
Hardware Support for Efficient Virtualization

John Fisher-Ogden
University of California, San Diego

Abstract

Virtual machines have been used since the 1960’s in creative
ways. From multiplexing expensive mainframes to providing
backwards compatibility for customers migrating to new hard-
ware, virtualization has allowed users to maximize their usage of
limited hardware resources. Despite virtual machines falling by
the way-side in the 1980’s with the rise of the minicomputer,we
are now seeing a revival of virtualization with virtual machines
being used for security, isolation, and testing among others.

With so many creative uses for virtualization, ensuring high
performance for applications running in a virtual machine be-
comes critical. In this paper, we survey current research to-
wards this end, focusing on the hardware support which en-
ables efficient virtualization. Both Intel and AMD have incor-
porated explicit support for virtualization into their CPUde-
signs. While this can simplify the design of a stand alone virtual
machine monitor (VMM), techniques such asparavirtualization
and hosted VMM’s are still quite effective in supporting virtual
machines.

We compare and contrast current approaches to efficient vir-
tualization, drawing parallels to techniques developed byIBM
over thirty years ago. In addition to virtualizing the CPU, we
also examine techniques focused on virtualizing I/O and the
memory management unit (MMU). Where relevant, we identify
shortcomings in current research and provide our own thoughts
on the future direction of the virtualization field.

1 Introduction

The current virtualization renaissance has spurred excit-
ing new research with virtual machines on both the soft-
ware and the hardware side. Both Intel and AMD have
incorporated explicit support for virtualization into their
CPU designs. While this can simplify the design of a
stand alone virtual machine monitor (VMM), techniques
such asparavirtualizationand hosted VMM’s are still
quite effective in supporting virtual machines.

This revival in virtual machine usage is driven by many
motivating factors. Untrusted applications can be safely
sandboxed in a virtual machine providing added security
and reliability to a system. Data and performance isola-
tion can be provided through virtualization as well. Se-
curity, reliability, and isolation are all critical components
for data centers trying to maximize the usage of their hard-
ware resources by coalescing multiple servers to run on a

single physical server. Virtual machines can further in-
crease reliability and robustness by supporting live migra-
tion from one server to another upon hardware failure.

Software developers can also take advantage of virtual
machines in many ways. Writing code that is portable
across multiple architectures requires extensive testingon
each target platform. Rather than maintaining multiple
physical machines for each platform, testing can be done
within a virtual machine for each platform, all from a sin-
gle workstation. Virtualization can also be exploited for
debugging purposes. Post-mortem forensics of a crashed
or compromised server can be expedited if the server was
running in a virtual machine [9]. Virtualization can also
be used to support techniques such as bidirectional debug-
ging [12] which aid both software developers and system
administrators.

One final factor in the revival of virtual machines is
they can provide simplified application deployment by
packaging anentire environment together to avoid com-
plications with dependencies and versioning.

With so many creative uses for virtualization, ensur-
ing high performance for applications running in a virtual
machine becomes critical. In this paper, we survey cur-
rent research towards this end, focusing on the hardware
support which enables efficient virtualization.

We compare and contrast current approaches to effi-
cient virtualization, drawing parallels to techniques de-
veloped by IBM over thirty years ago. In addition to vir-
tualizing the CPU, we also examine techniques focused
on virtualizing I/O and the memory management unit
(MMU). Where relevant, we identify shortcomings in cur-
rent research and provide our own thoughts on the future
direction of the virtualization field.

In the remainder of this paper, we present and evalu-
ate multiple techniques aimed at providing efficient virtu-
alization. In Section 2, we provide some historical back-
ground to put current Intel and AMD proposals in context.
Section 3 then details the current approach from Intel. We
next turn to the virtualization of the MMU in Section 4
and I/O in Section 5. Finally, Section 6 provides some
discussion and comparisons before considering future di-
rections for this field. Section 7 concludes our analysis.

1



2 Background

In this section, we will highlight relevant approaches to
virtualization from the past few decades before discussing
the current techniques from Intel and AMD.

2.1 Classical Virtualization

Popek and Goldberg’s 1974 paper define requirements for
what is termedclassical virtualization[15]. By their stan-
dards, a piece of software can be considered a VMM if it
meets the following three requirements:

• Equivalent execution. Programs running in a virtual
environment run identically to running natively, bar-
ring differences in resource availability and timing.

• Performance. A “statistically dominant” subset of
instructions must be executed directly on the CPU.

• Safety. A VMM must completely control system re-
sources.

An early technique for virtualization wastrap and em-
ulate. While this approach was effective at providing an
equivalent execution environment, its performance was
severely lacking as each instruction could require tens of
native instructions to emulate. The performance require-
ment for a VMM does not rule out trap and emulate, but
rather, limits its application.

Popek and Goldberg also definesensitiveinstructions
which can violate the safety and encapsulation that a
VMM provides. For example, an instruction which
changes the amount of system resources available would
be considered sensitive. A VMM can be constructed for
an architecture if the sensitive instructions are a subset of
the privileged instructions. This ensures that the VMM
can step in on all sensitive instructions and handle them
safely since they are guaranteed to trap.

However, even if an architecture fails this, as the x86
architecture does, software techniques can be employed to
achieve a similar execution environment despite not being
classically virtualizable.

2.2 IBM Virtualizable Architectures

Now that we have established a baseline for virtualizable
architectures, we examine a few IBM systems which pio-
neered the field of virtualization.

2.2.1 VM/370

The Virtual Machine Facility/370 (VM/370) [8] provides
multiple virtual machines to users, each having the same
architecture as the underlying IBM System/370 hardware
they run on.

The VM/370 is comprised of three distinct modules:
the Control Program (CP), Conversational Monitor Sys-
tem (CMS), and Remote Spooling and Communications
Subsystem (RSCS). The Control Program handles the du-
ties of a VMM and creates virtual machines, while CMS
is the guest operating system which runs in each virtual
machine. CMS was originally written for the IBM Sys-
tem/360 and transitioned to the virtual environment once
CP came on-line. The final module of VM/370, RSCS,
handles the networking and communication between vir-
tual machines and also remote workstations.

A major goal of IBM was maintaining compatibility
across afamily of computers. While the VM/370 ran on
the System/370 and exported that architecture through its
virtual machines, programs written for the System/360
could still be run with degraded performance, despite the
underlying architecture not supporting certain features.

An important design goal for CP and CMS was to
make the virtual machine environment appear identical to
its native counterpart. However, IBM did not make ef-
ficiency and performance an explicit design goal. While
efficiency was not eschewed outright, these pioneering ef-
forts rightly focused on functionality and correctness.

When running multiple guests in virtual machines,
each guest believes that all of memory is at its disposal.
Since a VMM must provide anequivalentenvironment
for guests, dynamic address translation (DAT) must be
performed to translate guest physical addresses to host
physical addresses. VM/370 usesshadow page tablesto
achieve this translation.

Shadow page tables are a fairly simple mechanism for
providing DAT but have been used quite heavily over
the years. A guest OS manages its own page tables to
map guest virtual addresses to guest physical addresses.
Since guest physical addresses are actuallyhost virtual
addresses, the VMM must then use its own page tables
to map to a host physical address. Once a host physical
address is obtained, a mapping from guest virtual address
to host physical address can be inserted into the hardware
translation lookaside buffers (TLB).

2.2.2 370-XA

The System/370 Extended Architecture (370-XA) [11]
continues the evolution of virtual machines beyond the
VM/370. Given that performance was not an explicit goal
for the VM/370, the 370-XA was able to increase the ef-
ficiency of virtualization in a variety of ways.

Since the trap and emulate technique was used so heav-
ily, the 370-XA incorporatedµ-code extensions calledas-
siststo the CPU to replace common functions that were
expensive to emulate. As not all the available assists were
targeted at virtualization support, we restrict our discus-
sion to the assists that did target virtualization.

2



In previous systems, assists had proved themselves to
be quite indispensable for running virtual machines. This
caused the 370-XA to coalesce a large number of these
assists into a new execution mode for the CPU,interpre-
tive execution, which recognizes special instructions and
enables most privileged instructions to execute directly in
the virtual environment.

To enter interpretive execution mode, the privileged
SIE instruction is used (Start Interpretive Execution). The
operand given to SIE is thestate descriptionwhich de-
scribes the current state of the guest. Upon exiting in-
terpretive execution, the state description is updated, in-
cluding the guest program status word (PSW). The state
description also details the reason for the exit to expedite
any necessary handling by the host program.

Potential causes for exiting interpretive execution in-
clude interrupts, exceptions, instructions that require sim-
ulation, or even any instruction that the host program
chooses via a mask.

Interpretive execution on the 370-XA can provide vir-
tual environments for both the System/370 and the 370-
XA architectures. However, the 370-XA does not use
shadow page tables like VM/370. Since the 370-XA sup-
ports a larger 2GB address space, there were concerns
over a possible sparseness of address references leading
to a poor TLB cache hit rate. Maintaining the shadow
page tables can be costly as well.

To avoid these issues, the 370-XA performs both lev-
els of translation in hardware rather than relying on the
shadow page tables to map guest physical addresses to
host physical addresses. In Section 4, we see that both
Intel and AMD have adopted similar approaches.

While guests can execute many privileged instructions
in interpretive execution, guest I/O instructions do cause
a trap to the VMM. The 370-XA does support a check-
ing mode on a sub-channel basis that limits references to
guest’s storage only. This checking mode provides some
protection against malicious or buggy guests

However, the 370-XApreferred-machine assistallows
trusted guests to run directly in the host address space to
avoid the overhead of an extra level of translation. These
trusted guests can execute most privileged instructions, in-
cluding those for I/O. Guests also handle their own inter-
rupts in this mode, reducing the need to trap to the VMM.

On a final note, the 370-XA supports segment protec-
tion for limiting access among guests for isolation and se-
curity. This is not an assist per se, but rather an extension
of the base architecture.

2.2.3 VM/ESA

Building upon the 370-XA, the Virtual Ma-
chine/Enterprise Systems Architecture (VM/ESA)
[14] also uses interpretive execution to efficiently

support virtual machine guests. While the 370-XA
supported two architectures as virtual environments,
the VM/ESA supportsfive different architecture modes:
System/370, ESA/390, VM Data Spaces mode, 370-XA,
and ESA/370, with the latter two being architectural
subsets of ESA/390.

The VM Data Spaces mode enables memory sharing
communication among guests that do not use DAT and
also removes the 2 GB address space limit. While sup-
porting five environments for virtual machines may seem
unnecessary with today’s personal workstations, one must
remember that the VM/ESA was designed to run on large
mainframes forenterprises. Providing compatibility dur-
ing migration to a newer platfrom as well as enabling test-
ing of the new platform was critical to IBM’s business
since the hardware was quite expensive.

Like the 370-XA, the VM/ESA also supports preferred
storage mode via the preferred-machine assist. The 370-
XA could only support a single guest in this mode since
the guest did not use paging. However, the VM/ESA in-
cludes Multiple Domain Facility (MDF) which addszones
to support multiple guests in preferred mode. A guest is
assigned a contiguous block of host storage with a register
set to the base of this block and another register with the
size of the block. The VM/ESA can then support multiple
preferred guests each in its own zone, using single regis-
ter translation to efficiently map between a guest physical
address and a host physical address.

The dominant reason for guests to run in preferred stor-
age mode is to achieve high performance I/O without the
need to perform multiple levels of address translation.
The single register translation maintains the performance
gains while enabling multiple preferred guests.

The VM/ESA does support running VM/ESA as a
guest of itself, “Russian doll” style. Interpreted SIE
enables another instance of interpretive execution when
already interpretively executing, distinguishing between
“virtual” guests and “real” guests. However, not all hard-
ware models support interpreted SIE. In that case, inter-
preted SIE can be simulated through shadow page tables
and other shadow structures in the “real” guest. Zone
relocation replaces the lowest level of dynamic address
translation to reduce the performance premium for run-
ning nested virtual machines.

To conclude our discussion of VM/ESA, we note that
the hardware TLBs are not tagged and must be flushed
when switching between guests.

The VM/370, 370-XA, and VM/ESA illustrate the
progression of virtualization techniques, with increasing
amounts of functionality and performance as the systems
matured. Many ground-breaking ideas were formulated
in these systems, and we can clearly see their influence on
the current virtualization offerings from Intel and AMD.

3



2.3 x86 Virtualization

We now step forward in time and consider the widely
used x86 architecture. Due to the rise of personal work-
stations and decline of mainframe computers, virtual ma-
chines were considered nothing more than an interesting
footnote in the history of computing. Because of this, the
x86 was designed without much consideration for virtual-
ization. Thus, it is unsurprising that the x86 fails to meet
Popek and Goldberg’s requirements for beingclassically
virtualizable.

However, techniques were developed to circumvent the
shortcomings in x86 virtualization. We first present a few
of the architectural challenges inherent in the x86 before
discussing various solutions to these challenges.

2.3.1 Architectural Challenges

The x86 architecture supports 4 privilege levels, orrings,
with ring 0 being the most privileged and ring 3 the least.
Operating systems run in ring 0, user applications run in
ring 3, and rings 1 and 2 are not typically used.

Ring Compression

To provide isolation among virtual machines, the VMM
runs in ring 0 and the virtual machines run either in ring
1 (the 0/1/3 model) or ring 3 (the 0/3/3 model). While the
0/1/3 model is simpler, it can not be used when running in
64 bit mode on a CPU that supports the 64 bit extensions
to the x86 architecture (AMD64 and EM64T).

To protect the VMM from guest OSes, either paging or
segment limits can be used. However, segment limits are
not supported in 64 bit mode and paging on the x86 does
not distinguish between rings 0, 1, and 2. This results in
ring compression, where a guest OS must run in ring 3,
unprotected from user applications.

Ring Aliasing

A related problem isring aliasingwhere the true privilege
level of a guest OS is exposed, contrary to the guest’s be-
lief that it is running in ring 0. For example, executing a
PUSH instruction on the CS register, which includes the
current privilege level, and then subsequently examining
the results would reveal the privilege discrepancy.

Address Space Compression

Address space compressionprovides another hurdle for
virtualizing the x86 architecture. The VMM can either run
its own address space which can be costly when switching
between guests and the VMM, or it can run in part of the
guest’s address space. When the VMM runs in its own ad-
dress space, some storage in the guest address space is still

required for control structures like the interrupt-descriptor
table (IDT) and the global-descriptor table (GDT) [13].
In either case, the VMM must protect the portions of the
address space it uses from the guest. Otherwise, a guest
could discover its running in a virtual machine or compro-
mise the virtual machine’s isolation by reading or writing
those locations.

Non-Privileged Sensitive Instructions

Next, in clear violation of “classical” virtualization, the
x86 supports sensitive instructions that are not privileged
and therefore do not trap to the VMM for correct handling.
For example, the SMSW instruction stores the machine
status word in a register which can then be read by the
guest [16], exposing privileged information.

Silent Privilege Failures

Another problem involving privileged state is that some
privileged accesses, rather than trapping to the VMM, fail
silently without faulting. This violates Popek and Gold-
berg’s tenet that guest virtual machines must execute iden-
tically to native execution barring solely timing and re-
source availability.

Interrupt Virtualization

Finally, interrupt virtualizationcan be a challenge for x86
virtual machines. The VMM wants to manage external
interrupt masking and unmasking itself to maintain con-
trol of the system. However, some guest OSes frequently
mask and unmask interrupts, which would result in poor
performance if a switch to the VMM was required on each
masking instruction.

We have briefly presented some of the challenges to
virtualization on the x86 architecture. We refer interested
readers to Robin and Irvine’s analysis [16] for a more thor-
ough presentation.

2.3.2 Binary Translation

While emulation can provide transparency and compati-
bility for guest virtual machines, its performance can be
poor. One technique to improve virtualization perfor-
mance isbinary translation.

Binary translation involves rewriting the instructions of
an application and inserting traps before problem sections
or converting instructions to an entirely different instruc-
tion set architecture (ISA). Binary translation can be done
statically or dynamically. Dynamic binary translation is
used in just-in-time compilation (JIT), for example when
executing bytecode on a Java Virtual Machine (JVM).

4



Many of the x86 architectural challenges outlined pre-
viously can be solved by simply inserting a trap instruc-
tion that enables the VMM to gain control and correctly
emulate any problematic instructions.

Static binary translation can have difficulty analyzing a
binary to reconstruct basic block information and a con-
trol flow graph. Dynamic translation avoids this because it
can translate instructions as needed. However, the online
translation must be done quickly to maintain acceptable
levels of performance.

A novel example of binary translation is the FX!32
profile-directed binary translator from DEC [7]. FX!32
emulates an application on its first run while profiling the
application to determine the instructions that would most
benefit from running natively. These instructions are then
translated so the next time the application is run, its per-
formance improves dramatically.

While FX!32 is a solution to running x86 applications
on DEC’s Alpha architecture, its hybrid approach com-
bining emulation and dynamic binary translation illus-
trates an effective solution to executing unmodified bina-
ries transparently, without sacrificing performance.

2.3.3 Paravirtualization

Binary translation enables virtualization when recompil-
ing source code is not desirable or feasible.Paravirtual-
izationeschews this restriction in the name of high perfor-
mance virtual machines.

Rather than presenting an equivalent virtual environ-
ment to guests, paravirtualization exposes virtual ma-
chine information to guest operating systems, enabling
the guests to make more informed decisions on things like
page replacement. In addition, source-level modifications
can be made to avoid the x86 challenges to virtualiza-
tion. Whereas binary translation would trap on problem-
atic instructions, paravirtualization can avoid the instruc-
tions entirely.

A leading paravirtualization system is Xen [6]. Xen
achieves high performance for guest virtual machines
while retaining the benefits of virtualization—resource
utilization, isolation, etc.

Of course, Xen must sacrifice binary compatibility for
guest operating systems. While one can easily recompile
a Linux OS to run on Xen, the same can not be said for
Microsoft’s Windows OSes.

2.4 Co-designed Virtual Machines

While software tricks can often be played to support virtu-
alization on an uncooperative architecture, an alternative
is to design the architecture and VMM in tandem. These
co-designedvirtual machines blur the strict ISA boundary

into a virtual ISA that enables increased communication
between hardware and software.

For example, software can track the phases of an ap-
plication and tune the branch prediction logic in the hard-
ware to optimize for the current application phase.

While this technique has only seen limited use, the best
example is Transmeta’s Crusoe processor. The Crusoe ex-
ternally supports an x86 ISA while internally using a very
long instruction word (VLIW) architecture for power effi-
ciency [17].

3 Current Approaches

Virtualization on the x86 architecture has required unnec-
essary complexity due to its inherent lack of support for
virtual machines. However, extensions to the x86 remedy
this problem and as a result, can support a much simpler
VMM. Further, the extensions succeed in making the x86
architecture classically virtualizable.

Both leading chip manufacturers, Intel and AMD, have
rolled out these virtualization extensions in current pro-
cessors. Intel calls its virtualization technology VT-x, pre-
viously codenamed Vanderpool. AMD’s extensions go
by the name AMD-V, previously Secure Virtual Machine
(SVM) and codenamed Pacifica.

While Intel VT-x and AMD-V are not entirely equiv-
alent, they share the same basic structure. Therefore, we
focus our discussion on Intel’s offering, noting significant
departures for AMD in Section 6.2.

3.1 Intel VT-x

Intel VT-x introduces new modes of CPU operation:
VMX root operation and VMX non-root operation[13].
One can think of VMX root operation being similar to
previous IA-32 operation before VT-x and is intended for
VMMs (“host” mode), while VMX non-root operation
is essentially aguestmode targeted at virtual machines.
Both operating modes support execution in all four privi-
lege rings.

The VMRUN instruction performs a VM entry, trans-
ferring from host to guest mode. Control transfers back
to host mode on a VM exit which can be triggered by
both conditional and unconditional events. For example,
theINVD instruction unconditionally triggers a VM exit
while a write to a register or memory location might de-
pend on which bits are being modified.

Critical to the interaction between hosts and guests is
the virtual machine control structure (VMCS) which con-
tains both guest state and host state. On VM entry, the
guest processor state is loaded from the VMCS after stor-
ing the host processor state. VM exit swaps these opera-
tions, saving the guest state and loading the host state.

5



The processor state includes segment registers, the CR3
register, and the interrupt descriptor table register (IDTR).
The CR3 register (control register 3) holds the physical
location of the page tables. By loading and storing this
register on VM entry and exit, guest virtual machines can
run in an entirely separate address space than the VMM.

However, the VMCS doesnot contain any general pur-
pose registers as the VMM can do this as needed. This
improves VM entry and VM exit performance. On a re-
lated note, a guest’s VMCS is referenced with a physical
address to avoid first translating a guest virtual address.

As alluded to above, the biggest difference between
host and guest mode (VMX root and non-root operation)
is that many instructions in guest mode will trigger a VM
exit. TheVM-execution control fieldsset the conditions
for triggering a VM exit.

The control fields include:

• External-interrupt exiting. Sets whether external in-
terrupts causes VM exits, regardless of guest inter-
rupt masking.

• Interrupt-window exiting. Causes a VM exit when
guest interrupts are unmasked.

• Use TPR shadow. Accesses to the task priority reg-
ister (TPR) through register CR8 (64-bit mode only)
can be set to use a shadow TPR register, available in
the VMCS. This avoids a VM exit in the common
case.

• CR masks and shadows. Bit masks for each con-
trol register enable guest modification of select bits
while transferring to host mode on writes to other
bits. Similar to the TPR register, the VMCS also
includes shadow registers which a guest can freely
read.

While the register masks provide fine-grained control
over specific control registers, the VMCS also includes
several bitmaps that provide added flexibility.

• Exception bitmap. Selects which exceptions cause
a VM exit. Page faults can be further differentiated
based on the fault’s error code.

• I/O bitmap. Configures which ports in the 16-bit I/O
port space cause VM exits when accessed.

• MSR bitmaps. Similar to CR bit masks, each model
specific register (MSR) has a read bitmap and a write
bitmap to control accesses.

With all of these possible events causing a VM exit,
it becomes important for a VMM to quickly identify the
problem and correct it so control can return to the guest
virtual machine. To facilitate this, a VM exit also includes

details on the reasons for the exit to aid the VMM in han-
dling it.

While the VMM responds to events from a guest, this
becomes a two-way communication channel withevent
injection. Event injection allows the VMM to introduce
interrupts or exceptions to a guest using the IDT.

3.1.1 Architectural Challenges Addressed

In Section 2.3.1, we outlined several architectural chal-
lenges inherent in the x86 which created barriers to vir-
tualization. Now that we have examined VT-x in more
detail, we see that VT-x does in fact provide solutions to
each challenge.

By introducing a new mode of execution with full ac-
cess to all four privilege rings, both the ring compression
and ring aliasing problems disappear. A guest OS exe-
cutes in ring 0 while the VMM is still fully protected from
any errant behavior.

Since each guest VMCS is referenced with a physical
address and the VMCS stores the critical IDTR and CR3
registers, virtual machines have full access to their entire
address space, eliminating the problem of address space
compression.

The x86 contains both non-privileged sensitive instruc-
tions and privileged instructions that fail silently. How-
ever, given VT-x’s extensive flexibility for triggering VM
exits, fine-grained control over any potentially problem-
atic instruction is available.

Lastly, the VMCS control fields also address the chal-
lenge of interrupt virtualization. External interrupts can
be set to always cause a VM exit, and VM exits can be
conditionally triggered upon guest masking and unmask-
ing of interrupts.

With these solutions to the x86 virtualization chal-
lenges, the x86 can finally be termedclassicallyvirtual-
izable. With VT-x, the VMM can be much simpler com-
pared to the previous techniques of paravirtualization and
binary translation. A simpler VMM leaves less room for
error and can provide a more secure virtual environment
for guest virtual machines.

3.1.2 Performance

Intel VT-x provides the hardware support enabling a sim-
pler VMM. However, simplicity and performance are of-
ten competing goals.

Adams and Agesen demonstrate that software tech-
niques for virtualization, e.g. paravirtualization and bi-
nary translation, outperform a hardware-based VMM
leveraging Intel’s VT-x [4]. They experiment with
several macro- and micro-benchmarks, as well as
so-called “nanobenchmarks” which exercise individual
virtualization-sensitive instructions.

6



The hardware VMM performs better in some of the ex-
periments, but overall the software VMM provides a bet-
ter high-performance virtualization solution. Reasons for
this performance discrepancy include:

• Maturity. Hardware assisted virtualization on the
x86 is still an emerging technology while software
techniques have been around long enough to mature.

• Page faults. Maintaining integrity of shadow page
tables can be expensive and cause many VM exits.

• Statelessness. VMM must reconstruct the cause for
a VM exit from the VMCS.

Of these barriers to high performance, only the last
is inherent to a hardware VMM. Maturity will come in
due time and both Intel and AMD have proposed so-
lutions providing hardware MMU support for servicing
page faults.

Similar to the VM/370, VT-x strives for correctness and
functionality before aggressively optimizing. A VM entry
required 2409 cycles on Intel’s P4 microarchitecture, the
first to support VT-x. However, the next generation Core
microarchitecture reduces this to 937 cycles, a 61% reduc-
tion [4]. We expect to see further improvements to VT-x’s
performance as it becomes a more established technology.

4 MMU Virtualization

Given the performance degradation caused by handling
page faults via shadow page tables, virtualizing the mem-
ory management unit becomes an important next step. In-
tel’s extended page tables (EPT) and AMD’s Nested page
tables (NPT) are proposals for doing exactly this.

Rather than have the VMM maintain the integrity of the
shadow page table mappings, EPT adds a separate set of
hardware-walked page tables which map the guest phys-
ical addresses to host physical addresses. Shadow page
tables were managed in software by the VMM but EPT
and Nested Paging add hardware support to avoid costly
VM entries and exits.

Another feature that Intel and AMD will include is
tagged TLBs. Intel assigns virtual-processor identifiers
(VPIDs) to each virtual machine and tags the translation
entries in the TLB with the appropriate VPID. This avoids
the performance hit of flushing the TLB on every VM
entry and VM exit. Without a tagged TLB, flushing the
translations is required to avoid incorrect mappings from
virtual to physical addresses.

While the extended page tables and VPID tagged TLBs
are not currently available, we expect them to further close
the performance gap by eliminating major sources of vir-
tualization overhead.

5 I/O Virtualization

Efficient I/O virtualization is an important consideration
for many uses of virtual machines. Here, we present cur-
rent approaches to handling I/O in a virtual environment.
We then examine AMD’s current DEV proposal before
moving on to Intel’s VT-d.

5.1 Current Methods

Before describing current techniques for handling input
and output in virtual machines, we review three distinct
classes of VMMs. Each class provides a unique approach
to I/O and virtualization, illustrated in Figure 1.

• Hosted VMM. The VMM executes in an existing OS,
utilizing the device drivers and system support pro-
vided by the OS [18].

• Stand-Alone VMM. A hypervisor runs directly on the
hardware and incorporates its own drivers and sys-
tem services [6].

• Hybrid VMMs. Combines the control of a stand-
alone VMM with the simplicity of hosted VMM by
running a deprivilegedservice OSas an additional
guest and routing I/O requests through it.

Hardware support via device drivers is paramount to
providing an effective VMM for virtualizing I/O. Re-
implementing device drivers for a stand-alone VMM can
be expensive and therefore, limits the portability of the
VMM to a small set of supported hardware. However, us-
ing an additional operating system to handle I/O resources
imposes additional performance overhead. Reducing this
performance overhead is one of the goals of Intel’s VT-d
proposal.

Given these three styles of VMMs, we now consider
existing techniques for virtualizing I/O that can be applied
with varying effectiveness to each VMM class. These
techniques can be concurrently employed by a VMM, e.g.
paravirtualizing a high-performance network card while
emulating a legacy disk controller.

Emulation

Deviceemulationis the most general technique and re-
quires the implementation of real hardware completely in
software. This creates a virtual device that the guest inter-
acts with.

There is usually a different physical hardware device
underneath that performs the actual I/O. The emulated vir-
tual device serve as an adapter, converting an unsupported
interface to a supported one.

7



Figure 1: Current Methods for Virtualizing I/O. Credit [3]

In addition, a VMM must also be able to inject inter-
rupts into the guest. This is often done via emulation of a
programmable interrupt controller (PIC).

In a datacenter, migration of virtual machines is of-
ten important to maintain high availability in the face of
unreliable hardware. Device emulation facilitates virtual
machine migration since the virtual device state exists in
memory and can be easily transferred. Further, the guest
is not tied to a specific piece or version of hardware that
might not be available on another machine.

Another consideration for virtualization is the ability
to efficiently multiplex a device across multiple guest
VMs. Device emulation simplifies sharing a physical de-
vice since the VMM can perform the multiplexing while
presenting individual virtual devices to each guest.

While emulation does have the ease of migration and
multiplexing advantages, it has the disadvantage of poor
performance. Emulation requires the VMM to perform
a significant amount of work to present the illusion of a
virtual device. Further, when dealing with specific device
driver binaries, “bug emulation” may be required to match
the hardware expectations of the device driver.

Emulation can be effectively applied to all three VMM
classes.

Paravirtualization

Rather than bending over backwards to match the expecta-
tions of a device driver or other guest software,paravirtu-
alizationmodifies the guest software to cooperate directly
with the VMM.

Of course, this is only possible when source-level mod-
ifications can be made and recompiled. Proprietary oper-
ating systems and device drivers can not be paravirtual-
ized. This limits paravirtualization’s applicability, but the
performance boost achieved offers a worthwhile trade-off.

Paravirtualization uses an eventing or callback mecha-
nism for better performance than an emulated PIC. How-
ever, performance comes at the cost of modifying a guest
OS’s interrupt handling mechanisms.

Also, necessary modifications for one guest OS might
be entirely separate from modifications required for a dif-
ferent guest OS.

Similar to emulation, paravirtualization supports both
VM migration and device sharing. VM migration is pos-
sible as the destination platform supports the same VMM
APIs needed by the guest software stack [3].

While paravirtualization is usually applied to stand-
alone VMMs, it is applicable to all classes.

Dedicated Devices

The final device virtualization technique we consider does
not virtualize the device but rather assigns it directly to

8



a guest virtual machine.Dedicated devicesutilize the
guest’s device drivers, ensuring full compatibility. They
also simplify the VMM by removing much of the com-
plexity required to securely and efficiently handle I/O re-
quests.

Virtual devices can be easily replicated for additional
guests but there are only limited physical resources that
can be dedicated to guests. Further, directly assigning a
device to a virtual machine can make the VM difficult to
migrate, especially any hardware device state.

Dedicated devices eliminate most virtualization over-
head and enable added simplicity in a VMM. How-
ever, the main disadvantage is that direct memory access
(DMA) from hardware devices directly to a guest’s virtual
address is not currently supported due to isolation and ad-
dress translation challenges.

Enabling DMA for this scenario is one of the key con-
tributions of Intel’s VT-d.

5.2 AMD DEV

Since Intel’s VT-d provides further functionality beyond
that of AMD’s DEV, we first consider DEV, setting the
stage for VT-d.

AMD’s proposal for handling I/O virtualization adds
a device exclusion vector(DEV) that permits or blocks
DMA to specified memory pages. DEV is essentially a
table that specifies access controls between devices and
memory pages.

Since guests have exclusive access to memory pages,
DEV can be used to provide exclusive access to a de-
vice by only permitting DMA between the device and the
guest’s address space.

The access check is made on the HyperTransport
boundary at the CPU and either blocks or permits the
DMA request. If access is permitted, the request is
marked safe to avoid subsequent access control checks.

The end result of DEV is that it ensures that a dedi-
cated hardware device writes only to the intended guest’s
assigned memory pages.

5.3 Intel VT-d

Intel’s VT-d proposal surpasses AMD’s DEV in terms of
functionality. The main components of VT-d are DMA
remapping and interrupt virtualization.

VT-d adds a generalized IOMMU architecture. Tra-
ditional IOMMU’s have been used to efficiently support
DMA scatter/gather operations and are implemented in
PCI root bridges [3].

VT-d incorporates software specified protection do-
mains which restrict access only to devices assigned to a
domain. This provides similar isolation and exclusion as

DEV. A protection domain is loosely defined as an “iso-
lated environment to which a subset of the host physical
memory is allocated.”[3] This abstract definition enables
protection domains to be defined for virtual machines as
well as device drivers running in the VMM.

By using address translation tables, VT-d achieves the
necessary DMA isolation, restricting access to physical
memory only to assigned devices. DMA virtual addresses
(DVA) are used in the translation tables. Depending on
the software usage model, DVAs can be guest physical
addresses, host linear addresses, or some other abstracted
virtual I/O address.

VT-d also includes an IOTLB to cache address transla-
tion lookups, improving the performance further. The PCI
Bus/device/function acts as the identifier for the DMA re-
quest. This ID is used when performing address transla-
tions to achieve the DMA remapping from DVA to physi-
cal memory.

Once the data has been transferred to memory, the ap-
propriate guest must be notified. Previously, interrupts
were routed through the VMM, adding additional over-
head. VT-d adds interrupt virtualization support to boost
performance.

Before VT-d, devices on the x86 could signal an inter-
rupt using legacy I/O interrupt controllers or issue a mes-
sage signaled interrupt (MSI) via DMA to a predefined
address range. Current device issued MSIs encode inter-
rupt attributes in the DMA requests, violating the isolation
requirement across protection domains [3].

Intel’s VT-d redefines the interrupt-message format for
MSIs, providing the necessary isolation. The VT-d DMA
writes contain only a message identifier and the hardware
device’s requester id. These ids are then used to index into
a interrupt-remapping table which contains the expected
interrupt attributes.

This interrupt-remapping table is validated by the
VMM and opaque message ids are given to devices to pro-
vide the protection domain isolation.

We have simplified our discussion of VT-d for clar-
ity, but VT-d also includes additional mapping struc-
tures, some of which are nested hierarchically. Repeat-
edly traversing these tables can become expensive. To
avoid this in the common case, VT-d adds various hard-
ware managed caching structures, including the above-
mentioned IOTLB and an interrupt entry cache, to im-
prove performance.

5.4 Future Directions

VT-d enables virtual machines to utilize DMA with ded-
icated devices in a protected, efficient manner. However,
VT-d does not support high-performance multiplexing of
devices.

Intel has done much of the necessary work to achieve

9



efficient device sharing, and now, the device makers them-
selves as well as the PCI Express Special Interest Group
[2] (PCISIG) must join in the efforts. Towards this end,
the PCISIG has proposed a few extensions to PCI Express
which we briefly discuss here.

Since the IOTLB must handle multiple concurrent re-
quests at times, finding the right size for the TLB struc-
ture can be difficult. One solution to this involves mov-
ing these cached translation entries from the IOTLB to
the physical devices themselves. This proposal by the
PCISIG is termedaddress translation services[1] (ATS).

Of course, ATS would have to guarantee that installed
translations only come from a valid source and do not vi-
olate protection domains.

Another proposal enables PCI Express devices to sup-
port multiple virtual functions, each of which gives the
illusion of an entirely separate physical device. This en-
ables the direct assignment of virtual functions on a de-
vice to a guest virtual machine, while efficiently multi-
plexing the device across multiple guests. Combining this
proposal with Intel VT-d, I/O virtualization and direct as-
signment of devices will become an attractive feature for
guest virtual machines.

An interesting case study for this virtual functions pro-
posal is InfiniBand. InfiniBand has actually supported vir-
tual functions at the hardware level for a few years now
[10]. Separate logical communication links, termed vir-
tual lanes, share a single physical link. Each lane individ-
ually performs its own flow control and buffer manage-
ment, isolated from the other lanes. InfiniBand supports
up to 15 general purpose virtual lanes plus an additional
lane for control traffic.

Whether the PCISIG can build upon InfiniBand’s vir-
tual lanes and provide a general solution for all PCI Ex-
press devices remains to be seen. We look forward to
PCISIG’s proposals coming to fruition.

6 Discussion

In this section, we look back to IBM and see the roots of
Intel’s VT-x and AMD-V. As we have focused on Intel for
the most part, we discuss AMD’s alternative offering. We
then turn forward to future directions and applications of
hardware-supported virtualization.

6.1 IBM Comparisons

Now that we have presented both IBM’s and Intel’s tech-
niques for virtualization, we see direct correlations be-
tween IBM’s virtualization approaches and Intel’s VT-x.

The following table lists IBM’s concepts on the left
with Intel’s adaptations on the right.

IBM vs. Intel VT-x
Interpretive execution VMX non-root mode
State description VMCS
Shadow page tables Shadow page tables
2-level page tables Extended page tables

The interpretive execution mode pioneered by the 370-
XA enabled guests to execute most privileged instructions
directly. Intel targets this efficiency with its VMX non-
root mode which lets guests execute privileged instruc-
tions in ring 0.

The VMCS conceptually represents the same thing as
IBM’s guest state descriptions, albeit augmented to match
the specifics of the x86.

As discussed in Section 4, VT-x currently utilizes
shadow page tables to virtualize the MMU and handle
guest paging. The 370-XA avoided shadow page tables
and performed both levels of translation using hardware
walked page tables. Intel’s EPT and AMD’s Nested Pag-
ing proposals both incorporate the additional level of in-
direction into the hardware to avoid the costs of managing
the shadow page tables.

Exits from IBM’s interpretive execution were caused
by interrupts, exceptions, instructions that required sim-
ulation, or any instruction chosen via a mask. VM exits
from Intel’s VMX non-root mode also can be similarly
configured although the control fields in the VMCS pro-
vide finer-grained policies through bitmasks on registers,
exceptions, and I/O ports.

We note that VM/ESA supports “Russian doll” virtual-
ization with multiple levels of interpretive execution. VT-
x would need to use paravirtualization or binary transla-
tion to achieve the same effect. Of course, the motivations
for supporting this use case are not clear so it is under-
standable that VT-x eschews this functionality.

Lastly, VM/ESA did not support tagged TLBs and
therefore, a flush was required when switching between
virtual machines. Again, current Intel and AMD offerings
suffer from the same performance degradation. However,
Intel proposes adding a virtual processor ID (VPID) to
differentiate TLB entries between multiple guest virtual
machines.

While Intel and AMD have certainly drawn upon the
pioneering work of IBM, they have expanded the tech-
niques and adapted them accordingly to fit the x86 archi-
tecture. In particular, high performance I/O has become
critical to virtualization in data centers. Intel’s VT-d of-
fers some interesting solutions to this challenge, moving
one step closer to the complete virtualization of all aspects
of a machine.

However, we note that we have only examined a small,
albeit important, fraction of IBM’s virtualization research.
Techniques and ideas from Intel may not be as novel as we
realize since IBM performed a large amount of virtualiza-

10



tion research in the 1970’s.

6.2 AMD-V

AMD-V [5] is functionally quite similar to Intel’s VT-x.
However, the two competing approaches provide incom-
patible ISAs. When AMD first announced its codenamed
Pacifica virtualization initiative, it included proposalsad-
dressing both the MMU and DMA. This gave AMD an
edge in functionality over Intel, but Intel quickly released
their own proposals with Intel’s DMA remapping going
beyond the functionality provided by AMD.

One reason that AMD announced their proposals first
is that AMD processors contain the MMU on-chip as well
as the HyperTransport communication bus. AMD could
not ignore these components as easily as Intel.

In addition to shadow paging and nested paging, AMD-
V also supportspaged real modewhich is similar to the
preferred machine assist zones of the VM/ESA. Paged
real mode enables the virtualization of guests that run
in real mode, using only segments and offsets to specify
physical addresses. Shadow paging is used here as well to
provide the illusion of real mode for appropriate guests.

One terminology difference we note is that AMD terms
its shared host-guest control structure the virtual machine
control block (VMCB) as opposed to Intel’s VMCS.

6.3 Future Directions

With VT-x and AMD-V, the x86 architecture has become
classically virtualizable. Moving beyond this barrier, in-
terest turned to efficiently handling page faults and the
memory management unit. While optimizations will no
doubt be made to existing virtualization components, the
last challenge involves I/O and DMA.

Current I/O solutions leave much to be desired and the
upcoming proposal from Intel still only lays the founda-
tion for I/O virtualization. VT-d enables the direct assign-
ment of hardware devices to guest virtual machines, but it
does not facilitatesharinga device across multiple guests
[3].

Quality of service and priority scheduling are very
real considerations in a datacenter environment. Effi-
ciently multiplexing a device across guests is only the
first step. Fine-grained control overpolicy is critical as
well. Achieving device multiplexing both securely and
efficiently is certainly a motivating goal for virtualization
research.

Another direction for virtualization is eliminating all
performance overheads for virtual machines. Executing
at native speeds is the gold standard of virtual machine
benchmarking. It will be interesting to see if hardware
techniques can surpass software virtualization, or if the
optimal solution might be a hybrid approach.

There will always be some work that a VMM must han-
dle for guests, but the key will be to amortize this over-
head across as many guest instructions as possible.

Finally, it is important to consider the market forces
driving virtualization. We have sketched many motivating
scenarios where efficient virtualization is critical. How-
ever, to what extent VT-d and DEV influence the market
remains to be seen. Of course, academic institutions can
pioneer research in many areas, it still falls to Intel and
AMD to put the technology in the hands of consumers.

7 Conclusion

We have critically examined hardware support for effi-
cient virtualization. IBM pioneered this area withµ-
code assists and interpretive execution as well as shadow
page tables and two-level hardware walked page tables.
Current techniques and proposals from Intel and AMD
build upon IBM’s foundation, adding tagged TLBs, DMA
remapping, and finer-grained control. These additions
represent an important step towards the true goal of
achieving native execution speeds in a virtual machine on
the x86 architecture.

Acknowledgments

We would like to thank Geoff Voelker for his invaluable
input during discussions forming this work.

References

[1] PCI Express Address Translation Services and I/O Virtu-
alization, WinHEC 2006,http://www.microsoft.
com/whdc/winhec/pred06.mspx.

[2] PCI Special Interests Group.
http://www.pcisig.com.

[3] Darren Abramson, Jeff Jackson, Sridhar Muthrasanal-
lur, Gil Neiger, Greg Regnier, Rajesh Sankaran, Ioannis
Schoinas, Rich Uhlig, Balaji Vembu, and John Weigert. In-
tel Virtualization Technology for directed I/O.Intel Tech-
nology Journal, 10(3):179–192, August 2006.

[4] Keith Adams and Ole Agesen. A comparison of software
and hardware techniques for x86 virtualization.Operating
Systems Review, 40(5):2–13, December 2006.

[5] AMD. Amd64 virtualization codenamed ”pacifica” tech-
nology: Secure virtual machine architecture reference
manual, May 2005.

[6] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris,
A. Ho, I. Pratt, A. Warfield, and R. Neugebauer. Xen and
the art of virtualization. InProceedings of the ACM Sym-
posium on Operating Systems Principles, October 2003.

11



[7] Anton Chernoff, Mark Herdeg, Ray Hookway, Chris
Reeve, Norman Rubin, Tony Tye, S. Bharadwaj Yadavalli,
and John Yates. FX!32: A profile-directed binary transla-
tor. IEEE Micro, 18(2):56–64, Mar/Apr 1998.

[8] Robert J. Creasy. The origin of the vm/370 time-sharing
system. IBM Journal of Research and Development,
25(5):483–490, 1981.

[9] George W. Dunlap, Samuel T. King, Sukru Cinar, Mur-
taza A. Basrai, and Peter M. Chen. Revirt: enabling intru-
sion analysis through virtual-machine logging and replay.
SIGOPS Oper. Syst. Rev., 36(SI):211–224, 2002.

[10] Chris Eddington. Infinibridge: An infiniband channel
adapter with integrated switch.IEEE Micro, 22(2):48–56,
2002.

[11] Peter H. Gum. System/370 extended architecture: Facil-
ities for virtual machines.IBM Journal of Research and
Development, 27(6):530–544, November 1983.

[12] Samuel T. King, George W. Dunlap, and Peter M. Chen.
Debugging operating systems with time-traveling virtual
machines.Proceedings of the 2005 Annual USENIX Tech-
nical Conference, April 2005.

[13] Gil Neiger, Amy Santoni, Felix Leung, Dion Rodgers, and
Rich Uhlig. Intel Virtualization Technology: Hardware
support for efficient processor virtualization.Intel Tech-
nology Journal, 10(3):167–177, August 2006.

[14] D. L. Osisek, K. M. Jackson, and P. H. Gum. ESA/390
interpretive-execution architecture, foundation for VM/
ESA. IBM Systems Journal, 30(1):34–51, 1991.

[15] Gerald J. Popek and Robert P. Goldberg. Formal re-
quirements for virtualizable third generation architectures.
Communications of the ACM, 17(7):412–421, July 1974.

[16] John Scott Robin and Cynthia E. Irvine. Analysis of the
Intel Pentium’s ability to support a secure virtual machine
monitor. In USENIX, editor,Proceedings of the Ninth
USENIX Security Symposium, August 14–17, 2000, Den-
ver, Colorado, page 275, San Francisco, CA, USA, 2000.
USENIX.

[17] J. Smith, S. Sastry, T. Heil, and T. Bezenek. Achieving
high performance via co-designed virtual machines. In
IWIA ’98: Proceedings of the 1998 International Work-
shop on Innovative Architecture, page 77, Washington,
DC, USA, 1998. IEEE Computer Society.

[18] Jeremy Sugerman, Ganesh Venkitachalam, and Beng-
Hong Lim. Virtualizing I/O devices on vmware worksta-
tion’s hosted virtual machine monitor. InProceedings of
the General Track: 2002 USENIX Annual Technical Con-
ference, pages 1–14, Berkeley, CA, USA, 2001. USENIX
Association.

12


