With Microscope and Tweezers:
An Analysis of the Internet Virus of November 1988

Mark W. Eichin and Jon A. Rochlis

Massachusetts Institute of Technology
77 Massachusetts Avenue, E40-311
Cambridge, MA 02139

Abstract

In early November 1988 the Internet, a collection of net-
works consisting of 60,000 host computers implementing
the TCP/IP protocol suite, was attacked by a virus, a pro-
gram which broke into computers on the network and which
spread from one machine to another. This paper is a detailed
analysis of the virus program We describe the lessons that
this incident has taught the Internet community and topics
for future consideration and resolution. A detailed routine
by routine description of the virus program including the
contents of its built in dictionary is provided.

1 Introduction

The Internet[1][2], a collection of interconnected networks
linking approximately 60,000 computers, was attacked by a
virus program on 2 November 1988. The Intemet commu-
nity is comprised of academic, corporate, and goverment
research users, all seeking to exchange information to en-
hance their research efforts.

The virus broke into Berkeley Standard Distribution
(BSD) UNIX! and derivative systems. Once resident in a
computer, it attempted to break into other machines on the
network. This paper is an analysis of that virus program
and of the reaction of the Internet community to the attack.

1.1 Organization

In Section 1 we discuss the categorization of the program
which attacked the Internet, the goals of the teams work-
ing on isolating the virus and the methods they employed,
and summarize what the virus did and did not actually do.

LUNIX is a trademark of AT&T. DEC, VAX, and Ultrix are trademarks
of Digitial Equipment Corporation. Sun, SunOS, and NFS are trademarks
of Sun Microsystems, Inc. IBM is a trademark of International Business
Machines, Inc.

CH2703-7/89/0000/0326301.00 © 1989 IEEE

326

In Section 2 we discuss in more detail the strategies it em-
ployed, the specific attacks it used, and the effective and
ineffective defenses proposed by the community. Once the
crisis had passed, the Internet community had time not only
to explore the vulnerabilities which had allowed the attack
to succeed, but also to consider how future attacks could
be prevented. Section 3 presents our views on the lessons
leamed and problems to be faced in the future. In Section
4 we acknowledge the people on our team and the people
at other sites who aided us in the effort to understand the
virus.

We present a subroutine by subroutine description of the
virus program itself in Appendix A, including a diagram
of the information flow through the routines which com-
prise the “‘cracking engine”. Appendix B contains a list of
the words included in the built-in dictionary carried by the
virus.

1.2 A Rose by Any Other Name

The question of how to classify the program which infected
the Internet has received a fair amount of attention. Was it
a ‘‘virus” or “‘worm’’; or was it something else?

There is confusion about the term “‘virus.” To a biolo-
gist a virus is an agent of infection which can only grow and
reproduce within a host cell. A lytic virus enters a cell and
uses the cell’s own metabolic machinery to replicate. The
newly created viruses (more appropriately called ““virons”’)
break out of the infected cell, destroying it, and then seek
out new cells to infect. A lysogenetic virus, on the other
hand, alters the genetic material of its host cells. When
the host cell reproduces it unwittingly reproduces the vi-
ral genes. At some point in the future, the viral genes are
activated and many virons are produced by the cell. These
proceed to break out of the cell and seek out other cells to
infect[3]. Some single strand DNA viruses do not kill the
host cell; they use the machinery of the host cell to repro-
duce (perhaps siowing normal celluar growth by diverting

resources) and exit the cells in a non-destructive manner[4].

A “‘worm” is an organism with an elongated segmented
body. Because of the shape of their bodies worms can
snake around obstacles and work their way into unexpected
places. Some worms, for example the tapeworm, are para-
sites. They live inside of a host organism, feeding directly
from nutrients intended for host cells. These worms re-
produce by shedding one of their segments which contains
many eggs. They have difficulty in reaching new hosts,
since they usually leave an infected host through its excre-
tory system and may not readily come into contact with an-
other host{5].

In deciding which term fits the program which infected
the Internet, we must decide which part of the system is
analogous to the “‘host””. Possibilities include the network,
host computers, programs, and processes. We must also
consider the actions of the program and its structure.

Viewing the network layer as the ‘‘host” is not fruitful;
the network was not attacked, specific hosts on the network
were. The infection never spread beyond the Intemet even
though there were gateways to other types of networks.
One could view the infection as a worm, which *‘wiggled”
throughout the network. But as Beckman points out[6] the
program didn’t have connected ‘‘segments” in any sense.
Thus it can’t be a worm.

A model showing the computers as the ‘‘host” is more
promising. The infection of 2 November entered the hosts,
reproduced, and exited in search of new hosts to infect.
Some people might argue that since the host was not de-
stroyed in this process, that the infecting program was more
like a worm than a virus. But, as mentioned earlier, not all
viruses destroy their host cells. Denning [7] defines a com-
puter worm as a program which enters a workstation and
disables it. In that sense the infection could be considered a
worm, but we reject this definition. The infected computers
were affected but not all were ““disabled”. There is also no
analog to the segments of a biological worm.

Denning has described how many personal computer
programs have been infected by viral programs[7]. These
are frequently analogous to lysogenetic viruses because
they modify the actual program code as stored in the com-
puter’s secondary storage. As the infected programs are
copied from computer to computer through normal soft-
ware distribution, the viral code is also copied. At some
point the viral code may activate and perform some action
such as deleting files or displaying a message. Applying
this definition of a virus while viewing programs as ‘‘hosts”
does not work for the Internet infection, since the virus nei-
ther attacked nor modified programs in any way.

If, however, processes are view as ‘‘hosts”, then the In-
ternet infection can clearly be considered a viral infection.
The virus entered hosts through a daemon process, tricking
that process into creating a viral process, which would then

327

attempt to reproduce. In only one case, the finger attack,
was the daemon process actually changed; but as we noted
above only lysogenetic viruses actually change their host’s
genetic material.

Denning defines a bacterium as a program which repli-
cates itself and feeds off the host’s computational resources.
While this seems to describe the program which infected
the Intemet, it is an awkward and vague description which
doesn’t seem to convey the nature of the infection at all.

Thus we have chosen to call the program which infected
the Internet a virus. We feel it is accurate and descriptive.

1.3 Goals and Targets

The program that attacked many Intemnet hosts was itself
attacked by teams of programmers around the country. The
goal of these teams was to find out all the inner workings of
the virus. This included not just understanding how to stop
further attacks, but also understanding whether any perma-
nent damage had been done, including destruction or alter-
ation of data during the actual infection, or possible ‘“‘time
bombs’’ left for later execution.

There were several steps in achieving these goals: in-
cluding

e isolating a specimen of the virus in a form which could
be analyzed.

e ‘“‘decompiling” the virus, into a form that could be
shown to reduce to the executable of the real thing,
so that the higher level version could be interpreted.

o analyzing the strategies used by the virus, and the el-
ements of its design, in order to find weaknesses and
methods of defeating it.

The first two steps were completed by the moming of

4 November 1988. Enough of the third was complete to
determine that the virus was harmless, but there were no
clues to the higher level issues, such as the reason for the
virus’ rapid spread.

Once the decompiled code existed, and the threat of the
virus known to be minimal, it was clear to the MIT team
and those at Berkeley that the code should be protected.
We understood that the knowledge required to write such
a program could not be kept secret, but felt that if the code
were publicly available, someone could too easily modify
it and release a damaging mutated strain. If this occurred
before many hosts had removed the bugs which allowed the
penetration in the first place, much damage would be done.

There was also a clear need to explain to the community
what the virus was and how it worked. This information, in
the form of this report, can actually be more useful to inter-
ested people than the source code could be, since itincludes
discussion of the side effects and results of the code, as well
as flaws in it, rather than merely listing the code line by line.
Conversely, there are people interested in the intricate detail

of how and why certain routines were used; there should be
enough detail here to satisfy them as well. Readers will also
find Seely[8] and Spafford’s[9] papers interesting,

1.4 Major Points

This section provides an outline of the how the virus at-
tacked and who it attacked. It also lists several things the
virus did not do, but which many people seem to have at-
tributed to the virus. All of the following points are de-
scribed in more detail in Section 2.

1.4.1 How it entered

¢ sendmail (needed debug mode, as in SunOS binary re-
leases)
o finger[10] (only VAX hosts were victims)
e remote execution system, using
® rexec
e rsh

1.42 Who it attacked

e accounts with obvious passwords, such as

none at all

o the user name

the user name appended to itself

the ‘“‘nickname”’

the last name

the last name spelled backwards

e accounts with passwords in a 432 word dictionary (see
Appendix B)

e accounts with passwords in /usr/dict/words

e accounts which trusted other machines via the
. rhost s mechanism

1.4.3 What it attacked

SUNSs and VAXes only

machines in /etc/hosts.equiv

machines in /. rhosts

machines in cracked accounts’ . forward files
machines in cracked accounts’ . rhost s files
machines listed as network gateways in routing tables
machines at the far end of point-to-point interfaces
possibly machines at randomly guessed addresses on
networks of first hop gateways

1.44 What it did NOT do

e gain privileged access (it almost never broke in as
root)

o destroy or attempt to destroy any data

e leave time bombs behind

328

o differentiate among networks (such as MILNET,
ARPANET)

e use UUCP at all

e attack specific well-known or privileged accounts such
as root

2 Strategies
2.1 Attacks

This virus attacked several things, directly and indirectly. It
picked out some deliberate targets, such as specific network
daemons through which to infect the remote host. There
were also less direct targets, such as mail service and the
flow of information about the virus.

2.1.1 Sendmail Debug Mode

The virus exploited the ‘‘debug” function of sendmail,
which enables debugging mode for the duration of the cur-
rent connection. Debugging mode has many features, in-
cluding the ability to send a mail message with a program
as the recipient (i.e. the program would run, with all of its
input coming from the body of the message). This is inap-
propriate and rumor[11] has it that the author included this
feature to allow him to circumvent security on a machine
he was using for testing. It certainly exceeds the intended
design of the Simple Mail Transfer Protocol (SMTP) [12].

Specification of a program to execute when mail is re-
ceived is normally allowed in the sendmail aliases file
orusers’ . forward files directly, for vacation 2, mail
archive programs, and personal mail sorters. It is not nor-
mally allowed for incoming connections. In the virus, the
“recipient” was a command to strip off the mail headers
and pass the remainder of the message to a command in-
terpreter. The body was a script that created a C program,
the *“‘grappling hook,”” which transfered the rest of the mod-
ules from the originiating host, and the commands to link
and execute them. Both VAX and Sun binaries were trans-
fered and both would be tried in tumn, no attempt to deter-
mine the machine type was made. On other architectures
the programs would not run, but would use resources in the
linking process. All other attacks used the same ‘‘grappling
hook’” mechanism, but used other flaws to inject the *‘grap-
pling hook” into the target machine.

The fact that debug was enabled by default was reported
to Berkeley by several sources during the 4.2BSD release.
The 4.3BSD release as well as Sun releases still had this
option enabled by default [13]. The then current release of
Ultrix did not have debug mode enabled, but the beta test

2 A program which accepts incoming mail and sends back mail to the
original sender, usually saying something like **I am on vacation, and will
not read your mail until I return.”

version of the newest release did have debug enabled (it
was disabled before finally being shipped). MIT’s Project
Athena was among a number of sites which went out of
its way to disable debug mode; however, it is unlikely that
many binary-only sites were able to be as diligent.

2.1.2 Finger Daemon Bug

The virus hit the finger daemon (£fingexd) by overflow-
ing a buffer which was allocated on the stack. The over-
flow was possible because £ingerd used a library func-
tion which did not do range checking. Since the buffer was
on the stack, the overflow allowed a fake stack frame to
be created, which caused a small piece of code to be exe-
cuted when the procedure returned 3. The library function
in question turns out to be a backward-compatibility rou-
tine, which should not have been needed after 1979 [14].

Only 4.3BSD VAX machines were attacked this way.
The virus did not attempt a Sun specific attack on finger
and its VAX attack failed when invoked on a Sun target.
Ultrix was not vulnerable to this since production releases
did not include a fingerd.

2.1.3 Rexec and Passwords

The virus attacked using the Berkeley remote execution
protocol, which required the user name and plaintext pass-
wordto be passed over the net. The program only used pairs
of user names and passwords which it had already tested
and found to be correct on the local host. A common, world
readable file (/ et c/passwd) that contains the user names
and encrypted passwords for every user on the system fa-
cilitated this search. Specifically:

« this file was an easy-to-obtain list of user names to at-
tack,

o the dictionary attack was a method of verifying pass-
word guesses which would not be noted in security
logs.

The principle of “‘least privilege” [15] is violated by the
existence of this password file. Typical programs have no
need for a list of user names and password strings, so this
privileged information should not be available to them. For
example, Project Athena’s network authentication system,
Kerberos [16), keeps passwords on a central server which
logs authentication requests, thus hiding the list of valid
user names. However, once a name is found, the authen-
tication “ticket” is still vulnerable to dictionary attack.

3 MIT s Project Athena has a * write"* daemon which has a similar piece
of code with the same flaw but it explicitly exits rather than retumning, and
thus never uses the (damaged) return stack. A comment in the code notes
that it is mostly copied from the finger daemon.

329

2.1.4 Rsh and Trust

The virus attempted to use the Berkeley remote shell pro-
gram (called rsh) to attack other machines without using
passwords. The remote shell utility is similar in function
to the remote execution system, although it is *“friendlier”
since the remote end of the connection is a command inter-
preter, instead of the exec function. For convenience, a file
/etc/hosts.equiv can contain a list of hosts trusted
by this host. The . rhost s file provides similar function-
ality on a per-user basis. The remote host can pass the user
name from a trusted port (one which can only be opened
by root) and the local host will trust that as proof that the
connection is being made for the named user.

This system has an important design flaw, which is that
the local host only knows the remote host by its network
address, which can often be forged. It also trusts the ma-
chine, rather than any property of the user, leaving the ac-
count open to attack at all times rather than when the user
is present [16]. The virus took advantage of the latter flaw
to propagate between accounts on trusted machines. Least
privilege would also indicate that the lists of trusted ma-
chines be only accessible to the daemons who need to de-
cide to whether or not to grant access.

2.1.5 Information Flow

When it became clear that the virus was propagating via
sendmail, the first reaction of many sites was to cut off
mail service. This turned out to be a serious mistake, since
it cut off the information needed to fix the problem. Mailer
programs on major forwarding nodes, such as relay.cs.net,
were shut down delaying some critical messages by as long
as twenty hours. Since the virus had altemate infection
channels (rexec and fingex), this made the isolated ma-
chine a safe haven for the virus, as well as cutting off infor-
mation from machines further “downstream’’ (thus placing
them in greater danger) since no information about the virus
could reach them by mail®. Thus, by attacking sendmail,
the virus indirectly attacked the flow of information that
was the only real defense against its spread.

2.2 Self Protection

The virus used a number of techniques to evade detection.
It attempted both to cover it tracks and to blend into the
normal UNIX environment using camouflage. These tech-
niques had had varying degrees of effectiveness.

4USENET news [17] was an effective side-channel of information
spread, although a number of sites disabled that as well.

2.21 Covering Tracks

The program did a number of things to cover its trail. It
erased its argument list, once it had finished processing the
arguments, so that the process status command would not
show how it was invoked.

It also deleted the executing binary, which would leave
the data intact but unnamed, and only referenced by the
execution of the program. If the machine were rebooted
while the virus was actually running, the file system sal-
vager would recover the file after the reboot. Otherwise the
program would vanish after exiting.

The program also used resource limit functions to pre-
vent a core dump. Thus, it prevented any bugs in the pro-
gram from leaving tell-tale traces behind.

2.2.2 Camouflage

It was compiled under the name sh, the same name used
by the Bourne Shell, a command interpreter which is of-
ten used in shell scripts and automatic commands. Even a
diligent system manager would probably not notice a large
number of shells running for short periods of time.

The virus forked, splitting into a parent and child, ap-
proximately every three minutes. The parent would then
exit, leaving the child to continue from the exact same
place. This had the effect of ‘‘refreshing’ the process, since
the new fork started off with no resources used, such as CPU
time or memory usage. It also kept each run of the virus
short, making the virus a more difficult to seize, even when
it had been noticed.

All the constant strings used by the program were ob-
scured by XOR’ing each character with the constant 81¢.
This meant that one could not simply look at the binary to
determine what constants the virus refered to (e.g. what
files it opened). But it was a weak method of hiding the
strings; it delayed efforts to understand the virus, but not
for very long.

2.3 Flaws

The virus also had a number of flaws, ranging from the sub-
tle to the clumsy. One of the later messages from Berkeley
posted fixes for some of the more obvious ones, as a humor-
ous gesture.

2.3.1 Reinfection prevention

The code for preventing reinfection of an actively infected
machine harbored some major flaws. These flaws turned
out to be critical to the ultimate ‘‘failure” of the virus, as
reinfection drove up the load of many machines, causing it
to be noticed and thus counterattacked.

330

The code had several timing flaws which made it un-
likely to work. While written in a ‘‘paranoid” manner, us-
ing weak authentication (exchanging ‘‘magic’’ numbers) to
determine whether the other end of the connection is indeed
a copy of the virus, these routines would often exit with er-
rors (and thus not attempt to quit) if:

e several viruses infected a clean machine at once, in
which case all of them would look for listeners; none
of them would find any; all of them would attempt
to become listeners; one would succeed; the others
would fail, give up, and thus be invulnerable to future
checking attempts.

several viruses starting at once, in the presence of a
running virus. If the first one ‘‘wins the coin toss’
with the listening virus, other new-starting ones will
have contacted the losing one and have the connection
closed upon them, permitting them to continue.
amachine is slow or heavily loaded, which could cause
the virus to exceed the timeouts imposed on the ex-
change of numbers, especially if the compiler was run-
ning (possibly multiple times) due to a new infection;
note that this is exacerbated by a busy machine (which
slows down further) on a moderately sized network.

Note that “‘at once’’ means *“withina 5-20 second window"’
in most cases, and is sometimes looser.

A critical weakness in the interlocking code is that even
when it does decide to quit, all it does is set the variable
pleasequit. This variable does not have an effect until
the virus has gone through
collecting the entire list of host names to attack
collecting the entire list of user names to attack
trying to attack all of the ‘‘ obvious” permutation pass-
words (see Section A.4.3)
trying ten words selected at random from the inter-
nal dictionary (see Appendix B) against all of the user
names

Since the virus was careful to clean up temporary files,
its presence alone didn’t interfere with reinfection.

Also, a multiply infected machine would spread the virus
faster, perhaps proportionally to the number of infections it
was harboring, since

e the program scrambles the lists of hosts and users it
attacks; since the random number generator is seeded
with the current time, the separate instances are likely
to hit separate targets.

o the program tries to spend a large amount of time
sleeping and listening for other infection attempts
(which never report themselves) so that the processes
would share the resources of the machine fairly well.

Thus, the virus spread much more quickly than the perpe-
trator expected, and was noticed for that very reason. The
MIT Media Lab, for example, cut themselves completely
off from the network because the computer resources ab-

sorbed by the virus were detracting from work in progress,
while the lack of network service was a minor problem.

2.3.2 Heuristics

One attempt to make the program not waste time on non-
UNIX systems was to sometimes try to open a telnet or rsh
connection to a host before trying to attack it and skipping
that host if it refused the connection. If the host refused
telnet or rsh connections, it was likely to refuse other attacks
as well. There were several problems with this heuristic:

e A pumber of machines exist which provide mail ser-

vice (for example) but that do not provide telnet or rsh
service, and although vulnerable, would be ignored
under this attack. The MIT Project Athena mailhub,
athena.mit.edu, is but one example.
The telnet *“‘probing” code immediately closed the
connection upon finding that it had opened it. By
the time the ‘‘inet daemon”, the *‘switching station’’
which handles most incoming network services, iden-
tified the connection and started a telnet daemon, the
connection was already closed, causing the telnet dae-
mon to indicate an error condition of high enough pri-
ority to be logged on most systems. Thus the times
of the earliest attacks were noted, if not the machines
they came from.

2.3.3 Vulnerabilities not used

The virus did not exploit a number of obvious opportunities.
e When looking for lists of hosts to attack, it could have
done “‘zone transfers” from the Internet domain name
servers to find names of valid hosts [18]. Many of
these records also include host type, so the search
could have limited itself to the appropriate processor
and operating system types.
It did not attack both machine types consistently. If
the VAX finger attack failed, it could have tried a Sun
attack, but that hadn’t been implemented.
It did not try to find privileged users on the local host
(such as root).

2.4 Defenses

There were many attempts to stop the virus. They varied in
inconvenience to the end users of the vulnerable systems,
in the amount of skill required to implement them, and in
their effectiveness.

e Full isolation from network was frequently inconve-
nient, but was very effective in stopping the virus, and
was simple to implement.

e Tuming off mail service was inconvenient both to lo-
cal users and to ‘‘downstream’’ sites, was ineffective
at stopping the virus, but was simple to implement.

Patching out the debug command in sendmail was
only effective in conjunction with other fixes, did not
interfere with normal users, and simple instructions for
implementing the change were available.

Shutting down the finger daemon was also effective
only if the other holes were plugged as well, was an-
noying to users if not actually inconvenient, and was
simple to perform.

Fixing the finger daemon required source code, but
was as effective as shutting it down, without annoy-
ing the users at all.

mkdir /usr/tmp/shwasconvenient, simple, and
effective in preventing the virus from propagating 5
(See Section A.8.2.)

Defining pleasequit in the system libraries was
convenient, simple, and did almost nothing to stop the
virus (See Section A.3.2.)

Renaming the UNIX C compiler and linker (cc and
1d) was drastic, and somewhat inconvenient to users
(though much less so than cutting off the network,
since different names were available) but effective in
stopping the virus.

Requiring new passwords for all users (or at least all
users who had passwords which the virus could guess)
was difficult, but it only inconvenienced those users
with weak passwords to begin with, and was effective
in conjunction with the other fixes (See Section A.4.3
and Appendix B.)

After the virus was analyzed, a tool which duplicated the
password attack (including the virus’ internal dictionary)
was posted to the network. This tool allowed system admin-
istrators to analyze the passwords in use on their system.
The spread of this virus should be effective in raising the
awareness of users (and administrators) to the importance
of choosing *‘difficult” passwords. Lawrence Livermore
National Laboratories went as far as requiring all passwords
be changed, and modifying the password changing program
to test new passwords against the lists that include the pass-
words attacked by the virus [6].

3 Lessons and Open Issues

The virus incident taught many important lessons. It also
brought up many more difficult issues which need to be ad-
dressed in the future :

o Least Privilege. This basic security principle is fre-
quently ignored and this can result in disaster.

e ““We have met the enemy and he is us.”’ The alleged
author of the virus has made contributions to the com-

5However, both sets of binaries were still compiled, consuming pro-
cessor time on an attacked machine.

puter security field and was by any definition an in-
sider; the attack did not come from an outside source
who obtained sensitive information, and restricting in-
formation such as source code would not have helped
prevent this incident.

Diversity is good. Though the virus picked on the
most widespread operating system used on the Inter-
net and on the two most popular machine types, most
of the machines on the network were never in danger.
A wider variety of implementations is probably good,
not bad. There is a direct analogy with biological ge-
netic diversity to be made.

“The cure shouldn’t be worse than the disease.”
Chuck Cole made this point and CLiff Stoll also argued
that it may be more expensive to prevent such attacks
than it is to clean up after them. Backups are good. It
may be cheaper to restore from backups than to try to
figure out what damage an attacker has done[6].

Defenses must be at the host level, not the network
level. Mike Muuss and CIiff Stoll have made this
point quite eloquently[6]. The network performed its
function perfectly and should not be faulted; the tragic
flaws were in several application programs. Attempts
to fix the network are misguided. An analogy with the
highway system can be made: anybody can drive up
to your house and probably break into your home, but
that does not mean we should close down the roads or
put armed guards on the exit ramps.

Logging information is important. The inetd and
telnetd interaction logging the source of virus at-
tacks tumed out to be a lucky break, but even so many
sites did not have enough logging information avail-
able to identify the source or times of infection. This
greatly hindered the responses, since people frequently
had to install new programs which logged more infor-
mation. On the other hand, logging information tends
to accumulate quickly and is rarely referenced. Thus
it is frequently automatically purged. If we log help-
ful information, but find it is quickly purged, we have
not improved the situtation much at all. Mike Muuss-
points out that frequently one can retrieve such infor-
mation from backups[6], but this is not always true.

Denial of service attacks are easy. The Intemet is
amazingly vulnerable to such attacks. These attacks
are quite difficultto prevent, but we could be much bet-
ter prepared to identify their sources than we are today.
For example, currently it is not hard to imagine writing
a program or set of programs which crash two-thirds
of the existing Sun Workstations or other machines
implementing Sun’s Network Filesystem (NFS). This

332

is serious since such machines are the most common
computers connected to the Intemet. Also, the total
lack of authentication and authorization for network
level routing makes it possible for an ordinary user to
disrupt communications for a large portion of the Inter-
net. Both tasks could be easily done in a manner which
makes tracking down the initiator extremely difficult,
if not impossible.

e A central security fix repository may be a good idea.
Vendors must participate. End users, who likely only
want to get their work done, must be educated about
the importance of installing security fixes.

e Knee-jerk reactions should be avoided. Openness and
free flow of information is the whole point of network-
ing, and funding agencies should not be encouraged to
do anything damaging to this without very careful con-
sideration. Network connectivity proved its worth as
an aid to collaboration by playing an invaluable role in
the defense and analysis efforts during the crisis, de-
spite the sites which isolated themselves.

4 Acknowledgments

Many people contributed to our effort to take apart the virus.
We would like to thank them all for their help and insights
both during the immediate crisis and afterwards.

4.1 The MIT team

The MIT group effort encompassed many organizations
within the Institute. It included people from Project Athena,
the Telecommunications Network Group, the Student Infor-
mation Processing Board (SIPB), the Laboratory for Com-
puter Science, and the Media Laboratory.

The SIPB’s role is quite interesting. It is a volunteer stu-
dent organization that represents students on issues of the
MIT computing environment, does software development,
provides consulting to the community, and other miscel-
laneous tasks. Almost all the members of the MIT team
which took apart the virus were members of the SIPB, and
the SIPB office was the focus for early efforts at virus catch-
ing until people gathered in the Project Athena offices.

Mark W. Eichin (Athena and SIPB) and Stanley R. Za-
narotti (LCS and SIPB) led the team disassembling the virus
code. The team included Bill Sommerfeld (Athena/Apollo
Computer and SIPB), Ted Y. Ts’0 (Athena and SIPB), Jon
Rochlis (Telecommunications Network Group and SIPB),
Ken Raeburn (Athena and SIPB), Hal Birkeland (Media
Laboratory), and John T. Kohl (Athena/DEC and SIPB).

Jeffrey 1. Schiller (Campus Network Manager, Athena
Operations Manager, and SIPB) did a lot of work in trap-
ping the virus, setting up an isolated test suite, and dealing

with the media. Pascal Chesnais (Media Laboratory) was
one of the first at MIT to spot the virus. Ron Hoffmann
(Network Group) was one of the first to notice an MIT ma-
chine attacked by finger.

Tim Shepard (LCS) provided information about the prop-
agation of the virus, as well as large amounts of ‘‘netwatch”
data and other technical help.

James D. Bruce (EECS Professor and Vice President for
Information Systems) and the MIT News Office did an ad-
mirable job of keeping the media manageable and letting us
get our work done.

4.2 The Berkeley Team

We communicated and exchanged code with Berkeley ex-
tensively throughout the morning of 4 November 1988. The
team there included Keith Bostic (Computer Systems Re-
search Group, University of California, Berkeley), Mike
Karels (Computer Systems Research Group, University of
California, Berkeley), Phil Lapsley (Experimental Comput-
ing Facility, University of California, Berkeley), Dave Pare
(FX Development, Inc.), Donn Seeley (University of Utah),
Chris Torek (University of Maryland), and Peter Yee (Ex-
perimental Computing Facility, University of California,
Berkeley).

4.3 Others

Numerous others across the country deserve thanks; many
of them worked directly or indirectly on the virus, and
helped coordinate the spread of information. Special thanks
should go to Gene Spafford (Purdue) for serving as a central
information point and providing key insight into the work-
ings of the virus. Don Becker (Harris Corporation) has pro-
vided the most readable decompilation of the virus which
we have seen to date. It was most helpful.

People who offered particularly valuable advice included
Judith Provost, Jennifer Steiner, Mary Vogt, Stan Zanarotti,
Jon Kamens, Marc Horowitz, Jenifer Tidwell, James Bruce,
Jerry Saltzer, Steve Dyer, Ron Hoffmann and many un-
named people from the SIPB Office. Any remaining flaws
in this paper are our fault, not theirs.

Special thanks to Bill Sommerfeld for providing the de-
scription of the finger afttack .

KEK]

A The Program

This Appendix describes the virus program subroutine by
subroutine. For reference, the flow of information among
the subroutines is shown in Figure 1.

A.1 Names

The core of the virus is a pair of binary modules, one for
the VAX architecture and the other for the Sun architec-
ture. These are linkable modules, and thus have name lists
for their internal procedures. Many of the original names
are included here with the descriptions of the functions the
routines performed.

It is surprising that the names are included, and astonish-
ing that they are meaningful. Some simple techniques, such
as randomizing the procedure names, would have removed
a number of clues to the function of the virus.

A.2 main

The main module, the starting point of any C language pro-
gram, does some initialization, processes its command line,
and then goes off into the loop which organizes all of the
real work.

A.2.1 [Initialization

The program first takes some steps to hide itself. It changes
the ‘‘zeroth” argument, which is the process name, to sh.
Thus, no matter how the program was invoked, it would
show up in the process table with the same name as the
Bourne Shell, a program which often runs legitimately.

The program also sets the maximum core dump size to
zero blocks. If the program crashed® it would not leave a
core dump behind to help investigators. It also tumns off
handling of write errors on pipes, which normally cause the
program to exit.

The next step is to read the clock, store the current time
in a local variable, and use that value to seed the random
number generator.

A.2.2 Command line argument processing

The virus program itself takes an optional argument -p
which must be followed by a decimal number, which seems
to be a process id of the parent which spawned it. It uses
this number later to kill that process, probably to ““close the
door” behind it.

The rest of the command line arguments are ‘‘object
names’’. These are names of files it tries to load into its

6 For example, the virus was originally compiled using 4.3BSD decla-
ration files. Under 4.2BSD, the alias name list did not exist, and code such
as the virus which assumes aliases are there can crash and dump core.

334

address space. If it can’t load one of them, it quits. If the
-p argument is given, it also deletes the object files, and
later tries to remove the disk image of running virus, as well
as the file /tmp/ . dumb. (This file is not referenced any-
where else in the virus, so it is unclear why it is deleted.)

The program then tried a few furthersteps, exiting (*‘bail-
ing out’) if any of them failed:

o It checked that it had been given at least one object on

the command line.

o It checked to see if it had successfully loaded in the

object 11.c.

If the “‘-p” argument was given, the program closes all
file descriptors, in case there are any connections open to
the parent.

The program then erases the text of the argument array, to
further obscure how it was started (perhaps to hide anything
if one were to get a core image of the running virus.)

It scans all of the network interfaces on the machine, gets
the flags and addresses of each interface. It tries to get the
point-to-point address of the interface, skipping the loop-
back address. It also stores the netmask for that network
[19].

Finally, it kills off the process id given with the ‘‘-p” op-
tion. It also changes the current process group, so that it
doesn’t die when the parent exits. Once this is cleaned up,
it falls into the doit routine which performs the rest of the
work.

A.3 doit routine

This routine is where the program spends most of its time.

A.3.1 Initialization

Like the main routine, it seeds the random number generator
with the clock, and stores the clock value to later measure
how long the virus has been running on this system.

It then tries hg. If that fails, it tries A4l. If that fails, it tries
ha.

It then tries to check if there is already a copy of the virus
running on this machine. Errors in this code contributed to
the large amounts of computer time taken up by the virus.
Specifically:

¢ On a one-in-seven chance, it won’t even try to test for
another virus.

e The first copy of the virus to run is the only one which
listens for others; if multiple infections occur “‘simul-
taneously ’ they will not “‘hear’’ each other, and all but
one will fail to listen (see section A.12).

The remainder of the initialization routine seems de-
signed to send a single byte to address 128.32.137.13,
which is ernie.berkeley.edu, on port 11357. This never hap-
pens, since the author used the sendto function on a TCP

Interface Table Routing Table / .rhosts /etc/hosts.equiv
Phase 0 /ete/passwd
if init rt_init \
~/.forward ~/.rhosts
Phase 1 Obvious Guesses
Host List User Name List l* *l
| Phase 2 Internal Words
Guessed Passwords Phase 3 | /usr/dict /words
Hit finger Bit SMTP Hit rsh Hit rexec
i
waithit
(wait for infected client to respond)

Figure 1: The structure of the attacking engine.

335

stream connection, instead of a UDP datagram socket.” We
have no explanation for this; it only tries to send this packet
with a one in fifteen random chance.

A3.2 Main loop

An infinite loop comprises the main active component of
the virus. It calls the cracksome routine® which tries to find
some hosts that it can break in to. Then it waits 30 seconds,
listening for other virus programs attempting to break in,
and tries to break into another batch of machines.

After this round of attacks, it forks, creating two copies of
the virus; the original (parent) dies, leaving the fresh copy.
The child copy has all of the information the parent had,
while not having the accumulated CPU usage of the parent.
It also has a new process id, making it hard to find.

Next, the kg, hl, and ha routines search for machines to
infect (see Appendix A.5). The program sleeps for 2 min-
utes, and then checks to see if it has been running for more
than 12 hours, cleaning up some of the entries in the host
list if it has.

Finally, before repeating, it checks the global variable
pleasequit. If it is set, and if it has tried more than 10
words from its own dictionary against existing passwords,
it quits. Thus forcing pleasequit to be set in the sys-
tem libraries will do very little to stem the progress of this
virus®.

A.4 Cracking routines

This collection of routines is the ‘‘brain” of the virus.
cracksome, the main switch, chooses which of four strate-
gies to execute. It is would be the central point for adding
new strategies if the virus were to be further extended.
The virus works each strategy through completely, then
switches to the next one. Each pass through the cracking
routines only performs a small amount of work, but enough
state is remembered in each pass to continue the next time
around. '

A4.1 cracksome

The cracksome routine is the central switching routine of
the cracking code. It decides which of the cracking strate-
gies is actually exercised next. Again, note that this rou-
tine was named in the global symbol table. It could have
been given a confusing or random name, but it was actually
clearly labelled, which lends some credence to the idea that
the virus was released prematurely.

71f the author had been as careful with error checking here as he tricd
to be elscwhere, he would have noted the error *‘socket not connected”
every time this routine is invoked.

8This name was actually in the symbol table of the distributed binary!

9 Although it was suggested very early [20].

336

A.42 Phase 0

The first phase of the cracksome routines reads through
the /etc/hosts.equiv file to find machine names that
would be likely targets. While this file indicates what hosts
the current machine trusts, it is fairly common to find sys-
tems where all machines in a cluster trust each other, and
at the very least it is likely that people with accounts on
this machine will have accounts on the other machines men-
tioned in /etc/hosts.equiv.

It also reads the /. rhosts file, which lists the set of
machines that this machine trusts root access from. Note
that it does not take advantage of the trust itself [21] but
merely uses the names as a list of additional machines to
attack. Often, system managers will deny read access to this
file to any user other than root itself, to avoid providing any
easy list of secondary targets that could be used to subvert
the machine; this practice would have prevented the virus
from discovering those names, although / . rhost s is very
often a subset of /et c/hosts.equiv.

The program then reads the entire local password file,
/etc/passwd. It uses this to find personal . forward
files, and reads them in search of names of other machines
it can attack. It also records the user name, encrypted
password, and GECOS information string, all of which
are stored in the /etc/passwd file. Once the program
scanned the entire file, it advanced to Phase 1.

A4.3 Phasel

This phase of the cracking code attacked passwords on the
local machine. It chose several likely passwords for each
user, which were then encrypted and compared against the
encryptions obtained in Phase 0 from /etc/passwd:

e No password at all.

o The user name itself.

o The user name appended to itself.

o The second of the comma separated GECOS informa-

tion fields, which is commonly a nickname.

¢ The remainder of the full name after the first name in

the GECOS fields, i.e. probably the last name, with
the first letter converted to lower case.

o This ‘‘last name’’ reversed.

All of these attacks are applied to fifty passwords at a
time from those collected in Phase 0. Once it had tried to
guess the passwords for all local accounts, it advanced to
Phase 2.

A.4.4 Phase 2

Phase 2 takes the intemnal word list distributed as part of
the virus (see Appendix B) and shuffles it. Then it takes
the words one at a time and decodes them (the high bit is
set on all of the characters to obscure them) and tries them

against all collected passwords. It maintains a global vari-
able nextw as an index into this table. The main loop uses
this to prevent pleasequit from causing the virus to exit
until at least ten of the words have been checked against all
of the encryptions in the collected list.

Again, when the word list is exhausted the virus advances
to Phase 3.

A4.5 Phase 3

Phase 3 looks at the local /usr/dict/words file, a
24474 word list distributed with 4.3BSD (and other UNIX
systems) as a spelling dictionary. The words are stored in
this file one word per line. One word at a time is tried
against all encrypted passwords. If the word begins with
an upper case letter, the letter is converted to lower case
and the word is tried again.

When the dictionary runs out, the phase counter is again
advanced to 4 (thus no more password cracking is at-
tempted).

A.5 H routines

The “h routines’’ are a collection of routines with short
names, such as hg, ha, hi, and hl, which search for other
hosts to attack.

AS51 hg

The hg routine calls r¢_init (if it has not already been called)
to scan the routing table, and records all gateways except
the loopback address in a special list. It then tries a generic
attack routine to attack via rsh, finger, and SMTP. It
returns after the first successful attack.

AS52 ha

The ha routine goes through the gateway list and connects
to TCP port 23, the telnet port, looking for gateways which
are running telnet listeners. It randomizes the order of such
gateways and calls n (our name) with the network number
of each gateway. The ha retumns after in reports that it has
succeeded broken into a host,

AS53 hl

The Al routine iterates through all the addresses for the local
machine calling An with the network number for each one.
It returns if hin indicates success in breaking into a host.

AS54 hi

The hi routine goes through the intemal host list (see sec-
tion A.4.2) and tries to attack each host via rsh, finger,
and SMTP. It returns if when one host is infected.

337

ASS5 hn

The hn routine (our name) followed i takes a network num-
ber as an argument. Surprisingly it returns if the network
number supplied is the same as the network number of any
of the interfaces on the local machine. For Class A ad-
dresses it uses the Arpanet IMP convention to create pos-
sible addresses to attack (net.[1-8].0.(1-255]). For all other
networks it guesses hosts number one through 255 on that
network. It randomizes the order of this list of possible
hosts and tries to attack up to twenty of them using rsh,
finger, and SMTP. If a host does not accept connections
on TCP port 514, the rsh port, An will not try to attack it.
If a host is successfully attacked hn returns.

A.5.6 Usage

The *“h routines”’ are called in groups in the main loop; if
the first routine succeedes in finding a vulnerable host the
remaining routines are not called in the current pass. Each
routine returns after it finds one vulnerable host. The hg
routine is always called first, which indicates the virus re-
ally wanted to infect gateway machines. Next comes hi
which tried to infect normal hosts found via cracksome. If
hi fails, ha is called, which seemed to try breaking into hosts
with randomly guessed addresses on the far side of gate-
ways. This assumes that all the addresses for gateways had
been obtained (which is not trivial to verify from the con-
voluted code in r¢ init), and implies that the virus would
prefer to infect a gateway and from there reach out to the
gateway'’s connected networks, rather than trying to hop the
gateway directly. If hg, hi, and ha all failed to infect a host,
then hl is called which is similar to ha but uses for local
interfaces for a source of networks.

It is not clear that ha and h! worked. Because hn returns
if the address is local, k! appears to have no chance of suc-
ceeding. If alternate addresses for gateways are indeed ob-
tained by other parts of the virus then ha could work. But
if only the addresses in the routing table were used it could
not work, since by definition these addresses must be on
a directly connected network. Also, in our monitoring we
never detected an attack on a randomly generated address.
These routines do not seem to have been functional.

A.6 Attack routines

There are a collection of attack routines, all of which try to
obtain a Bourne Shell running on the targeted machine. See
Appendix A.7 for a description of the 11 . ¢ program, used
by all the attack routines.

A.6.1 hul

The hul routine is called by the Phase 1 and Phase 3 crack-
some subroutines. Once a password for user name guessed
correctly, this routine is called with a host name read from
either the user’s . forward or .rhosts files. In order
to assume the user’s id it then tries to connect to the local
machine’s rexec server using the guessed name and pass-
word. If successful it runs an rsh to the target machine,
trying to execute a Bourne Shell, which it uses to send over
and compile the 11 . c infection program.

A.6.2 Hit SMTP

This routine make a connection to TCP port 25, the SMTP
port, of a remote machine and used it to take advantage of
the sendmail bug. It attempts to use the debug option to
make sendmail run a command (the ‘‘recipient” of the
message), which transfers the 11.c program included in
the body of the message.

A.6.3 Hit finger

The “hit finger’’ routine tries to make a connection to TCP
port 79, the finger port, of the remote machine. Then it
creates a ‘‘magic packet’ which consists of

e A 400 byte ‘“‘runway” of VAX ‘“‘nop” instructions,

which can be executed harmlessly.

e A small piece of code which executes a Bourne Shell.

e A stack frame, with a return address which would

hopefully point into the code.

Note that the piece of code is VAX code, and the stack
frame is a VAX frame, in the wrong order for the Sun. Thus,
although the Sun finger daemon has the same bug as the
VAX one, this piece of code cannot exploit it.

The attack on the finger daemon is clearly a lysogenetic
‘“‘viral” attack (see Section 1.2), since although a worm
doesn’t modify the host machine at all, the finger attack
does modify the running finger daemon process. The “in-
jected DNA”’ component of the virus contained the VAX
instructions shown in Figure 2.

The execve system call causes the current process to
be replaced with an invocation of the named program;
/bin/sh is the Bourne Shell, a UNIX command inter-
preter. In this case, the shell winds up running with its input
coming from, and its output going to, the network connec-
tion. The virus then sends over the 11 . c bootstrap pro-
gram.

A.6.4 Hit rsh

This unlabeled routine tries x sh to the target host (assum-
ing it can get in as the current user). It tries three different
names for the rsh binary,

338

e /usr/ucb/rsh

e /usr/bin/rsh

e /bin/rsh
If one of them succeeds, it tries to resynchronize (see Ap-
pendix A.8.1) the connection; if that doesn’t succeed within
thirty seconds it kills off the child process. If successful the
connection can then be used to launchthe 11 . ¢ *‘grappling
hook’’ program at the victim.

Note that this infection method doesn’t specify a user
name to attack; if it gets into the remote account, it is be-
cause the user that the virus is running as also has an account
on the other machine which trusts the originating machine.

A.6.5 Hit rexec

The hit rexec routine uses the remote execution system
which is similar to r sh, but designed for use by programs.
It connects and sends the user name, the password, and
/bin/sh as the command to execute.

A.6.6 makemagic

This routine tries to make a telnet connection to each of the
available addresses for the current victim. It broke the con-
nections immediately, often producing error reports from
the telnet daemon, which were recorded, and provide some
of the earliest reports of attack attempts.©

If it succeedes in reaching the host, it creates a TCP lis-
tener on a random port number which the infected machine
would eventually connect back to.

A.7 Grappling Hook

A short program, named 11. ¢, is the common grappling
hook that all of the attack routines use to pull over the rest
of the virus. Itis robustly written, and fairly portable. It ran
on a number of machines which were neither VAX or Sun,
loading them down as well, but only making them periph-
eral victims of the virus.

The first thing it does is delete the binary it was running
from. It checks that it has three arguments (exiting if there
aren’t three of them). It closes all file descriptors and then
forks, exiting if the fork fails. If it succeeds, the parent ex-
its; this leaves no connection from the child to the infection
route.

Next, it creates a TCP connection back to the address
given as the first argument, and the port given as the second.
Then it sends over the magic number given as the- third.
The text of each argument is erased immediately after it is
used. The stream connection is then reused as the program’s
standard input and output.

120n fast machines, suchas the DEC VAX 3200, there may be no record
of these attacks, since the connection is handed off fast enough to satisfy
the daemon.

pushl $68732fF push
pushl $6e69622fF push
movl sp,rl0 save
pushl $0 push 0O
pushl $0 push 0
pushl rl0 push
pushl $3 push
movl sp, ap

chmk $3b do

"/ sh<NUL>'
’/bin’
address of start of string

(arg 3 to execve)
(arg 2 to execve)

string addr (arg 1 to execve)
argument count
set argument pointer
"execve"

kernel call.

Figure 2: VAX intructions for the £inger attack.

A loop reads in a length (as a network byte order 32-
bit integer) and then a filename. The file is unlinked and
opened for write, and then the file itself is read in (using the
number of bytes read in earlier.) On any error, all of the
files are unlinked. If the length read in is -1, the loop exits,
and a Boume Shell is executed (replacing the 11 program,
and getting its input from the same source.)

A.8 Install Routines

There are a variety of routines used to actually move the
virus from one machine to the other. They deal with the
‘‘virus protocol” connection made by the 11.c injected
program or with the shell that it spawns.

A.8.1 resynch

The resynch routine sends commands to a remote shell, re-
questing that it echo back a specific randomly chosen num-
ber. It then waits a certain amount of time for a response.
This routine is used to indicate when the various subpro-
grams of the infection procedure have compiled or executed
and a Bourne Shell prompt is available again.

A8.2 waithit

This routine does much of the high level work. It waits (up
to 2 minutes) for a return connection from a victim (which
has had 11 . c injected into it.) It then tries to read a magic
number (which had been previously sent to that victim as a
command line argument to the 11 program) and gives up
after ten seconds.

After the connection is established, all of the current *‘ob-
jects” in storage in the virus are fed down the connection
into the victim. Then it tries to resynchronize, and if it suc-
ceeds, sends down commands to

e set the PATH of the victim shell

e try to delete sh in the current directory (/usr/tmp)

339

o ifthe delete fails, pick a random name to use instead !*
e scan the list of objects, looking for names ending in
.0
link and run each of these, with the command line ar-
guments

e -p $$, where $$ is the process id of the victim

shell

e each object name
resynchronize; if this fails, assume that the virus suc-
ceeded (since the —p option tells the virus to kill off
the parent shell) and set flag bit 1 of the host list entry
(the host list is detailed in section A.9).
delete the compiled program, and go on to the next
object.

Thus, to add another machine type, the virus merely
needs to be started with a new object binary as a command
line option, which will then be propagated to the next in-
fected host and tried.

Note that the path used here was PATH= bin:
/usr/bin: /usr/ucb which is certainly reason-
able on most systems. This protects systems with ‘‘un-
usual” filesystem layouts, and suggests that complete con-
sistency among systems makes them more vulnerable.

A.9 Host modules

These are a set of routines designed to collect names and
addresses of target hosts in a master list. Each entry con-
tains up to six addresses, up to twelve names, and a flags
field.

A9.1 Name to host

This routine searches the host list for a given named host,
retumns the list entry describing it, and optionally adds it to
the list if it isn’t there already.

! Since the delete command used (rm - £) did not remove directories,
creating a directory /usr/tmp/sh stoped the virus[22]. However, the
virus would still use CPU resources attempting to link the objects, even
though it couldn’t write to the output file (since it was a directory).

A.9.2 Address to host

This routine searches the host list for a given host address,
retumns the list entry describing it, and optionally adds it to
the list if it isn’t there already.

A.9.3 Add address/name

These two routines added an address or a name to a host list
entry, checking to make sure that the address or name was
not already known.

A.9.4 Clean up table

This routine cycles through the host list, and removes any
hosts which only have flag bits 1 and 2 set (and clears those
bits.) Bit 1 is set when a resynchronize (in waithiz) fails,
probably indicating that this host ‘“‘got lost”. Bit 2 is set
when a named host has no addresses, or when several dif-
ferent attack attempts fail. Bit 3 is set when Phase 0 of the
crack routines successfully retrieves an address for the host.

A9.5 Get addresses

This routine takes an entry in the host table and tries to fill
in the the gaps. It looks up an address for a name it has, or
looks up a name for the addresses it has. It also includes
any aliases it can find.

A.10 Object routines

These routines are what the system uses to pull all of its
pieces into memory when it starts (after the host has been
infected) and then to retrieve them to transmit to any host it
infects.

A.10.1 Load object

This routine opens a file, determines its length, allocating
the appropriate amount of memory, reads it in as one block,
decodes the block of memory (with XOR). If the object
name contains a comma, it moves past it and starts the name
there.

A.10.2 Get object by name

This routine returns a pointer to the requested object. This is
used to find the pieces to download when infecting another
host.

A.11 Other initialization routines
A.11.1 if init

This routine scans the array of network interfaces. It gets
the flags for each interface, and makes sure the interface

340

is UP and RUNNING (specific fields of the flag structure).
If the entry is a point to point type interface, the remote
address is saved and added to the host table. It then tries to
enter the router into the list of hosts to attack.

A11.2 rt init

This routine runs net stat -r -n as a subprocess. This
shows the routing table, with the addresses listed numer-
ically. It gives up after finding 500 gateways. It skips the
default route, as well as the loopback entry. It checks for re-
dundant entries, and checks to see if this address is already
an interface address. If not, it adds it to the list of gateways.

After the gateway list is collected, it shuffles it and enters
the addresses in the host table.

A.12 Interlock routines

The two routines checkother and othersleep are at the heart
of the excessive propagation of the virus. It is clear that the
author intended for the virus to detect that a machine was
already infected, and if so to skip it. The code is actually
fraught with timing flaws and design errors which lead it
to permit multiple infections, probably more often than the
designer intended!2.

An active infection uses the othersleep routine for two
purposes, first to sleep so that it doesn’t use much processor
time, and second to listen for requests from ‘‘incoming”
viruses. The virus which is running othersleep is referred to
as the “‘listener”’ and the virus which is running checkother
is referred to as the ‘‘tester”.

A12.1 Checkother

The tester tries to connect to port 23357 on the local ma-
chine (using the loopback address, 127.0.0.1) to see if it can
connect to a listener. If any errors occur during this check,
the virus assumes that no listener is present, and tries to be-
come a listener itself.

If the connection is successful, the checker sends a magic
number'3, and listens (for up to 300 seconds) for a magic
number from the listener!%. If the magic number is wrong,
the checker assumes it is being spoofed and continues to
run.

The checker then picks a random number, shifts it right
by three (throwing away the lower three bits) and sends it
to the listener. It expects a number back within ten sec-
onds, which it adds to the one sent. If this sum is even, the

12This behavior was noted by both looking at the code and by creating
a testbed setup, manually running a program that performs the checking
and listening functions.

13874697,¢, 88654310, 041643227,

14148898, ¢,1345688,¢, 051042304

sender increments pleasequit, which (as noted in sec-
tion A.3.2) does very little.

Once it has finished communicating (or failing to com-
municate) with the listener, the checker sleeps for five sec-
onds and tries to become a listener. It creates a TCP stream
socket, sets the socket options to indicate that it should al-
low multiple binds to that address (in case the listener still
hasn’t exited, perhaps?) and then binds the socket to port
23357, and listens on it (permitting a backlog of up to ten
pending connections.)

A.12.2 Othersleep

The othersleep routine is run when the main body of the
virus wants to idle for a period of time. This was appar-
ently intended to help the virus ‘*hide” so that it wouldn’t
use enough processor time to be noticed. While the main
program sleeps, the listener code waits to see if any check-
ers have appeared and queried for the existence of a listener,
as a simple ‘‘background task” of the main virus.

The routine first checks to see if it has been set up as a
listener; if not, it calls the normal sleep function to sleep for
the requested number of seconds, and retums.

If it is set up as a listener, it listens on the checking port
with a timeout. If it times out, it returns, otherwise it deals
with the connection and subtracts the elapsed real time from
the time out value.

The body of the listener ‘‘accepts’ the connection, and
sends a magic number to the checker. It then listens (for up
to 10 seconds) for the checker’s magic number, and picks a
random number. It shifts the random number right by three,
discarding the lower bits, and sends it up to the checker; it
then listens (for up to 10 seconds) for a random number
from the checker. If any of these steps fail, the connection
is closed and the checker is ignored.

Once the exchanges have occurred, the address of the in-
coming connection is compared with the loopback address.
Ifitis not from the loopback address, the attempt is ignored.
If it is, then if the sum of the exchanged random numbers is
odd, the listener increments pleasequit (with little ef-
fect, as noted in section A.3.2) and closes the listener con-
nection.

B Built in dictionary

432 words were included:

aaa academia aerobics
airplane albany albatross
albert alex alexander
algebra aliases alphabet
ama amorphous analog

anchor andromache animals
answer anthropogenic anvils

341

anything
arrow
atmosphere
bacchus
bananas
barber
bassoon
beauty
benz
berliner
bicameral
brian
bumbling
cantor
carolina
castle
celtics
charles
chester
clusters
collins
condo
cormnelius
creosote
dancer
dave
deluge
dieter
disney
duncan
edges
edwina
eileen
elizabeth
engine
enzyme
estate
extension
fender
finite
float
foolproof
format
fred

fun
gardner
george
glacier
gorgeous
gouge
guest
guntis
handily

aria
arthur
aztecs
bailey
bandit
baritone
batman
beethoven
beowulf
beryl

bob
bridget
burgess
cardinal
caroline
cat
cerulean
charming
cigar
coffee
commrades
cookie
couscous
cretin
daniel
december
desperate
digital
dog
eager
edinburgh
egghead
einstein
ellen
engineer
ersatz
euclid
fairway
fermat
fishers
flower
football
forsythe
friend
fungible
garfield
gertrude
gnu
gorges
graham
guitar
hacker
happening

ariadne
athena
azure
banana
banks
bass
beater
beloved
berkeley
beverly
brenda
broadway
campanile
carmen
cascades
cayuga
change
charon
classic
coke
computer
cooper
creation
daemon
danny
defoe
develop
discovery
drought
easier
edwin
eiderdown
elephant
emerald
enterprise
establish
evelyn
felicia
fidelity
flakes
flowers
foresight
fourier
frighten
gabriel
gauss
ginger
golfer
gosling
gryphon
gumption
hamlet
harmony

harold
heinlein
herbert
honey
hutchins
include
innocuous
japan
jixian
joshua
julia
kemel
ladle
larkin
lebesgue
leroy

lisa
macintosh
magic
markus
master
merlin
michelle
minsky
morley
napoleon
network
noxious
oceanography
olivia
orwell
oxford
pakistan
password
peoria
persona
philip
pizza
polynomial
poster
prelude
protect
puneet
rachmaninoff
raleigh
really
rick
rochester
ronald
roses
ruth
scamper
scotty

harvey
hello
hiawatha
horse
imbroglio
ingres
irishman
jessica
johnny
judith
kathleen
kirkland
lambda
larry

lee

lewis
louis
mack
malcolm
marty
maurice
mets
mike
moguls
mozart
nepenthe
newton
nutrition
ocelot
oracle
osiris
pacific
pam
patricia
percolate
pete
phoenix
plover
pondering
praise
prince
protozoa
puppet
rainbow
random
rebecca
ripple
rolex
rosebud
ruben
sal
scheme
secret

hebrides
help
hibernia
horus
imperial
inna
isis
jester
joseph
juggle
kermit
knight
lamination
lazarus
leland
light
lynne
maggot
mark
marvin
mellon
michael
minimum
moose
nancy
ness
next
nyquist
olivetti
orca
outlaw
painless
papers
penguin
persimmon
peter
pierre
plymouth
pork
precious
princeton
pumpkin
rabbit
raindrop
rascal
remote
robotics
romano
rosemary
rules
saxon
scott
sensor

342

serenity sharks sharon
sheffield sheldon shiva
shivers shuttle signature
simon simple singer
single smile smiles
smooch smother snatch
SnRoopy soap socrates
sossina Sparrows spit
spring springer squires
strangle stratford stuttgart
subway success summer
super superstage support
supported surfer suzanne
swearer symmetry tangerine
tape target tarragon
taylor telephone temptation
thailand tiger toggle
tomato topography tortoise
toyota trails trivial
trombone tubas tuttle
umesh unhappy unicom
unknown urchin utility
vasant vertigo vicky
village virginia warren
water weenie whatnot
whiting whitney will
william williamsburg ~ willie
winston wisconsin wizard
wombat woodwind wormwood
yacov yang yellowstone
yosemite zap zimmerman
References

[1] R. Hinden, J. Haverty, and A. Sheltzer, ‘‘The DARPA
Intemet: Interconnecting Heterogeneous Computer
Networks with Gateways,”” IEEE Computer Maga-
zine, vol. 16, num. 9, pp. 38-48, September 1983.

[2] J. S. Quarterman and J. C. Hoskins, ‘“Notable Com-
puter Networks,”’ in Communications of the ACM,
vol. 29, num. 10, pp. 932-971, October 1986.

[31 S. E. Luria, S. J. Gould, and S. Singer, A View of Life.
Menlo Park, California: Benjamin/Cummings Pub-
lishing Company, Inc., 1981.

[4] J. Watson et al., Molecular Biology of the Gene.
Menlo Park, Califomia: Benjamin/Cummings Pub-
lishing Company, Inc., 1987.

[5] G. G. Simpson and W. S. Beck, Life: An Introduction
to Biology. New York, New York: Harcourt, Brace
and Ward, Inc., 1965.

[6] L. Castro et al., “Post Mortem of 3 November
ARPANET/MILNET Attack.” National Computer
Security Center, Ft. Meade MD, 8 November 1988.

[7] P. J. Denning, ‘‘Computer Viruses,”” American Scien-
tist, vol. 766, pp. 236-238, May-June 1988.

[8] D. Seeley, ‘‘A Tour of the Worm,’’ in USENIX Associ-
ation Winter Conference 1989 Proceedings, pp. 287~
304, January 1989.

[9] E. H. Spafford, ‘““The Internet Worm Program: An
Analysis,” ACM SIGCOM, vol. 19, January 1989,

[10] K. Harrenstien, ‘“NAME/FINGER Protocol Proto-
col,” Request For Comments NIC/RFC 742, Network
Working Group, USC ISI, Novemeber 1977.

[11] J. Markoff, ““Computer Snarl: A ‘Back Door’ Ajar,”
New York Times, p. B10, 7 November 1988.

[12] J. B. Postel, “Simple Mail Transfer Protocol,”’ Re-
quest For Comments NIC/RFC 821, Network Work-
ing Group, USCISI, August 1982.

[13] S. Bellovin, ‘“The worm and the debug option,” in
Forum on Risks to the Public in Computers and Re-
lated Systems, vol. 7, num. 74, ACM Committee on
Computers and Public Policy, 10 November 1988.

[14] J. Collyer, “Risks of unchecked input in C programs,”’
in Forum on Risks to the Public in Computers and Re-
lated Systems, vol. 7, num. 74, ACM Committee on
Computers and Public Policy, 10 November 1988.

[15] J. Saltzer and M. Schroeder, ‘‘The Protection of Infor-
mation in Computer Systems,’’ in Proc. IEEE, vol. 63,
num. 9, pp. 1278-1308, IEEE, September 1975.

[16] J. Steiner, C. Neuman, and J. Schiller, ‘‘Kerberos: An
Authentication Service for Open Network Systems,”
in USENIX Association Winter Conference 1988 Pro-
ceedings, pp. 191-202, February 1988.

[17] M. R. Horton, ‘“How to Read the Network News,"”’
UNIX User’s Supplementary Documents, April 1986.

[18] P. Mockapetris, ‘‘Domain Names - Concepts And
Facilities,”” Request For Comments NIC/RFC 1034,
Network Working Group, USC ISI, November 1987.

[19] J. Mogul and J. B. Postel, ‘‘Internet Standard Subnet-
ting Procedure,”” Request For Comments NIC/RFC
950, Network Working Group, USCISI, August 1985.

the Public in Computers and Related Systems, vol. 7,
num. 70, ACM Committee on Computers and Public
Policy, 3 November 1988.

343

[21] R. W. Baldwin, Rule Based Analvsis of Computer Se-
curity. PhD thesis, MIT EE, June 1987.

[22] G. Spafford, ‘““A worm ‘‘condom”,” in Forum on
Risks to the Public in Computers and Related Systems,
vol. 7, num. 70, ACM Committee on Computers and
Public Policy, 3 November 1988.

