
The State of the Art in Locally Distributed Web-Server Systems

VALERIA CARDELLINI AND EMILIANO CASALICCHIO

University of Roma Tor Vergata

MICHELE COLAJANNI

University of Modena

AND

PHILIP S. YU

IBM T. J Watson Research Center

The overall increase in traffic on the World Wide Web is augmenting user-perceived
response times from popular Web sites, especially in conjunction with special events.
System platforms that do not replicate information content cannot provide the needed
scalability to handle large traffic volumes and to match rapid and dramatic changes in
the number of clients. The need to improve the performance of Web-based services has
produced a variety of novel content delivery architectures. This article will focus on Web
system architectures that consist of multiple server nodes distributed on a local area,
with one or more mechanisms to spread client requests among the nodes. After years of
continual proposals of new system solutions, routing mechanisms, and policies (the first
dated back to 1994 when the NCSA Web site had to face the first million of requests per
day), many problems concerning multiple server architectures for Web sites have been

Categories and Subject Descriptors: C.2.4 [Computer Communication Networks]:
Distributed Systems; C.4 [Performance of Systems]: design studies; H.3.5 [Infor-
mation Storage and Retrieval]: Online Information Services—web-based services

General Terms: Algorithms, Design, Performance

Additional Key Words and Phrases: Client/server, cluster-based architectures,
dispatching algorithms, distributed systems, load balancing, routing mechanisms,
World Wide Web

The first three authors acknowledge the support of MIUR-Cofin2001 in the framework of the project “High-
quality Web systems.”

Authors addresses: V. Cardellini and E. Casalicchio, Dept. of Computer Engineering, University of Roma
Tor Vergata, via del Politecnico 1, Roma, I-00133, Italy, e-mail: {cardellini,ecasalicchio}@ing.uniroma2.it;
M. Colajanni, Dept. of Information Engineering, University of Modena, Via Vignolese 905, Modena, I-41100,
Italy, e-mail: colajanni@unimo.it; P. S. Yu, IBM T. J. Watson Research Center, Yorktown Heights, NY 10598,
e-mail: psyu@us.ibm.com.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or direct commercial advantage and
that copies show this notice on the first page or initial screen of a display along with the full citation.
Copyrights for components of this worked owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use
any component of this work in other works requires prior specific permission and/or a fee. Permissions may
be requested from Publications Dept., ACM, Inc., 1515 Broadway, New York, NY 10036 USA, fax +1 (212)
869-0481, or permission@acm.org.
c©2002 ACM 0360-0300/02/0600-0263 $5.00

ACM Computing Surveys, Vol. 34, No. 2, June 2002, pp. 263–311.

264 V. Cardellini et al.

solved. Other issues remain to be addressed, especially at the network application
layer, but the main techniques and methodologies for building scalable Web content
delivery architectures placed in a single location are settled now. This article classifies
and describes main mechanisms to split the traffic load among the server nodes,
discussing both the alternative architectures and the load sharing policies. To this
purpose, it focuses on architectures, internal routing mechanisms, and dispatching
request algorithms for designing and implementing scalable Web-server systems under
the control of one content provider. It identifies also some of the open research issues
associated with the use of distributed systems for highly accessed Web sites.

1. INTRODUCTION

The Web is becoming the standard in-
terface for accessing remote services of
information systems, hosting data cen-
ters and application service providers.
Demands placed on Web-based services
continue to grow and Web-server systems
are becoming more stressed than ever.
The performance problems of Web-based
architecture will even worsen because of
the proliferation of heterogeneous client
devices, the need of client authentica-
tion and system security, the increased
complexity of middleware and application
software, and the high availability re-
quirements of corporate data centers and
e-commerce Web sites. Because of the com-
plexity of the Web infrastructure, perfor-
mance problems may arise in many points
during an interaction with Web-based sys-
tems. For instance, they may occur in
the network because of congested Inter-
net routers, as well as at the Web and
database server, either because of under-
provisioned capacity or unexpected surge
of requests. Although, in recent years,
both network and server capacity have
improved and new architectural solutions
have been deployed, response time con-
tinues to challenge Web-system-related
research. In this article, we focus on
architectural solutions that aim to reduce
the delays due to the Web server site, as-
suming that network issues are examined
elsewhere. Immediate applicability of the
considered methodologies and increasing
demand for more complex services are the
main motivations and guidelines for this
survey focusing on the server side. Let us
briefly outline these two points.

In an Internet-based world with no cen-
tralized administration, the Web site is

the only component that can be under the
direct control of the content provider. Any
other component, such as Internet back-
bones, Web clients, routers and peering
points, DNS system, and proxy servers are
beyond the control of any Web operator.
Hence, we prefer not to consider proposals
requiring some intervention on these com-
ponents that are really hard to be applica-
ble in the short-medium term, because an
agreement among multiple organizations
is needed.

The other main motivation for focusing
on Web system architecture is due to the
growing complexity of Web applications
and services. Web performance perceived
by end users is already increasingly dom-
inated by server delays, especially when
contacting busy servers [Barford and
Crovella 2001]. Recent measures suggest
that the Web servers contribute for about
40% of the delay in a Web transaction
[Huitema 2000] and it is likely that this
percentage will increase in the near
future because of a double effect.

—A prediction made in 1995 regarding
the network bandwidth estimated that
it would triple every year for the next
25 years [Gilder 1997]. This prediction
seems approximately correct to some
authors [Gray and Shenoy 2000], while
others are more prudent [Coffman and
Odlyzko 2001]. Independently of this
debate, the network capacity is im-
proving faster than the server capacity,
that the Moore law estimates to double
every 18 months. Other improvements
on the network infrastructure, such as
private peering agreements between
backbone providers, the deployment of
Gigabit wide-area networks, the rapid
adoption of ISDN networks, xDSL

ACM Computing Surveys, Vol. 34, No. 2, June 2002.

The State of the Art in Locally Distributed Web-Server Systems 265

lines, and cable modems contribute to
reduce network latency.

—The relevance of dynamic and en-
crypted content is increasing. Indeed,
the Web is changing from a simple
communication and browsing infras-
tructure for getting static information
to a complex medium for conducting
personal and commercial transactions
that require dynamic computation and
secure communications with multiple
servers through middleware and ap-
plication software. A Web server that
provides dynamic or secure content
may incur a significant performance
penalty. Indeed, the generation of dy-
namic content can consume significant
CPU cycles with respect to the service
of static content (e.g., Challenger et al.
[1999]), while the management of
data encryption which characterizes
e-commerce applications can be orders
of magnitude more expensive than
the provisioning of insecure content
[Apostolopoulos et al. 2000b]. The pro-
liferation of heterogeneous client de-
vices, the need of data personalization,
client authentication, and system
security of corporate data centers and
e-commerce sites place additional com-
putational load on Web servers. Indeed,
it is often necessary to establish a
direct communication between clients
and content providers that caching
infrastructures and content delivery
networks cannot easily bypass. Caching
is a very effective solution to reduce the
burden on Web sites providing mainly
static content, such as text, graphic,
and video files, while it is less effective
for applications that generate dynamic
and personalized information, although
there is some attempt to address this
issue [Akamai Tech. 2002; Challenger
et al. 2001; Oracle 2002; Persistence
Software 2002; Zhu and Tang 2001].

With the network bandwidth increas-
ing about twice faster than the server
capacity, the increased percentage of dy-
namic content of Web-based systems, the
need of a direct communication channel
between clients and content providers, the

server side is likely to be the main future
bottleneck.

1.1. Scalable Web-Server Systems

Web-site administrators constantly face
the need to increase server capacity. In
this article, Web system scalability is de-
fined as the ability to support large num-
bers of accesses and resources while still
providing adequate performance.

The first option used to scale Web-
server systems is to upgrade the Web
server to a larger, faster machine. This
strategy, referred to as hardware scale-up
[Devlin et al. 1999], simply consists in
expanding a system by incrementally
adding more resources (e.g., CPUs, disks,
network interfaces) to an existing node.
While hardware scale-up relieves short-
term pressure, it is neither a long-term
nor a cost-effective solution, considering
the step growth in the client demand curve
that characterizes the Web (the number of
online users is growing at about 90% per
annum).

Many efforts have also been directed
at improving the performance of a Web
server node at the software level, namely
software scale-up. This includes improving
the server’s operating system (e.g., Banga
et al. [1998], Hu et al. [1999], Nahum et al.
[2002], and Pai et al. [2000]), building
more efficient Web servers (e.g., Pai et al.
[1999] and Zeus Tech. [2002]), and imple-
menting different scheduling policies of
requests (e.g., Bansal and Harchol-Balter
[2001] and Crovella et al. [1999]). Pai et al.
[2000] have proposed a unified I/O buffer-
ing and caching system for general oper-
ating systems that supports zero-copy I/O.
To improve the performance of the Apache
Web server, Hu et al.[1999] have proposed
some techniques that reduce the number
of system calls in the typical I/O path.
Nahum et al. [2002] have analyzed how a
general-purpose operating system and the
network protocol stack can be improved to
provide support for high-performing Web
servers. As far as concerns proposals for
more efficient Web server software, the
Flash Web server [Pai et al. 1999] ensures
that its threads and processes are never

ACM Computing Surveys, Vol. 34, No. 2, June 2002.

266 V. Cardellini et al.

Fig. 1 . Architecture solutions for scalable Web-server systems.

blocked by using an asymmetric multipro-
cess event-driven architecture, while the
Zeus Web server [Zeus Tech. 2002] uses
a small number of single-threaded I/O
processes, where each one is capable of
handling thousands of simultaneous con-
nections. Some literature has focused on
new scheduling policies for client requests;
for example, Bansal and Harchol-Balter
[2001] have proposed the use of the
Shortest Remaining Processing Time first
policy to reduce the queuing time at the
server.

Improving the power of a single server
will not solve the Web scalability problem
in a foreseeable future. Another solution to
keep up with ever increasing request load
and provide scalable Web-based services is
to deploy a distributed Web system com-
posed by multiple server nodes that can
also exploit scale-up advancements. The
load reaching this Web site must be evenly
distributed among the server nodes, so
as to improve system performance. There-
fore, any distributed Web system must
include some component (under the con-
trol of the content provider) that routes
client requests among the servers with the
goal of load-sharing maximization. The
approach in which the system capabilities
are expanded by adding more nodes, com-
plete with processors, storage, and band-
widths, is typically referred to as scale-out
[Devlin et al. 1999]. We further distin-

guish between local scale-out when the set
of server nodes resides at a single network
location, and global scale-out when the
nodes are located at different geographical
locations. Figure 1 summarizes the differ-
ent approaches to achieve Web-server sys-
tem scalability.

This survey presents and discusses the
various approaches for managing locally
distributed Web systems (the focused top-
ics are written in bold in Figure 1). We
describe a series of architectures, routing
mechanisms, and dispatching algorithms
to design local Web-server systems and
identify some of the issues associated with
setting up and managing such systems
for highly accessed Web sites. We exam-
ine how locally distributed architectures
and related management algorithms sat-
isfy the scalability and performance re-
quirements of Web-based services. We also
analyze the efficiency and the limitations
of the different solutions and the trade-
off among the alternatives with the aim of
identifying the characteristics of each ap-
proach and their impact on performance.

1.2. Basic Architecture and Operations

In this survey, we refer either to client or
Web browser as to the software entity that
acts as a user agent and is responsible
for implementing all the interactions with
the Web server, including generating the

ACM Computing Surveys, Vol. 34, No. 2, June 2002.

The State of the Art in Locally Distributed Web-Server Systems 267

Fig. 2 . Model architecture for a locally distributed Web system.

requests, transmitting them to the server,
receiving the results from the server, and
presenting them to the user behind the
client application.

A scalable Web-server system needs to
appear as a single host to the outside
world, so that users need not be con-
cerned about the names or locations of
the replicated servers and they can in-
teract with the Web-server system as if
it were a single high-performance server.
Hence, the basic system model must ad-
here to the architecture transparency re-
quirement by providing a single virtual in-
terface to the outside world at least at the
site name level. (Throughout this survey,
we will use www.site.org as a name for the
Web site.) This choice excludes from our
analysis widely adopted solutions, such
as the mirrored-server system that lets
users manually select alternative names
for a Web site, thereby violating the trans-
parency requirement.

Unlike the users, the client applica-
tion may be aware of the effects of some
mechanism used to dispatch requests
among the multiple servers. However, in
our survey, we assume that the clients do
not need any modification to interact with
the scalable Web system.

From these premises, the basic Web-
system architecture considered in this
survey consists of multiple server nodes,
grouped in a local area with one or more
mechanisms to spread client requests
among the nodes and, if necessary, one or
more internal routing devices. Each Web
server can access all site information,
independently of the degree of content
replication. The Web system requires also
one authoritative Domain Name System
(DNS) server for translating the Web-site
name into one or more IP address(es).
This name server typically belongs to a
network different from the LAN segment
used for the Web servers. A high-level
view of the basic architecture is shown
in Figure 2. A router and other network
components belonging to the Web system
could exist in the way between the system
and the Internet. Moreover, it has to be
noted that the system architecture for a
modern Web site consists also of back-end
nodes that typically act as data servers
for dynamically generated information.
The main focus of this survey is on
the Web server layer, while the tech-
niques concerning content distribution
in the back-end layer are outlined in
Section 9.

ACM Computing Surveys, Vol. 34, No. 2, June 2002.

268 V. Cardellini et al.

We analyze now the main phases to
serve a user request to a Web site. A user
issues one request at a time for a Web
page, which is intended to be rendered to
the user as a single unit. Nevertheless,
each user request (click) causes multiple
client-server interactions. There are many
types of Web pages, but typically a Web
page is a multipart document consisting
of a collection of objects that may be a
static or dynamically generated file. An
object could be provided by the first con-
tacted Web site or even by another site
(e.g., banners). Since in this brief descrip-
tion we cannot cover all possible instances,
we focus on the most common example of
Web page. It consists of a base HTML file
describing the page layout and a number
of objects referenced by the base HTML
file hosted on the same Web site. A static
Web object is a file in a specific format
(e.g., an HTML file, a JPEG image, a Java
applet, an audio clip), which is address-
able by a single URL (e.g., http://www.
site.org/pub/index.html). A dynamic
Web object requires some computation on
the server side and, possibly, some addi-
tional information from the user.

A URL has two main components: the
symbolic name of the server that houses
the object (e.g., www.site.org) and the ob-
ject’s path name (e.g., /pub/index.html).
To retrieve all the Web objects compos-
ing a Web page, a browser issues multi-
ple requests to the Web server. We refer to
a Web transaction as the complete inter-
action that starts when the user sends a
request to a Web site and ends when his
client receives the last object related to the
requested URL. A session is a sequence of
Web transactions issued by the same user
during an entire visit to a Web site.

Summing up, a Web transaction starts
when the user makes a request to a Web
server, by either typing a URL or clicking
on a link, for example, http://www.site.
org/pub/index.html. First, the client
(browser) extracts the symbolic site name
(www.site.org) from the requested URL
and asks, through the resolver, its local-
domain name server to find out the IP
address corresponding to that name. The
local name server obtains the IP ad-

dress by eventually contacting some in-
termediate name servers or a well-known
root of the domain name server hierar-
chy, and ultimately querying the site’s
authoritative name server. The resolver
returns the obtained IP address to the
client that can establish a TCP connection
with the server or device corresponding to
that IP address. After the completion of
the TCP connection, the client sends the
HTTP request (using the GET method) for
/pub/index.html to the Web server that
sends the requested object back. Once ob-
tained the base HTML page from the Web
server, the client parses it. If the client
finds that embedded objects are related to
the base page, it sends a separate request
for each object. Depending on the HTTP
protocol used for the client/server interac-
tions, the subsequent requests can use the
same TCP connection (HTTP/1.1) or dif-
ferent TCP connections (HTTP/1.0) to the
same server.

1.3. Request Routing Mechanisms and
Scope of This Article

We have seen in the previous section that
each client request for a Web page involves
several operations even when the Web site
is hosted on a single server. Moreover, the
basic sequence for a Web transaction seen
in the previous section can be altered by
several factors, such as caching of the IP
address corresponding to the site name at
the client browser or at some intermediate
name servers, the version of HTTP proto-
col being used in the client/server inter-
action (i.e., support or not for persistent
TCP connections), the presence of the re-
quested Web object either in the client lo-
cal cache or in intermediate cache servers
located on the path between the client and
the Web server.

When the Web site is hosted on multiple
servers, another alternative is to decide
which server of the distributed Web sys-
tem has to serve a client request. This de-
cision might occur in several places along
the request path from the client to the
Web site. We identify four possible levels
for deciding how to route a client request
to one server of the locally distributed

ACM Computing Surveys, Vol. 34, No. 2, June 2002.

The State of the Art in Locally Distributed Web-Server Systems 269

Web-server system. All the cited compo-
nents are shown in Figure 2.

—At the Web client level, the entity re-
sponsible for the request assignment
can be any client that originates a
request.

—At the DNS level, during the address
resolution phase, the entity in charge of
the request routing is primarily the au-
thoritative DNS server for the Web site.

—At the network level, the client request
can be directed by router devices and
through multicast/anycast protocols.

—At the Web system level, the entity in
charge for the request assignment can
be any Web server or other dispatching
device(s) typically placed in front of the
Web site architecture.

Only a subset of the presented alter-
natives are considered in this article. In-
deed, the basic premise of this survey is
the compatibility of all proposed solutions
with existing Web standards and proto-
cols so that any considered architecture,
algorithm, and mechanism could be im-
mediately adopted without any limiting
assumption and without requiring mod-
ifications to existing Internet protocols,
Web standards, and client code. There-
fore, we will focus on dispatching solutions
that occur at system components that are
under the direct control of the content
provider, that is, the authoritative DNS,
the Web servers, and some internal de-
vices of the Web system. On the other
hand, we do not consider client-based rout-
ing mechanisms [Baentsch et al. 1997;
Mosedale et al. 1997; Vingralek et al. 2000;
Yoshikawa et al. 1997] because they may
require some modifications to the client
software [Cardellini et al. 1999]. In addi-
tion, we do not investigate dispatching so-
lutions at the network level that are mean-
ingful when the multiple nodes of the Web
site architecture are distributed over a ge-
ographical area.

It is worth observing that the design and
implementation of a Web-site architecture
consisting of multiple servers is not the
only way to improve response time as per-
ceived by the user. Basically, there are two

important categories for which we provide
just some references for additional read-
ing. They are external caching and out-
sourcing solutions.

Probably, the most popular approach for
reducing latency time and Web traffic is
based on caching of the Web objects that
might occur at different levels. An ac-
curate examination of caching solutions
would require a dedicated survey because
they are the first techniques proposed in
literature and can be deployed at differ-
ent scales: from server disk caching to
proxy caching to browser caching with
all possible combinations [Luotonen 1997;
Wessels 2001]. In this paper, we consider
some internal caching techniques occur-
ring inside the Web-server system, such as
Web-server accelerators [Challenger et al.
2001; Song et al. 2000, 2002] and other
techniques for improving cache hit rate
[Aron et al. 1999; Pai et al. 1998], while we
exclude external caching solutions, such
as proxy servers and cooperative proxies
[Barish and Obraczka 2000; Wang 1999;
Wessels 2001], virtual servers (or reverse
proxies) [Luotonen 1997], Web proxy ac-
celerators [Rosu et al. 2001].

In this survey, we also exclude solu-
tions where the content provider delegates
scalability for its Web-based services to
other organizations. For example, many
Web sites contract with third-party Web
hosting and colocation providers. Interest-
ing research and implementation issues
come from Web-server systems that store
and provide access to multiple Web sites
[Almeida et al. 1998; Aron et al. 2000;
Cherkasova and Ponnekanti 2000; Luo
and Yang 2001b; Wolf and Yu 2001]. More
recently, Content Delivery Network (CDN)
organizations undertake to serve request
traffic for Web sites from caching sites at
various Internet borders [Akamai Tech.
2002; Digital Island 2002; Mirror Image
Internet 2002; Gadde et al. 2001].

1.4. Organization of This Article

The rest of this article is organized as
follows.

—Section 2 discusses and classifies locally
distributed architectures for Web sites,

ACM Computing Surveys, Vol. 34, No. 2, June 2002.

270 V. Cardellini et al.

by distinguishing cluster-based Web sys-
tems or simply Web clusters, virtual Web
clusters, and distributed Web systems.

—Sections 3, 4, and 5 cover the mecha-
nisms that can be used to route requests
in a Web cluster, in a virtual Web clus-
ter, and in a distributed Web system,
respectively.

—Section 6 describes the policies for load
sharing and dispatching requests in the
class of Web cluster systems. We present
a taxonomy of the policies that have
been developed in recent years by fo-
cusing on the issues that each policy
addresses.

—Section 7 classifies various academic
prototypes and commercial products ac-
cording to the routing mechanism that
is used to distribute the client requests
among the servers in a Web cluster.

—Section 8 presents some extensions of
the basic system architecture to im-
prove scalability.

—Section 9 outlines the problem of
Web content placement among multiple
front-end and back-end servers, that is
orthogonal to this article.

—Section 10 concludes the article and
presents some open issues for future
research.

2. A TAXONOMY OF LOCALLY
DISTRIBUTED ARCHITECTURES

The basic premise of the proposed taxon-
omy is the compatibility of all analyzed so-
lutions with existing Web standards and
protocols so that any considered architec-
ture, algorithm and mechanism could be
immediately adopted without any limiting
assumption.

Distributed architectures can be differ-
entiated depending on the name virtual-
ization being extended at the IP layer or
not. Given a set of server nodes that host a
Web site at a single location, we can iden-
tify three main classes of architectures:

—Cluster-based Web system (or Web clus-
ter) where the server nodes mask their
IP addresses to clients. The only client-
visible address is a Virtual IP (VIP) ad-

dress corresponding to one device which
is located in front of the Web server
layer.

—Virtual Web cluster where the VIP ad-
dress is the only IP address visible to the
clients like in a cluster-based Web sys-
tem. Unlike the previous architecture,
this VIP address is not assigned to a
single front-end device but shared by all
the server nodes.

—Distributed Web system where the IP
addresses of the Web-server nodes are
visible to client applications.

Making visible or masking server IP ad-
dresses is a key feature, because each so-
lution implies quite different mechanisms
and algorithms for distributing the client
requests among the server nodes. In par-
ticular, the distributed Web system archi-
tecture is the oldest solution, where the
request routing is decided by the DNS
system with the possible integration of
other naming components. The cluster-
based Web system architecture is a more
recent solution where request routing is
entirely carried out by the internal en-
tities of the Web cluster. We can antici-
pate that, for a Web site where the server
nodes are in the same location, a cluster-
based system is preferable to a distributed
system because the former architecture
can provide fine-grained control on re-
quest assignment, and better availability
and security that are key requirements
for present and future Web-based services
[Hennessy 1999]. On the other hand, dis-
tributed Web systems with their visible
IP-architecture are suitable to implement
Web sites where the servers are geograph-
ically dispersed. These observations moti-
vate the position of the survey that focuses
on cluster-based Web systems, and con-
siders distributed Web systems mainly for
historical reasons.

The main components of a typical
multinode Web system include a request
routing mechanism to direct the client re-
quest to a target server node, a dispatch-
ing algorithm to select the Web server
node that is considered best suited to
respond, and an executor to carry out
the dispatching algorithm and support

ACM Computing Surveys, Vol. 34, No. 2, June 2002.

The State of the Art in Locally Distributed Web-Server Systems 271

Fig. 3 . Architecture of a cluster-based Web system.

the routing mechanism. In this survey,
we distinguish routing mechanisms from
dispatching policies for the three main
classes of locally distributed Web-system
architectures.

2.1. Cluster-Based Web Systems

A cluster-based Web system (briefly, Web
cluster) refers to a collection of server ma-
chines that are housed together in a sin-
gle location, are interconnected through a
high-speed network, and present a single
system image to the outside. Each server
node of the cluster usually contains its
own disk and a complete operating sys-
tem. Cluster nodes work collectively as a
single computing resource. Massive par-
allel processing systems (e.g., SP-2) where
each node satisfies all previous character-
istics can be assimilated to a cluster-based
Web system. In literature, some alterna-
tive terminology is used to refer to a Web-
cluster architecture. One common term is
Web farm, meaning the collection of all the
servers, applications, and data at a par-
ticular site [Devlin et al. 1999]. We prefer
the term Web cluster, as Web farm is often
used to denote an architecture for Web-site
hosting or colocation.

Although a Web cluster may consist of
tens of nodes, it is publicized with one site
name (e.g., www.site.org) and one virtual
IP (VIP) address (e.g., 144.55.62.18). Thus,
the authoritative DNS server for the Web
site always performs a one-to-one map-
ping by translating the site name into the
VIP address, which corresponds to the IP
address of a dedicated front-end node(s).
It interfaces the rest of the Web-cluster
nodes with the Internet, thus making the
distributed nature of the site architecture
completely transparent to both the user
and the client application. The front-end
node, hereafter called Web switch, receives
all inbound packets that clients send to
the VIP address, and routes them to some
Web-server node. In such a way, it acts as
the centralized dispatcher of a distributed
system with fine-grained control on client
requests assignments.

A high-level view of a basic Web cluster
comprising the Web switch and N servers
is shown in Figure 3. It is to be noted that
the response line does not appear here be-
cause the two main alternatives will be
described in Section 3. The authoritative
DNS is not included in the system box
because it does not have any role in client
request routing.

ACM Computing Surveys, Vol. 34, No. 2, June 2002.

272 V. Cardellini et al.

Fig. 4 . Architecture of a virtual Web cluster.

The Web switch can be implemented on
either special-purpose hardware devices
plugged into the network (also called Ap-
plication Specific Integrated Circuit chips)
or software modules running on a special-
purpose or general-purpose operating
system. In this article, we use the term,
Web switch, to refer to the dispatching en-
tity in general. This definition does not im-
ply that the Web switch is a hardware de-
vice that forwards frames based on link
layer addresses, or packets based on layer-
3 and layer-4 information. Moreover, we
prefer not to call the Web switch through
the functionality it implements, for exam-
ple network/server load balancer, as some
literature reports.

2.2. Virtual Web Clusters

The architecture of a virtual Web cluster is
based on a fully distributed system design
that does not use a front-end Web switch.
Similarly to the previously described Web-
cluster architecture, a virtual Web cluster
presents a single system image to the out-
side throughout the use of a single VIP
address. The main difference is that this
address is not assigned to a centralized

front-end node that receives all incoming
client requests and distributes them to a
target server. In a virtual Web cluster, the
VIP address is shared by all the server
nodes in the cluster so that each node
receives all inbound packets and filters
them to decide whether to accept or dis-
card them. The mechanisms are described
in Section 3.3. A high-level view of a vir-
tual Web cluster architecture is shown in
Figure 4. It worth to note that this sys-
tem removes the single point of failure
and the potential bottleneck represented
by the Web switch.

2.3. Distributed Web Systems

A distributed Web system consists of lo-
cally distributed server nodes, whose mul-
tiple IP addresses may be visible to client
applications. A high-level view of a lo-
cally distributed architecture is shown in
Figure 5. (The authoritative DNS is in-
cluded into the system box because this
component plays a key role in request
routing for distributed Web systems.) Un-
like the cluster-based Web system, and
similarly to the virtual Web cluster ar-
chitecture, a distributed Web system does

ACM Computing Surveys, Vol. 34, No. 2, June 2002.

The State of the Art in Locally Distributed Web-Server Systems 273

Fig. 5 . Architecture of a distributed Web system.

not rely on a front-end Web switch. The
client request assignment to a target Web
server is typically carried out during the
address resolution of the Web-site name
(look-up phase) by the DNS mechanism.
In some systems, there is also a second-
level routing that is typically carried out
through some re-routing mechanism acti-
vated by a Web server that cannot fulfill a
received request. The routing mechanisms
in a distributed Web system are examined
in Section 5.

3. REQUEST ROUTING MECHANISMS FOR
CLUSTER-BASED WEB SYSTEMS

The Web switch is able to identify uniquely
each node in the system through a pri-
vate address that can be at different pro-
tocol levels, depending on the architec-
ture. More specifically, the server private
address may correspond to either an IP
address or a lower-layer (MAC) address.
There are various techniques to deploy
Web clusters; however, the key role is al-
ways played by the Web switch. For that
reason, we first classify the Web-cluster
architecture alternatives according to the
OSI protocol stack layer at which the Web

switch routes inbound packets to the tar-
get server, that is, layer-4 or layer-7 Web
switches. The choice of the routing mech-
anism has also a big impact on dispatch-
ing policies because the kind of informa-
tion available at the Web switch is quite
different.

—Layer-4 Web switches perform content-
blind routing (also referred to as im-
mediate binding), because they deter-
mine the target server when the client
asks for establishing a TCP/IP connec-
tion, upon the arrival of the first TCP
SYN packet at the Web switch. As the
client packets do not reach the applica-
tion level, the routing mechanism is ef-
ficient but the dispatching policies are
unaware of the content of the client
request.

—Layer-7 Web switches can execute
content-aware routing (also referred to
as delayed binding). The switch first
establishes a complete TCP connection
with the client, examines the HTTP re-
quest at application level and then re-
lays it to the target server. This routing
mechanism is much less efficient,
but it can support more sophisticated

ACM Computing Surveys, Vol. 34, No. 2, June 2002.

274 V. Cardellini et al.

Fig. 6 . Taxonomy of cluster-based architectures.

dispatching policies. (We refer to layer-7
Web switches according to the ISO/OSI
protocol layers, where the application
layer is the seventh. Other authors refer
to switches that perform content-aware
routing as layer-5 or application-layer
switches.)

Web cluster architectures based on
layer-4 and layer-7 Web switches can be
further classified on the basis of the data
flow between the client and the target
server, the main difference being in the
return way of server-to-client. Indeed, all
client requests necessarily have to flow
through the Web switch. On the other
hand, the target server either responds di-
rectly to the client (namely, one-way ar-
chitectures) or returns its response to the
Web switch, that in its turn sends the re-
sponse back to the client (referred to as
two-way architectures). Figure 6 summa-
rizes the taxonomy for Web clusters that
we have examined so far. Typically, one-
way architectures are more complex and
more efficient because the Web switch pro-
cesses only inbound packets, while the op-
posite is true for two-way architectures
because the Web switch has to process
both inbound and outbound packets.

3.1. Solutions Based on Layer-4 Switches

Layer-4 Web switches work at TCP/IP
level. Since packets pertaining to the same
TCP connection must be assigned to the
same Web-server node, the client assign-
ment is managed at TCP session level. The
Web switch maintains a binding table to
associate each client TCP session with the
target server.

Upon receiving an inbound packet, the
Web switch examines its header and de-
termines, on the basis of the bits in the
flag field, whether the packet pertains to
a new connection, a currently established
one, or none of them. If the inbound packet
is for a new connection (i.e., the SYN flag
bit is set), the Web switch selects a tar-
get server through the dispatching pol-
icy, records the connection-to-server map-
ping in an entry of the binding table, and
routes the packet to the selected server.
If the inbound packet is not for a new
connection, the Web switch looks up the
binding table to verify whether the packet
belongs or not to an existing connection. If
it does, the Web switch routes the packet
to the server that is in charge for that con-
nection. Otherwise, the Web switch drops
the packet.

To improve Web-switch performance,
the binding table is typically kept in mem-
ory and accessed through a hash func-
tion. Each entry contains the 4-tuple <IP
source address, source port, IP desti-
nation address, destination port>, and
other information (e.g., beginning time)
that may be relevant for some dispatching
algorithm. The client information in the
4-tuple is dynamic, whereas the server
address/port is a static information that
is known by the Web switch at the cluster
initialization time.

Layer-4 Web clusters can be classified on
the basis of the mechanism used to route
inbound packets to the target server and
outbound packets to the client. The main
difference is in the server-to-client way.
In two-way architectures, both inbound
and outbound packets pass through the
Web switch, whereas, in one-way architec-
tures, only inbound packets flow through
the Web switch.

3.1.1. Two-Way Architectures. In two-way
architectures, each server in the cluster
is configured with a unique IP address,
that is, the private address is at IP level.
Both inbound and outbound packets are
rewritten at TCP/IP level by the Web
switch. Figure 7 shows the packet flows.

Packet rewriting is based on the IP
Network Address Translation approach

ACM Computing Surveys, Vol. 34, No. 2, June 2002.

The State of the Art in Locally Distributed Web-Server Systems 275

Fig. 7 . Layer-4 two-way architecture.

[Srisuresh and Egevang 2001]. The Web
switch rewrites inbound packets by chang-
ing the VIP address to the IP address
of the target server in the destination
address field of the packet header. Out-
bound packets from the servers to clients
must also pass back through the switch.
Since the source address in the outbound
packets is the address of the server that
has served the request, the Web switch
needs to rewrite the server IP address
with the VIP address, so as not to con-
fuse the client. Furthermore, the Web
switch has to recalculate the IP and TCP
header checksums for both packet flows.
To differentiate packet-rewriting opera-
tions, we call double-rewriting those per-
formed by two-way architectures, and
single-rewriting those carried out by one-
way architectures.

3.1.2. One-Way Architectures. In one-way
architectures inbound packets pass
through the Web switch, while outbound
packets flow directly from the servers.
This requires a separate high-bandwidth
network connection for outbound packets.
Figure 8 shows an example where the
outbound packets flow back to the client
from the Web server 1. In this figure,

the layer of the server private address
is intentionally not specified as it can be
either at the IP layer (layer-3) or MAC
layer (layer-2).

Routing to the target server can be done
by means of several mechanisms, such
as rewriting the IP destination address
and recalculating the TCP/IP checksum
of the inbound packet (packet rewriting),
encapsulating each packet within another
packet (packet tunneling), forwarding the
packet at the MAC layer (packet forward-
ing). Let us describe how each mechanism
works.

3.1.2.1. Packet single-rewriting. The rou-
ting to the target server is achieved by
rewriting the destination IP address of
each inbound packet: the Web switch re-
places its VIP address with the IP address
of the selected server and recalculates the
IP and TCP header checksum. Thus, the
private addresses of the server nodes are
at the IP layer.

The difference from two-way architec-
tures is in the modification of the source
address of outbound packets. The Web
server, before sending the response pack-
ets to the client, replaces its IP address
with the VIP address and recalculates the

ACM Computing Surveys, Vol. 34, No. 2, June 2002.

276 V. Cardellini et al.

Fig. 8 . Layer-4 one-way architecture.

IP and TCP header checksum [Dias et al.
1996].

3.1.2.2. Packet tunneling. IP tunneling
(or IP encapsulation) is a technique to en-
capsulate IP datagrams within IP data-
grams, thus allowing datagrams destined
to one IP address to be wrapped and
redirected to another IP address [Perkins
1996]. The effect of IP tunneling is to
transform the old headers and data into
the payload of the new packet. The Web
switch tunnels the inbound packet to the
target server by encapsulating it within an
IP datagram. The header of this datagram
contains the VIP address and the server IP
address as source and destination address,
respectively. The server private addresses
are at the IP layer as in packet rewriting.

This mechanism requires that all
servers support IP tunneling and have one
of their tunnel devices configured with the
VIP address. When the target server re-
ceives the encapsulated packet, it strips
the IP header off and finds that the in-
side packet is destined to the VIP address
configured on its tunnel device. Then, the
server processes the request and returns
the response directly to the client.

3.1.2.3. Packet forwarding. This app-
roach assumes that the Web-switch and
the server nodes must have one of their
network interfaces physically linked by
an uninterrupted LAN segment. Unlike
packet single-rewriting and packet tun-
neling mechanisms, the server private
addresses are now at the MAC layer. (For
this reason, packet forwarding is also
referred to as MAC address translation.)
The same virtual IP address is shared
by the Web switch and the servers in the
cluster through the use of primary and
secondary IP addresses. In particular,
each server is configured with the VIP
address as its secondary address through
a loopback interface aliasing, for example,
by using the ifconfig Unix command.

Even if all nodes share the VIP address,
the inbound packets reach the Web switch
because, to avoid collisions, the server
nodes have disabled the Address Resolu-
tion Protocol (ARP) mechanism. The Web
switch forwards an inbound packet to
the target server by writing the server
MAC address in the layer-2 destination
address and retransmitting the frame on
the common LAN segment. This opera-
tion does not require any modification of

ACM Computing Surveys, Vol. 34, No. 2, June 2002.

The State of the Art in Locally Distributed Web-Server Systems 277

Fig. 9 . Operations of layer-4 routing (left) and layer-7 routing (right).

the TCP/IP header of the forwarded
packet. Since all nodes share the same VIP
address, the server receiving this packet
can recognize itself as a destination and
can respond directly to the client. (Packet
forwarding is also known as direct server
return [Bourke 2001].) Rewriting and en-
capsulation operations at TCP/IP level,
which are typical of packet rewriting and
tunneling mechanisms, are unnecessary.

3.2. Solutions Based on Layer-7 Switches

Layer-7 Web switches work at applica-
tion layer, thus allowing content-aware re-
quest distribution. The mechanisms for
layer-7 routing are more complex than
those for content-blind routing, because
the HTTP request is inspected before any
dispatching decision. To this purpose, the
Web switch must first establish a TCP
connection with the client (i.e., the three-
way handshake for the TCP connection
setup phase must be completed between
the client and the Web switch) and then
receive the HTTP request at the applica-
tion layer. On the other hand, a layer-4
Web switch determines the target server
as soon as it receives the initial TCP SYN
packet, before the client sends out the
HTTP request. Figure 9 shows the differ-
ent instants in which the request decision
is made by a Web switch that routes new
connections at layer-4 or layer-7.

Similar to layer-4 solutions, Web clus-
ter architectures based on a layer-7 Web
switch can be further classified on the ba-
sis of the mechanism used to send out-
bound packets from server to client. If we

consider the data flow through the Web
switch, we distinguish among one-way ar-
chitectures and two-way architectures.

3.2.1. Two-Way Architectures. In two-way
architectures, outbound traffic must pass
back through the Web switch, as shown in
Figure 10. The proposed approaches ba-
sically differ for the mechanism the Web
switch uses to route requests to the target
server.

3.2.1.1. TCP gateway. In this architec-
ture, a proxy running on the Web switch at
the application layer mediates the commu-
nication between the client and the server.
This proxy maintains open a TCP per-
sistent connection with each Web server.
When a request arrives, the proxy on
the Web switch accepts the client connec-
tion and forwards the client request to
the target server through the TCP per-
sistent connection. When the response ar-
rives from the server, the proxy forwards
it to the client through the client-switch
connection.

3.2.1.2. TCP splicing. This mechanism
aims to improve the TCP gateway ap-
proach that is computationally expensive
because each request/response packet
must flow up to the application layer.
Similarly to TCP gateway, the Web switch
maintains a persistent TCP connection
with each Web server. Unlike the previous
technique, TCP splicing forwards packets
at the network layer between the network
interface card and the TCP/IP stack. It
is carried out directly by the operating

ACM Computing Surveys, Vol. 34, No. 2, June 2002.

278 V. Cardellini et al.

Fig. 10 . Layer-7 two-way architecture.

system which must be modified at the
kernel level [Cohen et al. 1999; Maltz and
Bhagwat 1998; Spatscheck et al. 2000].
Once the TCP connection between the
client and the Web switch has been estab-
lished and the persistent TCP connection
between the switch and the target server
has been chosen, the two connections are
spliced (or patched) together. In such a
way, IP packets are forwarded from one
endpoint to the others without traversing
the transport layer up to the application
layer on the Web switch. Once the client-
to-server binding has been determined,
the Web switch handles the subsequent
packets by changing the IP and TCP
packet headers (i.e., it modifies the IP ad-
dress and recalculates checksum) so that
both the client and target server can rec-
ognize these packets as destined to them.

The TCP splicing mechanism can be also
implemented by hardware-based switches
(e.g., Apostolopoulos et al. [2000a]) or by a
library of functions defined at the socket
level [Rosu and Rosu 2002].

3.2.2. One-Way Architectures. In one-way
architectures, the server nodes return out-
bound packets directly to clients, without

passing through the Web switch, as illus-
trated in Figure 11.

3.2.2.1. TCP hand-off. Once the Web
switch has established the TCP connec-
tion with the client and selected the tar-
get server, it hands off its endpoint of the
TCP connection to the server, which can
communicate directly with the client [Pai
et al. 1998].

The TCP hand-off mechanism remains
transparent to the client, as packets sent
by the servers appear to be coming from
the Web switch. Incoming traffic on al-
ready established connections (i.e., any ac-
knowledgment packet sent by the client
to the switch) is forwarded to the target
server by an efficient module running at
the bottom of the Web switch’s protocol
stack.

The TCP hand-off mechanism requires
modifications to the operating systems
of both the Web switch and the servers.
However, this is not a serious limitation
because Web clusters are special solutions
anyway. Moreover, TCP hand-off allows to
handle HTTP/1.1 persistent connections
by letting the Web switch assign HTTP
requests in the same connection to differ-
ent target servers [Aron et al. 1999]. There

ACM Computing Surveys, Vol. 34, No. 2, June 2002.

The State of the Art in Locally Distributed Web-Server Systems 279

Fig. 11 . Layer-7 one-way architecture.

are two mechanisms to support persis-
tent connections: the hand-off protocol can
be extended by allowing the Web switch
to migrate a connection between servers
(multiple hand-off); the first target server
forwards the request it cannot serve to
a second server that sends the response
back to the client (back-end forwarding).
The integration of the TCP hand-off mech-
anism with the SSL protocol to provide
the reuse of SSL session identifiers is an
active research area, but no result is yet
available.

3.2.2.2. TCP connection hop. This a soft-
ware-based proprietary solution imple-
mented by Resonate as a TCP-based
encapsulation protocol [Resonate 2002].
Once the Web switch has established the
TCP connection with the client and se-
lected the target server, it hops the TCP
connection to the server. This is achieved
by encapsulating the IP packet in a Res-
onate Exchange Protocol (RPX) packet
and sending it to the server [Resonate
2002]. The connection hop operates at the
network layer between the network inter-
face card and the TCP/IP stack, thus min-
imizing the latency of incoming packets.

The server can reply directly to the client
because it shares the same VIP address of
the Web switch. Acknowledgment packets
and persistent session information from
clients are managed by the Web switch.

3.3. A Comparison of Routing Mechanisms
for Web Clusters

Figure 12 summarizes the classification
for Web cluster by further detailing the
taxonomy previously shown in Figure 6.
We first discuss the different solutions
for layer-4 and layer-7 routing, and then
we compare the two classes of routing
mechanisms.

3.3.1. Layer-4 Routing Mechanisms. An
advantage of two-way solutions is that the
server nodes may be in different LANs.
The main constraint is that both inbound
and outbound traffic must flow through
the Web switch. The consequence is that
the Web switch must rewrite inbound as
well as outbound packets, and outbound
packets typically outnumber inbound
packets. Thus, the scalability (in terms
of throughput) of Web clusters that use
a two-way architecture is limited by the

ACM Computing Surveys, Vol. 34, No. 2, June 2002.

280 V. Cardellini et al.

Fig. 12 . Detailed taxonomy of Web cluster architectures.

Web switch ability to rewrite packets
and recalculate their checksums, even
if a dedicated hardware support can be
provided for the checksum operations.
It is worth noting that the TCP header
rewriting does not necessarily mean a
recomputation of the entire packet check-
sum because the new checksum can be
obtained by subtracting the old checksum
[Rijsinghani 1994].

A layer-4 Web switch that uses a one-
way solution can sustain a larger through-
put than two-way architecture before be-
coming the system bottleneck. Thus, the
system performance is only constrained by
the ability of the switch to set up, look up,
and delete entries in the binding table. If
we consider the different mechanisms for
one-way architectures, we see that packet
single-rewriting causes the same over-
head as packet double-rewriting, but it re-
duces switch operations because the more
numerous outbound packets are rewritten
by the Web servers and not by the Web
switch. This requires modifications to the
kernel of the server operating system, but
it does not seem to be a serious drawback
because Web clusters are proprietary so-
lutions anyway.

Packet forwarding mechanisms aim to
limit the overhead of packet rewriting
thanks to two mechanisms. The Web
switch processes only inbound packets and
it works at the MAC layer that avoids ex-
pensive checksum recalculations. A lim-

itation of packet forwarding is that it
requires the same network segment to
connect the Web switch and all the Web
server nodes. However, this restriction has
a very limited practical impact since the
Web switch and the servers are likely
to be connected through the same LAN.
Solutions that employ packet tunnel-
ing have good scalability, although lower
than packet forwarding. They require the
servers to support IP tunneling, which is
not yet a standard for current operating
systems. However, as for the other solu-
tions based on special purpose systems,
this is not considered a serious limit in the
reality.

Thanks to hardware improvements and
one-way mechanisms, the scalability of
Web clusters based on layer-4 solutions is
primarily limited by the capacity of the
network link to Internet.

3.3.2. Layer-7 Routing Mechanisms.
Layer-7 Web switches that use one-
way solutions enable the server nodes
to respond directly to the clients, thus
offering higher scalability than two-way
solutions. In particular, the TCP hand-off
approach scales better than TCP splicing
[Aron et al. 2000]. However, one-way
solutions operating at layer-7 require
modifications to the operating system
of both the Web switch and the servers.
Typically, two-way architectures work
also on commercial off-the-shelf (COTS)

ACM Computing Surveys, Vol. 34, No. 2, June 2002.

The State of the Art in Locally Distributed Web-Server Systems 281

Table I. A Summary of Local Routing Mechanisms for Web Clusters
Layer-4 two-way Layer-4 one-way Layer-7 two-way Layer-7 one-way

Dispatching content-blind content-blind content-aware content-aware
Dispatching TCP connection TCP connection HTTP request HTTP request
granularity
Web switch in/outbound inbound in/outbound inbound
data flow
Routing fast fast slowest (gateway) slow, complex
characteristic(s) slow (splicing)
System scalability high highest lowest medium
Supported net HTTP, FTP, . . . HTTP, FTP, . . . HTTP HTTP
applications

systems when combined with layer-4
operations, while they may or not require
special purpose operating systems when
combined with layer-7 solutions (see,
e.g., TCP splicing and TCP gateway,
respectively). However, as already ob-
served, the research community and the
market feel acceptable to use special pur-
pose solutions for Web clusters, especially
if they guarantee better performance. An
advantage of two-way architectures com-
bined with a layer-7 Web switch is that
caching solutions can be implemented on
the Web switch. This allows such device
to reply directly to a request if it can be
satisfied from the cache with a consequent
load decrease on server nodes.

The main advantage of the TCP gate-
way approach is the simplicity of its im-
plementation that can be done on any
operating system. The main drawback is
the overhead that this solution adds on
both request and response packets flow-
ing through the Web switch up to the ap-
plication layer. TCP splicing reduces TCP
gateway overhead, because it eliminates
the expensive copying and context switch-
ing operations that result from the use of
an application layer proxy. However, even
in this instance, the Web switch can eas-
ily become the bottleneck of the cluster as
it needs to modify the TCP and IP packet
headers.

3.3.3. Layer-4 vs. Layer-7 Routing. The
main advantage of layer-7 routing mech-
anisms over layer-4 solutions is the pos-
sibility of using content-aware dispatch-
ing algorithms at the Web switch. We see
in Section 6.3 that through these policies
it is possible to achieve high disk cache

hit rates, to partition the Web content
among the servers, to employ specialized
server nodes, to assign subsequent SSL
sessions to the same server, and to achieve
a fine grain request distribution even with
HTTP/1.1 persistent connections.

On the other hand, layer-7 routing
mechanisms introduce severe processing
overhead at the Web switch to the extent
that may cause the dispatcher to severely
limit the Web cluster scalability [Aron
et al. 2000; Song et al. 2000]. As an exam-
ple, Aron et al. [2000] show that the peak
throughput achieved by a layer-7 switch
that employs TCP hand-off is limited to
3500 conn/sec, while a software based
layer-4 switch implemented on the same
hardware is able to sustain a throughput
up to 20000 conn/sec. To improve scala-
bility of layer-7 architectures, alternative
solutions for scalable Web-server systems,
which combine content-blind and content-
aware request distribution, have been pro-
posed. They are described in Section 8.

Table I outlines the main features
and tradeoffs of the various mecha-
nisms we have discussed for Web cluster
architectures.

4. REQUEST ROUTING MECHANISMS
FOR VIRTUAL WEB CLUSTERS

In this section, we analyze the mecha-
nisms for routing requests in a virtual Web
cluster, where the architecture does not
use a front-end device with a single VIP
address. As the name of the Web site is
mapped by the DNS into the virtual IP
address that is shared by all Web servers,
the decision on client request routing is
not designated to one entity but it is fully

ACM Computing Surveys, Vol. 34, No. 2, June 2002.

282 V. Cardellini et al.

distributed among the nodes of the clus-
ter. All inbound packets reach each Web
server that has to filter out the packet to
determine whether it is the target or not.
Only one server must accept the packets
from the same client and the others must
refuse them. The packet filtering occurs
between the data link layer and the IP
layer. It is carried out either by a specific
driver interposed between these two lay-
ers or by the modified device driver of the
server.

The request routing is content-blind,
because the target server identifies it-
self only by examining the information at
TCP/IP level, such as the client IP ad-
dress and port. Typically, the filter imple-
mented on each server node computes a
hash function on the source IP address
and sometimes also on the port number.
If the hash value matches the server own
value, the packet is accepted; otherwise, it
is discarded.

Since the same VIP address is shared
by all the server nodes, request routing oc-
curs at the MAC layer. Two MAC address
assignments to the server nodes are fea-
sible: unicast MAC address and multicast
MAC address, which are described below.

Request routing at the MAC layer al-
lows a virtual Web cluster to host any
IP-based service. Another advantage of
this architecture is that it avoids the single
point of failure and the potential system
bottleneck represented by the Web switch.
However, it has its own disadvantages too.
The MAC routing mechanism, similarly
to the packet forwarding mechanism (see
Section 3.1), requires all the server nodes
to be on the same subnet. But the most se-
rious limitation of the virtual Web-cluster
architecture is represented by the request
dispatching. Not only the request routing
in a virtual Web cluster cannot take ad-
vantage of content-aware dispatching, but
also the packet filtering based on a hash
function is not able to adapt itself to dy-
namic conditions when the client requests
unevenly load the servers. In this survey,
we will not further investigate the dis-
patching policies for virtual Web clusters
because they are limited to the application
of a hash function.

4.1. Unicast MAC Address

The unicast MAC address approach re-
quires the assignment of a unique MAC
address (namely, cluster MAC address) to
all the Web server nodes in the cluster
[Microsoft 2002; Vaidya and Christensen
2001]. To let this mechanism operate, we
must change the unique burned-in MAC
address of the network adapter of each
server into the cluster MAC address. The
frames addressed to the cluster MAC ad-
dress are received by each server node,
which filters out the incoming packets
to determine whether it is the intended
recipient.

Since the servers share both the same IP
address and the same MAC address, intr-
acluster network communications are im-
possible unless a second network adapter
is used for each node. In this case, the
server dedicated IP address is mapped to
the MAC address of the second adapter.

The unicast MAC address approach
is the default mode of operation of the
Network Load Balancing [Microsoft 2002],
and is also used in the prototype real-
ized by Vaidya and Christensen [2001].
The Network Load Balancing works as a
filter between the network adapter and
the TCP/IP protocol stack. It applies a
hash function on the source IP address
and the port number, and passes to the
upper network layer only the packets that
are destined to the local node. The cluster
nodes can periodically exchange messages
to maintain a coherent view of the map-
ping and for reliability monitoring, even
if this requires to add a second network
adapter to each server.

4.2. Multicast MAC Address

The alternative mode of operation of the
Network Load Balancing [Microsoft 2002]
relies on the use of a multicast MAC
address. In this architecture, all the server
nodes are configured to receive Ethernet
frames via an identical multicast MAC ad-
dress [Microsoft 2002]. The unicast VIP
address of the Web site is resolved to the
multicast MAC address. When the access
router sends an ARP request to find out

ACM Computing Surveys, Vol. 34, No. 2, June 2002.

The State of the Art in Locally Distributed Web-Server Systems 283

the MAC address of the VIP address, the
system returns the MAC multicast ad-
dress, and the frames addressed to this ad-
dress are received by all the servers. Each
node inspects the client packet and one
of the servers chooses to reply to the re-
quest based on some filtering mechanism.
Typically, the filtering mechanism is based
on a hash function applied to the client
IP address and the port in the TCP/IP
packet. Unlike the solution adopted for
the unique MAC address mechanism, here
each server retains its unique built-in
MAC address. This is resolved to the spe-
cific IP address of the server that is used
for intracluster traffic.

The multicast MAC address mechanism
allows the use of one network adapter to
handle both client-to-cluster traffic and
server’s dedicated traffic. However, the use
of a multicast MAC address as a response
to an ARP query for a unicast IP address
may not be accepted by some routers (e.g.,
Cisco routers). This problem can be solved
by a manual configuration of a static ARP
entry within the router.

5. REQUEST ROUTING MECHANISMS FOR
DISTRIBUTED WEB SYSTEMS

In this section, we analyze the mecha-
nisms for routing requests in distributed
Web systems where server IP addresses
are visible to the clients because a front-
end Web switch is not used. The deci-
sion on client request routing occurs at
the DNS and/or server level. We ana-
lyze in Section 5.1 DNS-based mecha-
nisms where the routing takes place dur-
ing the address resolution phase, and in
Section 5.2 (re)routing mechanisms that
are carried out by the Web servers. A
DNS-based mechanism is used only for
the first-level routing and is typically cen-
tralized at a single entity, while mech-
anisms deployed at the Web system are
distributed and used for the second-level
routing or rerouting.

5.1. DNS Routing Mechanisms

DNS-based routing is the first solution
to handle multiple Web servers hosting a

Web site. Proposed around 1994, it was
originally conceived for locally distributed
Web systems, even if now it is com-
monly used in geographically distributed
Web systems [Kwan et al. 1995]. DNS-
based routing intervenes during the ad-
dress look-up phase at the beginning of
the Web transaction when the name of
the Web site must be mapped to one IP
address of a component of the Web sys-
tem. Through this simple mechanism, the
authoritative DNS server (A-DNS) for the
Web site can select a different server for
every address resolution request reaching
it [Brisco 1995]. The A-DNS replies to ad-
dress requests with a tuple <IP address,
TTL>, where the first entry is the IP ad-
dress of one of the nodes in the distributed
Web-server system, and the second entry
is the Time-To-Live (TTL) denoting the pe-
riod of validity of the hostname-address
mapping that is typically cached in the
name servers along the path from the A-
DNS to the local name server of the client.
In fact, address caching limits the A-DNS
control on dispatching of the client re-
quests as it reduces to a small percentage
the address requests that actually need
the A-DNS server to handle address res-
olution [Colajanni et al. 1998; Dias et al.
1996]. (Measures on real traces indicate
that the requests under direct control of
the A-DNS responsible for a highly ac-
cessed Web site are less than 5% of the
total requests reaching the system.) In-
deed, along the resolution chain between
the client and the A-DNS, there are sev-
eral name servers that may hold a valid
mapping for the site name. When this
mapping is found in one of the name
servers on this path and the TTL is not
expired, the address request is resolved,
thus bypassing the name resolution deci-
sion provided by the A-DNS. Only address
mapping requests made after the expira-
tion of the TTL in all the name server
caches on the path reach the A-DNS. The
number of address look-ups resolved by
the A-DNS is further reduced because of
browser caching. As a consequence of both
network- and client-level address caching,
the DNS-based approach permits a very
coarse grain request dispatching.

ACM Computing Surveys, Vol. 34, No. 2, June 2002.

284 V. Cardellini et al.

To limit the effects of address caching
at the network level and allow for a
more fine-grained request distribution,
the A-DNS can specify a very low value
for the TTL. However, this approach has
its own drawbacks and limits. First of all,
it increases the Internet traffic for ad-
dress resolutions that might overwhelm
the A-DNS to the extent that, if not
replicated among multiple name servers,
the A-DNS becomes the system bottle-
neck. Moreover, if any user request needs
an address resolution, the response time
perceived by users is likely to increase
[Shaikh et al. 2001]. Finally, the TTL pe-
riod chosen by the A-DNS does not work
on browser caching and, beside that, low
TTL values might be overridden by nonco-
operative intermediate name servers that
impose their minimum TTL when the sug-
gested value is considered too low.

5.2. Web Server Routing Mechanisms

Some routing mechanisms can be imple-
mented also by the Web servers that can
decide to (re)direct a client request to an-
other node. Specifically, we consider the
triangulation mechanism implemented at
the TCP/IP layer, and HTTP redirec-
tion and URL rewriting mechanisms that
work at the application layer. Unlike the
previous routing mechanisms that typi-
cally have a centralized activation, Web
server mechanisms are distributed. In-
deed, when a new request arrives from the
Web switch, each Web server can decide to
serve it locally or to redirect it, although
some centralized coordination can be used.

5.2.1. Triangulation. The triangulation
mechanism is based on packet tunneling
[Aversa and Bestavros 2000], which has
been described in Section 3.1. When this
routing is activated, the client continues
to send packets to the first contacted
server even if the request is actually ser-
viced by a different node. The first node
routes client packets to the second server
at the TCP/IP layer, by encapsulating the
original datagram into a new datagram.
The target node recognizes that the data-

Fig. 13 . HTTP redirection.

gram has been rerouted and responds
directly to the client (see one-way mecha-
nisms in Section 3). Subsequent packets
from the client pertaining to the same
TCP connection continue to reach the first
contacted node, which reroutes them to
the target server until the connection is
closed.

5.2.2. HTTP Redirection. The HTTP pro-
tocol standard, starting from version 1.0,
allows a Web server to respond to a client
request with a 301 or 302 status code
in the response header that instructs the
client to resubmit its request to another
node [Berners-Lee et al. 1996; Fielding
et al. 1999]. The built-in HTTP redirec-
tion mechanism supports only per URI-
based redirection. The status code 301
(“Moved Permanently”) specifies that the
requested resource has been assigned a
new permanent URI and any future refer-
ence to this resource will use the returned
URI. The status code 302 (corresponding
to “Moved Temporarily” in HTTP/1.0 and
to “Found” in HTTP/1.1 protocol specifica-
tions) notifies the client that the requested
resource resides temporarily under a dif-
ferent URI. Figure 13 shows the flow of
requests and response when HTTP redi-
rection is activated.

ACM Computing Surveys, Vol. 34, No. 2, June 2002.

The State of the Art in Locally Distributed Web-Server Systems 285

An advantage of HTTP redirection is
that replication can be managed at a
medium granularity level, down to indi-
vidual Web pages. Furthermore, HTTP
redirection allows content-aware routing,
because the first server receiving the
HTTP request can take into account the
content of the request when it selects an-
other appropriate node.

The main drawback is that this mecha-
nism consumes resources of the first con-
tacted server and adds an extra round-trip
time to the request processing, as ev-
ery HTTP redirection requires the client
to initiate a new TCP connection with
the destination node. This extra round-
trip time increases the network compo-
nent of the response time. Nevertheless,
it is not automatic that a redirected page
experiences a slower response time, be-
cause the increased network time could
be compensated by a sensible reduction in
the server response time, especially when
the first contacted Web node is highly
loaded.

A minor drawback of HTTP redirection
is due to the fact that most Web browsers
do not handle yet redirection as speci-
fied by the HTTP standard, for example,
when requiring the browser to display the
originally requested URL instead of the
redirected URL. Most browsers still dis-
play and bookmark the name of the new
server to which the client has been redi-
rected, thus defeating the routing mech-
anism when HTTP redirection is imple-
mented by system entities different from
Web servers.

5.2.3. URL Rewriting. URL rewriting is
a more recent mechanism to implement
Web server rerouting. When redirection
is activated, the first contacted node
changes dynamically the links for the
embedded objects within the requested
Web page so that they point to another
node [Li and Moon 2001]. Such redirection
mechanism integrated with a multiple-
level DNS routing technique is also used
by some Content Delivery Networks,
such as Akamai Tech. [2002], Mirror Im-
age Internet [2002], and Digital Island
[2002].

The drawback of URL rewriting is that
it introduces additional load on the redi-
recting Web node because each Web page
has to be dynamically generated in order
to contain the modified object references.
Furthermore, it may cause a considerable
DNS overhead, as an additional address
resolution is necessary to map the new
URL into the IP address of the second tar-
get node. It has been demonstrated that
address lookup might take substantially
longer than network round-trip time
[Cohen and Kaplan 2001]. On the other
hand, URL rewriting has also some
advantages over the other solutions. For
example, this approach can be handled
completely at the user level, and the redi-
rection mechanism can redirect further
communications of a client to a specific
Web server with one request redirection
only.

5.3. Comparison of Routing Mechanisms
for Distributed Web Systems

DNS-based routing determines the server
destination of client requests during the
address resolution phase that is typically
activated at most once for each Web ses-
sion. The request distribution among the
Web nodes is very coarse because all client
requests in a session will reach the same
server. Moreover, address caching at inter-
mediate name servers and client browsers
further limits the necessity of contacting
the A-DNS. Setting TTL to low values al-
lows for a more fine-grained request dis-
tribution, but it could make the A-DNS a
potential system bottleneck and increase
the latency time perceived by users. Be-
cause of the presence of noncooperative
name servers that use their own lower
bounds for the TTL, the range of the ap-
plicability of this solution is limited or not
well predictable.

Although initially conceived for locally
distributed architectures (e.g., NCSA’s
Web site), DNS-based routing can scale
well geographically. The popularity of this
approach for wide-area Web systems and
for Content Delivery Networks is increas-
ing due to the seamless integration with
standard DNS and the generality of the

ACM Computing Surveys, Vol. 34, No. 2, June 2002.

286 V. Cardellini et al.

Table II. A Summary of Routing Mechanisms for Distributed Web Systems
DNS Triangulation HTTP redirection URL rewriting

Dispatching content-blind content-blind content-aware content-aware
Dispatching session TCP connection page/object page/object
granularity
Client/server direct triangular redirection redirection
data flow
Overhead(s) None operations at the round-trip times server operations

first contacted server address lookups
Supported net HTTP, FTP, . . . HTTP, FTP, . . . HTTP HTTP
applications

name resolution process, which works
across any IP-based application.

A solution to DNS problems is to add
a second-level routing carried out by the
Web servers through a rerouting mech-
anism operating at the TCP or HTTP
layer. The main disadvantage of trian-
gulation is the overhead imposed on the
first contacted server, as it must continue
to forward client packets to the destina-
tion node. That is to say, the triangulation
mechanism does not allow the first server
to completely get rid of the redirected re-
quests. Moreover, as triangulation is a
content-blind routing mechanism, it re-
quires full content replication, and does
not allow fine-grain dispatching when the
Web transaction is carried out through an
HTTP/1.1 persistent connection.

Unlike triangulation-based solutions,
application-layer mechanisms, such as
HTTP redirection and URL rewriting,
do not require the modification of pack-
ets reaching or leaving the Web-server
system. This allows the server to take
into account the requested content in the
dispatching decision, thus providing also
fine-grain rerouting. The HTTP redirec-
tion is fully compatible to any client soft-
ware; however, its use limits the Web-
based service to HTTP requests only and
increases network traffic, because any
redirected request needs two TCP con-
nections prior to be serviced. There is
another trade-off when comparing URL
rewriting and HTTP redirection for mul-
tiple requests to the same Web site. The
former mechanism requires additional
DNS look-ups but no request redirection
after the first one, while the latter so-
lution might save address lookup over-

heads at the price of multiple request
redirections.

Application-layer mechanisms can
avoid ping-pong effects that occur when
an already rerouted request is further
selected for reassignment. A cookie can be
set when the request is redirected for the
first time, so prior to decide about reas-
signment the server inspects if a cookie is
present or not. Besides the use of cookies,
other means for session identification can
be used (e.g., session encoding in URLs),
either to identify browsers that do not
support cookies or to avoid the misuse
of long-living cookies. The triangulation
mechanism does not suffer from these
side effects, because the destination node
can deduce if the request has already
been rerouted by simply inspecting the
source packet address.

Table II outlines and compares the main
characteristics of the routing mechanisms
for distributed Web systems.

6. DISPATCHING ALGORITHMS FOR
CLUSTER-BASED WEB SYSTEMS

In this section, we describe the policies
that can be used to select the target server
node in a cluster-based Web system. The
dispatching policy influences both perfor-
mance experienced by the users and sys-
tem scalability.

In a Web cluster, the dispatching pol-
icy is carried out by the Web switch
that acts as a global scheduler for the
system.1 Global scheduling policies have

1 We use the definition of global scheduling given
in Casavant and Kuhl [1988] and dispatching as
synonymous.

ACM Computing Surveys, Vol. 34, No. 2, June 2002.

The State of the Art in Locally Distributed Web-Server Systems 287

been classified in several ways, follow-
ing different criteria [Casavant and Kuhl
1988; Shirazi et al. 1995; Shivaratri et al.
1992; Wang and Morris 1985]. There are
several alternatives, such as load bal-
ancing vs. load sharing, centralized vs.
distributed, and static vs. dynamic algo-
rithms, but only a subset of them can be
actually applied to Web-cluster dispatch-
ing. This architecture with a single Web
switch that receives all incoming requests
drives the choice to centralized dispatch-
ing policies. Moreover, if we consider that
the main objective of load sharing is
to smooth out transient peak overload
periods while load balancing algorithms
strive to equalize the loads of the servers
[Kremier and Kramer 1992; Shivaratri
et al. 1992], a dispatching algorithm at
the Web switch should aim to share rather
than to balance cluster workload. Abso-
lute stability is not always necessary and
sometime impossible to achieve in a highly
dynamic system such as a Web cluster
hosting a popular Web site.

The real alternative is therefore among
static vs. dynamic algorithms, although
the Web switch cannot use highly sophis-
ticated dispatching algorithms because it
has to take immediate decisions for hun-
dreds or thousands of requests per second.
Static algorithms are the fastest solution
to prevent the Web switch from becoming
the primary bottleneck of the Web clus-
ter because they do not rely on the cur-
rent state of the system at the time of de-
cision making. However, these algorithms
can potentially make poor assignment de-
cisions. Dynamic algorithms have the po-
tential to outperform static algorithms by
using some state information to help dis-
patching decisions. On the other hand,
dynamic algorithms require mechanisms
that collect and analyze state information,
thereby incurring in potentially expensive
overheads. The requirements listed below
summarize the constraints for dispatch-
ing algorithms that we will analyze in this
section.

(1) Low computational complexity, be-
cause dispatching decisions are re-
quired in real-time.

(2) Full compatibility with existing Web
standards and protocols.

(3) All state information needed by a dis-
patching policy has to be accessible
to the Web switch. In particular, the
switch and servers of the Web cluster
are the only entities that can collect
and exchange load information. We do
not consider any state information that
needs active cooperation from other
components that do not belong to the
content provider.

6.1. A Taxonomy of Dispatching Algorithms

We have seen that in Web clusters the only
practical choice among all global schedul-
ing policies lies in the static vs. dynamic
algorithms. A third class of load sharing
policies that has been investigated in liter-
ature of distributed systems is the class of
adaptive algorithms, where the load shar-
ing policy as well as the policy parame-
ters can change on the basis of system
and workload conditions [Shivaratri et al.
1992]. However, to the best of our knowl-
edge, no existing Web switch uses adaptive
algorithms.

Static dispatching algorithms do not
consider any state information while mak-
ing assignment decisions. Instead, dy-
namic algorithms can take into account a
variety of system state information that
depends also on the protocol stack layer at
which the Web switch operates. Because
of the importance of this factor, we pre-
fer to first classify the dispatching algo-
rithms among content-blind dispatching,
if the Web switch works at the TCP/IP
layer, and content-aware dispatching,
if the switch works at the application
layer.

We then use the literature classification
by distinguishing static and dynamic al-
gorithms. It is to be noted that we assume
that static algorithms are deployed only by
Web switches that operate at the TCP/IP
layer. Indeed, the use of a sophisticated
architecture such as a layer-7 switch is
motivated only if its benefits are fully
exploited by the dispatching algorithm.
Dynamic algorithms can be further classi-
fied according to the level of system state

ACM Computing Surveys, Vol. 34, No. 2, June 2002.

288 V. Cardellini et al.

Fig. 14 . Taxonomy of dispatching policies in Web
clusters.

information being used by the Web switch.
We consider the following three classes.

6.1.1. Client State Aware Policies. The
Web switch routes requests on the basis
of some client information. Layer-4 Web
switches can use only network-layer client
information such as client IP address and
TCP port. On the other hand, layer-7 Web
switches can examine the entire HTTP
request and make decisions on the basis
of more detailed information about the
client.

6.1.2. Server State Aware Policies. The
Web switch assigns requests on the ba-
sis of some server state information, such
as current and past load condition, la-
tency time, and availability. Furthermore,
in content-aware dispatching, the switch
can also consider information about the
content of the server disk caches.

6.1.3. Client and Server State Aware Policies.
The Web switch routes requests by com-
bining client and server state information.
Actually, most of the existing client state
aware policies belong to this class, because
they always use some more or less pre-
cise information about the server loads (at
least server availability).

Figure 14 summarizes the taxonomy for
dispatching algorithms that we have ex-
amined so far. We recall that static algo-

rithms as well as server state aware poli-
cies are meaningful only for content-blind
Web switches operating at the TCP/IP
layer.

6.2. Content-Blind Dispatching Policies

In this section, we describe the main
content-blind dispatching policies accord-
ing to the taxonomy shown in Figure 14,
and detailed in Figure 15 with some repre-
sentative algorithms for each category at
the bottom level.

6.2.1. Static Algorithms. Static policies do
not consider any system state information.
Typical examples are Random and Round-
Robin algorithms. Random distributes the
incoming requests uniformly through the
server nodes with equal probability of
reaching any server. Round-Robin uses a
circular list and a pointer to the last se-
lected server to make dispatching deci-
sions, that is, if Si was the last chosen
node, the new request is assigned to Si+1,
where i + 1 = (i + 1) mod N and N is the
number of server nodes. Therefore, Round-
Robin utilizes only information on past as-
signment decision.

Both Random and Round-Robin policies
can be easily extended to treat servers
with different processing capacities by
making the assignment probabilistic on
the basis of the server capacity [Colajanni
et al. 1998]. To this purpose, if Ci in-
dicates the server capacity, the relative
server capacity ξi (0 ≤ ξi ≤ 1) is defined as
ξi = Ci/max(C), where max(C) is the max-
imum server capacity among all the server
nodes. It is to be noted that the server ca-
pacity is a configuration parameter, thus
a static information. For Random policy,
heterogeneous capacities can be taken into
account by assigning different probabili-
ties to the servers according to their ca-
pacity. The Round-Robin policy can treat
heterogeneous server nodes in the follow-
ing way. A random number % (0 ≤ % ≤ 1)
is generated, and, assuming Si was the
last chosen node, the request is assigned
to Si+1 only if % ≤ ξi. Otherwise, Si+2 be-
comes the next candidate and the process
recurs.

ACM Computing Surveys, Vol. 34, No. 2, June 2002.

The State of the Art in Locally Distributed Web-Server Systems 289

Fig. 15 . Content-blind dispatching algorithms.

Different processing capacities can be
also treated by using the so-called static
Weighted Round-Robin, which comes as a
variation of the Round-Robin policy. Each
server is assigned an integer weight wi
that indicates its capacity. Specifically,
wi = Ci/min(C), where min(C) is the mini-
mum server capacity among all the server
nodes. The dispatching sequence will be
generated according to the server weights
[Linux Virtual Server 2002]. As an ex-
ample, let us assume that S1, S2, and
S3 have the weights 3, 2, and 1, respec-
tively. Then, a dispatching sequence can
be S1 S1 S2 S1 S2 S3.

6.2.2. Client State Aware Algorithms. Since
layer-4 Web switches are content informa-
tion blind, the type of information regard-
ing the client is limited to that contained
in TCP/IP packets, that is, the IP source
address and TCP port numbers. This
coarse client information can be used by
dispatching algorithms that statically par-
tition the server nodes and assign the
same clients to the same servers, typically
through a hash function applied to the
client IP address.

6.2.3. Server State Aware Algorithms.
Client information is immediately avail-
able at the Web switch because it receives
all requests for connection. On the other
hand, when we consider dispatching
algorithms that use some server state
information we have to address several
issues: which server load index? How

and when to compute it? How and when
to transmit it to the Web switch? These
are well-known problems in networked
system [Dahlin 2000; Ferrari and Zhou
1987]. The note in Section 6.4.2 is devoted
to the analysis of some solutions in Web
clusters.

Once a server load index is selected,
the Web switch can apply different dis-
patching algorithms. A common scheme
is to have the new connection assigned
to the server with the lowest load index.
The Least Loaded approach denotes a
class of policies that depend on the chosen
server load index. For example, in the
Least Connections algorithm, which is
usually adopted in commercial products
(e.g., LocalDirector [Cisco Systems 2002],
BIG-IP [F5 Networks 2002]) the Web
switch assigns the new request to the
server with the fewest active connections.
A simple extension, which assigns static
weights to the servers according to their
capacity, allows to take into account
heterogeneity in server capacity [Linux
Virtual Server 2002]. The underlying
idea is that servers with greater capacity
should support a larger number of active
connections: this can be simply achieved
by dividing the number of active connec-
tions by the server weight. The Fastest
Response Time policy (e.g., LocalDirector
[Cisco Systems 2002] and ServerIron
[Foundry Networks 2002]) is another
example of least loaded policy, where the
Web switch assigns the new connection to
the server that is responding fastest, that

ACM Computing Surveys, Vol. 34, No. 2, June 2002.

290 V. Cardellini et al.

is, showing the smallest object latency
time in the last observation interval.

The dynamic Weighted Round-Robin al-
gorithm is a variation of the version that
considers static information (server capac-
ity) as a weight. This policy associates
each server with a dynamically evalu-
ated weight that is proportional to the
server load state [Hunt et al. 1998]. Pe-
riodically, the Web switch gathers load
index information from the servers and
computes the weights, that are dynami-
cally incremented for each new connection
assignment. The reader should be aware
that the Weighted Round-Robin algorithm
(WRR) is often referred in literature with-
out specifying whether it is the static or
dynamic version.

6.2.4. Client and Server State Aware Algo-
rithms. Server state information can be
combined with some client information
available at a layer-4 Web switch (e.g.,
the source IP address and the service port
number within the TCP header). Perfor-
mance or functional reasons motivate the
choice of assigning consecutive multiple
connections from the same client to the
same server, to provide the so called client
affinity [Hunt et al. 1998; Linux Virtual
Server 2002].

For example, to avoid time- and
resource-consuming operations for SSL
key negotiation and generation, it would
be convenient to assign consecutive SSL
connections from the same client to the
same server during the life span of the SSL
key. Indeed, the reuse of SSL keys cached
in the server’s main memory can signifi-
cantly reduce the latency time [Goldberg
et al. 1998]. An FTP session is an exam-
ple where client affinity assignment is not
a performance but a functional require-
ment, because this protocol uses two con-
nections (control and data) that must be
established with the same server.

As regards the reuse of cached SSL keys,
it has to be noted that a layer-4 Web switch
can only identify a client issuing requests
on a secure channel through its source IP
address. As different clients behind the
same proxy or firewall share the same
IP address, using only this information

it can happen that clients that are not
part of the session are routed to the same
server.

In proposed client affinity policies, client
information usually overrides server in-
formation for assignment decisions. This
means that client past assignments
have more importance than server state
conditions.

6.2.5. Considerations on Content-Blind Dis-
patching. For a layer-4 Web switch, static
algorithms are the fastest dispatching so-
lution because they do not rely on any
system state information in making the
decision. Furthermore, they are very easy
to implement. However, these stateless al-
gorithms might make poor assignment de-
cisions due to highly variable service times
and resource consumption that character-
ize Web workload. To limit these risks,
some authors have proposed the integra-
tion of a static algorithm at the Web switch
with a second-level rerouting mechanism
carried out by the server nodes. The server
dispatching algorithm is typically content-
aware and aims to improve load sharing
and caching [Carrera and Bianchini 2001;
Cherkasova and Karlsson 2001; Ciardo
et al. 2001].

Dynamic algorithms have the potential
to outperform static algorithms by using
some state information in the process of
dispatching decision. However, they re-
quire mechanisms that collect and ana-
lyze state information, thereby incurring
in potentially expensive overheads (see
Section 6.4.2). Furthermore, setting the
right parameters of dynamic policies can
be a difficult task in highly variable sys-
tems such as Web clusters.

Server state aware algorithms seem
to be the best choice, even if not all
policies work fine. For example, the least
loaded approach tends to drive servers
to saturation as all requests are sent to
the same server until new information
is propagated. This “herd effect” is well
known in distributed systems [Dahlin
2000; Mitzenmacher 2000], yet the least
loaded approach is commonly used in
commercial products. On the other hand,
many experiments and simulation results

ACM Computing Surveys, Vol. 34, No. 2, June 2002.

The State of the Art in Locally Distributed Web-Server Systems 291

Fig. 16 . Content-aware dispatching algorithms.

have demonstrated that the dynamic
Weighted Round-Robin policy compro-
mises simplicity with efficacy at best
[Casalicchio and Colajanni 2001; Hunt
et al. 1998].

6.3. Content-Aware Dispatching Policies

The complexity of layer-7 Web switches
that can examine the HTTP request mo-
tivates the use of more sophisticated
content-aware distribution policies. We
detail the taxonomy for content-aware dis-
patching shown in Figure 14 with an
additional level that considers the main
goal of the dispatching policies. Figure 16
summarizes the taxonomy of the content-
aware dispatching policies and shows at
the bottom level the proposed algorithms
that use information about the requested
URL for different purposes, such as

—to improve reference locality in the
server caches so to reduce disk accesses
(cache affinity);

—to use specialized server nodes to pro-
vide different Web-based services (spe-
cialized servers), such as streaming
content, dynamic content, and to par-
tition the Web content among the ser-
vers, for increasing secondary storage
scalability;

—to increase load sharing among the
server nodes (load sharing).

Furthermore, additional information
regarding the HTTP request, such as cook-
ies and SSL identifiers, can be also used
to exploit client affinity algorithms. In-
deed, the SSL protocol involves a com-
putationally expensive handshake pro-
cedure (certificates exchange, encryption
and compression negotiation, session ID
setup), while subsequent SSL sessions can
skip the handshake (by using again the
same session ID) for a limited period of
time. However, it is to be noted that sup-
port for stateful services can be also pro-
vided by Web switches that operate at
the TCP/IP layer (although with a lower
degree of accuracy as explained in Sec-
tion 6.2). Indeed, stateful services can be
identified through the service port (e.g.,
443 for SSL) and a connection reuse time-
out can be set [Hunt et al. 1998].

Finally, when HTTP/1.1 persistent con-
nections are used, a layer-7 Web switch
can assign requests traveling on the same
TCP connection to different servers, thus
achieving a granularity control down to
individual HTTP requests. On the other
hand, a layer-4 switch must assign the
entire TCP connection to the same server.
It implies that multiple HTTP requests on
the single persistent connection reach the
same server, that is, the control granular-
ity on which the assignment is activated
is at the level of the entire TCP connec-
tion. With HTTP/1.0, there is no difference

ACM Computing Surveys, Vol. 34, No. 2, June 2002.

292 V. Cardellini et al.

for the granularity control between layer-
4 and layer-7 routing because a one-to-one
correspondence exists between an HTTP
request and a TCP connection.

6.3.1. Client State Aware Algorithms. Let
us first consider the left part of the tax-
onomy in Figure 16. In cache affinity poli-
cies, the file space is typically partitioned
among the server nodes. A hash function
applied to the URL (or to a substring of
the URL) can be used to perform a static
partitioning of the files. The dispatching
policy running on the Web switch (namely,
URL hashing algorithm) uses the same
function. This scheme exploits the local-
ity of references in the server nodes and
achieves the best cache hit rate. However,
the solution combining Web-object parti-
tioning and hash function work well for
static content only. Moreover, it ignores
load sharing completely, as it is difficult
to partition the file space in such a way
that the requests are balanced out. In-
deed, if a small set of files accounts for
a large fraction of requests (a well-known
characteristic of Web workload, e.g., Arlitt
and Jin [2000] and Crovella and Bestavros
[1997]), the server nodes serving those
critical files will be more loaded than oth-
ers. These critical load peaks can be low-
ered by architectures that integrate proxy
server solutions, but the other problem
remains.

For Web sites providing heterogeneous
Web-based services, the requested URL
can be used to statically partition the
servers according to the service type they
handle. The goal is to employ special-
ized servers for certain type of requests,
such as dynamic content, multimedia files,
streaming video [Yang and Luo 2000]. We
refer to this policy as to Service Parti-
tioning. Most commercial content-aware
switches deploy this type of approach (e.g.,
BIG-IP [F5 Networks 2002] and Central
Dispatch [Resonate 2002]).

The third main goal of the content-
aware dispatching algorithms is to im-
prove load sharing among the servers.
These strategies do not require static par-
titioning of the file space and the Web-
based services. Two policies belong to

this class: Size Interval Task Assignment
with Equal load (SITA-E) [Harchol-Balter
et al. 1999] and Client-Aware Policy (CAP)
[Casalicchio and Colajanni 2001]. The for-
mer is more oriented to Web sites provid-
ing static information, the latter to sites
providing Web-based services with differ-
ent computational impact on system re-
sources.

The SITA-E policy partitions dynami-
cally the Web content among the servers
according to the file size distribution. The
Web switch selects the target server on
the basis of the size of the requested
file. The goal is to separate services for
light tasks from those for heavy tasks
[Harchol-Balter et al. 1999]. The SITA-E
policy founds on theoretical demonstra-
tions, but it assumes that the service time
of a request is proportional to its size. This
assumption is valid for static Web con-
tent only (indeed, predetermining the ser-
vice time of a dynamic request remains
an interesting open problem). Further-
more, the SITA-E policy does not consider
that caching and possible optimizations
at the kernel and TCP connection level
(e.g., sendfile in Unix/Linux operating
systems) have a stronger effect on small
files.

The other dispatching policies, which
do not consider static files only, typically
manage heterogeneous services through
a static partitioning of the Web content.
A quite different approach is taken by
the Client-Aware Policy (CAP) proposed
in Casalicchio and Colajanni [2001]. The
basic observation is that when the Web
site provides heterogeneous services, each
client request could stress a different Web-
system resource, for example, CPU, disk,
network. Although the Web switch can-
not estimate the service time of a static
or dynamic request accurately, it can dis-
tinguish the class of the request from the
URL and estimate its impact on main
Web-system resources. A feasible classifi-
cation for CAP is to consider disk-bound,
CPU-bound, and network-bound services,
but other choices are possible depending
on placement of the Web content. To im-
prove load sharing in Web clusters that
provide multiple services, the Web switch

ACM Computing Surveys, Vol. 34, No. 2, June 2002.

The State of the Art in Locally Distributed Web-Server Systems 293

manages a circular list of server assign-
ments for each class of Web-based services.
The CAP goal is to share multiple load
classes among all servers so that no com-
ponent of a node is overloaded. CAP in its
initial form is a client-aware policy; how-
ever, it can be easily combined with some
server state information.

Client affinity policies that assign all
Web transactions from the same client to
the same server can use more detailed
information than that discussed in 6.2.2
when they are applied to a layer-7 Web
switch. For example, session identifiers,
such as cookies and SSL identifiers, are
commonly exploited by current dispatch-
ers. These identifiers provide a powerful
means to maintain client affinity at the
individual client granularity. In particu-
lar, they avoid the limitations of the client
IP address identification at a layer-4 Web
switch, when Web proxies in the client-
server path can squeeze a large number
of users into a small number of different
IP addresses.

6.3.2. Client and Server State Aware Al-
gorithms. Dispatching algorithms imple-
mented at the application layer can also
use a combination of client and server
state information. In this section, we de-
scribe two policies that have been specifi-
cally designed to consider both client and
server information. Other client-aware
policies (e.g., CAP) can be easily integrated
with some server state information. In
the taxonomy in Figure 16, the client-
and server-aware policies belong to both
classes of goals because they use client
information for cache affinity purposes
and server information for load-sharing
goals.

The Locality-Aware Request Distribu-
tion (LARD) policy is a content-aware re-
quest distribution that considers both lo-
cality and load balancing [Aron et al. 1999;
Pai et al. 1998]. The basic principle of
LARD is to direct all requests for the same
Web object to the same server node as long
as its utilization is below a given thresh-
old. By so doing, the requested object is
more likely to be found into the disk cache

of the server node. Some check on the
server utilization is useful to avoid over-
loading servers and, indirectly, to improve
load sharing. When a server utilization
reaches a given watermark, the dispatcher
assigns the request to a lowly loaded node,
if it exists, or to the least loaded server.
A scheme similar to the LARD policy has
been implemented in the HACC cluster
[Zhang et al. 1999].

In LARD, it is the Web switch that main-
tains the mapping from a file to the set
of nodes containing it, while the Cache
manager dispatching policy relies on a
cache manager that is aware of cache con-
tent of all Web servers [Bunt et al. 1999].
Each server provides periodically this in-
formation to the cache manager. If the re-
quested object is not cached in any server,
the Web switch selects the least-loaded
server. Otherwise, it selects the lightest
loaded server caching the object, provided
that its load is within a threshold over the
least-loaded server [Bunt et al. 1999].

6.3.3. Considerations on Content-Aware Dis-
patching. Pure client state aware policies
have a great advantage over policies that
use also server information, as they do
not require expensive and hard to tune
mechanisms for monitoring and evaluat-
ing the load on each server, gathering
the results, and combining them to make
dispatching decisions (see Section 6.4.2).
However, even client state aware policies
should take into account at least a binary
server information in order to avoid rout-
ing the requests to temporarily unavail-
able or overloaded servers.

Static partitioning algorithms tend to
ignore load sharing, as it is almost impos-
sible to partition the Web-based services in
such a way that the requests are balanced
out. Indeed, a well-known characteristic
of Web workload is that a small set of
files account for a large fraction of re-
quests. Dispatching policies that aim to
improve cache hit rates, such as LARD,
give the best results for Web sites pro-
viding static information and some sim-
ple database information. On the other
hand, when we consider Web clusters

ACM Computing Surveys, Vol. 34, No. 2, June 2002.

294 V. Cardellini et al.

that provide highly heterogeneous ser-
vices, content-aware policies, such as CAP,
that aim to share the load among all (or
most) of server components, can provide
best performance [Casalicchio et al. 2002].

6.4. Analysis of Dispatching Algorithms

In this section, we first compare content-
blind and content-aware dispatching.
Then, we give some considerations about
pros and cons of using server state infor-
mation in Web clusters.

6.4.1. Content-Blind vs. Content-Aware Dis-
patching. Content-aware dispatching pol-
icies can potentially outperform the
content-blind algorithms as they rely on
more detailed client information in mak-
ing the assignment decision. For example,
the LARD algorithm shows substantial
performance advantages over the dynamic
Weighted Round-Robin strategy when
considering static content [Aron et al.
1999; Casalicchio and Colajanni 2001].

On the other hand, operations at layer-7
are expensive, hence client state aware
policies must limit parsing of client in-
formation not to cause excessive overhead
on the Web switch. For example, a cookie
might be 4096 characters long and this in-
formation would require many TCP seg-
ments. If the Web switch has to inspect
every cookie before assigning the client
request to a server, the latency time in-
creases and the Web switch can easily be-
come the system bottleneck.

It is important that new content-aware
dispatching algorithms consider also the
heterogeneity of Web-based services and
do not focus only on improving cache
hit rate of static content. The motiva-
tion is that the complexity of services
and applications provided by Web sites is
ever increasing as demonstrated by the
integration of traditional Web publishing
sites with e-commerce and Web-based in-
formation systems requiring dynamic and
secure services.

6.4.2. A Note on Server State Information.
Various issues need to be addressed when

we consider dispatching policies based on
some server state information: first of all,
the choice for one or more server load
index(es); then the way to compute the load
state information and the frequency of the
samples; finally, due to the cluster archi-
tecture, some indexes may not be imme-
diately available at the Web switch, so we
have to decide how to transmit them and
how frequently. Any of these choices can
have a strong impact on final performance
of the dispatching algorithms, to the ex-
tent that the same policy can behave much
better or much worse of other algorithms
depending on the quality of the chosen
load indexes.

The three main factors that affect the
latency time of a Web request are loads
on CPU, disk, memory, and network re-
sources of the Web server nodes. Typi-
cal server state information includes the
CPU utilization evaluated over a short
interval, the instantaneous CPU queue
length periodically observed, the amount
of available memory, the disk or I/O stor-
age utilization, the instantaneous number
of active connections, the number of ac-
tive processes, and the object latency time,
that is, the completion time of an object
request at the Web cluster side. Unlike
load indexes such as utilization referring
to a well-known range, most other indexes
must be referred to the system capacity
under examination.

Load indexes can be further classified
into three classes according to the way
they are evaluated: input indexes, server
indexes, and forward indexes. Input
indexes are computed by the Web switch
and do not require any server coopera-
tion. Server indexes are evaluated by each
server and transmitted to the Web switch.
Forward indexes are information got
directly by the Web switch that emulates
client requests to the Web servers.

The Web cluster architecture deter-
mines the feasibility and convenience of
using some load indexes instead of others.
For example, input indexes and server in-
dexes can be used in one-way and two-way
architectures while forward indexes are
meaningful in one-way architectures only,
because in two-way architectures the Web

ACM Computing Surveys, Vol. 34, No. 2, June 2002.

The State of the Art in Locally Distributed Web-Server Systems 295

switch can keep track of each connection
without the need of generating additional
traffic in the Web cluster.

Both server and forward indexes typi-
cally take longer than input indexes to ac-
quire. However, input index information
is limited to the lifetime of a connection
and the number of active connections, that
provide a rough estimate of the state of
the Web servers as seen by the binding
table of the Web switch. On the other hand,
server indexes can provide detailed infor-
mation such as CPU and disk utilization,
object latency time (e.g., for the Fastest
Response Time policy), number of ac-
tive connections, and number of processed
packets. This last information can be the
most useful load index when the num-
ber of transferred packets varies greatly
from connection to connection, for exam-
ple, when large files can be transmit-
ted or when HTTP/1.1 persistent connec-
tions are used. In one-way architectures,
server indexes have to be computed by a
process monitor running on each server
and periodically transmitted to (or get by)
the Web switch. In two-way cluster ar-
chitectures, the same mechanism can be
used; otherwise, a subset of server in-
dexes (e.g., number of active connections,
transmitted packets, object latency time)
can be inferred by the Web switch that
has a full control on the data flow. Other
server indexes, such as CPU and disk
utilization, always need a process moni-
tor on the servers and a communication
mechanism from the servers to the Web
switch.

The combination of a set of load indexes
into a single index that reflects the server
load is an interesting research issue that
has not yet been investigated in the con-
text of Web clusters.

In addition to the choice of the server
load index, all server state aware policies
face the problem of updating the load in-
formation. The intervals between updates
of the load indexes need to be evaluated
carefully to make sure that the system re-
mains stable. If the interval is too long,
performance may be poor because the sys-
tem is responding to old information about
the server loads. On the other hand, too

short intervals can result in system over-
reaction and instability. A strategy for in-
terpreting stale load information that can
be applied to layer-4 Web switches has
been proposed in Dahlin [2000].

7. CLASSIFICATION OF PRODUCTS
AND PROTOTYPES

In the last years, the size of the market
for Web-server systems has rapidly ex-
panded. Many companies, from big ones
to start-ups, have invested large amounts
of money for the research in cluster-based
Web systems. The consequence is that new
ideas and interesting solutions that con-
tributed to the advancement of the re-
search in this field came from both the
academic and the industrial world.

For these reasons, we found it correct
and useful to classify together and com-
pare research prototypes and commercial
products concerning cluster-based Web
systems.

In this section, we refer to the architec-
ture taxonomy outlined in Section 3 and il-
lustrated in Figure 12. We can anticipate
that commercial products often use sim-
ple dispatching policies because they are
more stable even if they do not guaran-
tee best performance. On the other hand,
research prototypes tend to propose and
investigate more sophisticated solutions.
However, this is just a tendency, and coun-
terexamples exist.

Another premise is important before
reading this section. The names of the
companies and products tend to change
frequently because of continuous merges
and acquisitions in this field. For ex-
ample, in October 1999, Intel [2002] ac-
quired IPivot, a technology spin-off; in
June 2000, Cisco Systems [2002] acquired
ArrowPoint, one of the first companies to
commercialize layer-7 Web switches; in
January 2001, Nortel Networks [2002] en-
tered content-aware dispatching market
by acquiring Alteon WebSystems that was
one of the market leaders. Because of this
turbolence, we will maintain a Web page2

2 http://weblab.ce.uniroma2.it/webcluster/links.
html

ACM Computing Surveys, Vol. 34, No. 2, June 2002.

296 V. Cardellini et al.

Table III. Layer-4 Web Clusters
Two-way One-way

Packet double-rewriting Packet single-rewriting Packet tunneling Packet forwarding
LocalDirector TCP Router LVS Network Dispatcher
[Cisco Systems 2002] [Dias et al. 1996] [Linux Virtual Server 2002] [Hunt et al. 1998; IBM 2002]
Magicrouter LVS
[Anderson et al. 1996] [Linux Virtual Server 2002]
LVS BIG-IP
[Linux Virtual Server 2002] [F5 Networks 2002]
LSNAT LSMAC
[Srisuresh and Gan 1998] [Gan and Ramamurthy 2000]
BIG-IP NetStructure
[F5 Networks 2002] Traffic Director [Intel 2002]
ServerIron Alteon 180
[Foundry Networks 2002] [Nortel Networks 2002]
Network Dispatcher WSD Pro
[IBM 2002] [Radware 2002]
Equalizer ServerIron
[Coyote Point Systems 2002] [Foundry Networks 2002]
NetBalancer ONE-IP
[Allot Communications 2002] [Damani et al. 1997]

with updated information about Web clus-
ter prototypes and products.

7.1. Products Based on a Layer-4
Web Switch

Table III classifies some commercial prod-
ucts and research prototypes that work at
the TCP/IP layer. Some products, such as
LVS [Linux Virtual Server 2002], appear
in multiple table entries because they can
be configured to support more than one re-
quest routing mechanism.

We compare some prototypes and prod-
ucts based on a layer-4 Web switch by
first considering two-way architectures
and then one-way architectures.

7.1.1. Two-Way Solutions. Layer-4 Web
switches based on double-packet rewrit-
ing are often implemented on specialized
hardware because of their relative sim-
plicity. Examples are LocalDirector [Cisco
Systems 2002] and ServerIron [Foundry
Networks 2002]. However, pure-software
implementations are also possible, such
as LVS [Linux Virtual Server 2002] and
the Magicrouter prototype from Berkeley
[Anderson et al. 1996].

Two-way architectures typically offer
various solutions for the dispatching poli-
cies implemented at the Web switch, rang-
ing from static algorithms to client and
server state aware algorithms. For exam-

ple, LocalDirector [Cisco Systems 2002] is
provided with the least connections policy
that selects the server with the least num-
ber of active connections, and the Fastest
Response Time algorithm that dispatches
the request to the server that responded
as the fastest to previous connection
requests. Magicrouter [Anderson et al.
1996], besides the stateless round-robin
and random algorithms, offers also the in-
cremental load policy, which is similar to
selecting the least-loaded server and is
based on the current server load plus an
adjustment related to the number of ac-
tive connections.

Two-way architectures (e.g., LocalDirec-
tor [Cisco Systems 2002] and ServerIron
[Foundry Networks 2002]) can also sup-
port some stateful services, such as SSL,
through the use of a sticky flag. This
is achieved by directing multiple connec-
tions from the same client to the same
server within a period of time that is
set to 5 minutes by default. However,
SSL session reuse provided by layer-4
Web switches may lead to load imbalance
among the server nodes because these
switches are not able to distinguish among
different clients that are behind the same
proxy or firewall.

7.1.2. One-Way Solutions. Most existing
products and prototypes based on one-
way architectures provide request routing

ACM Computing Surveys, Vol. 34, No. 2, June 2002.

The State of the Art in Locally Distributed Web-Server Systems 297

through the packet forwarding mecha-
nism. Among the others, we recall the
Network Dispatcher [Hunt et al. 1998;
IBM 2002], which is the load-balancing
component of the IBM WebSphere Edge
Server; and ONE-IP from Bell Labs
[Damani et al. 1997], which is one of the
first implementations of a layer-4 Web
switch based on packet forwarding. In
these systems, the switch forwards pack-
ets destined to the Web cluster to a se-
lected server by using its MAC address on
the LAN, without modifying the TCP/IP
headers. This is possible because all the
server nodes share the same VIP address
that is bound to the loopback interface
(e.g., through the ifconfig command in
Unix/Linux systems). It is important to
observe that some commercial products
define the packet forwarding mechanism
through different names. This is the case
of nPath [F5 Networks 2002] and Switch-
Back [Foundry Networks 2002].

A small subset of solutions use re-
quest routing mechanisms that differ
from packet forwarding. For example, the
TCP router [Dias et al. 1996] imple-
ments packet single-rewriting, which al-
lows the Web servers to respond directly
to clients by modifying outbound pack-
ets, while one of the three request rout-
ing mechanism supported by LVS [Linux
Virtual Server 2002] is based on IP packet
tunneling.

Similarly to two-way architectures, one-
way solutions offer many alternatives
for the dispatching policies implemented
at the Web switch. As explained in Sec-
tion 6.4.2, the main difference between the
two architectures is in the server state
information directly available at the Web
switch. For example, the Network Dis-
patcher uses a dynamic Weighted Round-
Robin algorithm to distribute connections
among the server nodes [Hunt et al. 1998].
ONE-IP supports two different system
architectures, called routing-based dis-
patching and broadcast-based dispatch-
ing [Damani et al. 1997]. In both solu-
tions, the destination server is selected by
applying a hash function that maps the
client IP address into a server identifier.
The difference between the two solutions

lies in the cluster component that applies
the hash function. In routing-based dis-
patching, the Web switch selects the tar-
get server using the hash function, while
in broadcast-based dispatching the Web
switch broadcasts the packets destined to
the VIP address to every server in the clus-
ter; each server evaluates whether it is the
actual destination of the packets by apply-
ing the hash function. The main advan-
tage of the ONE-IP approach is that the
Web switch does not need to keep track of
any system state information. The weak
point of the ONE-IP approach is the use of
a hash function to select the server, based
on the client IP address.

One-way solutions are also able to sup-
port stateful services, such as SSL ses-
sion reuse, although the same limitation
of two-way architectures applies. For ex-
ample, the Network Dispatcher provides
a client affinity mechanism that is similar
to Cisco’s sticky flag.

7.2. Products Based on a Layer-7
Web Switch

In Table IV, we classify the cluster-based
Web systems that work at the application
layer. Some products listed herein, such as
ServerIron [Foundry Networks 2002] and
BIG-IP [F5 Networks 2002], have already
been considered in Table III as they can
be configured to support both layer-4 and
layer-7 routing mechanisms.

7.2.1. Two-Way Solutions. Request rout-
ing in two-way architectures can be
implemented in hardware (e.g., CSS
[Cisco Systems 2002], L5 [Apostolopoulos
et al. 2000a], Alteon Web OS [Nortel
Networks 2002], and WSD Pro [Radware
2002]), completely in software (e.g., the
Network Dispatcher CBR product [IBM
2002], the Harvard Array of Cheap
Computers (HACC) [Zhang et al. 1999]
and the CLUster-Based Web (ClubWeb)
prototypes [Casalicchio and Colajanni
2001]), or through a hardware switch
combined with some control functions
implemented in software (for example,
BIG-IP [F5 Networks 2002] consists of a

ACM Computing Surveys, Vol. 34, No. 2, June 2002.

298 V. Cardellini et al.

Table IV. Layer-7 Web Clusters
Two-way One-way

TCP gateway TCP splicing TCP hand-off TCP connection hop
Network Dispatcher Alteon Web OS ScalaServer Central Dispatch
proxy-level CBR [IBM 2002] [Nortel Networks 2002] [Aron et al. 1999] [Resonate 2002]

[Pai et al. 1998]
ClubWeb Web Switch [Tang et al. 2001]
[Casalicchio and Colajanni 2001] [Lucent Tech. 2002]
HACC CSS ClubWeb
[Zhang et al. 1999] [Cisco Systems 2002] [Andreolini

et al. 2001]
ServerIron
[Foundry Networks 2002]
BIG-IP
[F5 Networks 2002]
WSD Pro
[Radware 2002]
Load Balancer
[Zeus Tech. 2002]
L5
[Apostolopoulos et al. 2000a]
[Yang and Luo 2000]
Array 500
[Array Networks 2002]
Network Dispatcher
kernel-level CBR [IBM 2002]

hardware box with a modified BSDi-Unix
kernel, while Web Switch [Lucent Tech.
2002] is a Linux-based platform).

The request routing mechanism can be
implemented at the application layer by
configuring the Web switch to work as an
enhanced TCP gateway or reverse proxy
(e.g., Network Dispatcher proxy-level
CBR [IBM 2002], HACC [Zhang et al.
1999], and ClubWeb [Casalicchio and
Colajanni 2001]). An alternative solution
is to route client requests at a lower layer
by letting the Web switch splice the TCP
connection established with the client to a
connection with a selected server. Alteon
Web OS [Nortel Networks 2002], BIG-IP
[F5 Networks 2002], and Web Switch
[Cohen et al. 1999; Lucent Tech. 2002]
use the TCP splicing mechanism. To this
purpose, the Web switch modifies the TCP
header of every packet that travels be-
tween the client and the server to perform
TCP/IP header recalculation and sequence
number adjustments. In Web Switch
[Lucent Tech. 2002], two components im-
plement the switching functionality on
the Web switch. The first component is a
user-level proxy that accepts connections
from clients, parses the HTTP requests,

and selects a target server. The proxy
then removes itself from the data path
by requesting a kernel module to splice
the TCP connections together. To limit the
bottleneck risks at the Web switch, the
splicing functions can be implemented
on specialized hardware. For example,
Alteon Web OS [Nortel Networks 2002]
relies on a dedicated network multiproces-
sor integrated with a parallel-processing
operating environment.

As regards the dispatching algorithms
in two-way layer-7 Web switches, the most
sophisticated policies are typically imple-
mented in research prototypes. For exam-
ple, in the HACC prototype [Zhang et al.
1999] the target server node is selected on
the basis of the locality properties and ca-
pacity of the nodes. The Web switch mon-
itors the server loads and the state of
the files stored by means of a tree-based
structure. Requests for new objects are as-
signed to the least loaded server and the
tree-based structure is updated. To im-
prove reference locality in disk cache, sub-
sequent requests for the same object are
assigned to the same server. In the Club-
Web prototype [Casalicchio and Colajanni
2001], the Web switch selects the target

ACM Computing Surveys, Vol. 34, No. 2, June 2002.

The State of the Art in Locally Distributed Web-Server Systems 299

server on the basis of the CAP policy de-
scribed in Section 6.3.

Commercial products typically parse
the HTTP request either to partition the
servers according to the service type they
handle or to provide persistent session
support, based on cookies or SSL identi-
fiers. Typically, each commercial product
provides a set of content-aware dispatch-
ing policies. The companies use different
names, but the substance is similar. Let
us give some examples. In Alteon Web
OS [Nortel Networks 2002], the content-
aware policy is basically a service parti-
tioning algorithm that allows specialized
servers to store specific object types or
provide specific services. Hence, the client
request is assigned by the Web switch to
a target server that is selected on the
basis of URL (or URL substring) matches.
ServerIron [Foundry Networks 2002] sup-
ports URL hashing, in which the Web
switch examines information in the HTTP
request and maps this information to one
of the servers. All the HTTP requests that
contain the same information are always
assigned to the same server. BIG-IP [F5
Networks 2002] can use cookie informa-
tion stored in an HTTP request to di-
rect requests from the same client to the
same server. A more sophisticated algo-
rithm that resembles the LARD policy [Pai
et al. 1998] and aims at improving the
locality of reference in request streams
runs on the Load Balancer [Zeus Tech.
2002].

7.2.2. One-Way Solutions. One-way solu-
tions at layer-7 are typically software
implementations that require modifica-
tions at the operating system level on
both the Web switch and the servers.
These interventions can be done in the
internal kernel. An alternative is to
realize the supported mechanism as a
loadable kernel module not requiring
modifications to the native kernel. For
example, to support the TCP hand-off
protocol described in Section 3.2 the
ScalaServer prototype [Aron et al. 1999;
Pai et al. 1998] from Rice University
modifies the FreeBSD operating system,
while the ClubWeb prototype [Andreolini

et al. 2001] modifies the Linux kernel. A
set of dynamically loadable modules that
provide the TCP hand-off mechanism in a
STREAMS-based TCP/IP implementation
has been proposed in Tang et al. [2001].

To the best of our knowledge, Cen-
tral Dispatch [Resonate 2002] is the only
commercial product that implements a
one-way architecture with a layer-7 Web
switch. This solution requires the instal-
lation of a kernel module on both the Web
switch and the servers to support the pro-
prietary TCP connection hop mechanism
(see Section 3.2).

It is worth noting that all the proposed
request routing mechanisms are transpar-
ent to the HTTP server software running
on the Web server nodes. Incoming traffic
on already established connections is
forwarded to the target server through an
efficient forwarding module layered be-
tween the network interface card and the
TCP/IP stack. A distinguishing feature of
the request routing mechanism deployed
by ScalaServer is the support to HTTP/1.1
persistent connections that allows to as-
sign HTTP requests to different servers
through the same TCP connection. This is
achieved through, a back-end forwarding
mechanism that allows the original target
node to forward a request to a second
server selected by the Web switch [Aron
et al. 1999]. Assigning individual HTTP
requests traveling on the same TCP
connection to multiple servers appears
to be also a feature of Request Switch
[NetScaler 2002], but no information
is currently provided about the routing
mechanism because of patent pending
reasons.

As regards the server selection, one-way
solutions working at layer-7 typically an-
alyze the HTTP header content prior to
dispatching the request to an appropriate
server. In the ScalaServer [Pai et al. 1998]
and ClubWeb prototype [Andreolini et al.
2001], the Web switch selects a server on
the basis of the LARD and CAP policy, re-
spectively. Both policies are described in
Section 6.3.

In Central Dispatch [Resonate 2002],
the Web dispatching algorithm uses
client information in addition to server

ACM Computing Surveys, Vol. 34, No. 2, June 2002.

300 V. Cardellini et al.

performance and availability. Specifically,
upon receipt of an HTTP request, the Res-
onate switch parses the URL to deter-
mine the requested content and applies
some dispatching rule that may chosen by
the system administrator. If more than
one node is available to serve the request,
the Web switch transfers the TCP connec-
tion to the least loaded server.

8. INTEGRATED DISPATCHING
MECHANISMS

Reliability, scalability and security are
critical qualities in Web-based informa-
tion services. Indeed, one common ob-
jection raised against the Web cluster
architecture concerns the Web switch that
represents a single point of failure and
a potential system bottleneck. The relia-
bility issue can be addressed by a repli-
cation of the switch device integrated
with some heartbeat technique (e.g., Luo
and Yang [2001a]) or by some distributed
dispatching mechanism (e.g., Aversa and
Bestavros [2000], Microsoft [2002], and
Vaidya and Christensen [2001]). This
section focuses on the scalability issues
and presents some extensions to the ba-
sic Web cluster architecture described
in Section 2. The most interesting pro-
posals for improving cluster scalabil-
ity combine two request-routing mecha-
nisms and exploit some system-caching
techniques.

A simple solution to avoid a system bot-
tleneck at the Web switch is to use mul-
tiple Web clusters, each with a front-end
switch and a visible IP address. During
the address resolution phase, the author-
itative DNS can dispatch the client re-
quests among the Web clusters through
simple static algorithms, such as Round-
Robin. Each Web switch can use another
dispatching algorithm to share the load
among the Web servers of each cluster. A
similar architecture was first proposed by
Dias et al. [1996] where the Web switch
operated at the TCP layer, and it is now
adopted by several geographically dis-
tributed Web systems. Indeed, when all
strategies have been implemented, and
the Web cluster scalability and reliability

is primarily limited by the network con-
nection to Internet, the best alternative for
a content provider that does not want to re-
fer to outsourcing solutions is to distribute
multiple Web clusters over different Inter-
net zones.

An interesting idea for improving Web
cluster scalability is to combine the perfor-
mance of a content-blind dispatcher (DNS,
layer-4 Web switch) with the caching fea-
tures of a content-aware dispatcher, that
can be implemented by a layer-7 switch or
by a Web server.

A change of the basic Web cluster archi-
tecture presented in Section 2 integrates
a layer-4 Web switch with two or more
layer-7 Web switches that take content-
aware dispatching decisions and provide
some caching functionality. Indeed, the
caches store frequently accessed Web ob-
jects and respond to requests for these ob-
jects, thus relieving that workload from
the Web servers. The first proposal where
caching is integrated into one layer-7 Web
switch is in Levy-Abegnoli et al. [1999],
the so-called Web server accelerator. A
first improvement was to use sophisti-
cated mechanisms that allow caching of
dynamic objects too [Challenger et al.
1999]. An evolution of the basic Web
server accelerator architecture adds a set
of Web server accelerators between the
Web switch and the Web servers [Song
et al. 2000, 2002], basically an array of
caches with some dispatching functional-
ity. The goal is to improve Web-cluster per-
formance by increasing cache hit rates.
The front-end switch can be a layer-4 or a
layer-7 Web switch. When a layer-4 switch
receives the requests, it routes them to the
cache nodes regardless of URL contents.
Therefore, the request may be sent to a
wrong cache node that does not contain a
cached copy of the object. If that happens
when the requested object is small, the
first node gets the requested object from a
node containing the cached copy and sends
the response back to the client. Instead,
when the requested object is large, the first
node hands off the TCP connection to a
node containing a cached copy of it, and
this node responds directly to the client
without passing through the first node or

ACM Computing Surveys, Vol. 34, No. 2, June 2002.

The State of the Art in Locally Distributed Web-Server Systems 301

the layer-4 switch. The use of a layer-7
Web switch as a front-end can reduce the
work of the cache nodes and limit the per-
centage of request redirection; however,
it achieves a lower aggregate throughput
because of the overhead of content-aware
routing mechanisms.

A different approach to improve Web
cluster efficiency is to perform content-
aware dispatching or caching through the
Web servers instead of additional layer-7
Web switches. The first dispatching level
carried out by a layer-4 Web switch (or
by the authoritative DNS if we refer to
a distributed Web system) selects one
Web server typically by means of a static
algorithm. There are various proposals
in this sense, that basically differ for
the way the Web content is distributed
(i.e., replicated [Aron et al. 2000; Carrera
and Bianchini 2001] or partitioned
[Cherkasova and Karlsson 2001]) and the
system information is shared among the
nodes.

If each node can access all Web doc-
uments, the server selected by the Web
switch may redirect the request for load
sharing or caching reasons, for example,
it is aware that another server is lightly
loaded or holds the requested object in the
disk cache. This system information may
be centralized in a dispatcher component
[Aron et al. 2000] or distributed among
all the servers [Cherkasova and Karlsson
2001; Carrera and Bianchini 2001].

In the prototype proposed by Aron et al.
[2000], the layer-4 Web switch selects
one server through the dynamic Weighted
Round-Robin algorithm. The server ac-
cepts the connection, parses the client re-
quest, and contacts a central dispatcher
located in the internal LAN that decides
about (re-)assignment on the basis of the
LARD policy. If the dispatcher selects a
different server, the first contacted server
hands off the connection towards the other
server, that responds directly to the client.
When a TCP connection hand-off occurs,
the server sends a message to the layer-4
switch by instructing it to route packets
not to the original server but to the node
chosen by the dispatcher. In this archi-
tecture, the second-level dispatching deci-

sion is centralized, while the second-level
routing is distributed and carried out by
each server. The motivation is that the
processing overhead on a layer-7 switch is
caused by the routing mechanism and not
by the server selection task. Although the
authors demonstrate that the dispatcher
is not the system bottleneck [Aron et al.
2000], a distributed dispatching algorithm
carried out by each server node could
avoid the communication overheads with
the centralized dispatcher. This alterna-
tive is chosen by Carrera and Bianchini
[2001] that implements a Web cluster with
a global caching mechanism. Depending
on the size of the requested object, and
its presence in the local cache or in the
caches of other servers, the first contacted
Web server replies to the client immedi-
ately or after having retrieved the file from
another server. Server load and caching in-
formation are periodically broadcasted by
each server.

In the prototype proposed by
Cherkasova and Karlsson [2001], the
Web content is not entirely replicated.
Just a small set of the most popular files
(namely, core) can be accessed by any
server, while the other files are partitioned
among the nodes. If the client request is
for a core file, the request is processed
by the first contacted server, otherwise
the server redirects it to the designated
server node. The global information about
document location is stable, because the
core is determined by analyzing period-
ically (e.g., daily) the workload access
patterns.

9. PLACEMENT OF WEB CONTENT
AND SERVICES

The scalability of a Web cluster depends
also on the methods used to organize
and access information within the site.
Data placement is a widely investigated
research topic in distributed systems
and distributed databases and cannot be
covered in one section of this survey.
We outline main ideas and give refer-
ences for further reading by distinguish-
ing static content from content that is

ACM Computing Surveys, Vol. 34, No. 2, June 2002.

302 V. Cardellini et al.

dynamically generated at the time of a
client request.

9.1. Distribution of Static Content

When we consider locally distributed Web
systems that do not use a content-aware
dispatching mechanism, any server node
should be able to respond to client re-
quests for any part of the provided con-
tent tree. This means that each server
owns or can access a replicated copy of the
Web site content, unless internal rerout-
ing mechanisms are employed. There are
essentially two mechanisms for distribut-
ing static content among the Web servers
of the cluster: to replicate the content tree
across independent file systems running
on the servers; to share information by
means of a distributed file system, such as
Andrew File System (AFS) and Network
File System (NFS).

The first technique requires that each
server in the cluster maintains a local
copy of the Web documents on its local
disk. In such a way, each server has to
access its own disk, without any extra
communication with the other servers of
the cluster. However, content replication
has a high storage overhead and, even
worse, it requires any content update to
be propagated to all the nodes in short pe-
riods of time. An efficient mechanism for
updating and controlling the documents
should be implemented to maintain con-
sistency among the data stored on the
servers. For sites providing stable infor-
mation, the data updating could be exe-
cuted during the periods of low traffic (if
any), not to overload the local network and
disks in peak hours; furthermore, the ma-
jority of Web requests are for read-only
access, where maintenance of consistency
is not crucial. However, if data are highly
volatile and frequently updated, the exe-
cution of the updating and controlling pro-
cess may cause heavy network and disk
overheads. Besides that, for very popular
sites that receive millions of requests per
day from around the world, any mainte-
nance, system upgrade and information
update has to be done while the Web clus-
ter is online.

The other technique for sharing infor-
mation uses a distributed file system such
as AFS and NFS: each document is di-
vided into logical blocks, which are dis-
tributed across the servers disks. The use
of a distributed file system ensures the
consistency of information and does not re-
quire a large amount of disk space. On the
other hand, it introduces a communica-
tion overhead among the servers and may
increase the response time because the
server nodes have first to obtain the file in-
formation from the file server before send-
ing it to the client. Each technique has its
benefits and drawbacks. The choice for the
best solution depends on the size of Web
content, the frequency of documents up-
dating, the required level of data integrity
and security, and the possibility of imple-
menting an efficient caching mechanism.

Web clusters based on layer-7 Web
switches can use the same two strate-
gies, that is, replicating the content tree
on each server node or sharing it through
a distributed file system. However, they
can also use a third alternative by parti-
tioning the content tree among the Web
server nodes. This technique has two main
advantages. It increases secondary stor-
age scalability without the overhead due
to a distributed file system. It allows the
use of specialized server nodes to im-
prove responses for different file types,
such as streaming content, CPU-intensive
requests, and disk-intensive requests [F5
Networks 2002; Resonate 2002; Yang and
Luo 2000]. On the other hand, content
partitioning can lead to load imbalance
produced by the uneven distribution of
Web document popularity, because the
servers storing hot documents can be over-
whelmed by client requests. It is also true
that suitable caching mechanisms can al-
leviate server overload due to hot spots be-
cause frequently accessed documents are
likely not to require a disk access.

Full replication or full partition of Web
content are two opposite choices. If we con-
sider that the access patterns to Web files
are highly skewed, a partial replication of
the most popular objects among all servers
and a partition of the others could be the
most cost-effective solution. By carrying

ACM Computing Surveys, Vol. 34, No. 2, June 2002.

The State of the Art in Locally Distributed Web-Server Systems 303

Fig. 17 . An example of multitier architecture for a Web cluster.

this approach to the extremes, Pierre et al.
[2002] propose a sophisticated mechanism
that simultaneously use several strate-
gies for replicating Web content. Indeed,
the traditional static placement of (static)
data has potential weaknesses as the
access pattern might even change quickly.
Hence, it would be interesting to investi-
gate dynamic placement approaches that
keep statistics about the workload com-
position and automatically move and/or
replicate objects at different Web server
nodes.

9.2. Dynamic Web Content

In the old days, the Web was largely based
on static and read-only information, but
now a large percentage of Web sites pro-
vide information and services that are
personalized for the client or created
dynamically by the execution of some
application process. While a Web server
node can typically deliver several hundred
static files per second, dynamic pages of-
ten require orders of magnitude higher
service time. Nevertheless, dynamic pages
and services are becoming essential in
modern Web sites where Web-based tech-
nologies have emerged as a valid alterna-
tive to traditional client-server computing.

Indeed, the Web simplicity and its com-
patibility with existing protocols is mak-
ing this technology the preferred standard
interface for accessing many services ex-
ploited through computer networks. The
so called Web-based information systems
or Web-based enterprise applications are
mainly based on complex interaction of
several processes that require dynamic
services and computation.

Dynamic Web-based services, databases
and other (legacy) applications are typi-
cally hosted on a set of servers behind the
Web server nodes. Hence, the Web cluster
architecture for e-commerce Web sites and
Web-based information systems tend to
have a multitiered structure, where all the
machines providing the same services are
connected by the same LAN segment. A
typical architecture is shown in Figure 17.
A front-end Web switch is located between
the Internet and the first set of Web server
nodes (presentation layer) that run the
HTTP daemons. They listen on some net-
work port for the client requests assigned
by the Web switch, prepare the content re-
quested by the clients, send the response
back to the clients or to the Web switch de-
pending on the cluster architecture, and
finally return to the listen status. The
Web server nodes are capable of handling

ACM Computing Surveys, Vol. 34, No. 2, June 2002.

304 V. Cardellini et al.

requests for static content, whereas they
forward requests for dynamic content to
other servers.

A so-called Web Application Server
layer (middle layer) can be interposed
between the Web servers and the back-
end servers (data layer). (In less complex
architectures where the middle layer is
thin, Web application processes can run
on the Web server nodes). The Web ap-
plication servers run the software that
handles all operations between browser-
based clients and a company’s back-end
database. The Web application server ac-
cepts requests from Web servers, executes
the business logic, and interacts with
database servers or other legacy applica-
tions. The database server layer hosts and
maintains databases, and provide power-
ful database manipulating functions to the
Web application servers.

In the reality, a multitier architecture
is even more complex than that shown
in Figure 17. Indeed, when a Web clus-
ter hosts business applications, strict se-
curity strategies are employed to protect
the safety of these systems. A bound-
ary firewall typically connects the Web
switch to Internet. Another firewall in-
terconnects the LAN segment of the Web
server layer with that of the application
server layer. A third firewall is interposed
between the database server layer and
the application server layer. These fire-
walls are configured to filter all traffic
among the server layers so that, for exam-
ple, the database servers can only be con-
tacted by the application servers which, in
their turn, can only be reached by the Web
servers.

The generation of dynamic Web content
opens several new issues that are beyond
the scope of this survey. The alterna-
tive solutions depend also on the applica-
tion software, the chosen middleware and
database technology. For example, com-
mercial Web-based service software, such
as BEA WebLogic and IBM WebSphere,
have evolved from simple Web servers into
complex Web application servers that use
CGI, Java Server Page, Microsoft Active
Server Pages, XML, and other technolo-
gies. Among them, CGI, Server Side In-

cludes, Server API (e.g., Netscape NSAPI,
Microsoft ISAPI) and Java can be used
for managing dynamic requests at the
server layer. The software at the applica-
tion layer is basically a gateway from Web
servers to databases and legacy applica-
tions. A wide spectrum of new technolo-
gies is coming on the scene, such as Cold
Fusion, Domino, WebBuilder, IBM DB2
WWW Connection, Oracle9i Application
Server, Informix Universal Web Connect,
and Sybase Dynamo Netscape Application
Server. As a consequence, the operations
for dynamic services might be highly so-
phisticated and involve several processes.
For example, with the Enterprise Java
Beans (EJB) technology, used by Per-
sistence PowerTier and BEA WebLogic
Server, processing one dynamic request
might involve the Web switch, Web server,
servlet, session-bean, and entity-bean be-
fore reaching the database.

The level of multiple indirections in
multitier Web cluster architectures where
each layer consists of multiple server
nodes allows request routing and dis-
patching to be implemented at different
levels, from the Web switch to the Web
server layer to the Web application server
layer. For example, application servers can
support application partitioning by dis-
tributing application logic among multi-
ple servers. Similarly, the components of
large-scale applications can be grouped to
facilitate partitioning and management. A
multitier cluster architecture might use a
second-level Web switch, that is in charge
of selecting an appropriate application
server node for requests that need dy-
namic processing. This approach to re-
quest routing can be further extended to
the third level of server nodes, composed of
back-end servers that respond to queries
originated by the application servers.

Zhu et al. [1999] have studied the prob-
lem of request dispatching in a multi-
tier architecture, where the second-level
switch is integrated in each Web server
node, called master node. It selects the
appropriate slave node that has to pro-
cess the dynamic request and sends the
result back to the master. The slave node
selection is based on a prediction model

ACM Computing Surveys, Vol. 34, No. 2, June 2002.

The State of the Art in Locally Distributed Web-Server Systems 305

that estimates the expected cost for pro-
cessing the dynamic request on each slave
node. Similar multitier architectures have
been also analyzed in Brewer [2001] and
Fox et al. [1997]. A different solution for
load balancing, based on CORBA middle-
ware technology, is proposed in Othman
et al. [2001] where several dispatching
strategies have been also proposed and
evaluated.

We can summarize that request dis-
patching, load sharing and load balancing
at the internal layers are implemented in
most commercial products, but they are
not widely studied topics in the research
community. Indeed, probably due to the
complexity of achieving an optimal dis-
patching, all products prefer to use very
simple algorithms, typically round-robin
and least loaded. The most original pro-
posals to improve performance of the mul-
titier systems are not oriented towards
load-balancing algorithms, but to mecha-
nisms for caching query results and dy-
namic content at different layers [Candan
et al. 2001; Degenaro et al. 2000; Oracle
2002; Persistence Software 2002; Yagoub
et al. 2000].

10. SUMMARY AND RESEARCH
PERSPECTIVES

Much effort has been devoted in recent
years to improve the scalability of systems
supporting Web sites. Systems with multi-
ple nodes are the leading architectures to
build highly accessed Web sites that have
to guarantee scalable services and to sup-
port ever increasing request load. In this
article, we have analyzed routing mecha-
nisms and dispatching algorithms that are
suitable for locally distributed Web sys-
tems. We have proposed an original tax-
onomy of the architectures, the routing
mechanisms and dispatching algorithms.
Based on this material, we have analyzed
the efficiency and the limitations of the dif-
ferent techniques and evaluated the trade-
off among the considered alternatives. In
this section, we present some research top-
ics that are likely to impact future Web
cluster architectures.

The Web is becoming the standard in-
terface for accessing remote services and
applications, and there is no doubt that
Web clusters will be the basic architecture
for Web-based information systems, Web
hosting centers, and Application Service
Providers. Hence, there is general con-
sensus that the research interest in this
field is likely to increase. This conclusion
is also motivated by the observation that
the performance problems of Web-based
architecture will tend to become worse
because of the proliferation of heteroge-
neous client devices, the need of client
authentication and system security, the
increased complexity of middleware and
application software, and the high avail-
ability requirements of corporate data cen-
ters and e-commerce Web sites.

One research path is in the direction of
combining performance with security and
fault-tolerance, and accessibility from
different client devices, all topics that
are still seen as separate issues in Web
clusters. A step further is the objective
of designing Web clusters that give guar-
anteed performance or support quality
of service (QoS). A significant amount of
QoS-related research has focused on the
network infrastructure; however, network
QoS alone is not sufficient to support end-
to-end QoS. To avoid that, high-priority
traffic may be dropped at the server;
the Web-server system should also have
mechanisms and policies for delivering
end-to-end QoS. Some proposals for pro-
viding differentiated service qualities to
different classes of users have focused
on single-node Web servers [Abdelzaher
et al. 2002; Banga et al. 1999; Bhatti and
Friedrich 1999; Cherkasova and Phaal
1999; Eggert and Heidemann 1999; Li and
Jamin 2000; Menascé et al. 2000; Pandey
et al. 1998; Vasiliou and Lutfiyya 2000]
and this research topic has been moved
towards cluster-based platforms only
recently. A multinode Web architecture
integrated with admission control and per-
formance isolation mechanisms has been
proposed in [Aron et al. 2000]. Some recent
research efforts focus on how providing
QoS support through the Web switch, by
taking into account request information at

ACM Computing Surveys, Vol. 34, No. 2, June 2002.

306 V. Cardellini et al.

layer-4 switches [Cardellini et al. 2001b]
as well as at layer-7 switches [Chen and
Mohapatra 1999; Zhu et al. 2001], where
a detailed content-aware information
allows to achieve performance isolation in
Web clusters at a server-level granularity.
In particular, resource utilization can be
improved by dynamically adjusting server
partitions based on fluctuating requests
arrival rates and servers load conditions
[Cardellini et al. 2001a; Zhu et al. 2001].

While layer-4 Web cluster architectures
may be considered an almost solved prob-
lem, the area of content-aware architec-
tures needs further research. Dispatch-
ing algorithms that combine effectively
client and server information, and adap-
tive policies are not fully explored yet.
Some companies commercialize layer-7
Web switches with very simple dispatch-
ing mechanisms that are mainly ori-
ented to statically partition Web content
and services among the server nodes.
Also, the scalability problem posed by
layer-7 routing has not been completely
solved and noncentralized dispatching al-
gorithms can be a theme of in-depth inves-
tigation. A related issue is to avoid state
information inconsistency among multiple
dispatchers.

Even more challenging is the study of
optimal resource management in multi-
tier architectures because the multitude
of involved technologies and complexity of
process interactions occurring at the mid-
dletier let the vast majority of commercial
products prefer quite naive dispatching al-
gorithms and solutions. Combining load
balancing and caching of dynamic content
in multitier systems is also worth of fur-
ther investigation.

The actual improvement of the response
time as perceived by users comes from
a combination of technologies, where the
multiplication of content provider servers
is integrated with geographically dis-
persed cache servers supported by the
content providers themselves or by third-
party organizations. Techniques for solv-
ing the problems and taking advantage
of the potentials originated by the coop-
eration of multiple servers and multiple
caches (e.g., dynamic placement of con-

tent, data prefetching, consistency) are
still in their infancy, as well as the analy-
sis of the mutual effects of content delivery
caching and load distribution [Doyle et al.
2001]. Finally, we observe that most of
the topics and algorithms analyzed in this
article change completely if we assume
that the multiple servers (or Web clusters)
of the content provider are distributed
over the world rather than grouped in a
local area.

ACKNOWLEDGMENTS

We would like to thank the anonymous reviewers for
their valuable comments and suggestions that have
improved the presentation and correctness of this
survey.

REFERENCES

ABDELZAHER, T., SHIN, K. G., AND BHATTI, N. 2002.
Performance guarantees for Web server end-
systems: A control-theoretical approach. IEEE
Trans. Parall. Distrib. Syst. 13, 1 (Jan.), 80–96.

AKAMAI TECH. 2002. http://www.akamai.com.
ALLOT COMMUNICATIONS. 2002. http://www.allot.

com.
ALMEIDA, J., DABU, M., MANIKNTTY, A., AND CAO, P.

1998. Providing differentiated levels of service
in Web content hosting. In Proceedings of Work-
shop on Internet Server Performance (Madison,
WI, June).

ANDERSON, E., PATTERSON, D., AND BREWER, E.
1996. The Magicrouter, an application of fast
packet interposing. http://www.cs.berkeley.
edu/∼eanders/projects/magicrouter/.

ANDREOLINI, M., CASALICCHIO, E., COLAJANNI, M., AND

MAMBELLI, M. 2001. Performance analysis of
layer-7 switches for cluster-based Web servers.
Tech. Rep. RR-01.24, Univ. of Roma Tor Vergata,
Computer Engineering Dept.

APOSTOLOPOULOS, G., AUBESPIN, D., PERIS, V., PRADHAN,
P., AND SAHA, D. 2000a. Design, implemen-
tation and performance of a content-based
switch. In Proceedings of the 19th IEEE Inter-
national Conference on Computer Communica-
tions (INFOCOM 2000) (Tel Aviv, Israel, March).
IEEE Computer Soc. Press, Los Alamitos, CA,
1117–1126.

APOSTOLOPOULOS, G., PERIS, V., PRADHAN, P., AND

SAHA, D. 2000b. Securing electronic com-
merce: Reducing the SSL overhead. IEEE Net-
work 14, 4 (July/Aug.), 8–16.

ARLITT, M. F. AND JIN, T. 2000. A workload charac-
terization study of the 1998 World Cup Web site.
IEEE Network 14, 3 (May/June), 30–37.

ARON, M., DRUSCHEL, P., AND ZWAENEPOEL, Z. 1999.
Efficient support for P-HTTP in cluster-based

ACM Computing Surveys, Vol. 34, No. 2, June 2002.

The State of the Art in Locally Distributed Web-Server Systems 307

Web servers. In Proceedings of the 1999 USENIX
Annual Technical Conference (Monterey, CA,
June). USENIX Assoc., Berkeley, CA, 185–
198.

ARON, M., DRUSCHEL, P., AND ZWAENEPOEL, W. 2000.
Cluster reserves: A mechanism for resource
management in cluster-based network servers.
In Proceedings of the ACM International Confer-
ence on Measurement and Modeling of Computer
Systems (SIGMETRICS 2000) (Santa Clara, CA,
June). ACM Press, New York, 90–101.

ARON, M., SANDERS, D., DRUSCHEL, P., AND ZWAENEPOEL,
W. 2000. Scalable content-aware request dis-
tribution in cluster-based network servers. In
Proceedings of the 2000 USENIX Annual Techni-
cal Conference (San Diego, CA, June). USENIX
Assoc., Berkeley, CA.

ARRAY NETWORKS. 2002. http://www.arraynet-
works.net.

AVERSA, L. AND BESTAVROS, A. 2000. Load balanc-
ing a cluster of Web servers using Distributed
Packet Rewriting. In Proceedings of the 19th
IEEE International Performance, Computing,
and Communication Conference (Phoenix, AZ,
Feb.). IEEE Computer Soc. Press, Los Alamitos,
CA, 24–29.

BAENTSCH, M., BAUM, L., MOLTER, G., ROTHKUGEL,
S., AND STURM, P. 1997. Enhancing the Web
infrastructure: From caching to replication.
IEEE Internet Computing 1, 2 (Mar./Apr.), 18–
27.

BANGA, G., DRUSCHEL, P., AND MOGUL, J. C. 1998.
Better operating system features for faster
network servers. ACM Performance Evaluation
Review 26, 3 (Dec.), 23–30.

BANGA, G., DRUSCHEL, P., AND MOGUL, J. C. 1999. Re-
source containers: A new facility for resource
management in server systems. In Proceed-
ings of the 3rd USENIX Symposium on Operat-
ing Systems Design and Implementation (New
Orleans, LA, Feb.). USENIX Assoc., Berkeley,
CA, 45–58.

BANSAL, N. AND HARCHOL-BALTER, M. 2001. Anal-
ysis of SRPT scheduling: Investigating unfair-
ness. In Proceedings of the 2001 ACM/IFIP Joint
International Conference on Measurement and
Modeling of Computer Systems (Cambridge, MA,
June). ACM Press, New York, 279–290.

BARFORD, P. AND CROVELLA, M. E. 2001. Critical
path analysis of TCP transactions. IEEE/ACM
Trans. Networking 9, 3 (June), 238–248.

BARISH, G. AND OBRACZKA, K. 2000. World Wide
Web caching: Trends and techniques. IEEE
Commun. 38, 5 (May), 178–184.

BERNERS-LEE, T., FIELDING, R., AND FRYSTYK, H. 1996.
Hypertext Transfer Protocol—HTTP/1.0. RFC
1945.

BHATTI, N. AND FRIEDRICH, R. 1999. Web server sup-
port for tiered services. IEEE Network 13, 5
(Sept./Oct.), 64–71.

BOURKE, T. 2001. Server Load Balancing. O’Reilly
and Associates, Sebastopol, CA.

BREWER, E. A. 2001. Lessons from giant-scale ser-
vices. IEEE Internet Computing 5, 4 (July/Aug.),
46–55.

BRISCO, T. 1995. DNS support for load balancing.
RFC 1794.

BUNT, R. B., EAGER, D. L., OSTER, G. M., AND

WILLIAMSON, C. L. 1999. Achieving load bal-
ance and effective caching in clustered Web
servers. In Proceedings of the 4th International
Web Caching Workshop (San Diego, CA, Apr.).
159–169.

CANDAN, K. S., LI, W.-S., LUO, Q., HSIUNG, W.-P., AND

AGRAWAL, D. 2001. Enabling dynamic content
caching for database-driven Web sites. In Pro-
ceedings of 2001 ACM SIGMOD International
Conf. on Management of Data (Santa Barbara,
CA). ACM Press, New York, 532–543.

CARDELLINI, V., CASALICCHIO, E., COLAJANNI, M.,
AND MAMBELLI, M. 2001a. Web switch sup-
port for differentiated services. ACM Perfor-
mance Evaluation Review 29, 2 (Sept.), 14–
19.

CARDELLINI, V., CASALICCHIO, E., COLAJANNI, M.,
AND TUCCI, S. 2001b. Mechanisms for qual-
ity of service in Web clusters. Computer Net-
works 36, 6 (Nov.), 759–769.

CARDELLINI, V., COLAJANNI, M., AND YU, P. S. 1999.
Dynamic load balancing on Web-server systems.
IEEE Internet Computing 3, 3 (May/June), 28–
39.

CARRERA, E. V. AND BIANCHINI, R. 2001. Efficiency
vs. portability in cluster-based network servers.
In Proceedings of the 8th ACM SIGPLAN Sympo-
sium on Principles and Practice of Parallel Pro-
gramming (Snowbird, UT, June). ACM Press,
New York, 113–122.

CASALICCHIO, E., CARDELLINI, V., AND COLAJANNI, M.
2002. Content-aware dispatching algorithms
for cluster-based Web servers. Cluster Comput-
ing 5, 1 (Jan.), 67–76.

CASALICCHIO, E. AND COLAJANNI, M. 2001. A client-
aware dispatching algorithm for Web clusters
providing multiple services. In Proceedings of the
10th International World Wide Web Conference
(Hong Kong, May). ACM Press, New York, 535–
544.

CASAVANT, T. L. AND KUHL, J. G. 1988. A taxonomy of
scheduling in general-purpose distributed com-
puting systems. IEEE Trans. Softw. Eng. 14, 2
(Feb.), 141–154.

CHALLENGER, J., IYENGAR, A., AND DANTZIG, P. 1999.
A scalable system for consistently caching dy-
namic Web data. In Proceedings of the 18th
IEEE Conference on Computer Communications
(INFOCOM 1999) (New York, NY, March). IEEE
Computer Soc. Press, Los Alamitos, CA, 294–
303.

CHALLENGER, J., IYENGAR, A., DANTZIG, P., DIAS, D., AND

MILLS, N. 2001. Engineering highly accessed
Web sites for performance. In Web Engineering,
Y. Deshpande and S. Murugesan, Eds. Springer-
Verlag, Heidelberg, 247–265.

ACM Computing Surveys, Vol. 34, No. 2, June 2002.

308 V. Cardellini et al.

CHEN, X. AND MOHAPATRA, P. 1999. Providing dif-
ferentiated service from an Internet server.
In Proceedings of the 8th IEEE International
Conference on Computer Communications and
Networks (Boston, MA, Oct.). IEEE Computer
Soc. Press, Los Alamitos, CA, 214–217.

CHERKASOVA, L. AND KARLSSON, M. 2001. Scalable
Web server cluster design with WARD. In Pro-
ceedings of the 3rd International Workshop on
Advanced issues of E-Commerce and Web-Based
Information Systems (San Jose, CA, June). IEEE
Computer Soc. Press, Los Alamitos, CA, 212–
221.

CHERKASOVA, L. AND PHAAL, P. 1999. Session based
admission control: a mechanism for improving
performance of commercial Web sites. In Pro-
ceedings of the International Workshop on Qual-
ity of Service (London, UK, June).

CHERKASOVA, L. AND PONNEKANTI, S. 2000. Optimiz-
ing the “content-aware” load balancing strat-
egy for shared Web hosting service. In Pro-
ceedings of the 8th International Workshop on
Modeling, Analysis, and Simulation of Computer
and Telecommunication Systems (MASCOTS
2000) (San Francisco, CA, Aug./Sept.). IEEE
Computer Soc. Press, Los Alamitos, CA, 492–
499.

CIARDO, G., RISKA, A., AND SMIRNI, E. 2001. EQUI-
LOAD: a load balancing policy for clustered Web
servers. Performance Evaluation 46, 2–3 (Oct.),
223–239.

CISCO SYSTEMS. 2002. http://www.cisco.com/.
COFFMAN, K. G. AND ODLYZKO, A. M. 2001. Inter-

net growth: Is there a “Moore’s Law” for data
traffic? In Handbook of Massive Data Sets,
J. Abello, P. M. Pardalos, and M. G. C. Resende,
Eds. Kluwer Academic Publ., Dordrecht, The
Netherlands.

COHEN, A., RANGARAJAN, S., AND SLYE, H. 1999. On
the performance of TCP splicing for URL-aware
redirection. In Proceedings of the 2nd USENIX
Symposium on Internet Technologies and Sys-
tems (Boulder, CO). USENIX Assoc., Berkeley,
CA.

COHEN, E. AND KAPLAN, H. 2001. Proactive caching
of DNS records: Addressing a performance bot-
tleneck. In Proceedings of the 2001 Symposium
on Applications and the Internet (San Diego, CA,
Jan.). IEEE Computer Soc. Press, Los Alamitos,
CA, 85–94.

COLAJANNI, M., YU, P. S., AND DIAS, D. M. 1998.
Analysis of task assignment policies in scalable
distributed Web-server systems. IEEE Trans.
Parall. Distrib. Syst. 9, 6 (June), 585–600.

COYOTE POINT SYSTEMS. 2002. http://www.
coyotepoint.com.

CROVELLA, M. E. AND BESTAVROS, A. 1997. Self-
similarity in World Wide Web traffic: Evidence
and possible causes. IEEE/ACM Trans. Net-
working 5, 6 (Dec.), 835–846.

CROVELLA, M. E., FRANGIOSO, R., AND HARCHOL-
BALTER, M. 1999. Connection scheduling in

Web servers. In Proceedings of the 2nd USENIX
Symposium on Internet Technologies and Sys-
tems (Boulder, CO, Oct.). USENIX Assoc.,
Berkeley, CA.

DAHLIN, M. 2000. Interpreting stale load informa-
tion. IEEE Trans. Parall. Distrib. Syst. 11, 10
(Oct.), 1033–1047.

DAMANI, O. P., CHUNG, P. E., HUANG, Y., KINTALA,
C., AND WANG, Y.-M. 1997. ONE-IP: Tech-
niques for hosting a service on a cluster of
machines. Computer Networks 29, 8-13, 1019–
1027.

DEGENARO, L., IYENGAR, A., LIPKIND, I., AND ROUVELLOU,
I. 2000. A middleware system which intel-
ligently caches query results. In Proceedings
of IFIP/ACM International Conference on Dis-
tributed Systems Platforms and Open Dis-
tributed Processing (Middleware 2000) (New
York, NY, April). Springer-Verlag, Heidelberg,
24–44.

DEVLIN, B., GRAY, J., LAING, B., AND SPIX, G. 1999.
Scalability terminology: Farms, clones, parti-
tions, and pack: RACS and RAPS. Tech. Rep.
MS TR-99-85, Microsoft Research.

DIAS, D. M., KISH, W., MUKHERJEE, R., AND TEWARI,
R. 1996. A scalable and highly available Web
server. In Proceedings of the 41st IEEE Computer
Society International Conference (San Jose, CA,
Feb.). IEEE Computer Soc. Press, Los Alamitos,
CA, 85–92.

DIGITAL ISLAND. 2002. http://www.digitalisland.
net.

DOYLE, R., CHASE, J. S., GADDE, S., AND VAHDAT, A. M.
2001. The trickle-down effect: Web caching and
server request distribution. In Proceedings of
the 6th International Workshop on Web Caching
and Content Delivery (Boston, MA). Elsevier
Science, Amsterdam.

EGGERT, L. AND HEIDEMANN, J. 1999. Application-
level differentiated services for Web servers.
World Wide Web 2, 3 (July), 133–142.

F5 NETWORKS. 2002. http://www.f5labs.com/.
FERRARI, D. AND ZHOU, S. 1987. An empirical inves-

tigation of load indices for load balancing appli-
cations. In Proceedings of the 12th International
Symposium on Computer Performance Model-
ing, Measurement, and Evaluation (Brussels,
Belgium). Elsevier Science, Amsterdam, 515–
528.

FIELDING, R. T., GETTYS, J., MOGUL, J. C., FRYSTYK,
H. F., MASINTER, L., LEACH, P. J., AND BERNERS-
LEE, T. 1999. Hypertext Transfer Protocol—
HTTP/1.1. RFC 2616.

FOUNDRY NETWORKS. 2002. Foundry networks’ ser-
veriron. http://www.foundrynet.com/products/
webswitches/serveriron/.

FOX, A., GRIBBLE, S. D., CHAWATHE, Y., BREWER,
E. A., AND GAUTHIER, P. 1997. Cluster-based
scalable network services. In Proceedings of the
16th ACM Symposium on Operating Systems
Principles (Saint-Malo, France, Oct.). ACM
Press, New York, 78–91.

ACM Computing Surveys, Vol. 34, No. 2, June 2002.

The State of the Art in Locally Distributed Web-Server Systems 309

GADDE, S., CHASE, J., AND RABINOVICH, M. 2001. Web
caching and content distribution: A view from
the interior. Computer Commun. 24, 1–2 (Feb.),
222–231.

GAN, X. AND RAMAMURTHY, B. 2000. LSMAC: An im-
proved load sharing network service dispatcher.
World Wide Web 3, 1 (Jan.), 53–59.

GILDER, G. 1997. Fiber keeps its promise: Get
ready. Bandwidth will triple each year for the
next 25. Forbes. 7 April.

GOLDBERG, A., BUFF, R., AND SCHMITT, A. 1998. Se-
cure Web server performance dramatically im-
proved by caching SSL session keys. In Proceed-
ings of Workshop on Internet Server Performance
(Madison, WI, June).

GRAY, J. AND SHENOY, P. 2000. Rules of thumb in
data engineering. In Proceedings of the 16th
IEEE International Conference on Data Engi-
neering (San Diego, CA, Apr.). IEEE Computer
Soc. Press, Los Alamitos, CA, 3–10.

HARCHOL-BALTER, M., CROVELLA, M. E., AND MURTA,
C. D. 1999. On choosing a task assignment
policy for a distributed server system. J. of Par-
allel and Distributed Computing 59, 204–228.

HENNESSY, J. 1999. The future of system research.
IEEE Computer 32, 8 (Aug.), 27–33.

HU, Y., NANDA, A., AND YANG, Q. 1999. Measure-
ment, analysis and performance improvement
of Apache Web server. In Proceedings of the
18th IEEE International Performance, Comput-
ing, and Communications Conference (Phoenix,
AZ, Feb.). IEEE Computer Soc. Press, Los
Alamitos, CA.

HUITEMA, C. 2000. Network vs. server is-
sues in end-to-end performance. Keynote
speech at Performance and Architecture of
Web Servers Workshop (Santa Clara, CA,
June). http://kkant.ccwebhost.com/PAWS2000/
huitema keynote.ppt.

HUNT, G. D. H., GOLDSZMIDT, G. S., KING, R. P., AND

MUKHERJEE, R. 1998. Network Dispatcher: A
connection router for scalable Internet services.
Computer Networks 30, 1–7, 347–357.

IBM. 2002. IBM WebSphere Edge Server. http://
www.ibm.com/software/webservers/edgeserver/.

INTEL. 2002. Intel NetStructure. http://www.
intel.com/network/idc/products/traffic
equipment.htm.

KREMIER, O. AND KRAMER, J. 1992. Methodical anal-
ysis of adaptive load sharing algorithms. IEEE
Trans. Parall. Distrib. Syst. 3, 6 (Nov.), 747–760.

KWAN, T. T., MCGRATH, R. E., AND REED, D. A. 1995.
NCSA’s World Wide Web server: Design and per-
formance. IEEE Computer 28, 11 (Nov.), 68–74.

LEVY-ABEGNOLI, E., IYENGAR, A., SONG, J., AND DIAS,
D. 1999. Design and performance of a Web
server accelerator. In Proceedings of the 18th
IEEE International Conference on Computer
Communications (INFOCOM 1999) (New York,
NY, March). IEEE Computer Soc. Press, Los
Alamitos, CA, 135–143.

LI, K. AND JAMIN, S. 2000. A measurement-based
admission-controlled Web server. In Proceedings
of the 19th IEEE International Conference on
Computer Communications (INFOCOM 2000)
(Tel Aviv, Israel, March). IEEE Computer Soc.
Press, Los Alamitos, CA, 651–659.

LI, Q. AND MOON, B. 2001. Distributed Cooperative
Apache Web server. In Proceedings of the 10th
International World Wide Web Conference (Hong
Kong, May). ACM Press, New York, 555–564.

LINUX VIRTUAL SERVER. 2002. Linux Virtual Server
project. http://www.linuxvirtualserver.org/.

LUCENT TECH. 2002. Lucent Web Switch. http://
www.bell-labs.com/project/webswitch/.

LUO, M.-Y. AND YANG, C.-S. 2001a. Constructing
zero-loss Web services. In Proceedings of the 20th
IEEE International Conference on Computer
Communications (INFOCOM 2001) (Anchorage,
AK, Apr.). IEEE Computer Soc. Press, Los
Alamitos, CA, 1781–1790.

LUO, M.-Y. AND YANG, C.-S. 2001b. System support
for scalable and reliable and highly manage-
able Web hosting service. In Proceedings of the
3rd USENIX Symposium on Internet Technolo-
gies and Systems (San Francisco, CA, March).
USENIX Assoc., Berkeley, CA.

LUOTONEN, A. M. 1997. Web Proxy Servers.
Prentice Hall, Englewood Cliffs, NJ.

MALTZ, D. AND BHAGWAT, P. 1998. Application layer
proxy performance using TCP splice. Tech. Rep.
RC 21139, IBM T. J. Watson Research Center.

MENASCÉ, D. A., ALMEIDA, J., FONSECA, R., AND MENDES,
M. A. 2000. Business-oriented resource man-
agement policies for e-commerce servers. Perfor-
mance Evaluation 42, 2–3 (Sept.), 223–239.

MICROSOFT. 2002. Network load balancing. http:
//www.microsoft.com/windows2000/techinfo/
howitworks/cluster/nlb.as%p.

MIRROR IMAGE INTERNET. 2002. http://www.
mirror-image.com/.

MITZENMACHER, M. 2000. How useful is old infor-
mation. IEEE Trans. Parall. Distrib. Syst. 11, 1
(Jan.), 6–20.

MOSEDALE, D., FOSS, W., AND MCCOOL, R. 1997.
Lessons learned administering Netscape’s In-
ternet site. IEEE Internet Computing 1, 2
(Mar./Apr.), 28–35.

NAHUM, E. M., BARZILAI, T., AND KANDLUR, D. D.
2002. Performance issues in WWW servers.
IEEE/ACM Trans. Networking 10, 2 (Feb.), 2–
11.

NETSCALER. 2002. Netscaler’s Request Switch.
http://www.netscaler.com.

NORTEL NETWORKS. 2002. Nortel Networks
Web OS. http://www.nortelnetworks.com/
products/01/alteon/.

ORACLE. 2002. Oracle9iAS Web Cache. http://
www.oracle.com/ip/deploy/ias/caching/
index.html.

OTHMAN, O., O’RYAN, C., AND SCHMIDT, D. C. 2001.
Strategies for CORBA middleware-based load

ACM Computing Surveys, Vol. 34, No. 2, June 2002.

310 V. Cardellini et al.

balancing. IEEE Distributed Systems Online 2, 3
(Mar.).

PAI, V. S., ARON, M., BANGA, G., SVENDSEN, M.,
DRUSCHEL, P., ZWAENEPOEL, W., AND NAHUM, E. M.
1998. Locality-aware request distribution in
cluster-based network servers. In Proceedings of
the 8th ACM Conference on Architectural Sup-
port for Programming Languages and Operating
Systems (San Jose, CA, Oct.). ACM Press, New
York, 205–216.

PAI, V. S., DRUSCHEL, P., AND ZWAENEPOEL, W. 1999.
Flash: An efficient and portable Web server. In
Proceedings of the 1999 USENIX Annual Techni-
cal Conference (Monterrey, CA, June). USENIX
Assoc., Berkeley, CA, 199–212.

PAI, V. S., DRUSCHEL, P., AND ZWAENEPOEL, W. 2000.
IO-Lite: A unified I/O buffering and caching sys-
tem. ACM Trans. Comput. Syst. 18, 1 (Feb.),
37–66.

PANDEY, R., BARNES, J. F., AND OLSSON, R. 1998. Sup-
porting quality of service in HTTP servers. In
Proceedings of the ACM Symposium on Princi-
ples of Distributed Computing (Puerto Vallarta,
Mexico, June). ACM Press, New York, 247–256.

PERKINS, C. 1996. IP encapsulation within IP. RFC
2003.

PERSISTENCE SOFTWARE. 2002. Persistence Dyna-
mai. http://www.persistence.com/products/
dynamai/index.php.

PIERRE, G., VAN STEEN M., AND TANENBAUM, A. S.
2002. Dynamically selecting optimal distribu-
tion strategies for Web documents. IEEE Trans.
Comput. 51. To appear in 2002.

RADWARE. 2002. http://www.radware.com/.
RESONATE. 2002. http://www.resonate.com/.
RIJSINGHANI, A. 1994. Computation of the Internet

checksum via incremental update. RFC 1624.
ROSU, D., IYENGAR, A., AND DIAS, D. 2001. Web proxy

acceleration. Cluster Computing 4, 4 (Oct.), 307–
317.

ROSU, M.-C. AND ROSU, D. 2002. Evaluation of TCP
splice benefits in Web proxy servers. In Proceed-
ings of the 11th International World Wide Web
Conference (Honolulu, HI, May). ACM Press,
New York.

SHAIKH, A., TEWARI, R., AND AGRAWAL, M. 2001. On
the effectiveness of DNS-based server selec-
tion. In Proceedings of the 20th IEEE Interna-
tional Conference on Computer Communications
(INFOCOM 2001) (Anchorage, AK, April). IEEE
Computer Soc. Press, Los Alamitos, CA, 1801–
1810.

SHIRAZI, B. A., HURSON, A. R., AND KAVI, K. M. 1995.
Scheduling and Load Balancing in Parallel and
Distributed Systems. IEEE Computer Soc. Press,
Los Alamitos, CA.

SHIVARATRI, N. G., KRUEGER, P., AND SINGHAL, M. 1992.
Load distributing for locally distributed systems.
IEEE Computer 25, 12 (Dec.), 33–44.

SONG, J., IYENGAR, A., LEVY-ABEGNOLI, E., AND DIAS,
D. 2002. Architecture of a Web server accel-

erator. Computer Networks 38, 1 (Jan.), 75–
97.

SONG, J., LEVY-ABEGNOLI, E., IYENGAR, A., AND DIAS,
D. 2000. Design alternatives for scalable Web
server accelerators. In Proceedings of the 2000
IEEE International Symposium on Performance
Analysis of Systems and Software (Austin,
TX, April). IEEE Computer Soc. Press, Los
Alamitos, CA, 184–192.

SPATSCHECK, O., HANSEN, J. S., HARTMAN, J. H., AND

PETERSON, L. L. 2000. Optimizing TCP for-
warder performance. IEEE/ACM Trans. Net-
working 8, 2 (Apr.), 146–157.

SRISURESH, P. AND EGEVANG, K. 2001. Traditional IP
Network Address Translator (Traditional NAT).
RFC 3022.

SRISURESH, P. AND GAN, D. 1998. Load sharing us-
ing IP Network Address Translation. RFC 2391.

TANG, W., CHERKASOVA, L., RUSSELL, L., AND MUTKA,
M. W. 2001. Modular TCP handoff design in
STREAMS-based TCP/IP implementation. In
Proceedings of the 1st International Conference
on Networking (Colmar, France, July). Lecture
Notes in Computer Science, vol. 2094. Springer-
Verlag, Heidelberg, 71–80.

VAIDYA, S. AND CHRISTENSEN, K. 2001. A single sys-
tem image server cluster using duplicated MAC
and IP addresses. In Proceedings of the IEEE
26th Conference on Local Computer Networks
(Tampa, FL, Nov.). IEEE Computer Soc. Press,
Los Alamitos, CA, 206–214.

VASILIOU, N. AND LUTFIYYA, H. L. 2000. Providing
a differentiated quality of service in a World
Wide Web server. ACM Performance Evaluation
Review 28, 2 (Sept.), 22–28.

VINGRALEK, R., SAYAL, M., BREITBART, Y., AND SCHEUER-
MANN, P. 2000. Web++ architecture, design
and performance. World Wide Web 3, 2 (Apr.),
65–77.

WANG, J. 1999. A survey of Web caching schemes
for the Internet. ACM Computer Commun. Re-
view 29, 5 (Oct.), 36–46.

WANG, Y. T. AND MORRIS, R. J. T. 1985. Load
sharing in distributed systems. IEEE Trans.
Comput. 34, 3 (Mar.), 204–217.

WESSELS, D. 2001. Web Caching. O’Reilly and
Associates, Sebastopol, CA.

WOLF, J. L. AND YU, P. S. 2001. On balancing the
load in a clustered Web farm. ACM Trans. Inter-
net Technology 1, 2 (Nov.), 231–251.

YAGOUB, K., FLORESCU, D., ISSARNY, V., AND VALDURIEZ,
P. 2000. Caching strategies for data-intensive
Web sites. In Proceedings of the 24th Inter-
national Conference on Very Large Databases
(Cairo, Egypt, Sept.). Morgan Kaufmann, San
Francisco, 188–199.

YANG, C.-S. AND LUO, M.-Y. 2000. A content place-
ment and management system for distributed
Web-server systems. In Proceedings of the 20th
IEEE International Conference on Distributed
Computing Systems (Taipei, Taiwan, April).

ACM Computing Surveys, Vol. 34, No. 2, June 2002.

The State of the Art in Locally Distributed Web-Server Systems 311

IEEE Computer Soc. Press, Los Alamitos, CA,
691–698.

YOSHIKAWA, C., CHUN, B., EASTHAM, P., VAHDAT, A.,
ANDERSON, T., AND CULLER, D. 1997. Using
Smart Clients to build scalable services. In Pro-
ceedings of the 1997 USENIX Annual Techni-
cal Conference (Anaheim, CA, Jan.). USENIX
Assoc., Berkeley, CA, 105–117.

ZEUS TECH. 2002. http://www.zeus.com/.
ZHANG, X., BARRIENTOS, M., CHEN, J. B., AND SELTZER,

M. 1999. HACC: An architecture for cluster-
based Web servers. In Proceedings of the 3rd
USENIX Windows NT Symposium (Seattle, WA,
July). USENIX Assoc., Berkeley, CA, 155–164.

ZHU, H., SMITH, B., AND YANG, T. 1999. Schedul-
ing optimization for resource-intensive Web re-
quests on server clusters. In Proceedings of the

11th ACM Symposium on Parallel Algorithms
and Architectures (SPAA’99) (June). ACM Press,
New York, 13–22.

ZHU, H. AND TANG, H. 2001. Class-based cache
management for dynamic Web content. In
Proceedings of the 20th IEEE International
Conference on Computer Communications
(INFOCOM 2001) (Anchorage, AK, April).
IEEE Computer Soc. Press, Los Alamitos, CA,
1215–1224.

ZHU, H., TANG, H., AND YANG, T. 2001. Demand-
driven service differentiation in cluster-based
network servers. In Proceedings of the 20th IEEE
International Conference on Computer Commu-
nications (INFOCOM 2001) (Anchorage, AK,
April). IEEE Computer Soc. Press, Los Alamitos,
CA, 679–688.

Received August 2001; revised February 2002; accepted February 2002

ACM Computing Surveys, Vol. 34, No. 2, June 2002.

