDELLINI, V., COLAJANNI, M., AND YU, P. 1999. Dy-
namic load balancing on web-server systems.
IEEE Internet Comput. 3, 3 (May), 28–39.

CARDELLINI, V., COLAJANNI, M., AND YU, P. S. 2003.
Request redirection algorithms for distributed
web systems. IEEE Trans. Paral. Distrib.
Syst. 14, 4 (Apr.), 355–368.

CARTER, R. L. AND CROVELLA, M. E. 1997. Dynamic
server selection using bandwidth probing in
wide-area networks. In Proc. 16th INFOCOM
Conference (Kobe, Japan). IEEE Computer So-
ciety Press, Los Alamitos, CA. 1014–1021.

CASTRO, M., COSTA, M., KEY, P., AND ROWSTRON, A.
2003a. PIC: Practical internet coordinates for
distance estimation. Tech. Rep. MSR-TR-2003-
53, Microsoft Research Laboratories. Sept.

CASTRO, M., DRUSCHEL, P., HU, Y. C., AND

ROWSTRON, A. 2003b. Proximity neighbor
selection in tree-based structured peer-to-peer
overlays. Tech. Rep. MSR-TR-2003-52, Microsoft
Research, Cambridge, UK.

CATE, V. 1992. Alex—A global file system. In
Proc. File Systems Workshop (Ann Harbor, MI).
USENIX, Berkeley, CA. 1–11.

CHALLENGER, J., DANTZIG, P., AND IYENGAR, A. 1999.
A Scalable system for consistently caching dy-
namic web data. In Proc. 18th INFOCOM Con-
ference (New York, NY). IEEE Computer Society
Press, Los Alamitos, CA. 294–303.

CHANDRA, P., CHU, Y.-H., FISHER, A., GAO, J., KOSAK,
C., NG, T. E., STEENKISTE, P., TAKAHASHI, E.,
AND ZHANG, H. 2001. Darwin: Customizable
resource management for value-added network
services. IEEE Netw. 1, 15 (Jan.), 22–35.

CHEN, Y., KATZ, R., AND KUBIATOWICZ, J. 2002a. Dy-
namic replica placement for scalable content de-
livery. In Proc. 1st International Workshop on
Peer-to-Peer Systems (Cambridge, MA). Lecture
Notes on Computer Science, vol. 2429. Springer-
Verlag, Berlin, 306–318.

CHEN, Y., QIU, L., CHEN, W., NGUYEN, L., AND KATZ,
R. H. 2002b. Clustering web content for ef-
ficient replication. In Proc. 10th International
Conference on Network Protocols (Paris, France).
IEEE Computer Society Press, Los Alamitos,
CA.

CHEN, Y., QIU, L., CHEN, W., NGUYEN, L., AND KATZ,
R. H. 2003. Efficient and adaptive web repli-
cation using content clustering. IEEE J. Sel.
Areas Commun. 21, 6 (Aug.), 979–994.

COHEN, E. AND KAPLAN, H. 2001. Proactive caching
of DNS records: Addressing a performance bot-
tleneck. In Proc. 1st Symposium on Applications
and the Internet (San Diego, CA). IEEE Com-
puter Society Press, Los Alamitos, CA.

CONTI, M., GREGORI, E., AND LAPENNA, W. 2002.
Replicated web services: A comparative analy-
sis of client-based content delivery policies. In
Proc. Networking 2002 Workshops (Pisa, Italy).
Lecture Notes on Computer Science, vol. 2376.
Springer-Verlag, Berlin, 53–68.

COX, R., DABEK, F., KAASHOEK, F., LI, J., AND

MORRIS, R. 2004. Practical, distributed net-
work coordinates. ACM Comput. Communica-
tions Review 34, 1 (Jan.), 113–118.

CROVELLA, M. AND CARTER, R. 1995. Dynamic
server selection in the internet. In Proc. 3rd
Workshop on High Performance Subsystems
(Mystic, Connecticut). IEEE Computer Society
Press, Los Alamitos, CA.

DA CUNHA, C. R. 1997. Trace analysis and its ap-
plications to performance enhancements of dis-
tributed information systems. Ph.D. disserta-
tion, Boston University, Boston, Mass.

DELGADILLO, K. 1999. Cisco Distributed Director.
Tech. rep., Cisco Systems, Inc. June.

DILLEY, J., MAGGS, B., PARIKH, J., PROKOP, H., SITARA-
MAN, R., AND WEIHL, B. 2002. Globally dis-
tributed content delivery. IEEE Internet Com-
puting 6, 5 (Sept.), 50–58.

DUVVURI, V., SHENOY, P., AND TEWARI, R. 2000. Adap-
tive leases: A strong consistency mechanism for
the world wide web. In Proc. 19th INFOCOM
Conference (Tel Aviv, Israel). IEEE Computer So-
ciety Press, Los Alamitos, CA. 834–843.

DYKES, S. G., ROBBINS, K. A., AND JEFFREY, C. L. 2000.
An empirical evaluation of client-side server se-
lection. In Proc. 19th INFOCOM Conference (Tel
Aviv, Israel). IEEE Computer Society Press, Los
Alamitos, CA., 1361–1370.

ELNOZAHY, E., ALVISI, L., WANG, Y.-M., AND JOHNSON,
D. 2002. A survey of rollback-recovery proto-
cols in message-passing systems. ACM Comput.
Surv. 34, 3 (Sept.), 375–408.

FEI, Z. 2001. A novel approach to managing con-
sistency in content distribution networks. In
Proc. 6th Web Caching Workshop (Boston, MA).
North-Holland, Amsterdam.

FRANCIS, P., JAMIN, S., JIN, C., JIN, Y., RAZ, D.,
SHAVITT, Y., AND ZHANG, L. 2001. IDMaps:
Global internet host distance estimation service.
IEEE/ACM Trans. Netw. 9, 5 (Oct.), 525–540.

FRANCIS, P., JAMIN, S., PAXSON, V., ZHANG, L.,
GRYNIEWICZ, D., AND JIN, Y. 1999. An architec-
ture for a global internet host distance estima-
tion service. In Proc. 18th INFOCOM Conference
(New York, N.Y.). IEEE Computer Society Press,
Los Alamitos, CA. 210–217.

FU, Y., CHERKASOVA, L., TANG, W., AND VAHDAT, A. 2002.
EtE: Passive end-to-end internet service per-
formance monitoring. In Proc. USENIX Annual

ACM Computing Surveys, Vol. 36, No. 3, September 2004.

332 S. Sivasubramanian et al.

Technical Conference (Monterey, CA). USENIX,
Berkeley, CA. 115–130.

GAO, L., DAHLIN, M., NAYATE, A., ZHENG, J., AND IYEN-
GAR, A. 2003. Application specific data repli-
cation for edge services. In Proc. 12th Interna-
tional World Wide Web Conference (Budapest,
Hungary). ACM Press, New York.

GRAY, C. AND CHERITON, D. 1989. Leases: An effi-
cient fault-tolerant mechanism for distributed
file cache consistency. In Proc. 12th Symposium
on Operating System Principles (Litchfield Park,
AZ). ACM Press, New York, 202–210.

GUMMADI, K. P., SAROIU, S., AND GRIBBLE, S. D. 2002.
King: Estimating latency between arbitrary in-
ternet end hosts. In Proc. 2nd Internet Measure-
ment Workshop (Marseille, France). ACM Press,
New York, 5–18.

HUFFAKER, B., FOMENKOV, M., PLUMMER, D. J., MOORE,
D., AND CLAFFY, K. 2002. Distance metrics in
the internet. In Proc. International Telecommu-
nications Symposium (Natal RN, Brazil). IEEE
Computer Society Press, Los Alamitos, CA.

HULL, S. 2002. Content Delivery Networks.
McGraw-Hill, New York.

IYENGAR, A., MACNAIR, E., AND NGUYEN, T. 1997. An
analysis of web server performance. In Proc.
Globecom (Phoenix, AZ). IEEE Computer Soci-
ety Press, Los Alamitos, CA.

JALOTE, P. 1994. Fault Tolerance in Distributed
Systems. Prentice Hall, Englewood Cliffs, N.J.

JANIGA, M. J., DIBNER, G., AND GOVERNALI, F. J. 2001.
Internet infrastructure: Content delivery. Gold-
man Sachs Global Equity Research.

JOHNSON, K. L., CARR, J. F., DAY, M. S., AND KAASHOEK,
M. F. 2001. The measured performance of
content distribution networks. Computer Com-
mun. 24, 2 (Feb.), 202–206.

JUNG, J., KRISHNAMURTHY, B., AND RABINOVICH, M.
2002. Flash crowds and denial of service at-
tacks: Characterization and implications for
CDNs and web sites. In Proc. 11th International
World Wide Web Conference (Honololu, Hawaii).
ACM, New York, 293–304.

KANGASHARJU, J., ROBERTS, J., AND ROSS, K. 2001a.
Object replication strategies in content distribu-
tion networks. In Proc. 6th Web Caching Work-
shop (Boston, MA). North-Holland, Amsterdam,
The Netherlands.

KANGASHARJU, J., ROSS, K., AND ROBERTS, J. 2001b.
Performance evaluation of redirection schemes
in content distribution networks. Comput. Com-
mun. 24, 2 (Feb.), 207–214.

KARAUL, M., KORILIS, Y., AND ORDA, A. 1998. A
market-based architecture for management
of geographically dispersed, replicated web
servers. In Proc. 1st International Conference
on Information and Computation Economics
(Charleston, SC). ACM, New York, 158–165.

KARGER, D., SHERMAN, A., BERKHEIMER, A., BOGSTAD, B.,
DHANIDINA, R., IWAMOTO, K., KIM, B., MATKINS, L.,
AND YERUSHALMI, Y. 1999. Web caching with

consistent hashing. In Proc. 8th International
World Wide Web Conference (Toronto, Ont.,
Canada).

KARLSSON, M. AND KARAMANOLIS, C. 2004. Choosing
replica placement heuristics for wide-area sys-
tems. In Proc. 24th International Conference on
Distributed Computing Systems (Tokyo, Japan).
IEEE Computer Society Press, Los Alamitos,
CA.

KARLSSON, M., KARAMANOLIS, C., AND MAHALINGAM, M.
2002. A Framework for Evaluating Replica
Placement Algorithms. Tech. rep., HP Labora-
tories, Palo Alto, CA.

KRISHNAKUMAR, N. AND BERNSTEIN, A. J. 1994.
Bounded Ignorance: A Technique for Increas-
ing Concurrency in a Replicated System. ACM
Trans. Datab. Syst. 4, 19, 586–625.

KRISHNAMURTHY, B. AND WANG, J. 2000. On
network-aware clustering of web clients. In
Proc. SIGCOMM (Stockholm, Sweden). ACM
Press, New York, 97–110.

LABRINIDIS, A. AND ROUSSOPOULOS, N. 2000. Web-
view materialization. In Proc. SIGMOD Interna-
tional Conference on Management of Data (Dal-
las, TX). ACM Press, New York, 367–378.

LAI, K. AND BAKER, M. 1999. Measuring Band-
width. In Proc. 18th INFOCOM Conference (New
York, N.Y.). IEEE Computer Society Press, Los
Alamitos, CA. 235–245.

LEIGHTON, F. AND LEWIN, D. 2000. Global Host-
ing System. United States Patent, Number
6,108,703.

LI, B., GOLIN, M. J., ITALIANO, G. F., AND DENG, X. 1999.
On the optimal placement of web proxies in the
internet. In Proc. 18th INFOCOM Conference
(New York, N.Y.). IEEE Computer Society Press,
Los Alamitos, CA. 1282–1290.

MAO, Z. M., CRANOR, C. D., DOUGLIS, F., RABINOVICH,
M., SPATSCHECK, O., AND WANG, J. 2002. A pre-
cise and Efficient Evaluation of the proximity be-
tween web clients and their local DNS servers.
In Proc. USENIX Annual Technical Conference
(Monterey, CA). USENIX, Berkeley, CA. 229–
242.

MCCUNE, T. AND ANDRESEN, D. 1998. Towards a
hierarchical scheduling system for distributed
WWW server clusters. In Proc. 7th International
Symposium on High Performance Distributed
Computing (Chicago, IL). IEEE Computer Soci-
ety Press, Los Alamitos, CA. 301–309.

MCMANUS, P. R. 1999. A passive system for server
selection within mirrored resource environ-
ments using AS path length heuristics. White
paper. Appplied Theory, Inc., June.

MOCKAPETRIS, P. 1987a. Domain Names—Concepts
and Facilities. RFC 1034.

MOCKAPETRIS, P. 1987b. Domain Names—
Implementation and Specification. RFC 1035.

MOGUL, J. C., DOUGLIS, F., FELDMANN, A., AND

KRISHNAMURTHY, B. 1997. Potential benefits of
delta encoding and data compression for HTTP.

ACM Computing Surveys, Vol. 36, No. 3, September 2004.

Replication for Web Hosting Systems 333

In Proc. SIGCOMM (Cannes, France). ACM,
New York, 181–194.

MOORE, K., COX, J., AND GREEN, S. 1996. Sonar—A
network proximity service. Internet-draft. [On-
line] http://www.netlib.org/utk/projects/
sonar/.

MOSBERGER, D. 1993. Memory consistency models.
Oper. Syst. Rev. 27, 1 (Jan.), 18–26.

NELDER, J. A. AND MEAD, R. 1965. A simplex
method for function minimization. Comput.
J. 4, 7, 303–318.

NG, E. AND ZHANG, H. 2002. Predicting internet
network distance with coordinates-based ap-
proaches. In Proc. 21st INFOCOM Conference
(New York, NY). IEEE Computer Society Press,
Los Alamitos, CA.

NINAN, A., KULKARNI, P., SHENOY, P., RAMAMRITHAM, K.,
AND TEWARI, R. 2002. Cooperative leases: Scal-
able consistency maintenance in content dis-
tribution networks. In Proc. 11th International
World Wide Web Conference (Honolulu, HA).
ACM, New York, 1–12.

OBRACZKA, K. AND SILVA, F. 2000. Network latency
metrics for server proximity. In Proc. Globecom
(San Francisco, CA). IEEE Computer Society
Press, Los Alamitos, CA.

ODLYZKO, A. 2001. Internet Pricing and the His-
tory of Communications. Comput. Netw. 36, 493–
517.

PAI, V., ARON, M., BANGA, G., SVENDSEN, M., DR-
USCHEL, P., ZWAENEPOEL, W., AND NAHUM, E. 1998.
Locality-aware request distribution in cluster-
based network servers. In Proc. 8th Interna-
tional Conference on Architectural Support for
Programming Languages and Operating Sys-
tems (San Jose, CA). ACM, New York, 205–216.

PANSIOT, J. AND GRAD, D. 1998. On routes and mul-
ticast trees in the internet. ACM Comput. Com-
mun. Rev. 28, 1, 41–50.

PAXSON, V. 1997a. End-to-end routing behavior in
the internet. IEEE/ACM Trans. Netw. 5, 5 (Oct.),
601–615.

PAXSON, V. 1997b. Measurements and analysis
of end-to-end internet dynamics. Tech. Rep.
UCB/CSD-97-945, University of California at
Berkeley. Apr.

PEPELNJAK, I. AND GUICHARD, J. 2001. MPLS and
VPN Architectures. Cisco Press, Indianapolis,
IN.

PIAS, M., CROWCROFT, J., WILBUR, S., HARRIS, T., AND

BHATTI, S. 2003. Lighthouses for scalable
distributed location. In Proc. 2nd International
Workshop on Peer-to-Peer Systems (Berkeley,
CA). Vol. 2735. Springer-Verlag, Berlin,
Germany, 278–291.

PIERRE, G. AND VAN STEEN, M. 2001. Globule: A
platform for self-replicating web documents. In
Proc. Protocols for Multimedia Systems. Lecture
Notes on Computer Science, vol. 2213. Springer-
Verlag, Berlin, Germany, 1–11.

PIERRE, G. AND VAN STEEN, M. 2003. Design and im-

plementation of a user-centered content delivery
network. In Proc. 3rd Workshop on Internet Ap-
plications (San Jose, CA). IEEE Computer Soci-
ety Press, Los Alamitos, CA.

PIERRE, G., VAN STEEN, M., AND TANENBAUM, A.
2002. Dynamically selecting optimal distribu-
tion strategies for web documents. IEEE Trans.
Comput. 51, 6 (June), 637–651.

PRADHAN, D. 1996. Fault-Tolerant Computer Sys-
tem Design. Prentice Hall, Englewood Cliffs, N.J.

QIU, L., PADMANABHAN, V., AND VOELKER, G. 2001. On
the placement of web server replicas. In Proc.
20th INFOCOM Conference (Anchorage, AK).
IEEE Computer Society Press, Los Alamitos,
CA., 1587–1596.

RABINOVICH, M. AND AGGARWAL, A. 1999. Radar: A
scalable architecture for a global web hosting
service. Comput. Netw. 31, 11–16, 1545–1561.

RABINOVICH, M. AND SPASTSCHECK, O. 2002. Web
Caching and Replication. Addison-Wesley, Read-
ing, MA.

RABINOVICH, M., XIAO, Z., AND AGGARWAL, A. 2003.
Computing on the edge: A platform for repli-
cating internet applications. In Proc. 8th Web
Caching Workshop (Hawthorne, NY).

RADOSLAVOV, P., GOVINDAN, R., AND ESTRIN, D. 2001.
Topology-informed internet replica place-
ment. In Proc. 6th Web Caching Workshop
(Boston, MA). North-Holland, Amsterdam, The
Netherlands.

RADWARE. 2002. Web Server Director. Tech. Rep.,
Radware, Inc. Aug.

RAYNAL, M. AND SINGHAL, M. 1996. Logical time:
Capturing causality in distributed systems.
Computer 29, 2 (Feb.), 49–56.

REKHTER, Y. AND LI, T. 1995. A border gateway pro-
tocol 4 (BGP-4). RFC 1771.

RODRIGUEZ, P., KIRPAL, A., AND BIERSACK, E. 2000.
Parallel-access for mirror sites in the internet.
In Proc. 19th INFOCOM Conference (Tel Aviv,
Israel). IEEE Computer Society Press, Los
Alamitos, CA., 864–873.

RODRIGUEZ, P. AND SIBAL, S. 2000. SPREAD: Scal-
able platform for reliable and efficient auto-
mated distribution. Comput. Netw. 33, 1–6, 33–
46.

RODRIGUEZ, P., SPANNER, C., AND BIERSACK, E. 2001.
Analysis of web caching architecture: Hierarchi-
cal and distributed caching. IEEE/ACM Trans.
Networking 21, 4 (Aug.), 404–418.

SAITO, Y. AND SHAPIRO, M. 2003. Optimistic replica-
tion. Tech. Rep. MSR-TR-2003-60, Microsoft Re-
search Laboratories. Sept.

SAYAL, M., SHEUERMANN, P., AND VINGRALEK, R. 2003.
Content replication in web++. In Proc. 2nd In-
ternational Symposium on Network Computing
and Applications (Cambridge, MA). IEEE Com-
puter Society Press, Los Alamitos, CA.

SCHNEIDER, F. 1990. Implementing fault-tolerant
services using the state machine approach: A tu-
torial. ACM Comput. Surv. 22, 4 (Dec.), 299–320.

ACM Computing Surveys, Vol. 36, No. 3, September 2004.

334 S. Sivasubramanian et al.

SHAIKH, A., TEWARI, R., AND AGRAWAL, M. 2001. On
the Effectiveness of DNS-based Server Selec-
tion. In Proc. 20th INFOCOM Conference (An-
chorage, AK). IEEE Computer Society Press, Los
Alamitos, CA. 1801–1810.

SHAVITT, Y. AND TANKEL, T. 2003. Big-bang sim-
ulation for embedding network distances in
euclidean space. In Proc. 22nd INFOCOM Con-
ference (San Francisco, CA). IEEE Computer So-
ciety Press, Los Alamitos, CA.

SHMOYS, D., TARDOS, E., AND AARDAL, K. 1997.
Approximation algorithms for facility location
problems. In Proc. 29th Symposium on Theory of
Computing (El Paso, TX). ACM, New York, NY,
265–274.

SIVASUBRAMANIAN, S., PIERRE, G., AND VAN STEEN, M.
2003. A case for dynamic selection of replica-
tion and caching strategies. In Proc. 8th Web
Caching Workshop (Hawthorne, NY).

STEMM, M., KATZ, R., AND SESHAN, S. 2000. A net-
work measurement architecture for adaptive ap-
plications. In Proc. 19th INFOCOM Conference
(New York, NY). IEEE Computer Society Press,
Los Alamitos, CA. 285–294.

SZYMANIAK, M., PIERRE, G., AND VAN STEEN, M.
2003. Netairt: A DNS-based redirection sys-
tem for apache. In Proc. International Confer-
ence WWW/Internet (Algarve, Portugal).

SZYMANIAK, M., PIERRE, G., AND VAN STEEN, M. 2004.
Scalable cooperative latency estimation. In Proc.
10th International Conference on Parallel and
Distributed Systems (Newport Beach, CA). IEEE
Computer Society Press, Los Alamitos, CA.

TERRY, D., DEMERS, A., PETERSEN, K., SPREITZER,
M., THEIMER, M., AND WELSH, B. 1994. Ses-
sion guarantees for weakly consistent replicated
data. In Proc. 3rd International Conference on
Parallel and Distributed Information Systems
(Austin, TX). IEEE Computer Society Press, Los
Alamitos, CA. 140–149.

TEWARI, R., NIRANJAN, T., AND RAMAMURTHY, S. 2002.
WCDP: A protocol for web cache consistency. In
Proc. 7th Web Caching Workshop (Boulder, CO).

TORRES-ROJAS, F. J., AHAMAD, M., AND RAYNAL, M.
1999. Timed consistency for shared distributed
objects. In Proc. 18th Symposium on Principles
of Distributed Computing (Atlanta, GA). ACM,
New York, 163–172.

VERMA, D. C. 2002. Content Distribution Net-
works: An Engineering Approach. John Wiley,
New York.

WALDVOGEL, M. AND RINALDI, R. 2003. Efficient
topology-aware overlay network. ACM Comput.
Commun. Rev. 33, 1 (Jan.), 101–106.

WANG, J. 1999. A survey of web caching schemes
for the internet. ACM Comput. Commun.
Rev. 29, 5 (Oct.), 36–46.

WANG, L., PAI, V., AND PETERSON, L. 2002. The effec-
tiveness of request redirection on CDN robust-
ness. In Proc. 5th Symposium on Operating Sys-
tem Design and Implementation (Boston, MA).
USENIX, Berkeley, CA.

WOLSKI, R., SPRING, N., AND HAYES, J. 1999. The
network weather service: A distributed resource
performance forecasting service for metacom-
puting. Future Gen. Comput. Syst. 15, 5-6 (Oct.),
757–768.

XIAO, J. AND ZHANG, Y. 2001. Clustering of web
users using session-based similarity measures.
In Proc. International Conference on Computer
Networks and Mobile Computing (Beijing). IEEE
Computer Society Press, Los Alamitos, CA. 223–
228.

YIN, J., ALVISI, L., DAHLIN, M., AND IYENGAR, A. 2002.
Engineering web cache consistency. ACM Trans.
Internet Tech. 2, 3 (Aug.), 224–259.

YU, H. AND VAHDAT, A. 2000. Efficient numeri-
cal error bounding for replicated network ser-
vices. In Proc. 26th International Conference on
Very Large Data Bases (Cairo, Egypt), A. E.
Abbadi, M. L. Brodie, S. Chakravarthy, U. Dayal,
N. Kamel, G. Schlageter, and K.-Y. Whang,
Eds. Morgan-Kaufman, San Mateo, CA. 123–
133.

YU, H. AND VAHDAT, A. 2002. Design and evalu-
ation of a conit-based continuous consistency
model for replicated services. ACM Trans. Com-
put. Syst. 20, 3, 239–282.

ZARI, M., SAIEDIAN, H., AND NAEEM, M. 2001. Un-
derstanding and reducing web delays. Com-
puter 34, 12 (Dec.), 30–37.

ZHAO, B., HUANG, L., STRIBLING, J., RHEA, S., JOSEPH,
A., AND KUBIATOWICZ, J. 2004. Tapestry: A re-
silient global-scale overlay for service deploy-
ment. IEEE J. Sel. Areas Commun. 22, 1 (Jan.),
41–53.

Received May 2003; revised June 2004; accepted September 2004

ACM Computing Surveys, Vol. 36, No. 3, September 2004.

