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Abstract

Ganglia is a scalable distributed monitoring system for high performance computing sys-

tems such as clusters and Grids. It is based on a hierarchical design targeted at federations

of clusters. It relies on a multicast-based listen/announce protocol to monitor state within clus-

ters and uses a tree of point-to-point connections amongst representative cluster nodes to fed-

erate clusters and aggregate their state. It leverages widely used technologies such as XML for

data representation, XDR for compact, portable data transport, and RRDtool for data stor-

age and visualization. It uses carefully engineered data structures and algorithms to achieve

very low per-node overheads and high concurrency. The implementation is robust, has been

ported to an extensive set of operating systems and processor architectures, and is currently

in use on over 500 clusters around the world. This paper presents the design, implementation,

and evaluation of Ganglia along with experience gained through real world deployments on

systems of widely varying scale, configurations, and target application domains over the last

two and a half years.
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1. Introduction

Over the last ten years, there has been an enormous shift in high performance com-

puting from systems composed of small numbers of computationally massive devices

[11,12,18,19] to systems composed of large numbers of commodity components
[3,4,6,7,9]. This architectural shift from the few to the many is causing designers of

high performance systems to revisit numerous design issues and assumptions pertain-

ing to scale, reliability, heterogeneity, manageability, and system evolution over time.

With clusters now the de facto building block for high performance systems, scale and

reliability have become key issues as many independently failing and unreliable com-

ponents need to be continuously accounted for and managed over time. Heterogene-

ity, previously a non-issue when running a single vector supercomputer or an MPP,

must now be designed for from the beginning, since systems that grow over time are
unlikely to scale with the same hardware and software base. Manageability also be-

comes of paramount importance, since clusters today commonly consist of hundreds

or even thousands of nodes [6,7]. Finally, as systems evolve to accommodate growth,

system configurations inevitably need to adapt. In summary, high performance sys-

tems today have sharply diverged from the monolithic machines of the past and

now face the same set of challenges as that of large-scale distributed systems.

One of the key challenges faced by high performance distributed systems is scalable

monitoring of system state. Given a large enough collection of nodes and the associ-
ated computational, I/O, and network demands placed on them by applications, fail-

ures in large-scale systems become commonplace. To deal with node attrition and to

maintain the health of the system, monitoring software must be able to quickly identify

failures so that they can be repaired either automatically or via out-of-bandmeans (e.g.

rebooting). In large-scale systems, interactions amongst the myriad computational

nodes, network switches and links, and storage devices can be complex. A monitoring

system that captures some subset of these interactions and visualizes them in interest-

ing ways can often lead to an increased understanding of a system’s macroscopic
behavior. Finally, as systems scale up and become increasingly distributed, bottlenecks

are likely to arise in various locations in the system. A good monitoring system can

assist here as well by providing a global view of the system, which can be helpful in

identifying performance problems and, ultimately, assisting in capacity planning.

Ganglia is a scalable distributed monitoring system that was built to address these

challenges. It provides scalable monitoring of distributed systems at various points in

the architectural design space including large-scale clusters in a machine room, com-

putational Grids [14,15] consisting of federations of clusters, and, most recently, has
even seen application on an open, shared planetary-scale application testbed called

PlanetLab [21]. The system is based on a hierarchical design targeted at federations

of clusters. It relies on a multicast-based listen/announce protocol [1,10,16,29] to

monitor state within clusters and uses a tree of point-to-point connections amongst

representative cluster nodes to federate clusters and aggregate their state. It leverages

widely used technologies such as XML for data representation, XDR for compact,

portable data transport, and RRDtool for data storage and visualization. It uses

carefully engineered data structures and algorithms to achieve very low per-node
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overheads and high concurrency. The implementation is robust, has been ported to

an extensive set of operating systems and processor architectures, and is currently in

use on over 500 clusters around the world.

This paper presents the design, implementation, and evaluation of the Ganglia dis-

tributed monitoring system along with an account of experience gained through real
world deployments on systems of widely varying scale, configurations, and target

application domains. It is organized as follows. In Section 2, we describe the key chal-

lenges in building a distributed monitoring system and how they relate to different

points in the system architecture space. In Section 3, we present the architecture of

Ganglia, a scalable distributed monitoring system for high performance computing

systems. In Section 4, we describe our current implementation of Ganglia which is cur-

rently deployed on over 500 clusters around the world. In Section 5, we present a per-

formance analysis of our implementation along with an account of experience gained
through real world deployments of Ganglia on several large-scale distributed systems.

In Section 6, we present related work and in Section 7, we conclude the paper.
2. Distributed monitoring

In this section, we summarize the key design challenges faced in designing a dis-

tributed monitoring system. We then discuss key characteristics of three classes of
distributed systems where Ganglia is currently in use: clusters, Grids, and plane-

tary-scale systems. Each class of systems presents a different set of constraints and

requires making different design decisions and trade-offs in addressing our key design

challenges. While Ganglia’s initial design focus was scalable monitoring on a single

cluster, it has since naturally evolved to support other classes of distributed systems

as well. Its use on computational Grids and its recent integration with the Globus

metadirectory service (MDS) [13] is a good example of this. Its application on

PlanetLab is another, one which has also resulted in a reexamination of some of
Ganglia’s original design decisions.

2.1. Design challenges

Traditionally, high performance computing has focused on scalability as the pri-

mary design challenge. The architectural shift towards increasingly distributed and

loosely coupled systems, however, has raised an additional set of challenges. These

new challenges arise as a result of several factors: increased physical distribution,
long running distributed services, and scaling and evolution of systems over time. In-

creased physical distribution implies multiple, independently failing and unreliable

components. This, in turn, requires designing applications whose management over-

heads scale slowly with the number of nodes. Long running distributed services im-

ply the need to be highly available to clients of the service. This, in turn requires

applications to be robust to a variety of different types of failures. Finally, the scaling

and evolution of systems over time implies that hardware and software will change.

This, in turn, requires addressing issues of extensibility and portability.
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The key design challenges for distributed monitoring systems thus include:

• Scalability: The system should scale gracefully with the number of nodes in the

system. Clusters today, for example, commonly consist of hundreds or even thou-

sands of nodes. Grid computing efforts, such as TeraGrid [22], will eventually
push these numbers out even further.

• Robustness: The system should be robust to node and network failures of

various types. As systems scale in the number of nodes, failures become both inev-

itable and commonplace. The system should localize such failures so that the

system continues to operate and delivers useful service in the presence of

failures.

• Extensibility: The system should be extensible in the types of data that are mon-

itored and the nature in which such data is collected. It is impossible to know a
priori everything that ever might want to be monitored. The system should allow

new data to be collected and monitored in a convenient fashion.

• Manageability: The system should incur management overheads that scale slowly

with the number of nodes. For example, managing the system should not require

a linear increase in system administrator time as the number of nodes in the sys-

tem increases. Manual configuration should also be avoided as much as possible.

• Portability: The system should be portable to a variety of operating systems

and CPU architectures. Despite the recent trend towards Linux on x86, there is
still wide variation in hardware and software used for high performance comput-

ing. Systems such as Globus [14] further facilitate use of such heterogeneous sys-

tems.

• Overhead: The system should incur low per-node overheads for all scarce compu-

tational resources including CPU, memory, I/O, and network bandwidth. For

high performance systems, this is particularly important since applications often

have enormous resource demands.
2.2. Distributed systems

There are currently three classes of distributed systems where Ganglia is being

used: clusters, Grids, and planetary-scale systems. Each class of systems presents a

different set of constraints and requires making different design decisions and

trade-offs in addressing our key design challenges. The constraints revolve primarily

around how these systems are physically organized and distributed and what types of

resources are scarce and/or expensive to use. Design decisions and trade-offs then in-
volve how to address our key design challenges in light of these constraints.

As an example, Ganglia currently uses a multicast-based listen/announce protocol

to monitor state within a single cluster. This approach offers several advantages

including automatic discovery of nodes as they are added and removed, no manual

configuration of cluster membership lists or topologies, and symmetry in that any

node knows the entire state of the cluster. However, it also assumes the presence

of a native multicast capability, an assumption which does not hold for the Internet
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in general and thus cannot be relied on for distributed systems (e.g. Grids) that

require wide-area communication.

The following summarizes the three classes of distributed systems Ganglia is cur-

rently deployed on:

• Clusters: Clusters are characterized by a set of nodes that communicate over a

high bandwidth, low latency interconnect such as Myrinet [5] or Gigabit Ethernet.

In these systems, nodes are frequently homogeneous in both hardware and oper-

ating system, the network rarely partitions, and, almost universally, the system is

managed by a single administrative entity.

• Grids: Grids can be characterized as a set of heterogeneous systems federated over

a wide-area network. In contrast to the general Internet, such systems are usually

interconnected using special high speed, wide-area networks (e.g. Abilene, Tera-
Grid’s DTF network) in order to get the bandwidth required for their applica-

tions. These systems also frequently involve distributed management by

multiple administrative entities.

• Planetary-scale systems: Planetary-scale systems can be characterized as wide-area

distributed systems whose geographical extent covers a good fraction of the pla-

net. These systems are built as overlay networks on top of the existing Internet. A

few implications of this are (i) wide-area bandwidth is not nearly as abundant

compared to clusters or Grids (ii) network bandwidth is not cheap, and (iii) the
network experiences congestion and partitions much more frequently than in

either the cluster or Grid case.
3. Architecture

Ganglia is based on a hierarchical design targeted at federations of clusters (Fig. 1).

It relies on a multicast-based listen/announce protocol [1,10,16,29] to monitor state
within clusters and uses a tree of point-to-point connections amongst representa-

tive cluster nodes to federate clusters and aggregate their state. Within each cluster,

Ganglia uses heartbeat messages on a well-known multicast address as the basis

for a membership protocol. Membership is maintained by using the reception of a

heartbeat as a sign that a node is available and the non-reception of a heartbeat

over a small multiple of a periodic announcement interval as a sign that a node is

unavailable.

Each node monitors its local resources and sends multicast packets containing
monitoring data on a well-known multicast address whenever significant updates oc-

cur. Applications may also send on the same multicast address in order to monitor

their own application-specific metrics. Ganglia distinguishes between built-in metrics

and application-specific metrics through a field in the multicast monitoring packets

being sent. All nodes listen for both types of metrics on the well-known multicast ad-

dress and collect and maintain monitoring data for all other nodes. Thus, all nodes

always have an approximate view of the entire cluster’s state and this state is easily

reconstructed after a crash.
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Ganglia federates multiple clusters together using a tree of point-to-point connec-

tions. Each leaf node specifies a node in a specific cluster being federated, while

nodes higher up in the tree specify aggregation points. Since each cluster node con-

tains a complete copy of its cluster’s monitoring data, each leaf node logically rep-
resents a distinct cluster while each non-leaf node logically represents a set of

clusters. (We specify multiple cluster nodes for each leaf to handle failures.) Aggre-

gation at each point in the tree is done by polling child nodes at periodic intervals.

Monitoring data from both leaf nodes and aggregation points is then exported using

the same mechanism, namely a TCP connection to the node being polled followed by

a read of all its monitoring data.

4. Implementation

The implementation consists of two daemons, gmond and gmetad, a command-

line program gmetric, and a client side library. The Ganglia monitoring daemon

(gmond) provides monitoring on a single cluster by implementing the listen/

announce protocol and responding to client requests by returning an XML represen-

tation of its monitoring data. gmond runs on every node of a cluster. The Ganglia

Meta Daemon (gmetad), on the other hand, provides federation of multiple clus-
ters. A tree of TCP connections between multiple gmetad daemons allows monitor-

ing information for multiple clusters to be aggregated. Finally, gmetric is a

command-line program that applications can use to publish application-specific

metrics, while the client side library provides programmatic access to a subset of

Ganglia’s features.

4.1. Monitoring on a single cluster

Monitoring on a single cluster is implemented by the Ganglia monitoring daemon

(gmond). gmond is organized as a collection of threads, each assigned a specific task.
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The collect and publish thread is responsible for collecting local node information,

publishing it on a well-known multicast channel, and sending periodic heartbeats.

The listening threads are responsible for listening on the multicast channel for mon-

itoring data from other nodes and updating gmond’s in-memory storage, a hierarchi-

cal hash table of monitoring metrics. Finally, a thread pool of XML export threads

are dedicated to accepting and processing client requests for monitoring data. All

data stored by gmond is soft state and nothing is ever written to disk. This, com-

bined with all nodes multicasting their state, means that a new gmond comes into

existence simply by listening and announcing.

For speed and low overhead, gmond uses efficient data structures designed for

speed and high concurrency. All monitoring data collected by gmond daemons is

stored in a hierarchical hash table that uses reader-writer locking for fine-grained

locking and high concurrency. This concurrency allows the listening threads to
simultaneously store incoming data from multiple unique hosts. It also helps resolve

competition between the listening threads and the XML export threads (see Fig. 2) for

access to host metric records. Monitoring data is received in XDR format and saved

in binary form to reduce physical memory usage. In a typical configuration, the num-

ber of incoming messages processed on the multicast channel far outweigh the

number of requests from clients for XML. Storing the data in a form that is

‘‘closer’’ to the multicast XDR format allows for more rapid processing of the

incoming data.

4.1.1. Multicast listen/announce protocol

gmond uses a multicast-based, listen/announce protocol to monitor state within

a single cluster. This approach has been used with great success in previous clus-

ter-based systems [1,10,16,29]. Its main advantages include: automatic discovery

of nodes as they are added and removed, no manual configuration of cluster

membership lists or topologies, amenability to building systems based entirely
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Fig. 2. Ganglia implementation.
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on soft-state, and symmetry in that any node knows the entire state of the cluster.

Automatic discovery of nodes and eliminating manual configuration is important

because it allows gmond on all the nodes to be self-configuring, thereby reducing

management overhead. Amenability to a soft-state based approach is important

because this allows nodes to crash and restart without consequence to gmond. Fi-
nally, because all nodes contain the entire state of the cluster, any node can be

polled to obtain the entire cluster’s state. This is important as it provides redun-

dancy, which is especially important given the frequency of failures in a large dis-

tributed system.

4.1.2. Publishing monitoring data

gmond publishes two types of metrics, built-in metrics which capture node state

and user-defined metrics which capture arbitrary application-specific state, on a
well-known multicast address. For built-in metrics, gmond currently collects and

publishes between 28 and 37 different metrics depending on the operating system

and CPU architecture it is running on. Some of the base metrics include the number

of CPUs, CPU clock speed, %CPU (user, nice, system, idle), load (1, 5, and 15 min

averages), memory (free, shared, buffered, cached, total), processes (running, total),

swap (free, total), system boot time, system clock, operating system (name, version,

architecture), and MTU. User-defined metrics, on the other hand, may represent

arbitrary state. gmond distinguishes between built-in metrics and user-defined met-
rics based on a field in the multicast packets being sent.

All metrics published on the multicast channel are in XDR format for portability

and efficiency. Built-in metrics are collected in a portable manner through well-

defined interfaces (e.g. /proc, kvm, and kstat). Built-in metrics are sent on the mul-

ticast channel in an efficient manner by leveraging a static metric lookup table that

contains all the static characteristics of each metric so that only a unique key and

metric value needs to be sent per announcement. Built-in messages are either 8 or

12 bytes in length (4 bytes for the key and 4–8 bytes for the value). The metric
key is always sent as an xdr_u_int while the metric value type depends on the specific

metric being sent. User-defined metrics, on the other hand, have a less efficient XDR

format because every metric characteristic must be explicitly defined. Such metrics

can be published by arbitrary applications through use of the gmetric com-

mand-line program.

Tables 1 and 2 show subsets of the metric lookup table. In Table 1, we show

representative metrics with their corresponding XDR key number, metric type,

and value format while in Table 2, we show details of each built-in metric’s col-
lect/announce schedule, metric value thresholds, metric units and binary to text con-

version details. These attributes for each metric determine how often a metric gets

published on the multicast channel. The default values for the built-in metrics repre-

sent a trade-off between gmond resource use and metric time-series granularity for a

128-node cluster, our initial design point. These values can be modified at compile

time to accommodate different environments.

The collection and value thresholds in the metric lookup table aim at reducing re-

source usage by collecting local node data and sending multicast traffic only when



Table 1

Example metrics defined in the gmond metric lookup table

Key (xdr_u_int) Metric Value format

0 User-defined Explicit

1 cpu_num xdr_u_short

2 cpu_speed xdr_u_int

3 mem_total xdr_u_int

4 swap_total xdr_u_int

. . . . . . . . .

15 load_one xdr_float

16 load_five xdr_float

17 load_fifteen xdr_float

. . . . . . . . .

Table 2

Example metric collection schedules with value and time thresholds defined in the internal gmond metric

lookup table

Metric Collected (s) Val thresh Time thresh (s)

User-defined Explicit Explicit Explicit

cpu_num Once None 900–1200

cpu_speed Once None 900–1200

mem_total Once None 900–1200

swap_total Once None 900–1200

load_one 15–20 1 50–70

load_five 30–40 1 275–325

load_fifteen 60–80 1 850–950
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significant updates occur. The collected attribute specifies how often a metric is col-

lected. Larger values avoid collecting constant (e.g. number of CPUs) or slowly

changing metrics. Value thresholds specify how much a metric needs to have chan-

ged from its value when it was last collected in order to be deemed significant. Only

significant changes are sent on the multicast channel.
4.1.3. Timeouts and heartbeats

Time thresholds specify an upper bound on the interval when metrics are sent.
Metrics are sent on the multicast channel over bounded, random intervals to reduce

conflicts with competing applications and to avoid synchronization between gmond

peers. Time thresholds allow applications to ascertain message loss on the multicast

channel and determine the accuracy of metric values.

To reclaim storage for old metrics, gmond expires monitoring data using time-

outs. For each monitoring metric, it uses two time limits, a soft limit (Tmax) and a
hard limit (Dmax). Each incoming metric is timestamped at arrival with time T0.
The number of seconds elapsed since T0 is denoted Tn. gmond performs no action
when the soft limit is reached. gmond simply reports Tn and Tmax to clients via
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XML attributes. If Tn > Tmax, then clients are immediately aware that a multicast
message was not delivered and the value may be inaccurate. Exceeding a hard limit,

on the other hand, results in the monitoring data being permanently removed from

gmond’s hierarchical hash table of metric data. While non-static, built-in metrics are

constantly being sent on the multicast channel, application-specific metrics sent by
applications using gmetric may become meaningless over time (e.g. an application

simply exits). Timeouts are intended primarily to handle these types of cases.

To time out nodes that have died, gmond uses explicit heartbeat messages with

time thresholds. Each heartbeat contains a timestamp representing the startup time

of the gmond instance. Any gmond with an altered timestamp is immediately recog-

nized by its peers as having been restarted. A gmond which has not responded over

some number of time thresholds is assumed to be down. Empirically, we have deter-

mined that four thresholds works well as a practical balance between quick false pos-
itives and delayed determination of actual downtime. In response to new or restarted

hosts, all local metric time thresholds are reset. This causes all metrics to be pub-

lished the next time they are collected regardless of their value and ensures new

and restarted hosts are quickly populated with the latest cluster state information.

Without this reset mechanism, rarely published metrics would not be known to

the new/restarted host for an unacceptably long period of time. It is important to

note that the time-threshold reset mechanism only occurs if a gmond is more than

10 min old. This prevents huge multicast storms that could develop if every gmond
on a cluster is restarted simultaneously. Future implementations will likely have new

members directly bootstrap to the eldest gmond in a multicast group.
4.2. Federation

Federation in Ganglia is achieved using a tree of point-to-point connections

amongst representative cluster nodes to aggregate the state of multiple clusters. At

each node in the tree, a Ganglia Meta Daemon (gmetad) periodically polls a collec-
tion of child data sources, parses the collected XML, saves all numeric, volatile met-

rics to round-robin databases (Section 4.3) and exports the aggregated XML over a

TCP sockets to clients (Fig. 1). Data sources may be either gmond daemons, repre-

senting specific clusters, or other gmetad daemons, representing sets of clusters.

Data sources use source IP addresses for access control and can be specified using

multiple IP addresses for failover. The latter capability is natural for aggregating

data from clusters since each gmond daemon contains the entire state of its cluster.

Data collection in gmetad is done by periodically polling a collection of child
data sources which are specified in a configuration file. Each data source is identified

using a unique tag and has multiple IP address/TCP port pairs associated with it,

each of which is equally capable of providing data for the given data source. We used

configuration files for specifying the structure of the federation tree for simplicity

and since computational Grids, while consisting of many nodes, typically consist

of only a small number of distinct sites. To collect data from each child data source,

Ganglia dedicates a unique data collection thread. Using a unique thread per data
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source results in a clean implementation. For a small to moderate number of child

nodes, the overheads of having a thread per data source are usually not significant.

Collected data is parsed in an efficient manner to reduce CPU overhead and

stored in RRDtool for visualization of historical trends. XML data is parsed using

an efficient combination of a SAX XML parser and a GNU gperf-generated perfect
hash table. We use a SAX parser, as opposed to a DOM parser, to reduce CPU over-

head and to reduce gmetad’s physical memory footprint. We use a hash table to

avoid large numbers of string comparisons when handling XML parsing events. This

hash table was generated by GNU gperf which, given a collection of keys, generates

a hash table and a hash function such that there are no collisions. Every possible

Ganglia XML element, attribute, and all built-in metric names comprised the set

of keys for generating the hash table. The SAX XML callback function uses this per-

fect hash function instead of raw string comparisons for increased efficiency and
speed. As the XML is processed, all numerical values that are volatile are also saved

to RRDtool databases.

4.3. Visualization

Ganglia uses RRDtool (Round Robin Database) to store and visualize historical

monitoring information for grid, cluster, host, and metric trends over different time

granularities ranging from minutes to years (Fig. 3). RRDtool is a popular system
for storing and graphing time series data. It uses compact, constant size databases

specifically designed for storing and summarizing time series data. For data at differ-

ent time granularities, RRDtool generates graphs which plot historical trends of
Fig. 3. Ganglia web front-end.



828 M.L. Massie et al. / Parallel Computing 30 (2004) 817–840
metrics versus time. These graphs are then used by Ganglia and exported to users

using a PHP web front-end.

The web front-end uses TemplatePower (templatepower.codocad.com) to

create a strict separation between content and presentation. This allows website

developers to easily customize the look and feel of the website without damaging
the underlying content engine. Custom templates can also be created to extend the

functionality of the web front-end. For example, the NPACI Rocks Group has cre-

ated a unique template which provides visualization of cluster PBS queues. Other

groups such as WorldGrid have chosen to directly import the gmetad XML into

their preexisting web infrastructure.
5. Evaluation and experience

In this section, we present a quantitative analysis of Ganglia along with an ac-

count of experience gained through real world deployments on production distrib-

uted systems. For the analysis, we measure scalability and performance overhead.

We use data obtained from four example systems to make this concrete. For expe-

rience, we report on key observations and lessons learned while deploying and main-

taining Ganglia on several production systems. Specifically, we describe what

worked well, what did not work so well, and describe how our experiences have
caused us to revisit certain design decisions in order to better support monitoring

across a wide range of distributed systems.

5.1. Systems evaluated

We used four production distributed systems (Table 3) to evaluate Ganglia, each

representing a different point in the architectural design space and used for different

application purposes. The first system is Millennium, a system used for advanced
applications in scientific computing, simulation, and modeling. Millennium [24] is

a cluster in the UC Berkeley computer science department which consists of approx-

imately 100 SMP nodes, each with either two or four CPUs. Each 2-way SMP con-

sists of two 500 MHz Pentium III CPUs, 512 MB of RAM, two 9 GB disks, and

both Gigabit Ethernet and Myrinet connections. Each 4-way SMP consists of four

700 MHz Pentium III CPUs, 2 GB of RAM, two 18 GB disks, and both Gigabit
Table 3

Systems evaluated

System Number of nodes Number of clusters

Millennium 100 1

SUNY 2000 1

UCB CS 150 4

PlanetLab 102 42
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Ethernet and Myrinet connections. All nodes in Millennium are connected via both a

Gigabit Ethernet network and a Myrinet network and run the Linux 2.4.18 SMP

kernel.

The second system is SUNY Buffalo’s HPC Linux cluster, currently the largest

Linux cluster at an educational institution in the United States. This system is used
primarily in the acceleration of cancer research, specifically investigation into the hu-

man genome, bioinformatics, protein structure prediction, and large-scale computer

simulations. The system consists of approximately 2000 dual-processor SMP nodes.

Each SMP is either a Dell PowerEdge 1650 or a Dell PowerEdge 2650 server. The

majority of the nodes are PowerEdge 1650 servers, each of which contains dual

1.26 GHz Pentium III CPUs. The remaining PowerEdge 2650 nodes each contain

higher speed, dual Xeon processors. The system also includes a 14 Terabyte EMC

storage area network (SAN) and uses Extreme Networks BlackDiamond switches
for Gigabit I/O connectivity between the nodes. All nodes in the SUNY cluster

run the Linux 2.4.18 SMP kernel.

The third system is a federation of clusters in the UC Berkeley computer science

department. These clusters are used for a variety of purposes including computa-

tional science and engineering, global distributed storage systems, and serving web

content. The system consists of four clusters, each residing in the same building.

The first cluster is the aforementioned 100-node Millennium cluster. The second clus-

ter is a 45-node cluster of 2-way SMPs used by the Oceanstore [20] group. Each node
in their cluster is an IBM xSeries 330 consisting of two 1 GHz Pentium III CPUs, 1.5

GB of RAM, and two 36 GB disks. Each of their nodes is connected to a Gigabit

Ethernet network and runs the Linux 2.4.18 SMP kernel. The third cluster is an

experimental 4-node cluster of 2-way SMPs used as part of the CITRUS [23] project.

Each node in the CITRUS cluster consists of a 733 MHz Itanium CPU, 5 GB of

RAM, and is connected to a Gigabit Ethernet network. The federation of CITRUS

with the rest of the CS clusters using Ganglia is one concrete example of using Gan-

glia across heterogeneous CPU architectures. Finally, the fourth cluster is a 3-node
web server cluster. Each node in that cluster is a 930 MHz Pentium II with 256 MB

of RAM and an 8 GB disk.

The fourth system is PlanetLab, an open, shared planetary-scale application test-

bed [21]. PlanetLab currently consists of 102 nodes distributed across 42 sites span-

ning three continents: North America, Europe, and Australia. From Ganglia’s point

of view, each PlanetLab site can be viewed as essentially a small cluster consisting of

2–3 nodes. Each node at a site is either a Dell PowerEdge 1650 or a Dell Precision

340 MiniTower. Each Dell PowerEdge 1650 consists of a 1.26 GHz Pentium III
CPU, 1 GB of RAM, two 36 GB Ultra 160 SCSI disks in a RAID 1 configuration,

and dual on-board Gigabit Ethernet network interfaces. Each Dell Precision 340

consists of a 1.8 GHz Pentium 4 CPU, 2 GB of RAM, two 120 GB 72K disks,

and a Gigabit Ethernet network interface. Local area connectivity within each site

is fast (i.e. often Gigabit Ethernet). Wide-area network connectivity, on the other,

can vary significantly both in terms of performance and financial costs incurred

through bandwidth usage. All nodes in PlanetLab run a kernel based on Linux

2.4.19.
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5.2. Overhead and scalability

In order for a distributed monitoring system to become widely used, it must

first meet the prerequisites of having low performance overhead and being able

to scale to production size systems. To quantify this, we performed a series of
experiments on several production distributed systems running Ganglia. For per-

formance overhead, we measured both local overhead incurred within the nodes

(e.g. CPU overhead, memory footprint) as well as ‘‘global’’ overhead incurred be-

tween the nodes. (The latter is essentially network bandwidth, which we further

decompose as being either local-area or wide-area.) For scalability, we measured

overhead on individual nodes and quantified how overhead scales with the size

of the system, both in terms of number of nodes within a cluster and the number

of clusters being federated.

5.2.1. Local overhead

In Table 4, we show local per-node overheads for local monitoring for Millen-

nium, SUNY, and PlanetLab. Data for this table was collected by running the ps

command multiple times to obtain process information and averaging the results.

For Millennium, these numbers represent the per-node overheads for a cluster of

94 SMP nodes. For SUNY, these numbers represent the per-node overheads for a

cluster of 2000 SMP nodes. For PlanetLab, these numbers represent the per-node
overheads incurred at a typical PlanetLab site. The measurements shown here were

taken on a 3-node cluster of Dell PowerEdge 1650 nodes at Intel Research Berkeley.

Because all PlanetLab sites currently consist of either two or three nodes and have

essentially the same configuration, these numbers should be representative of all

42 PlanetLab sites.

We observe that local per-node overheads for local monitoring on Millennium,

SUNY, and PlanetLab are small. Per-node overheads for nodes at a typical Planet-

Lab site account for less than 0.1% of the CPU, while on SUNY and Millennium,
they account for just 0.3% and 0.4% of the CPU, respectively. Virtual memory

usage is moderate, 15.6, 16.0, and 15.2 MB for Millennium, SUNY, and PlanetLab

respectively. (Much of this VM is thread stack allocations, of which a small frac-

tion is actually used.) Physical memory footprints, on the other hand, are small. On

Millennium, gmond has a 1.3 MB physical memory footprint corresponding to

0.25% of a node’s physical memory capacity. On PlanetLab, gmond’s physical

memory footprint is even smaller, just 0.9 MB for 0.09% of a PlanetLab node’s
Table 4

Local per-node monitoring overheads for gmond

System CPU (%) PhyMem (MB) VirMem (MB)

Millennium 0.4 1.3 15.6

SUNY 0.3 16.0 16.7

PlanetLab <0.1 0.9 15.2
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total physical memory. Finally, for SUNY, physical memory usage is observed to

be just 16.0 MB per node to store the entire global monitoring state of the 2000-

node cluster on each node. Since gmond daemons only maintain soft state, no I/O

overhead is incurred.

In Table 5, we show local per-node overheads for federation for Millennium, the
UCB CS clusters, and PlanetLab. Data for this table was collected by running the ps

and vmstat commands multiple times and averaging the results. For Millennium,

these numbers represent the local node overhead incurred by gmetad to aggregate

data from a single cluster with 94 nodes. For the UCB CS clusters, these numbers

represent the local node overhead incurred by gmetad to aggregate data from four

clusters with 94, 45, 4, and 3 nodes respectively. Each of these clusters was physically

located in the same building. Finally, for PlanetLab, these numbers represent the

local node overhead incurred by gmetad to aggregate data from 42 clusters spread
around the world, each with 2–3 nodes each.

The data shows that local per-node overheads for federating data on Millennium,

the UCB CS clusters, and PlanetLab have scaling effects mainly in the number of

sites. We observe that for a system like PlanetLab with 42 sites, virtual memory

usage is scaling with the number of sites. The primary reason for this is Ganglia’s

use of a thread per site, each of which uses the default 2 MB stack allocated by

the Linux pthreads implementation. Physical memory footprints are small, ranging

from 1.6 to 2.5 MB. CPU overhead is also relatively small, ranging from less than
0.1% for PlanetLab to about 1.1% for monitoring of four clusters in UC Berkeley

computer science department.

I/O overhead and associated context switches and interrupts were observed to be

significant in the current implementation of gmetad. The primary cause for this

I/O activity is not gmetad’s aggregation of data per se, but rather its writing of

RRD databases to disk to generate visualizations of the monitoring data. For all

three systems, we measured average I/O activity ranging from 1.3 to 1.9 MB/s. For

Millennium and the UCB CS clusters, this activity tended to be clustered over distinct
intervals of time when gmetad polls each site (every 15 s by default). For PlanetLab,

on the other hand, I/O activity was continuous since polling 42 sites over the wide-

area takes varying amounts of time and RRD databases need to be written for 42

sites. On PlanetLab, we observed an increase in average context switches per second

from 108 to 713 ctx/s and an increase in interrupts per second from 113 to 540 intr/s

compared to not running gmetad. The resulting I/O, context switches, and interrupts

have resulted in significant slowdowns on the node running gmetad, especially for

interactive jobs.
Table 5

Local node overhead for aggregation with gmetad

System CPU (%) PhyMem (MB) VirMem (MB) I/O (MB/s)

Millennium <0.1 1.6 8.8 1.3

UCB CS 1.1 2.5 15.8 1.3

PlanetLab <0.1 2.4 96.2 1.9
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5.2.2. Global overhead

In Table 6, we summarize the amount of network bandwidth consumed by Gan-

glia for both Millennium and PlanetLab. We decompose the network bandwidth

into local-area monitoring bandwidth and wide-area federation bandwidth. The

former accounts for the multicast packets sent within a cluster as part of the lis-
ten/announce protocol. The latter accounts for the TCP packets used to federate

the data from multiple clusters and aggregate the results. Data for local-area, mon-

itoring packets was collected by running tcpdump on a single node and by monitor-

ing all multicast traffic sent on Ganglia’s multicast group. Data for federated

bandwidth was obtained by polling one node per cluster, measuring the number

of bits of monitoring data, and dividing the number of bits by Ganglia’s default poll-

ing interval (15 s) to compute a lower bound on the bandwidth. This number is nec-

essarily a lower bound since it does not account for TCP headers, acknowledgments,
and so on. The difference due to those extra packets, however, is not likely to be too

significant given that the average cluster has a fair amount of data.

Our measurements show that for both Millennium and PlanetLab, the overall bit

rates for monitoring and federating monitoring data are fairly small relative to the

speed of modern local area networks. Millennium, for example, uses a Gigabit

Ethernet network to connect cluster nodes together and also has at least 100 Mb/s

of end-to-end bandwidth from cluster nodes to the node aggregating the cluster data

and running gmetad. Within each PlanetLab site, nodes are also typically connected
via a fast local-area network. On the other hand, sites also have widely varying net-

work connectivity in terms of both network speed and underlying pricing structures

based on agreements with their ISPs. Over a week’s time, a 272 Kbit/s bit rate implies

19.15 GB of monitoring data is being sent. In a planetary-scale system like Planet-

Lab, the cost of sending such large amounts of data over the public Internet can

be non-trivial, in particular for sites outside the US sending data over transcontinen-

tal links.

5.2.3. Scalability

In these experiments, we characterize the scalability of Ganglia as we scale both

the number of nodes within a cluster and the number of sites being federated. For

measuring scalability within a single cluster, we use the Berkeley Millennium. We

selectively disable Ganglia gmond daemons to obtain cluster sizes ranging from 1

to 94 nodes and measure performance overheads. For measuring scalability across
Table 6

Network bandwidth consumed for local monitoring and federation

System Monitoring BW/node (Kbits/s) Federation BW (Kbits/s)

Millennium 28 210

PlanetLab 6 272

The monitoring bandwidth denotes average per node bandwidth for monitoring in a single cluster (i.e.

bandwidth per gmond). The federation bandwidth denotes total bandwidth for aggregating data from a

set of clusters (i.e. bandwidth for gmetad).



M.L. Massie et al. / Parallel Computing 30 (2004) 817–840 833
federated clusters, we use PlanetLab. We selectively configure gmetad to poll data

from a subset of the 42 PlanetLab sites ranging from 1 site to all 42 sites and measure

performance overheads. In both cases, we also use the size of the monitoring output

from each cluster and the default polling rate of gmetad to provide a lower bound

on the amount of bandwidth used for federation.
In Fig. 4a and b, we quantify the scalability of Ganglia on a single cluster by

showing local-area bandwidth consumed as a function of cluster size. As a direct

consequence of using native IP multicast, we observe a linear scaling in local-area

bandwidth consumed as a function of cluster size. We also observe a linear scaling

in packet rates, again due our use of native IP multicast as opposed to point-to-point

connections. In both the bandwidth and packet rate cases, we observe small constant

factors, which can be at least partially attributed to Ganglia’s use of thresholds. At

90 nodes, for example, we measure local-area bandwidth consumed to be just 27
Kbits/s. On a Gigabit Ethernet network, 27 Kbits/s amounts to just 0.0027% of

the total network’s bandwidth. Packet rates were also observed to be reasonably

small at this scale.

In Fig. 5a and b, we plot the performance overheads for federation as a function

of number of clusters being federated. Data for Fig. 5a was collected by running the
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ps command multiple times and averaging the results. Data for Fig. 5b was collected

by polling each of the 42 PlanetLab sites and estimating the federation bandwidth

using the size of the monitoring output divided by the default polling rate as

described in Section 5.2.2.

Our results show that virtual memory usage for federation is scaling linearly with
the number of sites. As mentioned earlier, this linear scaling is a consequence of

Ganglia’s use of a thread per site, each of which gets a default 2 MB stack. This

VM usage can be reduced in a number of straightforward ways. One possibility is

to simply reduce the default thread stack size used in Ganglia. Since polling threads

in Ganglia only a small fraction of their stack allocations, this should not cause any

problems and would immediately result in substantially less VM usage. An alterna-

tive, and perhaps better, approach is to eliminate the thread per site approach

entirely and to use an event-driven design using I/O multiplexing. Either of these ap-
proaches would result in significant reductions in VM scaling as a function of sites.

Physical memory footprints and CPU overheads are already either small or negligi-

ble for all federation sizes measured.

We also observe that wide-area bandwidth consumed is scaling linearly with the

number of sites. This is not surprising given that gmetad simply collects cluster data

from all PlanetLab sites and does not perform any summarization (i.e. it simply col-

lects the data). For 42 sites, we again observe that Ganglia is using 272 Kbits/s of

wide-area network bandwidth. As mentioned, over a week’s time, this works out
to be 19.15 GB of data or an average of 456 MB of data per site. Over the wide-area,

moving this amount of data around on a continuous basis can potentially result in

non-trivial costs relative to the costs of the hardware at each site. This is clearly

the case with a widely distributed system such as PlanetLab. It is less of an issue

on Grid computing systems that link small numbers of large clusters together over

research networks such as Abilene.
5.3. Experience on real systems

A key benefit of having a system that is widely deployed is that users figure out

interesting ways to exercise its functionality and stress it in new and interesting ways.

Original design decisions that seemed like good ideas at the time often need to be

revisited in the face of new applications of the system and use in different regimes

of the architectural design space. As already mentioned, Ganglia’s original design

point was scalable monitoring of a single cluster, in particular clusters running the

Linux operating system. Since then, it has gone on to achieve great success. It cur-
rently runs on over 500 clusters around the world, has been ported to nine different

operating systems and six CPU architectures, and has even seen use on classes of dis-

tributed systems that it was never intended for. Along the way, the architecture of

the system has had to evolve, features needed to be introduced, and the implemen-

tation has been continually refined to keep it fast and robust. In this section, we pres-

ent some of our experiences with real world deployments of Ganglia that try and

capture some of this evolution.
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5.3.1. Clusters

Clusters, not surprisingly, have been the dominant system architecture that

Ganglia has been deployed on to date. In this domain, many of the original design

decisions and assumptions made have actually proved to be quite reasonable in prac-

tice. The decision to start with a simple architecture which was amenable to a fast
and robust implementation led to good scalability, robustness, and low per-node

overheads. The decision to use a multicast listen/announce protocol for automatic

discovery of nodes as they are added and removed was also key as it eliminated man-

ual configuration and vastly reduced management overhead. This, combined with

use of standard software configuration tools such as automake and autoconf,

reduced the barrier to entry to a point where we conjecture people were inclined

to simply try the system out and, in most cases, immediately obtained rich and useful

functionality and became users.
The use of simple, widely used technologies such as XML for data representation

and XDR for data transport was also a good one. These technologies are simple,

self-contained, and offer a variety of existing tools which can be leveraged to extend

Ganglia in interesting ways. For example, by exporting XML, integrating Ganglia

into other information services which add query languages and indexing and build-

ing new front-ends to export Ganglia’s monitoring information become straight-

forward exercises. Ganglia’s recent integration with the Globus MDS is an example

of the former, while WorldGrid’s (www.worldgrid.com) custom front-ends to
Ganglia are an example of the latter. Portability to different operating systems

and CPU architectures has also been important. One example of a success here is

Industrial Light and Magic, which currently uses Ganglia to monitor over 500 render

nodes running a mix of Linux, Tru64, and Solaris.

Ganglia’s evolving support for a broad range of clusters, both in terms of heter-

ogeneity and scale, has also exposed issues which were not significant factors in its

early deployments. For example, when Ganglia was initially released, clusters with

1000 or more nodes were fairly rare. However, in recent months, we have observed
a number of deployments of Ganglia that have exceeded 500 nodes. SUNY Buffalo’s

HPC cluster, for example, is using Ganglia to monitor over 2000 Dell PowerEdge

1650 and PowerEdge 2650 SMP nodes. Extrapolating from the packets rates in

Fig. 4, this 2000-node cluster would seem to imply a multicast packet rate of 1260

packets per second just for the monitoring data alone. Indeed, in practice, even with

reductions in the periodic sending rate, we observe a packet rate of approximately

813 packets per second on the SUNY cluster. Clearly, a cluster of this scale chal-

lenges our design choice of wanting symmetry across all nodes using a multicast-
based protocol. Our assumption of a functional native, local-area IP multicast has

also proven to not hold in a number of cases.

A number of other issues have also arose as a result of early decision and

implementation decisions. First, monitoring data in Ganglia is still published using

a flat namespace of monitor metric names. As a result, monitoring of naturally

hierarchically data becomes awkward. Second, Ganglia lacks access control mech-

anisms on the metric namespace. This makes straightforward abuse possible (e.g.

publishing metrics until Ganglia runs out of virtual memory). Third, RRDtool has

http://www.worldgrid.com
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often been pushed beyond its limits, resulting in huge amounts of I/O activity on

nodes running gmetad. As a result, such nodes experience poor performance,

especially for interactive jobs. Note, however, that such nodes are typically

front-end nodes and not the cluster nodes that are used to run end-user applica-

tions. Finally, metrics published in Ganglia did not originally have timeouts asso-
ciated with them. The result was that the size of Ganglia’s monitoring data would

simply grow over time. (This has since been partially addressed in the latest ver-

sion of Ganglia which does feature coarse-grain timeouts.) The above issues are all

currently being investigated and some subset of them will be addressed in the next

version of Ganglia.

5.3.2. Planetlab

Despite not being designed for wide-area systems, Ganglia has been successfully
monitoring PlanetLab for several months now. Following a series of feedback and

modifications, it has since demonstrated exceptional stability and currently operates

with essentially no management overhead. Besides its current degree of robustness,

other properties which have proven valuable in its deployment include ease of instal-

lation, self-configuration on individual 2–3 clusters, and its ability to aggregate data

from multiple sites and visualize it using RRDtool. On the other hand, it is impor-

tant to note that PlanetLab really does represent a significantly different design point

compared to Ganglia’s original focus on clusters connected by fast local-area
networks. As a result, we have encountered a number of issues with both its design

and implementation. Some of these issues can be addressed within the current archi-

tecture with appropriate modifications, while others will likely require more substan-

tial architectural changes.

Within Ganglia’s current architecture, there are a number of issues that can be

resolved with appropriate modifications. For example, one issue that has arisen

lately is Ganglia’s assumption that wide-area bandwidth is cheap when aggregat-

ing data. While this may be true on the Abilene network, on the public Internet
this assumption simply does not hold. There are many, diversely connected sites

all around the world, each with widely varying agreements with their ISPs on

bandwidth and network pricing. 3 If Ganglia intends to support monitoring in

the wide-area, it will need to make more judicious use of network bandwidth. A

recent prototype using zlib compression has demonstrated reductions in band-

width by approximately an order of magnitude for example. Other notable issues

that have arisen in Ganglia’s deployment on PlanetLab include its limitation on

metrics having to fit within a single IP datagram, the lack of a hierarchical name-
space, lack of timeouts on monitoring data, large I/O overheads incurred by

gmetad’s use of RRDtool, and lack of access control mechanisms on the mon-

itoring namespace. Some of these issues (e.g. lack of timeouts) have since been

addressed.
3 As an example, the PlanetLab site at the University of Canterbury in New Zealand currently pays $35

USD per GB of international data it sends as part of its contract with its ISP.
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Longer term, there are a number of issues that will likely require more funda-

mental changes to Ganglia’s architecture. Perhaps the biggest issue is scalability,

both for monitoring within a single cluster and for federating multiple clusters over

the wide-area. Within a single cluster, it is well-known that the quadratic message

load incurred by a multicast-based listen/announce protocol is not going to scale
well to thousands of nodes. As a result, supporting emerging clusters of this scale

will likely require losing some amount of symmetry at the lowest level. For feder-

ation of multiple clusters, monitoring through straightforward aggregation of data

also presents scaling problems. Ganglia’s deployment on PlanetLab has already

pushed it into regimes that have exposed this to some extent. Scalable monitoring

across thousands of clusters in the wide-area will likely require use of some com-

bination of summarization, locally scoped queries, and distributed query processing

[17,30]. Self-configuration while federating at this scale will also require
substantial changes to the original Ganglia architecture since manual specification

of the federation graph will not scale. One promising direction here might be to

leverage distributed hash tables such as CAN [25], Chord [28], Pastry [26], and

Tapestry [31].
6. Related work

There are a number of research and commercial efforts centered on monitoring of

clusters, but only a handful which have a focus on scale. Supermon [27] is a hierar-

chical cluster monitoring system that uses a statically configured hierarchy of point-

to-point connections to gather and aggregate cluster data collected by custom kernel

modules running on each cluster node. CARD [2] is a hierarchical cluster monitoring

system that uses a statically configured hierarchy of relational databases to gather,

aggregate, and index cluster data. PARMON [8] is a client/server cluster monitoring

system that uses servers which export a fixed set of node information and clients
which poll the servers and interpret the data. Finally, Big Brother (http://

www.b4.com) is a popular commercial client/server system for distributed monitor-

ing on heterogeneous systems.

Compared to these systems, Ganglia’s differs in four key respects. First, Ganglia

uses a hybrid approach to monitoring which inherits the desirable properties of lis-

ten/announce protocols including automatic discovery of cluster membership, no

manual configuration, and symmetry, while at the same time still permitting feder-

ation in a hierarchical manner. Second, Ganglia makes extensive use of widely-
used, self-contained technologies such as XML and XDR which facilitate reuse

and have rich sets of tools that build on these technologies. Third, Ganglia makes

use of simple design principles and sound engineering to achieve high levels of

robustness, ease of management, and portability. Finally, Ganglia has demon-

strated operation at scale, both in measurements and on production systems. We

are not aware of any publications characterizing the scalability of any of these pre-

vious systems.

http://www.b4.com
http://www.b4.com
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7. Conclusion

In this paper, we presented the design, implementation, and evaluation of Gan-

glia, a scalable distributed monitoring system for high performance computing sys-

tems. Ganglia is based on a hierarchical design which uses a multicast-based listen/
announce protocol to monitor state within clusters and a tree of point-to-point con-

nections amongst representative cluster nodes to federate clusters and aggregate their

state. It uses a careful balance of simple design principles and sound engineering to

achieve high levels of robustness and ease of management. The implementation has

been ported to an extensive set of operating systems and processor architectures and

is currently in use on over 500 clusters around the world.

Through measurements on production systems, we quantified Ganglia’s scalabil-

ity both as a function of cluster size and the number of clusters being federated. Our
measurements demonstrate linear scaling effects across the board with constant fac-

tors of varying levels of importance. Measurements on four production systems

show that Ganglia scales on clusters of up to 2000 nodes and federations of up to

42 sites. Simple extrapolation based on these numbers combined with local overhead

data suggests that Ganglia is currently capable of comfortably scaling to clusters

consisting of hundreds of nodes and federations comprised of up to 100 clusters in

the wide-area. Additional optimizations (e.g. compression) within the existing archi-

tecture should help push these numbers out even further.
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