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Abstract—
The current web cache infrastructure, though it has a

number of performance benefits, does not address many of
the publishers’ requirements. We argue that web caches
should be enhanced to address publishers’ needs. For ex-
ample, caches will need to dynamically produce content,
log/report client accesses, and give publishers QoS guaran-
tees. In this paper, we propose Gemini, a publisher-centric
web caching infrastructure. Since Gemini caches can alter
content, traditional end-to-end security mechanisms can no
longer ensure the integrity and authenticity of content. We
thus introduce a new security architecture, based on digi-
tal certificates and signatures. Certificates allow publishers
to specify which caches they trust to generate content for
them. A certificate may apply to an entire group of caches
or it can delegate the trust decision to a third party. Digi-
tal signatures are used for verification: We require Gemini
caches to sign their dynamically generated content, there-
fore, clients can verify that this content was generated by
an authorized cache. We also present a probabilistic scheme
that exploits the non-repudiation property of digital signa-
tures to let publishers identify misbehaving caches. In our
design, we ensure that Gemini is incrementally deployable
and seamlessly interoperates with the existing caching in-
frastructure. Along with a system design, we also present
an implementation and preliminary performance results.

I. INTRODUCTION

Web caching, like other forms of caching that occur at
various levels of the memory hierarchy (e.g., hardware,
operating system, application), exploits the reference lo-
cality principle to improve the cost and performance of
data access. This has been especially effective at the In-
ternet level, where large geographic and topological dis-
tances separate the producers and consumers of content.
The direct and tangible benefits of web caching include:
improved access latency, reduced bandwidth consumption,
improved data availability, and reduced server load.

The main drawback of today’s cache infrastructure is
that it is network-centric, but not publisher-centric. From
the publisher’s point of view, a number of important fea-
tures are missing. First, caches are not equipped to han-
dle dynamically generated content, an increasingly large
portion of all web traffic. Requests for dynamic con-
tent have to be forwarded back to the origin servers, and
the dynamically constructed pages cannot be reused, even
by the same client. Second, caches are unable to fur-
nish reports on access statistics (e.g., hit counts and click-

streams) back to the publishers. This is of particular con-
cern to publishers who rely on accurate hit counts to justify
their advertisement-driven revenue model, and to publish-
ers who wish to obtain accurate representations of the size
and information consumption behavior of their audience.
Finally, caches unilaterally make local copies of web ob-
jects, often without the consent or even the awareness of
the publishers. Publishers have no knowledge of the num-
ber and locations of cached copies of their objects, mak-
ing object consistency impossible to maintain. As a re-
sult, caches may be serving stale or outdated objects to
the clients. For these reasons, many publishers have re-
sorted to cache-busting, i.e., bypassing the caches by tag-
ging their objects ’non-cacheable’. This forces the caches
to forward all object requests back to the origin server.
While this practice assures proper dynamic page genera-
tion, accurate hit counts, data consistency, and copyright
protection, it also forfeits all the benefits of caching.

We believe that caching is fundamental to the long-term
scalability of the web infrastructure, and therefore it is im-
portant to align the interests of publishers and cache opera-
tors. We propose Gemini, a publisher-centric web caching
infrastructure and paradigm that will encourage the pub-
lishers and cache operators to cooperate in the distribution
and caching of web content.

The Gemini strategy is to endow cache nodes with
communications, storage and processing capabilities that
can be beneficially employed by publishers. A Gemini
cache node is designed as a next-generation web cache
that can be incrementally deployed in the current cache
infrastructure. It can transparently substitute for a regu-
lar cache, as well as interoperate with existing coopera-
tive caching schemes. A Gemini cache can support a va-
riety of publisher-specified functions. In the data plane,
it can support dynamic content generation using filtering,
versioning, and/or other publisher-authored methods based
on sandboxed, virtual machine based languages such as
Java. In the control plane, a Gemini cache can support
customizable logging and reporting, as well as other func-
tions such as object consistency control, access control,
and publisher-specified QoS.

Central to our design is the architectural assumption of a
heterogeneous global web cache infrastructure. Just as the
Internet’s routers and links are owned by different admin-
istrative domains, we assume that caches belong to many
different administrative domains, and may have different
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functionalities. Furthermore, the traditional client-server
architecture is replaced by a three-party architecture where
the intermediary (web cache) can actively create/alter con-
tent on behalf of the servers. This means that traditional
end-to-end security mechanisms can no longer ensure the
integrity and authenticity of content.

The Gemini security architecture is designed to protect
clients, publishers and caches from one another. First, the
publishers are assured of proper content generation and ac-
curate logging/reporting by the caches. Second, the caches
are protected against faulty or malicious code from pub-
lishers or attackers. The end result: the caches create and
deliver content to the clients according to the specifications
of the publishers.

The rest of the paper is organized as follows. Section
II describes the different dynamic content generation tech-
niques and applications supported by Gemini. Sections III
and IV describes the security architecture and incremen-
tal deployment strategy. The design and prototype imple-
mentation of the Gemini node, based on the open source
Squid [1] caching software, are presented in Section V.
We discuss the performance of our implementation in Sec-
tion VI, and identify related work in Section VII before we
conclude the paper.

II. APPLICATIONS

Traditional caches can only handle static objects such as
HTML pages. Gemini caches, on the other hand, are capa-
ble of storing and processing active documents, including
the invocation of any publisher-authored methods based on
sandboxed, virtual machine based languages such as Java.
This allows the Gemini caches to support, among a wide
range of publisher-centric applications, the generation and
delivery of dynamic content.

There are two main types of dynamic content. In the first
case, a web page is dynamic because the underlying data
source changes frequently. Examples include stock tick-
ers, news headlines, and traffic reports. In the second case,
a web page is dynamic because it is constructed on the fly
on a per request basis. The exact form and substance of the
page may be based on input from the client, server, and/or
cache. Examples include database or search responses,
customized news, customized page layout. Using a vari-
ety of techniques, Gemini caches can support both types
of dynamic content generation.

When the underlying data source changes frequently,
the cost-effectiveness of caching is dependent on the ex-
pected lifetime of the data. More specifically, the thresh-
old for caching should be a function of the ratio of read-to-
write frequency. For example, online stock tickers may be
updated on a minute-to-minute basis, but popular tickers
may be read multiple times per minute to justify caching.
In many cases, a dynamic page consists of a small amount
of frequently updated data embedded in a sea of static data.
Instead of treating the entire page as un-cacheable, a Gem-
ini node can cache portions of a page according to pub-
lisher directives. Then it can generate new pages based

on modular and differential page construction techniques.
For example, delta encoding [2], [3] combines the data al-
ready in cache with any differential updates from the origin
server. Other techniques include partial transfers, cache-
based compaction [4] and HTML macros [5].

In the second case, Gemini supports on-the-fly page
construction by running publisher-authored code for filter-
ing and versioning, etc. Consider the application of filter-
ing to the dynamic generation of customized news pages
(e.g., MyYahoo). The publisher code residing at the Gem-
ini cache will apply one or more filters to construct a cus-
tomized page on the fly. The filters may be derived from
several sources. First, filters may be supplied by the user in
the form of cookies in the HTTP request header. For exam-
ple, a user may specify the news categories and stock sym-
bols that she wants to keep track of. Second, filters may
be derived from a user profile match that incorporates her
past browsing and purchasing history. This type of filters
may be used for delivery of targetted ad banners, product
recommendations and offers. Finally, the publisher code
can generate its own filters by incorporating data that are
specific to the local environment. For example, when the
user accesses the URL from within her home area, the cus-
tomized page may include local weather, traffic and sports
news. When the user is travelling outside her home area,
the page may include links to food, accomodation, services
and maps for the foreign area instead.

Versioning is also useful for producing customized news
pages. For example, a page may be laid out in different
ways according to user-specified preferences stored in a
cookie. The publisher code may also create different ver-
sions of the page for the same user based on the hard-
ware device (e.g., desktop and handhelds have different
display capabilities), access bandwidth, operating system
and browser used to issue the request.

While we have used the example of a customized news
page, these techniques can also be beneficially employed
by other types of web sites. For example, a consumer e-
commerce merchant may tailor web pages to individual
customers with product recommendations, special offers,
etc., based on the customer profile filter.

III. SECURITY

In traditional distributed communication, end-to-end
mechanisms are sufficient to secure data sent between the
client and the publisher because intermediate nodes do not
alter content. In our system, caches are active participants
in content generation, so end-to-end security mechanisms
are no longer sufficient. But it is not only dynamic content
that affects the end-to-end nature of securing content de-
livery. Caches are now responsible for logging user hits as
well. Publishers need assurances that caches will log ac-
cess correctly, and that these logs will be transported back
to the publisher intact. To accomplish this, caches must
become fully involved in the system’s security.

As an example, consider a publisher’s digital signature
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on a document1. Previously, a client would be able to use
the signature to verify the authenticity of the document.
With Gemini, a cache between the publisher and client
might transform the document according to a publisher’s
instructions, but the cache is unable to alter the publisher’s
signature because it does not possess the publisher’s secret
key. The result is that the client is unable to use the pub-
lisher’s signature to verify the version of the document it
receives. The obvious solution to this problem would be to
distribute the publisher’s secret key to caches, but this has
serious ramifications: a cache with the secret key would be
able to sign any content whatsoever on behalf of the pub-
lisher. Even if the cache’s owner is honest enough not to
exploit this, crackers who break into the cache may not be
as polite.

Our design is guided by four principles:
Protect the publisher and client—not just the cache.Many
previous systems have focused on protecting caches and
clients from the publisher. However, it is just as important
to protect the publisher and clients from caches.
The main risk to the publisher and client is of content be-
ing altered before it is delivered to the client. An attacking
cache could edit or delete the publisher’s objects, or add
entirely new objects which appear to be from the publisher,
so that what a client receives is not what the publisher in-
tended to send. In addition to simply altering content, a
cache could run a publisher’s code incorrectly (either cor-
rupting the program’s state or the input given to the pro-
gram).
Caches can also mishandle a publisher’s content by prema-
turely ejecting it, by not respecting the quality of service
that the publisher requested for the content, or by serving
a stale version of the content. The first two of these affect
performance but not correctness, while the last does affect
correctness. Finally, a cache could add, alter, or delete en-
tries from the log of client accesses recorded by the cache
and returned to the publisher.
Publishers decide whom to trust.Like the other hardware
in the Internet, we expect caches to be owned and admin-
istrated by a wide variety of organizations. We cannot ex-
pect every publisher to trust every organization, nor can we
even expect all publishers to agree on which organizations
are trustworthy. For this reason, we must let publishers de-
cide which caches store and serve their content. Further,
because some of a publisher’s documents may be more im-
portant than others, publishers must be able to specify trust
on a document by document basis. This allows a publisher
to widely distribute less important content while keeping
its most vital content in a smaller number of highly trusted
caches.
Each publisher may choose to trust a set of caches, C, to
serve a set of documents, D. Any cache not in C is not
trusted to correctly store or run code from the objects in
D. The publisher trusts that any cache which is a member
of C will correctly store and run code from any object in

1We consider a “document” to be a single object, rather than a whole
“page,” or group of objects which a browser might display together.

D. Because there is a chance that a trusted cache will be
compromised by an attacker, the publisher must still verify
that trusted caches are functioning correctly.
A client will trust a publisher to deliver its own content.
The client will also trust a publisher to delegate content
delivery. Thus, if a publisher trusts some cache to deliver
some document, the client will also trust that cache for that
document. For the same reasons as the publisher, the client
needs to verify that the cache is performing correctly.
A cache also trusts the publisher, and any cache the pub-
lisher trusts, to deliver the publisher’s content. Other
caches are completely untrusted, with one exception: a
cache may trust other caches in the same administrative
domain to deliver any document. Even if it can be sure
which publisher sent a piece of code, a cache will not trust
that code to function correctly.
Publishers/clients find out about attacks eventually.If the
publisher trusts honest caches which are never compro-
mised, its content will always be safe. But if trusted caches
become dishonest, the system’s security is endangered.
Publishers and clients must have a way to detect these
breaches of trust.
Many applications require that attacks be detected in-
stantly, but in a caching infrastructure, instant detection
is expensive because it requires the publisher to verify all
content delivered. If we loosen the restriction and increase
the amount of time an attack can go undiscovered, the cost
of verification can be reduced since it can be done less of-
ten. Each publisher should be allowed to make its own
decision about how long an attack can continue undiscov-
ered since each publisher’s content has a different value.
We believe that for most content, the value to a publisher
of a single page being served correctly is very small. If
a publisher’s content is temporarily altered or made un-
available, the loss to the publisher is tolerably small. On
the other hand, a publisher might wish to frequently verify
content with a high value since even a short attack would
have a significant cost. In this case, the high value of the
content justifies a higher cost of verification.
The system should be incrementally deployable.The het-
erogeneous nature of the Internet prevents any system from
being universally deployed in a short amount of time. In-
stead, new systems must be able to be deployed gradually,
and must not interfere with existing systems. On the other
hand, the system is not secure until the whole path from
the publisher to the client is secured.
Neither caches nor client browsers should need to be modi-
fied. The caching infrastructure should be secure from the
publisher all the way to the last cache or browser which
has our system installed. Clients which do not run our sys-
tem will be as vulnerable to attack as they are today since
an attacker could alter content right before it arrives at the
unmodified client.

The challenge in securing the cache is to come up with
an approach that is both powerful enough to provide pro-
tection and generally applicable. For example, one ap-
proach would be to require that each cache include a se-
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cure coprocessor [6], which is a processor and memory en-
cased in a secure, tamper-proof enclosure. The idea is that
all parties can trust the coprocessor to oversee the genera-
tion of all content on the cache. Unfortunately, secure co-
processor technology is usually years behind commodity
processor technology and more expensive due to the addi-
tional engineering and certification necessary to make the
device tamper-proof. The resulting lack of performance
makes a secure coprocessor unattractive for use in a web
cache.

We employ two techniques to enforce the trust relation-
ships outlined above: cache authorization and verification.
The first is a way for publishers to explicitly specify which
content a cache can generate. One key feature is that a
client can determine that the content it receives is gener-
ated by an authorized cache. The client is the entity most
interested in verifying that the content it receives has been
produced by an authorized cache. And the client machine
is often the least-contended-for resource on the path from
the publisher.

Our second technique is a way for publishers and clients
to verify that authorized caches are performing correctly.
This allows the publisher to find out when a cache deemed
trustworthy should not be trusted. We cannot prevent a
cache from generating content or logging accesses incor-
rectly. Instead, we use non-repudiation of a cache’s output
to make establishing which cache is at fault easy. Cou-
pled with random sampling techniques, any cache which
misbehaves enough will be caught with high probability.
Both publishers and clients can perform sampling to catch
crooked caches.

Next, we present the details of our system. We begin
by covering the authorization mechanism and security for
content generation, which together address the first and
second design principles. We then discuss our verification
mechanism, which addresses the third design principle.
Lastly, we consider the other side of the issue, describing
how a cache can be protected from publishers. The fourth
design principle, incremental deployment, is addressed in
the design of all the mechanisms throughout this section.

A. Authorization

We rely on a public key infrastructure (PKI) to provide
key distribution so that clients, caches, and publishers can
check each other’s digital signatures. There are several
different PKI proposals [7], [8], but they all provide the
basic service of associating a public key with an identity.
This association is recorded in a certificate, which is a doc-
ument signed by a certificate authority (CA). Each entity
with a certificate can produce more certificates for other
entities by acting as a CA. We assume there is a global
root certificate authority which everyone knows and trusts.

Each publisher needs a certificate identifying its web
site and public key. The format of the certificate is

fP;KP ; V alid; Expires; CAgK�1
CA

;

where P is the publisher’s name and URL, KP is the pub-

lisher’s public key, from V alid to Expires is the range
of time that the certificate is valid, and CA is the name
of the certificate authority who created the certificate. The
certificate is signed with the certificate authority’s private
key (K�1

CA). Note that we also require each cache to have
a public key and a certificate.

A publisher handles cache authorization decisions on
an object-by-object basis. Each object includes an ac-
cess control list (ACL) with which the publisher specifies
which caches are allowed to store the object. The format
of the ACL is

fURL;K1; K2; :::; Kn; V alid; Expires; PgK�1
P

;

whereURL is the name of the object and eachKi is a pub-
lic key. Each of the keys refers to a cache which is allowed
to store the object. Instead of a list of public keys, the
publisher can also specify a wildcard, indicating that any
cache may process the current document. Observe that an
ACL is just a special type of certificate, with the publisher
acting as the CA.

A publisher can use entries in the ACL in two ways.
One way is to authorize a single cache. This is accom-
plished by including a cache’s public key in the ACL. The
other way is to delegate the authorization decision to a
third party. This is accomplished through a layer of indi-
rection: the publisher includes the public key of the third
party in the ACL. Then the third party creates certificates
(signed with the key mentioned in the ACL) for caches it
wishes to authorize. For example, a company such as Un-
derwriters Laboratories might test caches for functionality
and security and might issue certificates (signed by key
KULapprove) for those models of caches that meet its crite-
ria. The publisher could mention KULapprove in its ACL if
it trusted Underwriters Labs’ judgment. A cache that has a
certificate stating that it is a model that has been approved
by Underwriters Labs would then be able to store the pub-
lisher’s objects. As another example, consider an ISP with
many caches. Assume the ISP uses public key, KISP to
sign each of its caches’ public keys. A publisher could
mention all of the ISPs’ caches as a group by including
KISP in its ACL.

Altogether, a publisher would give the following to a
cache: ACL; fHeaders; Bodyg

K
�1

P

. This is the ACL fol-
lowed by the object itself. Note that the document and
ACL are signed separately since the ACL will need to be
passed on to the client. The Headers field contains the
URL and directives to the cache about how to handle the
object (consistency, QoS parameters, log format, etc.). The
Body contains code and data which the cache uses to gen-
erate a reply to a client’s request for the object.

Along with its response to the client’s request, the cache
includes the ACL. The client is able to check the signature
on the ACL and use it to verify whether or not the cache
is authorized to produce the requested object. If the cache
is not authorized, the client should reject the document.
Because the client can retrieve the publisher’s certificate,



5

it is able to verify the signature on the ACL and enforce
its directives. Unauthorized caches are unable to convince
the client that they are authorized.

B. Content generation

A cache’s reply to the client has the following format:

ACL; fURL;Cache; Client;H(Request);
CurrDate; Bodyg

K
�1

Cache

:

Except for the ACL, signed by the publisher, the cache
signs the rest of the message: the URL requested, the
cache’s name, the client’s name, a hash of any data sent in
the request (e.g. for data conveyed in an HTTP POST mes-
sage), the current date, and the requested content. There
are three purposes for the cache’s signature. First, it en-
ables the client to detect tampering with the document on
the path from the cache to the client. Second, it tells the
client which cache generated the response. This enables
the client to be sure that the author of the response is autho-
rized by the publisher’s ACL. And third, the cache’s signa-
ture provides non-repudiation, linking the input (the URL
and request data) to the output. The date and the client’s
name in the message serve to prevent replay attacks, where
a third party sends a client stale data. In addition to the
above information, the cache needs to provide the client
with a chain of certificates which establishes that the cache
is authorized by the publisher’s ACL. This is done because
the client cannot always determine which certificates are
needed to link the cache’s public key to one of the keys
mentioned in the ACL.

One vital issue is how the cache can send this security
information to the client in a manner that does not confuse
legacy clients. Note that standard HTTP/1.1 [9] headers
already contain the date, the cache name, and the URL.
Further, the client computes the hash of the request itself.
All the cache needs to send are the ACL, the signature, and
certificates. We include these three items in the HTTP/1.1
Pragma header field. The HTTP specification states that
clients and caches which are unable to parse this informa-
tion will ignore it. Note that certificates are on the order of
thousands of bytes in size. As an optimization, replies can
contain the names of certificates rather than the certificates
themselves. Certificates can then be cached to save band-
width. Clients which do not implement Gemini security
do not have to suffer the overhead of certificate transfer.

The client, after receiving the cache’s response, needs to
verify two things: that the cache is mentioned in the ACL,
and that the cache’s signature is valid. A valid signature
implies that the content was not altered between the cache
and client, and that both the client and cache agree on what
the client’s request was. If there is a problem in any aspect
of the response, the client should discard it.

If the publisher desires, the cache can perform access
control on the content using standard mechanisms such as
username/password pairs, a cookie given to the client by
the publisher, or according to the client’s network address
or hostname. If the publisher believes it is necessary, the

cache can even require clients to access private data via
SSL [10] or some other encryption layer. Standard SSL
would not allow a cache to communicate on a publisher’s
behalf for security reasons, but with the publisher’s signed
ACL, the client can be sure that the cache with which it
is communicating is authorized by the publisher. Unlike
our other mechanisms, allowing the cache to act as an SSL
endpoint on behalf of the publisher requires modifications
to the client.

C. Verification

Because a cache signs all of its responses to client re-
quests, it is not able to later deny creating those responses.
Any entity with access to the cache’s certificate can ver-
ify the signature on a response. If a cache were to pro-
duce bogus content, its signature would be tantamount to
a confession that it was the culprit. A client only needs
to present the faulty output to the publisher to prove that
the cache misbehaved. Once a publisher is convinced, it
can remove that cache from all of its ACLs, preventing the
cache from mishandling the publisher documents in the
future. The same technique works for catching a cache
which fails to report log information. If a client presents
the publisher with a signed response from a cache, the pub-
lisher can know to expect a log entry from the cache for
that response. If the cache fails to return the log entry, the
publisher knows that the cache is cheating.

The challenge is in determining when to question the
cache’s responses. We suggest two schemes: publisher-
initiated auditing and client-initiated auditing. Both are
based on random sampling so that the more a cache mis-
behaves, the higher the probability that it will be caught.
In client-initiated auditing, the client sets a probability of
verifying a cache’s response with the publisher. After each
response, the client flips a coin to determine whether to
query the publisher.

Publisher-initiated auditing involves the publisher us-
ing a number of “fake” clients around the network to
issue requests for the publisher’s documents and return
the responses to the publisher. Caches must not know
which clients are fake so that the caches do not change
their behavior when dealing with fake clients. Note that
performance monitoring services such as Keynote (http://
www.keynote.com/) already have such clients set up to
monitor web site performance. The publisher can then
look at the responses to see that the cache has produced
correct output. In addition, the publisher can verify that
the fake client accesses were not over-reported or under-
reported by caches, helping to assure the publisher that
caches are performing logging correctly. In general, this
technique cannot stop a cache from adding fake log en-
tries by carefully inventing requests non-existent clients.
If a publisher is concerned about this attack, it can have a
more trusted set of caches deliver some objects so it can be
more confident about the logs returned.

Determining how much auditing should be done is a
matter of trading network and cache resources for catch-
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ing a misbehaving cache more quickly. As the sampling
frequency is raised, caches are caught sooner but more sys-
tem capacity is lost to the sampling process. Finding the
right point on this continuum is beyond the scope of this
paper.

D. Cache protection

The security mechanisms discussed so far deal with
protecting clients and publishers from malicious caches.
However, another concern is protecting caches from mali-
cious attackers. For example, a publisher’s code could at-
tempt to access Gemini documents from other publishers
or the underlying operating system. This problem is sim-
ilar to the problem of protecting a web browser from ma-
licious Java applet, so we adopt similar protection mecha-
nisms. All of a publisher’s code is run inside a sandboxed
Java virtual machine so that a cache can have strict control
over what operations the code is permitted to perform. In
total, the API exposed to publisher code consists of func-
tions for performing the following operations: read incom-
ing request headers; write outgoing reply headers; write
outgoing data; request arbitrary URLs to be loaded; and
generate (a limited amount of) log info for each request.
Another danger to caches is denial-of-service attacks, that
is, code which consumes too many CPU cycles or allo-
cates too much memory. To counter a denial of service
attack, the quantity of CPU time, memory, and network
bandwidth assigned to a publisher’s code has to be lim-
ited. In our current prototype, we have implemented the
API restrictions, but we have not implemented the resource
limits.

IV. INCREMENTAL DEPLOYMENT

Having described Gemini’s security architecture, we
now present our deployment strategy. The Gemini in-
frastructure is designed to be incrementally deployable
and fully interoperable with existing caches, servers, and
clients. Gemini works with all types of cooperative
caching, including hierarchical cache organizations. We
have the following design principles:
Cache and document heterogeneity.Gemini caches co-
exist and cooperate with legacy caches; not all documents
have Gemini versions.
Transparency to clients.Clients need not be modified (ex-
cept to achieve security).
Transparency to legacy caches.Legacy caches do not
need to distinguish between Gemini and regular docu-
ments. They can fetch and cache Gemini documents,
thereby assisting in their distribution. However, legacy
caches will never serve Gemini documents to clients.
Proximity. Gemini content will be served by the autho-
rized Gemini cache closest to the client, which we call the
leafcache.

Figure 1 shows an example caching hierarchy with a
mixture of regular caches (X,Y,Z) and Gemini caches (G1,
G2). For interoperability the publisher P will have two ver-
sions of its object, the regular version D and the Gemini
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Fig. 1. Example caching hierarchy with Gemini caches (shown
shaded). The regular version of the document is called D
and the Gemini version is called D’.

version D’. Clients will request and receive D, not D’. In
general, clients are never exposed to Gemini documents.
Gemini caches are alerted by publisher P of the availabil-
ity of D’ (we describe the mechanism for this later in this
section), but legacy caches can remain completely oblivi-
ous to the Gemini scheme and treat D and D’ in identical
fashion. Only Gemini caches (and publishers) understand
the association between D and D’.

Let us illustrate Gemini caching by considering object
requests by clients C1, C2 and C3 respectively. We as-
sume all caches are initially empty, but Gemini caches G1
and G2 have been alerted to the availability of Gemini ob-
ject D’. In response to a request for object D by C1, the
Gemini cache G2 will perform a mapping from D to D’
and issue a request for the Gemini version, D’. Caches G1
and X will forward the request back to P, and P returns D’.
Caches X, G1, and G2 all make local copies of D’. Note
that the legacy cache X does not know or care that D’ is
a Gemini object; it simply treats it as an opaque object.
Now when D’ arrives at cache G2, it is used to dynami-
cally generate the object D for client C1. Next, client C2
issues a request for D. A cache miss occurs at the legacy
cache Z, but a cache hit occurs at the Gemini cache G1.
Since G1 received a request for D (not D’) it knows it is
the leaf cache. This is true in general: the cache which
translates a request for a regular document into a request
for a Gemini document will be the leaf cache. Therefore it
executes D’ to dynamically generate D and send it to C2.
In this case, G2 may (at the publisher’s request) make this
copy of D non-cacheable by Z. Finally, C3 makes a request
for D and it is propagated all the way back to the publisher.
P will send the regular version D and may choose to mark
the copy non-cacheable.

In the rest of this section, we describe how Gemini
caches find out about the existence of Gemini documents.
First, we present a method which utilizes the features of
HTTP/1.1. Unfortunately, at least one widely deployed
brand of web cache does not implement the features of
HTTP on which this method relies. Therefore, we also
present a second method which should work with every
cache.
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A. Discovering Gemini documents via HTTP

The HTTP/1.1 standard [9] allows a single URL to stand
for multiple versions of the same document. This allows a
server to offer a document in different languages (English,
French, or Russian), or with a different encoding (JPEG
or GIF; compressed, gzip’d, or without compression). We
can use this feature to distribute Gemini and legacy ver-
sions of a document by treating them as alternate encod-
ings of the same URL.

When a Gemini cache forwards a request for a URL
to another cache or the server, it adds a header which
says that it can accept Gemini encodings. For example,
a Gemini cache would add this line to say that it prefers
the Gemini version of a document to any other encoding:
Accept-Encoding: gemini;q=1.0. A server or
cache which receives such a request can either reply with
a regular version of the document or the Gemini version.
If the reply is a Gemini version, then it will contain this
header: Content-Encoding: gemini.

Note that a cache can store both the regular and Gemini
versions of a document. The cache determines which ver-
sion to send based on the request’s Accept-Encoding
header. Because a client will never specify that it accepts
Gemini-encoded documents, it will never receive the Gem-
ini version of a document. And since these headers are
a standard part of HTTP, legacy caches can participate in
Gemini document distribution without a problem. Unfor-
tunately, some legacy caches ignore alternate encodings
when selecting a document to return to a client, mean-
ing that the cache could return a Gemini document to a
client or cache not capable of handling the Gemini docu-
ment. Thus, if our system is to be truly reverse-compatible,
we must handle Gemini document discovery in a different
way.

B. Second method for discovering Gemini documents

The approach we have chosen to implement is, in brief,
to use different URLs for the legacy and Gemini versions
of a document. Gemini caches are able to convert the URL
of a regular document into the URL of the regular docu-
ment’s associated Gemini document. Legacy caches are
unaware of the relationship between the Gemini and reg-
ular versions of a document, and merely send whichever
one of the documents is requested.

There are two challenges to this approach. First, we re-
quire a robust way of transforming a regular document’s
URL into a Gemini document’s URL. And second, we
need a way for a server to notify Gemini caches about
which of its documents have Gemini versions. One sim-
ple solution to these challenges would be to define URL
naming conventions so that a regular document’s name
would indicate whether or not it had an associated Gemini
document (and what the name of that Gemini document
is). However, this approach is not robust. If a document’s
URL inadvertently contained the notation indicating it had
an associated Gemini document, a Gemini cache might at-
tempt to load the non-existent Gemini version. This could

lead to increased delay for clients and additional useless
requests for the server.

Our solution is to require the publisher to explicitly no-
tify Gemini caches about which regular documents have
associated Gemini documents. With each of its replies, a
Gemini-aware server includes a notification in an HTTP
Pragma header field. Legacy caches ignore the pragma,
but Gemini caches store the publisher notifications as soft
state. Each notification contains three pieces of informa-
tion: a server name, a suffix to match, and a “tail,” or string
of characters, used to convert a regular document’s URL
into the associated Gemini document’s URL.

When a request arrives, a Gemini cache looks at the
URL. The cache finds all notifications with a server name
the same as the server named by the URL. For each of
these notifications, the cache tries to match the end of the
path (the piece of the URL after the server name and port
number) in the URL against the suffix in the notification.
A match indicates that there is an associated Gemini docu-
ment. On a match, the Gemini document’s URL is formed
by appending the tail to the URL in the request.

C. Authorization and leaf discovery

The authorization mechanism described in Section III
complicates matters slightly when determining which
cache is the leaf cache. Without authorization, the Gem-
ini cache closest to the client will be the leaf. But with
authorization, only the authorizedGemini cache closest to
the client can be the leaf. When a cache receives a Gemini
document, it can examine the ACL to determine whether
it is authorized. But we can optimize this process slightly
to avoid sending documents to caches which are unable to
use them.

When a cache, C, initiates a request for a Gemini doc-
ument, it also includes the names of its identification cer-
tificates. An upstream cache (or the publisher) will look
at these certificates to determine whether C is authorized
to serve the Gemini document. If it is, the document is
returned. If not, an error message will be returned. Note
that even if C lies about which certificates it possesses to
acquire a document for which it is unauthorized, C still
cannot produce a valid reply since it does not possess the
keys associated with the certificates.

D. Discussion

Two properties of our design make it especially scal-
able. By coexisting with the current caching infrastruc-
ture, we are able to leverage thousands of legacy caches
to help deliver Gemini documents. Also, observe that the
leaf cache’s task of producing a regular document from
a Gemini document, which involves public key cryptog-
raphy and possibly running code from the publisher, is a
heavy-weight operation. We push this computational bur-
den as close to the edge of the network as possible. Caches
in the middle of the network, where resources are under the
most contention, will usually only need to forward docu-
ments.
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Fig. 2. Node Architecture.

V. NODE DESIGN AND IMPLEMENTATION

In this section, we discuss the design and implementa-
tion of a Gemini node. The performance of the imple-
mentation will be discussed in Section VI. We have im-
plemented Gemini by extending an existing web cache,
Squid. A block diagram of our system is shown in Fig-
ure 2. On the right is the Squid process, with three modifi-
cations: (i) a lookup table to store soft-state information on
the availability of Gemini document versions, (ii) ability to
fetch Gemini documents listed in the lookup table but not
yet in the cache, and (iii) forwarding of Gemini request
(and document if applicable) to the Gemini process. On
the left is the Gemini process, which includes a security
module and a Java virtual machine (JVM). All code writ-
ten by publishers is run inside the JVM. The security mod-
ule is used to verify signatures on incoming documents and
to sign outgoing, dynamically generated documents.

A. Node operation

Now we describe the operation of the Gemini cache
node, and explain the interactions between the various
components shown in Figure 2. The Squid front end re-
ceives a document request, and in the event of a cache hit,
satisfies the request immediately using the cache’s copy to
produce a reply for the client. In the event of a miss, it
performs a table lookup (per Section IV-B) to query the
existence of a Gemini version. If the Gemini version ex-
ists, and is cached locally, the Squid process will pass the
request over to the Gemini process via IPC. Otherwise,
Squid will initiate a fetch of the object using the standard
caching hierarchy. When the object arrives, the Squid pro-
cess caches the document in its cache and hands a pointer
together with the original request to the Gemini process.

The Gemini process consists of three types of threads:
a single dispatcher thread, a pool of checker threads, and
a pool of worker threads. The dispatcher thread receives
requests and documents from Squid and puts them into
a request queue and a document queue, respectively, for
subsequent processing. The checker threads are assigned
to documents from the document queue, and they perform
extraction of document parts and signature verifications.
Depending on the Gemini document type, further process-
ing is performed. Two types of Gemini documents are
supported, active and non-active Gemini documents. Non-
active Gemini documents are simply regular documents

with appended signatures and the presence of some Gem-
ini headers. These headers indicate, for example, the in-
formation to be logged when the document is requested.
After checking the document’s signature and parsing head-
ers, non-active documents are stored by Gemini in its own
cache. Active Gemini documents, on the other hand, may
include Java classes in addition to headers and signatures.
These classes are extracted and stored in a per-document
directory.

The worker threads process the requests from the re-
quest queue. The JVM is invoked on the requests for active
Gemini documents. It loads the Java class belonging to the
document and runs it. The output is the document which
will be sent to the client after being signed by the worker
thread. Java may also create its own logging string. Al-
ternatively, the standard Gemini logging facilities will log
the request. If Java fails for a client request (due to pro-
gramming errors, excessive resource consumption, etc.)
the Gemini process will revert control of this request back
to the Squid process. In this case the Squid process will
handle the request as a regular document without a corre-
sponding Gemini version.

VI. PERFORMANCE EVALUATION

In this section, we present our preliminary performance
results. Our main concern is in measuring the performance
impact of our changes on a cache. We have conducted
three experiments to measure this impact: first, we mea-
sure the additional overhead on document lookups; sec-
ond, we examine how long each stage of processing for a
Gemini document takes; and third, we explore the over-
head of a Gemini document without code (security is still
in use, though). For all of these experiments, we use la-
tency as our performance metric because we are interested
in the potential response time degradation due to Gemini.

We have implemented Gemini on top of Squid version
2.2STABLE5 running on Linux (kernel version 2.2.13).
For our Java virtual machine, we use IBM’s Java Devel-
opment Kit 1.1.8 with native threads. The server, cache,
and client are each placed on separate machines (550 MHz
Pentium III’s with 128 MB of RAM) connected to the
same 10BaseT Ethernet hub. All cryptographic algorithms
are implemented using the Crypto++ version 3.1 [11] li-
brary. As an attempt to make the load imposed on the
cache due to cryptography as light as possible, we use
two different signature algorithms. The publisher signs its
certificates and documents using RSA [12], which has the
property that signature verifications are fairly inexpensive.
The cache signs all of its documents using DSA [13], with
which signature production is fairly inexpensive. In all
of the evaluation, the publisher issues a single certificate
which explicitly authorizes the Gemini cache—no delega-
tion of authorization is used. The publisher’s certificate is
appended to the Gemini document delivered to the cache.
It is assumed that the client machine already has the pub-
lisher’s certificate cached locally, so the cache sends only
its signature along with the document.
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Ad banner rotation MyYahoo
Mean (Std dev) Mean (Std dev)

Parsing 540 (18.5) 563 (22.9)
Extraction 821 (7.6) 5739 (184.6)
Sig. Check 2005 (10.7) 2079 (142.8)
Total 3926 (104.1) 8911 (173.8)

TABLE I
TIME TO UNPACK AN ACTIVE GEMINI DOCUMENT (�S).

A. Lookup overhead

As explained in Section IV, Gemini needs to search for
an entry in its lookup table for each request received. Our
first experiment is to determine the cost of this operation
for regular documents without associated Gemini versions.
We examine two cases: In the first case, there are no en-
tries in the lookup table for the server named in the re-
quest. In the second case, there are lookup table entries for
the server, but the request does not match the pattern spec-
ified by the entries. For example, a request might be for a
URL ending in “.gif” but the entry’s pattern only matches
URLs ending in “.html”. In both cases, it takes about 20�s
for Gemini to perform the lookup operation. Compared
with the normal hundreds of microseconds to tens of mil-
liseconds required to process a document in an unmodified
version of Squid, the penalty imposed by the lookup table
is fairly small.

B. Active Gemini document

Our second experiment shows how long a request
spends in each step during its processing. The process-
ing consists of two stages: First, unless the document is
already in the cache, the system has to download the re-
quested Gemini document and to verify its integrity. Sec-
ond, the reply for the request is generated by running the
Java code in the Gemini document. We instrumented Gem-
ini to timestamp the various processing steps, and we cre-
ated 10 documents with identical content. To perform a
measurement, we issue requests for all 10 documents, one
after other. We repeat this procedure 10 times for 100 total
requests. The very first request serves as warmup and is
excluded from the results.

Tables I and II list the steps we are most interested in.
We show both the mean and the standard deviation for each
of them. They correspond to tasks of the major compo-
nents of the Gemini process in Figure 2. Note that for all
steps, the standard deviation is small when compared to
the mean.

We issue requests for two active Gemini documents, one
containing simple code and the other containing complex
code, in order to illustrate how code complexity affects
node performance. The simple code (131 lines of Java)
randomly picks some URLs from a list of URLs to ad-
vertising banners and inserts them into a template HTML
page. The complex code (559 lines of Java) generates a
per-user customized, MyYahoo-like page. Our implemen-
tation of this application is simpler than an actually de-
ployed version would be; it assumes that all of its required

Ad banner rotation MyYahoo
Mean (Std dev) Mean (Std dev)

IPC 144 (38.2) 144 (29.1)
Parsing 158 (31.1) 165 (30.0)
JVM 27580 (1847.6) 97210 (3682.8)
Signing 7364 (289.2) 7327 (268.9)
Total 37016 (1841.8) 106755 (3678.4)
Logging 178 (8.8) 230 (8.8)

TABLE II
TIME TO PROCESS A REQUEST FOR AN ACTIVE GEMINI

DOCUMENT (�S).

data can be distributed in the Gemini document. In real-
ity, certain data (e.g., stock quotes) would have to be dy-
namically downloaded by the Java code for each request
and the Gemini document would contain only its HTML
template. However, in our measurements, we are mainly
interested in the time it takes to dynamically compose and
sign a customized document and not in network latency.
For this purpose, our simple implementation is sufficient.

Table I lists the various steps involved in unpacking a
newly downloaded Gemini document. In the “Sig. Check”
step, the system checks the signature attached to the Gem-
ini document and verifies that the URL used for download-
ing the document matches one of the URLs in the signa-
ture. The overhead for this step is constant at about 2ms,
regardless of the type of Gemini document. Parsing of the
reply headers also requires constant time for both docu-
ments, as opposed to the extraction step, which is much
faster for the smaller adBanner document (5KB) than for
the larger MyYahoo document (38KB).

Table II shows the overhead of the single steps during
the actual processing of the request. Running Java code
and signing the freshly generated document are the most
expensive steps. The running time for the code strongly
depends on the type of active document: composing a
MyYahoo-like page takes nearly four times as long as in-
serting URLs into a template page. The overhead for the
signing operation is constant at about 7ms. Instead of com-
puting the signature of the whole document, we compute
only the signature of a hash value of the document. Thus
signing becomes cheaper and can be performed in con-
stant time. The hash value required for the signature is
determined on the fly while the document is being gener-
ated. Sending the request from Squid to Gemini via IPC
and parsing of the request headers by Gemini also require
a constant amount of time. The “Total” line corresponds
to the time elapsed between the arrival of the request in
the Squid process and sending the last byte of the reply by
the Gemini process. It does not include logging, since log-
ging is performed after the reply has been sent. Logging
is more expensive for the MyYahoo code than for the ad-
Banner code, since the former composes its own logging
string, whereas the latter one falls back to the default log-
ging string.

In general, by optimizing the security operations, (e.g.,
by using cryptography routines implemented in hardware),
and by applying more-advanced Java techniques (e.g.,
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Fig. 3. Performance comparison of non-active Gemini docu-
ments and regular documents (ms).

compiling Java byte code to native code as soon as it is
downloaded), we expect the performance penalties due to
security and running Java code to decrease.

C. Non-active Gemini document

Our last experiment shows the performance loss when
processing non-active Gemini documents (Gemini docu-
ments without code) compared to regular documents. We
evaluate four different document sizes from 4 Kbytes up
to 16 Kbytes with an interval of 4 Kbytes. The non-active
Gemini documents are identical to the corresponding reg-
ular documents. In this experiment, we prepared 100 iden-
tical versions of each document, and then fetched these
sequentially for 100 total requests. Figure 3 shows the av-
erage processing time for these requests. The first request
serves as warmup and is excluded from the results.

From Figure 3, we can see that in the case of cache
hit when the documents are already in cache, the process-
ing latency degradation for non-active Gemini documents
is about a constant time compared to that for the regu-
lar version. If we examine the times more closely, we
find that the performance degradation is about 8ms, among
which, signing the reply is the most expensive, account-
ing for 92% of the degradation. However, if there is a
cache miss when the documents need to be fetched from
the server first, the overall processing time degradation is
not constant. Specifically, for documents smaller than 16
Kbytes, the total performance degradation is less than 14
ms, among which, in addition to signing the reply, the doc-
ument extraction and security check also contribute to the
slowdown, as mentioned before. While it takes a constant
time to perform the security check, about 2 ms, the time
spent on document extraction varies from 0.6 ms to 2.7 ms,
depending on the document size. This is a performance
loss due to disk I/O.

VII. RELATED WORK

Related work comes from four areas: building dis-
tributed caching systems, web security, active systems
(agents, networks, and caches), and research on securing
active systems. There has been a large body of literature on
web caching architectures (e.g. hierarchical and coopera-

tive) and performance enhancement techniques (e.g. cache
routing, push-cache). Gemini caches can work seamlessly
in these caching architectures and most of the techniques
are equally applicable to a Gemini-enhanced caching in-
frastructure. Within the last year, several private infras-
tructures such as Akamai, Adero, and Sandpiper [14],
[15], [16] have been built to provide publisher-centric
caching services. At the architectural level, the key dif-
ference between these systems and Gemini is that they
assume all caches are under the same administrative do-
main, while Gemini assumes an environment where there
are heterogeneous administrative domains and heteroge-
neous nodes (Gemini and non-Gemini). Because of this,
Gemini has a strong emphasis on security and incremental
deployment issues, which are not addressed in other sys-
tems. In addition, Gemini nodes support dynamic content,
which, to the best of our knowledge, is not supported in
the other systems.

There have been several efforts to bring increased se-
curity to the web. These include SSL [10], S-HTTP [17],
[18], and the Digital Signature Initiative (DSig) [19]. All
three of these protocols provide end-to-end security be-
tween the publisher and client, whereas the thrust of our
work is in providing security even when a third party is
generating content.

Gemini can be viewed as a special type of active net-
work [20] with a focus on content delivery applications.
Rather than making a router platform active, we make the
cache platform active. In addition, we have a strong em-
phasis on trust and security issues, and discuss incremen-
tal deployment issues in the context of today’s caching
infrastructure. There are two other related active cache
projects. Douglis et al. [5] proposes a highly specialized
“macro” language which attempts to separate static and
dynamic content in an HTML file. Basically, their scheme
allows a cache to store some parts of an HTML file while
fetching other parts from the publisher. In contrast, Gem-
ini uses a general purpose language, Java, for data plane
operations, and also, it allows publishers to specify con-
trol plane behavior. Cao et al. [21] have also enhanced a
web cache with a Java runtime in order to allow caches to
store dynamically-generated content. They emphasize the
cache-centric features of their system: caches can choose
which applets to store and how many resources an applet
may take up. Further, the security model only considers
protecting the cache. Our security model seeks to protect
the publisher as well as the cache. Also, we give publishers
more control over when and how their content is cached.
Finally, we have considered how to deploy our solution in
the existing caching infrastructure.

The problem of protecting active content from the
host computer on which it is running has been explored,
but comprehensive solutions have not been found yet.
Moore [22] gives a good summary of work on software
techniques and algorithms. The driving application for
work in this area is on mobile agents. Work on securing
the agent has focused on protecting state acquired at one
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server from being altered by other servers. In contrast, ac-
tive content in our system does not alter its state as it moves
from one cache to the next. Our main concern is that each
cache should execute the code correctly. This is also a
concern in the realm of mobile agents, but our problem is
a somewhat easier one. The reason is that a publisher in
our system is able to know what the output of each cache
should be while the owner of an agent cannot know since
the purpose of the agent is to gather previously unknown
data. Yee [23] has proposed constructing a trusted, secure
environment for mobile agents using tamper-proof hard-
ware. Agents executing inside the environment can be sure
that they will run without interference from malicious en-
tities. This solution is generally applicable and we have
considered using it in our own work. As we have said in
Section III, the disadvantage of using trusted hardware is
that its price/performance ratio is extremely unattractive
due to engineering and construction costs. Building a high
performance web cache using secure coprocessors would
be prohibitively expensive.

The problem of protecting infrastructure from mobile
code has been well studied. Moore [22] also contains
a good survey of work in this area. Approaches come
in several flavors: language-level protection and run-time
checks [24] and load-time [25] checks. Our work builds
on research from this area, applying mechanisms devel-
oped for mobile agents, or web browsers, to the domain of
protecting caches.

VIII. CONCLUSION

We have introduced Gemini, an enhanced caching in-
frastructure which seeks to be publisher-centric. Publish-
ers are given the ability to dictate how caches treat their
content both in the data plane and the control plane. In
the data plane, publishers are able to ship code to the
caches to generate content dynamically. In the control
plane, publishers can specify logging and QoS parameters.
Learning from the successful example of the Internet’s de-
sign, we adopt an architecture that allows caches with het-
erogeneous ownership and functionalities. To accommo-
date heterogeneity in an environment where content can
be modified by caches, we present a security model which
seeks to protect publishers from malicious caches using
two methods: (i) giving the publisher control over which
caches are authorized to generate content, and (ii) by pro-
viding verification mechanisms. In addition, we describe
a deployment mechanism which enables Gemini to seam-
lessly interoperate with the existing caching infrastructure.
We also present a node design which builds upon an exist-
ing cache, Squid, to implement Gemini’s features.

Our preliminary performance evaluation shows that
there are several areas in which Gemini could be opti-
mized, especially in security. Future work includes imple-
menting these optimizations as well as adding more fea-
tures. For example, we wish to extend the publisher’s con-
trol so that it can also specify the replacement policy for
its content. And introducing additional data types such as

streaming media would raise a number of research ques-
tions on topics ranging from quality of service to security.
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