
Total Order Broadcast and Multicast Algorithms:
Taxonomy and Survey

XAVIER DÉFAGO

Japan Advanced Institute of Science and Technology and
PRESTO, Japan Science and Technology Agency

ANDRÉ SCHIPER

École Polytechnique Fédérale de Lausanne, Switzerland

AND

PÉTER URBÁN

Japan Advanced Institute of Science and Technology

Total order broadcast and multicast (also called atomic broadcast/multicast) present an
important problem in distributed systems, especially with respect to fault-tolerance. In
short, the primitive ensures that messages sent to a set of processes are, in turn,
delivered by all those processes in the same total order.

Categories and Subject Descriptors: C.2.4 [Computer-Communication Networks]:
Distributed Systems; C.2.2 [Computer-Communication Networks]: Network
Protocols—Applications; Protocol architecture; D.4.4 [Operating Systems]:
Communications Management—Message sending; Network communication; D.4.5
[Operating Systems]: Reliability—Fault-tolerance; H.2.4 [Database Management]:
Systems—Distributed databases; H.3.4 [Information Storage and Retrieval]:
Systems and Software—Distributed systems

General Terms: Algorithms, Reliability, Design

Additional Key Words and Phrases: Distributed systems, distributed algorithms, group
communication, fault-tolerance, agreement problems, message passing, total ordering,
global ordering, atomic multicast, atomic broadcast, classification, taxonomy, survey

Part of this research was conducted for the program “Fostering Talent in Emergent Research Fields” in Spe-
cial Coordination Funds for Promoting Science and Technology by the Japan Ministry of Education, Culture,
Sports, Science and Technology. This work was initiated during Xavier Défago’s Ph.D. research at the Swiss
Federal Institute of Technology in Lausanne [Défago 2000]. Péter Urbán was supported by the Japan Society
for the Promotion of Science, a Grant-in-Aid for JSPS Fellows from the Japanese Ministry of Education, Cul-
ture, Sports, Science and Technology, the Swiss National Science Foundations, and the CSEM Swiss Center
for Electronics and Microtechnology, Inc., Neuchâtel.
Authors’ addresses: X. Défago and P. Urbán, School of Information Science, JAIST, 1-1 Asahidai,
Tatsunokuchi, Nomigun, Ishikawa 923-1292, Japan; email: {defago,urban}@jaist.ac.jp; A. Schiper, IC-
LSR, School of Information and Communication, EPFL, CH-1015 Lausanne, Switzerland; email: Andre.
Schiper@epfl.ch.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or direct commercial advantage and
that copies show this notice on the first page or initial screen of a display along with the full citation. Copy-
rights for components of this work owned by others than ACM must be honored. Abstracting with credit is
permitted. To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component
of this work in other works requires prior specific permission and/or a fee. Permissions may be requested
from Publications Dept., ACM, Inc., 1515 Broadway, New York, NY 10036 USA, fax: +1 (212) 869-0481, or
permissions@acm.org.
c©2004 ACM 0360-0300/04/1200-0372 $5.00

ACM Computing Surveys, Vol. 36, No. 4, December 2004, pp. 372–421.

Total Order Broadcast and Multicast Algorithms: Taxonomy and Survey 373

The problem has inspired an abundance of literature, with a plethora of proposed
algorithms. This article proposes a classification of total order broadcast and multicast
algorithms based on their ordering mechanisms, and addresses a number of other
important issues. The article surveys about sixty algorithms, thus providing by far the
most extensive study of the problem so far. The article discusses algorithms for both the
synchronous and the asynchronous system models, and studies the respective
properties and behavior of the different algorithms.

1. INTRODUCTION

Distributed systems and applications are
notoriously difficult to build. This is
mostly due to the unavoidable concur-
rency in such systems, combined with
the difficulty of providing a global con-
trol. This difficulty is greatly reduced by
relying on group communication primi-
tives that provide higher guarantees than
standard point-to-point communication.
One such primitive is called total order1

broadcast.2 Informally, the primitive en-
sures that messages sent to a set of pro-
cesses are delivered by all those processes
in the same order. Total order broadcast
is an important primitive that plays a
central role, for instance, when imple-
menting the state machine approach (also
called active replication) [Lamport 1978a;
Schneider 1990; Poledna 1994]. It also
has other applications, such as clock syn-
chronization [Rodrigues et al. 1993], com-
puter supported cooperative writing, dis-
tributed shared memory, and distributed
mutual exclusion [Lamport 1978b]. More
recently, it was also shown that an ad-
equate use of total order broadcast can
significantly improve the performance of
replicated databases [Agrawal et al. 1997;
Pedone et al. 1998; Kemme et al. 2003].

1Total order broadcast is also known as atomic broad-
cast. Both terminologies are currently in use. There
is a slight controversy with respect to using one over
the other. We opt for the former, that is, “total or-
der broadcast,” because the latter is somewhat mis-
leading. Indeed, atomicity suggests a property re-
lated to agreement rather than to total order (de-
fined in Sect. 2), and the ambiguity has already been
a source of misunderstandings. In contrast, “total or-
der broadcast” unambiguously refers to the property
of total order.
2Total order multicast is sometimes used instead of
total order broadcast. The distinction between the
two primitives is explained later in the article (Sec-
tion 3). When the distinction is not important, we use
the term total order broadcast.

Literature on total order broadcast.
There exists a considerable amount of
literature on total order broadcast, and
many algorithms, following various ap-
proaches, have been proposed to solve this
problem. It is, however, difficult to com-
pare them as they often differ with respect
to their actual properties, assumptions,
objectives, or other important aspects. It
is hence difficult to know which solution is
best suited to a given application context.
When confronted with new requirements,
the absence of a roadmap to the problem
of total order broadcast can lead engineers
and researchers to either develop new al-
gorithms rather than adapt existing solu-
tions (thus reinventing the wheel), or use
a solution poorly suited to the application
needs. An important step to improve the
present situation is to provide a classifica-
tion of existing algorithms.

Related work. Previous attempts have
been made at classifying and compar-
ing total order broadcast algorithms
[Anceaume 1993b; Anceaume and Minet
1992; Cristian et al. 1994; Friedman and
van Renesse 1997; Mayer 1992]. However,
none is based on a comprehensive survey
of existing algorithms, and hence they all
lack generality.

The most complete comparison so far
was done by Anceaume and Minet [1992]
(an extended version was later published
in French by Anceaume [1993b]), who
take an interesting approach based on the
properties of the algorithms. Their paper
raises some fundamental questions that
inspired a part of our work. It is, how-
ever, a little outdated now. In addition,
the authors only study seven different al-
gorithms, which are not truly represen-
tative; for instance, none is based on a
communication history approach (one of
the five classes of algorithms; details in
Section 4.4).

ACM Computing Surveys, Vol. 36, No. 4, December 2004.

374 X. Défago et al.

Cristian et al. [1994] take a different ap-
proach, focusing on the implementation of
the algorithms, rather than their proper-
ties. They study four different algorithms,
and compare them using discrete event
simulation. They find interesting results
regarding the respective performance of
different implementation strategies. Nev-
ertheless, they fail to discuss the respec-
tive properties of the different algorithms.
Besides, as they compare only four al-
gorithms, this work is less general than
Anceaume’s [1993b].

Friedman and van Renesse [1997] study
the impact of packing messages on the
performance of algorithms. To this pur-
pose, they study six algorithms, includ-
ing those studied by Cristian et al. [1994].
They measure the actual performance of
the algorithms and confirm the observa-
tions made by Cristian et al. [1994]. They
show that packing several protocol mes-
sages into a single physical message in-
deed provides an effective way to improve
the performance of algorithms. The com-
parison also lacks generality, but this is
quite understandable as this is not the
main concern of their paper.

Mayer [1992] defines a framework in
which total order broadcast algorithms
can be compared from a performance point
of view. The definition of such a framework
is an important step toward an extensive
and meaningful comparison of algorithms.
However, the paper does not actually com-
pare the numerous existing algorithms.

Contributions. In this article, we pro-
pose a classification of total order broad-
cast algorithms based on the mechanism
used to order messages. The reason for
this choice is that the ordering mechanism
is the characteristic with the strongest
influence on the communication pattern
of the algorithm: two algorithms of the
same class are likely to exhibit similar be-
haviors. We define five classes of order-
ing mechanisms: communication history,
privilege-based, moving sequencer, fixed
sequencer, and destinations agreement.

In this article, we also provide a vast
survey of about sixty published total or-
der broadcast algorithms. Wherever pos-
sible, we mention the properties and the

assumptions of each algorithm. This is,
however, not always possible because the
information available in the papers is of-
ten not sufficient to accurately character-
ize the behavior of the algorithm (e.g., in
the face of a failure).

Structure. The article is logically or-
ganized into four main parts: specifica-
tion, ordering mechanisms and taxon-
omy, fault-tolerance, and survey. More
precisely, the article is structured as fol-
lows. Section 2 presents the specification
of the total order broadcast problem (also
known as atomic broadcast). Section 3
extends the specification by considering
the characteristics of destination groups
(e.g., single versus multiple groups). In
Section 4, we define five classes of total
order broadcast algorithms, according to
the way messages are ordered: commu-
nication history, privilege-based, moving
sequencer, fixed sequencer, and destina-
tions agreement. Section 5 discusses sys-
tem model issues in relation to failures.
Section 6 presents the main mechanisms
on which total order broadcast algorithms
rely to ensure fault-tolerance. Section 7
gives a broad survey of total order broad-
cast algorithms found in the literature. Al-
gorithms are grouped along their respec-
tive classes, and we discuss their principal
characteristics. Section 8 discusses some
other issues of interest that are related
to total order broadcast. Finally, Section 9
concludes the article.

2. SPECIFICATION OF TOTAL ORDER
BROADCAST

In this section, we give the formal specifi-
cation of the total order broadcast prob-
lem. As there are many variants of the
problem, we present here the simplest
specification, and discuss other variants in
Section 3.

2.1. Notation

Table I summarizes some of the nota-
tions used throughout the article. M
is the set containing all possible valid
messages. � denotes the set of all pro-
cesses in the system. Given some arbitrary

ACM Computing Surveys, Vol. 36, No. 4, December 2004.

Total Order Broadcast and Multicast Algorithms: Taxonomy and Survey 375

Table I. Notation
M set of all valid messages.
� set of all processes in the system.
sender(m) sender of message m.
Dest(m) set of destination processes for

message m.
�sender set of all sending processes in the

system.
�dest set of all destination processes in the

system.

message m, sender(m) designates the pro-
cess in � from which m originates, and
Dest(m) denotes the set of all destination
processes for m.

In addition, �sender is the set of all pro-
cesses in � that can potentially send some
valid message.

�sender = {p | p can send some message
m ∈ M}. (1)

Likewise, �dest is the set of all potential
destinations of valid messages.

�dest
def=

⋃

m∈M
Dest(m). (2)

2.2. Process Failures

The specification of total order broad-
cast requires the definition of the notion
of a correct process. The following set
of process failure classes are commonly
considered:

—Crash failures. When a process crashes,
it ceases functioning forever. This means
that it stops performing any activity in-
cluding sending, transmitting, or receiv-
ing any message.

—Omission failures. When a process fails
by omission, it omits performing some
actions, such as sending or receiving a
message.

—Timing failures. A timing failure occurs
when a process violates some of the tim-
ing assumptions of the system model
(details in Section 5.1). Obviously, this
type of failures does not exist in asyn-
chronous system models, because of the
absence of timing assumptions in such
systems.

—Byzantine failures. Byzantine failures
are the most general type of failures. A

Byzantine component is allowed any ar-
bitrary behavior. For instance, a faulty
process may change the content of mes-
sages, duplicate messages, send unso-
licited messages, or even maliciously try
to break down the whole system.

A correct process is defined as a process
that never expresses any of the faulty be-
haviors mentioned above.

2.3. Basic Specification of Total Order
Broadcast

We can now give the simplest specification
of total order broadcast. Formally, the
problem is defined in terms of two prim-
itives, which are called TO-broadcast(m)
and TO-deliver(m), where m ∈ M is
some message. When a process p ex-
ecutes TO-broadcast(m) (respectively
TO-deliver(m)), we may say that p TO-
broadcasts m (respectively TO-delivers
m). We assume that every message m
can be uniquely identified, and carries
the identity of its sender, denoted by
sender(m). In addition, we assume that,
for any given message m, and any run,
TO-broadcast(m) is executed at most
once. In this context, total order broadcast
is defined by the following properties
[Hadzilacos and Toueg 1994; Chandra
and Toueg 1996]:

(VALIDITY) If a correct process TO-
broadcasts a message m, then it
eventually TO-delivers m.

(UNIFORM AGREEMENT) If a process TO-
delivers a message m, then all correct
processes eventually TO-deliver m.

(UNIFORM INTEGRITY) For any message m,
every process TO-delivers m at most
once, and only if m was previously TO-
broadcast by sender(m).

(UNIFORM TOTAL ORDER) If processes p and
q both TO-deliver messages m and m′,
then p TO-delivers m before m′, if and
only if q TO-delivers m before m′.

A broadcast primitive that satisfies all
these properties except Uniform Total Or-
der (i.e., that provides no ordering guar-
antee) is called a reliable broadcast.

ACM Computing Surveys, Vol. 36, No. 4, December 2004.

376 X. Défago et al.

Fig. 1. Violation of Uniform Agreement (example).

Validity and Uniform Agreement are
liveness properties. Roughly speaking,
this means that, at any point in time,
no matter what has happened up to that
point, it is still possible for the property
to eventually hold [Charron-Bost et al.
2000]. Uniform Integrity and Uniform
Total Order are safety properties. This
means that, if, at some point in time, the
property does not hold, no matter what
happens later, the property cannot even-
tually hold.

2.4. Nonuniform Properties

In the above definition of total order broad-
cast, the properties of Agreement and To-
tal Order are uniform. This means that
these properties do not only apply to cor-
rect processes, but also to faulty ones. For
instance, with Uniform Total Order, a pro-
cess is not allowed to deliver any message
out of order, even if it is faulty. Conversely,
(nonuniform) Total Order applies only to
correct processes, and hence does not put
any restriction on the behavior of faulty
processes.

Uniform properties are strong guar-
antees that might make life easier for
application developers. Not all applica-
tions need uniformity, however, and en-
forcing uniformity often has a cost. For
this reason, it is also important to consider
weaker problems specified using nonuni-
form properties, though nonuniform prop-
erties may lead to inconsistencies at the
application level. However, an application
might protect itself from nonuniformity by
voting (e.g., given an application that col-
lects replies from the destinations of a to-
tal order broadcast, the application may
vote on the replies received, and consider
a reply to be effective only after receiving
the same reply from a majority). Nonuni-

form Agreement and Total Order are spec-
ified as follows:

(AGREEMENT) If a correct process TO-
delivers a message m, then all correct
processes eventually TO-deliver m.

(TOTAL ORDER) If two correct processes p
and q both TO-deliver messages m and
m′, then p TO-delivers m before m′, if
and only if q TO-delivers m before m′.

The combinations of uniform and
nonuniform properties define four differ-
ent specifications to the problem of fault-
tolerant total order broadcast. These defi-
nitions constitute a hierarchy of problems,
as discussed extensively by Wilhelm and
Schiper [1995]. However, for simplicity, we
say that a total order broadcast algorithm
is uniform when it satisfies both Uniform
Agreement and Uniform Total Order, and
we say that an algorithm is nonuniform
when it enforces neither (i.e., only their
nonuniform counterparts). We give no spe-
cial name to the two hybrid definitions.

Figure 1 illustrates a violation of the
Uniform Agreement property with a sim-
ple example. In this example, the se-
quencer p1 sends a message m, using total
order broadcast. It first assigns a sequence
number to m, then sends m to all pro-
cesses, and finally, delivers m. Process p1
crashes shortly afterwards, and no other
process receives m (due to message loss).
As a result, no correct process (e.g., p2)
will ever be able to deliver m. Uniform
Agreement is violated, but not (nonuni-
form) Agreement: no correct process ever
delivers m (p1 is not correct).

Note 1. Byzantine failures and unifor-
mity. Algorithms tolerant to Byzantine
failures can guarantee none of the uni-
form properties given in Section 2.3.
This is understandable as no behavior

ACM Computing Surveys, Vol. 36, No. 4, December 2004.

Total Order Broadcast and Multicast Algorithms: Taxonomy and Survey 377

Fig. 2. Contamination of correct processes (p1, p2), by a message (m4), based
on an inconsistent state (p3 delivered m3 but not m2).

can be enforced on Byzantine processes.
In other words, nothing can prevent a
Byzantine process from (1) delivering a
message more than once (violates Uni-
form Integrity), (2) delivering a message
that is not delivered by other processes
(violates Agreement), or (3) delivering
two messages in the wrong order (violates
Total Order).

Reiter [1994] proposes a more useful
definition of uniformity for Byzantine sys-
tems. He distinguishes between crashes
and Byzantine failures. He says that a
process is honest if it behaves according
to its specification, and corrupt otherwise
(i.e., Byzantine), where honest processes
can also fail by crashing. In this context,
uniform properties are those which are en-
forced by all honest processes, regardless
of whether they are correct or not. This
definition is more sensible that the stricter
of definition of Section 2.3, as nothing is
required from corrupt processes.

Note 2. Safety/liveness and uniformity.
Charron-Bost et al. [2000] have shown
that, in the context of failures, some
nonuniform properties that are commonly
believed to be safety properties are actu-
ally liveness properties. They have pro-
posed refinements of the concept of safety
and liveness that avoid the counterintu-
itive classification.

2.5. Contamination

The problem of contamination comes
from the observation that, even with the
strongest specification (i.e., with Uniform
Agreement and Uniform Total Order), to-
tal order broadcast does not prevent a
faulty process p from reaching an incon-
sistent state before it crashes. This is a
serious problem because p can “legally”
TO-broadcast a message based on this

inconsistent state, and thus contaminate
correct processes [Gopal and Toueg 1991;
Anceaume and Minet 1992; Anceaume
1993b; Hadzilacos and Toueg 1994].

2.5.1. Illustration. Figure 2 illustrates
an example [Charron-Bost et al. 1999;
Hadzilacos and Toueg 1994] in which an
incorrect process contaminates the cor-
rect processes. Process p3 delivers mes-
sages m1 and m3, but not m2. So, its state
is inconsistent when it multicasts m4 to
the other processes before crashing. The
correct processes p1 and p2 deliver m4,
thus becoming contaminated by the in-
consistent state of p3. It is important to
stress again that the situation depicted in
Figure 2 satisfies even the strongest spec-
ification presented so far.

2.5.2. Specification. It is possible to ex-
tend or reformulate the specification of to-
tal order broadcast in such a way that
it disallows contamination. The solution
consists of preventing any process from de-
livering a message that may lead to an in-
consistent state.

Aguilera et al. [2000] propose a reformu-
lation of Uniform Total Order which, un-
like the traditional definition, is not prone
to contamination, as it does not allow gaps
in the delivery sequence:

(GAP-FREE UNIFORM TOTAL ORDER) If some
process delivers message m′ after mes-
sage m, then a process delivers m′ only
after it has delivered m.

As an alternative, an older formulation
uses the history of delivery and requires
that, for any two given processes, the his-
tory of one is a prefix of the history of
the other. This is expressed by the follow-
ing property [Anceaume and Minet 1992;
Cristian et al. 1994; Keidar and Dolev
2000]:

ACM Computing Surveys, Vol. 36, No. 4, December 2004.

378 X. Défago et al.

(PREFIX ORDER) For any two processes p
and q, either hist(p) is a prefix of hist(q),
or hist(q) is a prefix of hist(p), where
hist(p) and hist(q) are the sequences of
messages delivered by p and q, respec-
tively.

Note 3. The specification of total order
broadcast using Prefix Order precludes
the dynamic join of processes (e.g., with
a group membership). This can be cir-
cumvented, but the resulting property
is much more complicated. For this rea-
son, the simpler alternative proposed by
Aguilera et al. [2000] is preferred.

Note 4. Byzantine failures and contami-
nation. Contamination cannot be avoided
in the face of arbitrary failures. This is
because a faulty process may be inconsis-
tent even if it delivers all messages cor-
rectly. It may then contaminate the other
processes by broadcasting a bogus mes-
sage that seems correct to every other pro-
cess [Hadzilacos and Toueg 1994].

2.6. Other Ordering Properties

The Total Order property (see Section 2.3),
restricts the order of message delivery
based solely on the destinations, that is,
the property is independent of the sender
processes. The definition can be further re-
stricted by two properties related to the
senders, namely, FIFO Order and Causal
Order.

2.6.1. FIFO Order. Total Order alone
does not guarantee that messages are de-
livered in the order in which they are sent
(i.e., in first-in/first-out order). Yet, this
property is sometimes required by applica-
tions in addition to Total Order. The prop-
erty is called FIFO Order:

(FIFO ORDER) If a correct process TO-
broadcasts a message m before it TO-
broadcasts a message m′, then no cor-
rect process delivers m′, unless it has
previously delivered m.

2.6.2. Causal Order. The notion of
causality in the context of distributed
systems was first formalized by Lamport

[1978b]. It is based on the relation
“precedes”3 (denoted by −→), defined
in his seminal paper and extended in a
later paper [Lamport 1986b]. The relation
“precedes” is defined as follows.

Definition 1. Let ei and e j be two
events in a distributed system. The tran-
sitive relation ei −→ e j holds if any one of
the following three conditions is satisfied:

(1) ei and e j are two events on the same
process, and ei comes before e j ;

(2) ei is the sending of a message m by one
process, and e j is the receipt of m by
another process; or,

(3) There exists a third event ek , such that,
ei −→ ek and ek −→ e j (transitivity).

This relation defines an irreflexive par-
tial ordering on the set of events. The
causality of messages can be defined by the
“precede” relationship between their re-
spective sending events. More precisely, a
message m is said to precede a message m′
(denoted m ≺ m′), if the sending event of m
precedes the sending event of m′.

The property of causal order for broad-
cast messages is defined as follows
[Hadzilacos and Toueg 1994]:

(CAUSAL ORDER) If the broadcast of a mes-
sage m causally precedes the broadcast
of a message m′, then no correct process
delivers m′, unless it has previously de-
livered m.

Hadzilacos and Toueg [1994] also prove
that the property of Causal Order is equiv-
alent to combining the property of FIFO
Order with the following property of Local
Order.

(LOCAL ORDER) If a process broadcasts a
message m and a process delivers m
before broadcasting m′, then no correct
process delivers m′, unless it has previ-
ously delivered m.

Note 5. State-machine approach. A total
order broadcast ensuring causal order

3Lamport initially called the relation “happened be-
fore” [Lamport 1978b], but he renamed it “precedes”
in later work [Lamport 1986a, 1986b].

ACM Computing Surveys, Vol. 36, No. 4, December 2004.

Total Order Broadcast and Multicast Algorithms: Taxonomy and Survey 379

is, for instance, required by the state
machine approach [Lamport 1978a;
Schneider 1990]. However, we think that
some applications may require causality,
some others not.

2.6.3. Source Ordering. Some papers
(e.g., Garcia-Molina and Spauster [1991]
and Jia [1995]) make a distinction be-
tween single source and multiple source
ordering. These papers define single
source ordering algorithms as algorithms
that ensure total order only if a single
process broadcasts messages. This is a
special case of FIFO broadcast, easily
solved using sequence numbers. Source
ordering is not particularly interesting
in itself, and hence we do not discuss the
issue further in this article.

3. PROPERTIES OF DESTINATION GROUPS

So far, we have presented the problem of
total order broadcast, wherein messages
are sent to all processes in the system.
In other words, all valid messages are ad-
dressed to the entire system:

∀m ∈ M (Dest(m) = �). (3)

A multicast primitive is more general in
the sense that it can send messages to any
chosen subset of the processes. In other
words, we can have two valid messages
sent to different destinations sets, or the
destination set may not include the mes-
sage sender:

∃m ∈ M (sender(m) �∈ Dest(m))
∧ ∃mi, m j ∈ M (Dest(mi) �= Dest(m j)).

(4)

Although in wide use, the distinction
between broadcast and multicast is not
precise enough. This leads us to discuss
a more relevant distinction, namely, be-
tween closed versus open groups, and be-
tween single versus multiple groups.

3.1. Closed Versus Open Groups

In the literature, many algorithms are de-
signed with the implicit assumption that

messages are sent within a group of pro-
cesses. This originally came from the fact
that early work on this topic was done in
the context of parallel machines [Lamport
1978a], or highly available storage sys-
tems [Cristian et al. 1995]. However, most
distributed applications are now devel-
oped by considering more open interaction
models, such as the client-server model,
N -tier architectures, or publish/subscribe.
For this reason, it is necessary for a pro-
cess to be able to multicast messages to a
group to which it does not belong. Conse-
quently, we consider it an important char-
acteristic of algorithms that they be easily
adaptable to open interaction models.

3.1.1. Closed Group Algorithms. In closed
groups algorithms, the sending process is
always one of the destination processes:

∀m ∈ M (sender(m) ∈ Dest(m)). (5)

So, these algorithms do not allow external
processes (processes that are not members
of the group) to multicast messages to the
destination group.

3.1.2. Open Group Algorithms. Con-
versely, open group algorithms allow
any arbitrary process in the system to
multicast messages to a group, whether
or not the sender process belongs to the
destination group. More precisely, there
are some valid messages where the sender
is not one of the destinations:

∃m ∈ M (sender(m) �∈ Dest(m)). (6)

Open group algorithms are more general
than closed group algorithms: the former
can be used with closed groups, while the
opposite is not true.

3.2. Single Versus Multiple Groups

Most algorithms presented in the litera-
ture assume that all messages are multi-
cast to one single group of destination pro-
cesses. Nevertheless, a few algorithms are
designed to support multiple groups. In
this context, we consider three situations:
single group, multiple disjoint groups, and

ACM Computing Surveys, Vol. 36, No. 4, December 2004.

380 X. Défago et al.

multiple overlapping groups. We also dis-
cuss how useless, trivial solutions can be
ruled out with the notion of minimality.
Since the ability to multicast messages to
multiple destination sets is critical for cer-
tain classes of applications, we regard this
ability as an important characteristic of an
algorithm.

3.2.1. Single Group Ordering. With single
group ordering, all messages are multi-
cast to one single group of destination pro-
cesses. As mentioned above, this is the
model considered by a vast majority of the
algorithms that are studied in this article.
Single group ordering can be defined by
the following property:4

∀mi, m j ∈ M (Dest(mi) = Dest(m j)). (7)

3.2.2. Multiple Groups Ordering (Disjoint).
In some applications, the restriction to one
single destination group is not acceptable.
For this reason, algorithms have been pro-
posed that support multicasting messages
to multiple groups. The simplest case oc-
curs when the multiple groups are disjoint
groups. More precisely, if two valid mes-
sages have different destination sets, then
these sets do not intersect:

∀mi, m j ∈ M (Dest(mi) �= Dest(m j)
⇒ Dest(mi) ∩ Dest(m j) = ∅). (8)

Adapting algorithms designed for one
single group to work in a system with mul-
tiple disjoint groups is almost trivial.

3.2.3. Multiple Groups Ordering (Overlap-
ping). In case of multiple groups order-
ing, it can happen that groups overlap.
This can be expressed by the fact that
some pairs of valid messages have dif-
ferent destination sets with a nonempty

4This definition and the following ones are static.
They do not take into account the fact that processes
can join groups and leave groups. Nevertheless, we
prefer these simple static definitions, rather than
more complex ones that would take dynamic desti-
nation groups into account.

intersection:

∃mi, m j ∈ M (Dest(mi) �= Dest(m j)
∧ Dest(mi) ∩ Dest(m j) �= ∅). (9)

The real difficulty of designing total
order multicast algorithms for multiple
groups arises when the groups can over-
lap. This is easily understood when one
considers the problem of ensuring total or-
der at the intersection of groups. In this
context, Hadzilacos and Toueg [1994] give
three different properties for total order
in the presence of multiple groups: Lo-
cal Total Order, Pairwise Total Order, and
Global Total Order.5

(LOCAL TOTAL ORDER) If correct processes
p and q both TO-deliver messages m
and m′ and Dest(m) = Dest(m′), then p
TO-delivers m before m′, if and only if q
TO-delivers m before m′.

Local Total Order is the weakest of the
three properties. It requires that total or-
der be enforced only for messages that are
multicast within the same group.

Note also that multiple unrelated
groups can be considered as disjoint
groups even if they overlap. Indeed, des-
tination processes belonging to the inter-
section of two groups can be seen as having
two distinct identities, one for each group.
It follows that an algorithm for distinct
multiple groups can be trivially adapted
to support overlapping groups with Local
Total Order.

As pointed out by Hadzilacos and Toueg
[1994], the total order multicast primi-
tive of the first version of Isis [Birman
and Joseph 1987] guaranteed Local Total
Order.6

(PAIRWISE TOTAL ORDER) If two correct pro-
cesses p and q both TO-deliver mes-
sages m and m′, then p TO-delivers m

5The ordering properties cited here are subject to
contamination, see Section 2.5. Contamination can
be avoided by formulating these properties similarly
to the Gap-free Uniform Total Order property.
6It should be noted that, if the transformation is triv-
ial from a conceptual point of view, the implementa-
tion was certainly a totally different matter, espe-
cially in the mid-80’s.

ACM Computing Surveys, Vol. 36, No. 4, December 2004.

Total Order Broadcast and Multicast Algorithms: Taxonomy and Survey 381

before m′, if and only if q TO-delivers m
before m′.

Pairwise Total Order is strictly stronger
than Local Total Order. Most notably, it
requires that total order be enforced for
all messages delivered at the intersection
of two groups.

As far as we know, there is no straight-
forward algorithm to transform a total
order multicast algorithm that enforces
Local Total Order into one that also
guarantees Pairwise Total Order (except
for trivial solutions; see Section 3.2.4).
Hadzilacos and Toueg [1994] observe that,
for instance, Pairwise Total Order is the
order property guaranteed by the al-
gorithm of Garcia-Molina and Spauster
[1989, 1991].

Pairwise Total Order alone may lead
to unexpected situations when there are
three or more overlapping destination
groups. For instance, Fekete [1993] illus-
trates the problem with the following sce-
nario. Consider three processes pi, pj , pk ,
and three messages m1, m2, m3 that are
respectively sent to three different over-
lapping groups G1 = {pi, pj }, G2 =
{pj , pk}, and G3 = {pk , pi}. Pairwise To-
tal Order allows the following histories on
pi, pj , pk :

pi : · · · TO-deliver(m3) −→ · · ·
−→ TO-deliver(m1) · · ·

pj : · · ·TO-deliver(m1) −→ · · ·
−→ TO-deliver(m2) · · ·

pk : · · ·TO-deliver(m2) −→ · · ·
−→ TO-deliver(m3) · · ·

This situation is prevented by the speci-
fication of Global Total Order [Hadzilacos
and Toueg 1994], which is defined as fol-
lows:

(GLOBAL TOTAL ORDER) The relation < is
acyclic, where < is defined as follows:
m < m′ if and only if any correct pro-
cess delivers m and m′, in that order.

Note 6. Fekete [1993] gives another
specification for total order multicast
which also prevents the scenario just men-
tioned. The specification, called AMC, is

expressed as an I/O automaton [Lynch and
Tuttle 1989; Lynch 1996] and uses the no-
tion of pseudo-time to impose an order on
the delivery of messages.

3.2.4. Minimality and Trivial Solutions. Any
algorithm that solves the problem of total
order broadcast in a single group can eas-
ily be adapted to solve the problem for mul-
tiple groups with the following approach:

(1) form a super-group with the union of
all destination groups;

(2) whenever a message m is multicast to a
group, multicast it to the super-group,
and

(3) processes not in Dest(m) discard m.

The problem with this approach is its in-
herent lack of scalability. Indeed, in very
large distributed systems, even if the des-
tination groups are individually small,
their union is likely to cover a very large
number of processes.

To avoid this sort of solution, Guerraoui
and Schiper [2001] require the implemen-
tation of total order multicast for multiple
groups to satisfy the following minimality
property:

(STRONG MINIMALITY) The execution of the
algorithm implementing total order
multicast for a message m involves
only sender(m), and the processes in
Dest(m).

This property is often too strong: it disal-
lows many interesting algorithms that use
a small number of external processes for
message-ordering (e.g., algorithms which
disseminate messages along some propa-
gation tree). A weaker property would al-
low an algorithm to involve a small set of
external processes.

3.2.5. Transformation Algorithm. Delporte-
Gallet and Fauconnier [2000] propose a
generic algorithm that transforms a to-
tal order broadcast algorithm for a single
closed group into one for multiple groups.
The algorithm splits destination groups
into smaller entities and supports multi-
ple groups with Strong Minimality.

ACM Computing Surveys, Vol. 36, No. 4, December 2004.

382 X. Défago et al.

3.3. Dynamic Groups

The specification in Section 2 is the stan-
dard specification of total order broadcast
in a static system, that is, a system in
which all processes are created at system
initialization. In practice, however, it is of-
ten desirable that processes join and leave
groups at runtime.

A dynamic group is a group of processes
with a membership that can change dur-
ing the computation: processes can dy-
namically join or leave the group, or can
be removed from the group (removal in
the face of failures is discussed later in
Section 6.2). With a dynamic group, the
successive memberships of the group are
called the views of the group [Chockler,
Keidar, and Vitenberg 2001].

With dynamic groups, the basic com-
munication abstraction is called view syn-
chrony, which can be seen as the coun-
terpart of reliable broadcast in static sys-
tems. Reliable broadcast is defined by
the Validity, Agreement, and Uniform In-
tegrity properties of Section 2. Roughly
speaking, view synchrony adopts a sim-
ilar definition, while relaxing the Agree-
ment property.7 Total order broadcast in a
system with dynamic groups can thus be
specified as view synchrony, plus a prop-
erty of total order.

3.4. Partitionable Groups

In a wide-area network, the network can
temporarily become partitioned; that is,
some of the nodes can no longer com-
municate, as all links between them are
broken. When this happens, destination
groups can be split into several isolated
subgroups (or partitions). There are two
main approaches to coping with parti-
tioned groups: (1) the primary partition
membership, and (2) the partitionable
membership.

With the primary partition member-
ship, one of the partitions is recognized
as the primary partition.8 Only processes

7Discussing this primitive in detail is beyond the
scope of this survey (see paper by Chockler, Keidar,
and Vitenberg [2001] for details).
8A simple way to do this is to recognize as primary

that belong to the primary partition are al-
lowed to deliver messages, while the other
processes must wait until they can merge
back with the primary partition.

In contrast, the partitionable group
membership allows all processes to de-
liver messages, regardless of the partition
they belong to. Doing so requires adapting
the specification of total order broadcast.
Chockler, Keidar, and Vitenberg [2001]
define three order properties in a parti-
tionable system: Strong Total Order (mes-
sages are delivered in the same order by
all processes that deliver them), Weak To-
tal Order (the order requirement is re-
stricted within a view), and Reliable To-
tal Order (extends the Strong Total Order
property to require processes to deliver a
prefix of a common sequence of messages
within each view). In other words, with
only slight differences, Strong Total Or-
der corresponds to the Uniform Total Or-
der property of Section 2.3, and Reliable
Total Order to the Prefix Ordering prop-
erty of Section 2.5. Other properties, such
as Validity, are also defined differently in
partitionable systems. This is explained in
considerably more detail by Chockler, Kei-
dar, and Vitenberg [2001] and Fekete et al.
[2001].

4. MECHANISMS FOR MESSAGE
ORDERING

In this section, we propose a classification
of total order broadcast algorithms in the
absence of failures. The first question that
we ask is: “who builds the order?” More
specifically, we are interested in the entity
that generates the information necessary
for defining the order of messages (e.g.,
timestamp or sequence number).

We identify three different roles that
a participating process can take with re-
spect to the algorithm: sender, destination,
or sequencer. A sender process is a pro-
cess ps from which a message originates
(i.e., ps ∈ �sender). A destination process is

partition only one which retains a majority of the
processes from the previous view. This does not en-
sure that a primary partition always exists, but it
guarantees that, if one exists, it is unique.

ACM Computing Surveys, Vol. 36, No. 4, December 2004.

Total Order Broadcast and Multicast Algorithms: Taxonomy and Survey 383

Fig. 3. Classes of total order broadcast
algorithms.

a process pd to which a message is sent
(i.e., pd ∈ �dest). Finally, a sequencer pro-
cess is not necessarily a sender or a desti-
nation, but is somehow involved in the or-
dering of messages. A given process may
simultaneously take several roles (e.g.,
sender and sequencer and destination).
However, we represent these roles sepa-
rately as they are conceptually different.

According to the three different roles,
we define three basic classes for total or-
der broadcast algorithms, depending on
whether the order is respectively built
by a sequencer, the sender, or destina-
tion processes. Among algorithms of the
same class, significant differences remain.
To account for this problem, we intro-
duce a further division, leading to five
subclasses in total. These classes are
named as follows (see Figure 3): fixed
sequencer, moving sequencer, privilege-
based, communication history, and des-
tinations agreement. Privilege-based and
moving sequencer algorithms are com-
monly referred to as token-based algo-
rithms.

The terminology defined in this arti-
cle is partly borrowed from other au-
thors. For instance, “communication his-
tory” and “fixed sequencer” were proposed
by Cristian and Mishra [1995]. The term
“privilege-based” was suggested by Dahlia
Malkhi in a private discussion. Finally,
Le Lann and Bres [1991] group algorithms
into three classes, based on where the or-
der is built. Unfortunately, their definition

Fig. 4. Fixed sequencer algorithms.

of classes is specific to a client-server ar-
chitecture.

In the remainder of this section, we
present each of the five classes and il-
lustrate each class with a simple algo-
rithm. The algorithms are merely pre-
sented for the purpose of illustrating the
corresponding category, and should not be
regarded as full-fledged working exam-
ples. Although inspired by existing algo-
rithms, they are largely simplified, and
none of them is fault-tolerant.

Note 7. Atomic blocks. The algorithms
are written in pseudocode, with the as-
sumption that blocks associated with a
when-clause are executed atomically with
respect to when-clauses of the same pro-
cess, except when a process is blocked on
a wait statement. This assumption greatly
simplifies the expression of the algorithms
with respect to concurrency.

4.1. Fixed Sequencer

In a fixed sequencer algorithm, one pro-
cess is elected as the sequencer and is re-
sponsible for ordering messages. The se-
quencer is unique, and the responsibility
is not normally transfered to another pro-
cesses (at least in the absence of failure).

The approach is illustrated in Figure 4
and Figure 5. One specific process takes
the role of a sequencer and builds the total
order. To broadcast a message m, a sender
sends m to the sequencer. Upon receiv-
ing m, the sequencer assigns it a sequence
number and relays m with its sequence
number to the destinations. The latter
then deliver messages according to the se-
quence numbers. This algorithm does not
tolerate the failure of the sequencer.

In fact, three variants of fixed se-
quencer algorithms exist. We call these
three variants “UB” (unicast-broadcast),

ACM Computing Surveys, Vol. 36, No. 4, December 2004.

384 X. Défago et al.

Fig. 5. Simple fixed sequencer algorithm.

Fig. 6. Common variants of fixed sequencer algorithms.

“BB” (broadcast-broadcast), and “UUB”
(unicast-unicast-broadcast), taking inspi-
ration from Kaashoek and Tanenbaum
[1996].

In the first variant, called “UB” (see
Figure 6(a)), the protocol consists of a uni-
cast to the sequencer, followed by a broad-
cast from the sequencer. This variant gen-
erates few messages, and it is the simplest
of the three approaches. It is, for instance,
adopted by Navaratnam et al. [1988], and
corresponds to the algorithm in Figure 5.

In the second variant, called “BB”
(Figure 6(b)), the protocol consists of a
broadcast to all destinations plus the se-
quencer, followed by a second broadcast
from the sequencer. This generates more

messages than the previous approach, ex-
cept in broadcast networks. However, it
can reduce the load on the sequencer, and
makes it easier to tolerate the crash of the
sequencer. Isis (sequencer) [Birman et al.
1991] is an example of the second variant.

The third variant, called “UUB”
(Figure 6(c)), is less common than the
others. In short, the protocol consists of
the following steps. The sender requests
a sequence number from the sequencer
(unicast). The sequencer replies with a
sequence number (unicast). Then, the
sender broadcasts the sequenced message
to the destination processes.9

9The protocol to tolerate failures is complex.

ACM Computing Surveys, Vol. 36, No. 4, December 2004.

Total Order Broadcast and Multicast Algorithms: Taxonomy and Survey 385

Fig. 7. Moving sequencer algorithms.

4.2. Moving Sequencer

Moving sequencer algorithms are based on
the same principle as fixed sequencer al-
gorithms, but allow the role of sequencer
to be transferred between several pro-
cesses. The motivation is to distribute the
load among them. This is illustrated in
Figure 7, where the sequencer is cho-
sen among several processes. The code
executed by each process is, however,
more complex than with a fixed sequencer,
which explains the popularity of the lat-
ter approach. Notice that with moving se-
quencer algorithms, the roles of sequencer
and destination processes are normally
combined.

Figure 8 shows the principle of mov-
ing sequencer algorithms. To broadcast
a message m, a sender sends m to the
sequencers. Sequencers circulate a token
message that carries a sequence num-
ber and a list of all messages to which
a sequence number has been attributed
(i.e., all sequenced messages). Upon re-
ceipt of the token, a sequencer assigns
a sequence number to all received, but
yet unsequenced, messages. It sends the
newly sequenced messages to the destina-
tions, updates the token, and passes it to
the next sequencer.

Note 8. Similar to fixed sequencer algo-
rithms, it is possible to develop a moving
sequencer algorithm according to one of
three variants. However, the difference be-
tween the variants is not as clear cut as it
is for a fixed sequencer. It turns out that all
of the moving sequencer algorithms sur-
veyed follow the equivalent of the fixed se-
quencer variant BB. Hence, we do not dis-
cuss this issue any further.

Note 9. As mentioned, the main motiva-
tion for using a moving sequencer is to dis-
tribute the load among several processes,

thus avoiding the bottleneck caused by a
single process. This is illustrated in sev-
eral studies (e.g., Cristian et al. [1994]
and Urbán et al. [2000]). One could then
wonder why a fixed sequencer algorithm
should be preferred to a moving sequencer
algorithm. There are, in fact, at least three
possible reasons. First, fixed sequencer al-
gorithms are considerably simpler, leaving
less room for implementation errors. Sec-
ond, the latency of fixed sequencer algo-
rithms is often better, as shown by Urbán
et al. [2000]. Third, it is often the case
that some machines are more reliable,
more trusted, better connected, or simply
faster than others. When this is the case, it
makes sense to use one of them as a fixed
sequencer (see MTP in Section 7.1.2).

4.3. Privilege-Based

Privilege-based algorithms rely on the
idea that senders can broadcast mes-
sages only when they are granted the
privilege to do so. Figure 9 illustrates
this class of algorithms. The order is de-
fined by the senders when they broadcast
their messages. The privilege to broad-
cast (and order) messages is granted to
only one process at a time, but this priv-
ilege circulates from process to process,
among the senders. In other words, due
to the arbitration between senders, build-
ing the total order requires solving the
problem of FIFO broadcast (easily solved
with sequence numbers at the sender),
and ensuring that passing the privilege
to the next sender does not violate this
order.

Figure 10 illustrates the principle
of privilege-based algorithms. Senders
circulate a token message that carries a
sequence number to be used when broad-
casting the next message. When a pro-
cess wants to broadcast a message m, it
must first wait until it receives the to-
ken message. Then, it assigns a sequence
number to each of its messages and sends
them to all destinations. Following this,
the sender updates the token and sends it
to the next sender. Destination processes
deliver messages in increasing sequence
numbers.

ACM Computing Surveys, Vol. 36, No. 4, December 2004.

386 X. Défago et al.

Fig. 8. Simple moving sequencer algorithm.

Note 10. In privilege-based algorithms,
senders usually need to know each other in
order to circulate the privilege. This con-
straint makes privilege-based algorithms
poorly suited to open groups, where there
is no fixed and previously known set of
senders.

Note 11. In synchronous systems,
privilege-based algorithms are based
on the idea that each sender process is
allowed to send messages only during
predetermined time slots. These time
slots are attributed to each process in
such a way that no two processes can send
messages at the same time. By ensur-
ing that the communication medium is
accessed in mutual exclusion, the total
order is easily guaranteed. The technique
is also known as time division multiple
access (TDMA).

Note 12. It is tempting to consider that
privilege-based and moving sequencer al-
gorithms are equivalent, since both rely

Fig. 9. privilege-based algorithms.

on a token passing mechanism. However,
they differ in one significant aspect: the
total order is built by senders in privilege-
based algorithms, while it is built by se-
quencers in moving sequencer algorithms.
This has at least two major consequences.
First, moving sequencer algorithms are
easily adapted to open groups. Second, in
privilege-based algorithms, the passing of
the token is necessary to ensure the live-
ness of the algorithm, while with moving
sequencer algorithms, it is mostly used for

ACM Computing Surveys, Vol. 36, No. 4, December 2004.

Total Order Broadcast and Multicast Algorithms: Taxonomy and Survey 387

Fig. 10. Simple privilege-based algorithm.

improving performance, for example, by
load balancing.

Note 13. It is difficult to ensure fairness
with privilege-based algorithms. Indeed,
if a process has a very large number of
messages to broadcast, it could keep the
token for an arbitrarily long time, thus
preventing other processes from broad-
casting their own messages. To overcome
this problem, algorithms often enforce an
upper limit on the number of messages
and/or the time that some process can keep
the token. Once the limit is passed, the
process is compelled to release the token,
regardless of the number of messages re-
maining to be broadcast.

4.4. Communication History

In communication history algorithms, as
in privilege-based algorithms, the delivery
order is determined by the senders. How-
ever, in contrast to privilege-based algo-
rithms, processes can broadcast messages
at any time, and total order is ensured
by delaying the delivery of messages. The
messages usually carry a (physical or log-

ical) timestamp. The destinations observe
the messages generated by the other pro-
cesses and their timestamps, that is, the
history of communication in the system,
to learn when delivering a message will
no longer violate the total order.

There are two fundamentally differ-
ent variants of communication history
algorithms. In the first variant, called
causal history, communication history al-
gorithms use a partial order, defined by
the causal history of messages, and trans-
form this partial order into a total order.
Concurrent messages are ordered accord-
ing to some predetermined function. In
the second variant, known as determinis-
tic merge, processes send messages times-
tamped independently (thus not reflecting
causal order), and delivery takes place ac-
cording to a deterministic policy of merg-
ing the streams of messages coming from
each process.

Figure 11 illustrates a typical communi-
cation history algorithm of the first vari-
ant. The algorithm, inspired by Lamport
[1978b], works as follows. The algorithm
uses logical clocks [Lamport 1978b] to

ACM Computing Surveys, Vol. 36, No. 4, December 2004.

388 X. Défago et al.

Fig. 11. Simple communication history algorithm (causal history).

Fig. 12. Simple communication history algorithm (deterministic merge).

“timestamp” each message m with the log-
ical time of the TO-broadcast(m) event, de-
noted ts(m). Messages are then delivered
in the order of their timestamps. However,
we can have two messages, m and m′, with
the same timestamp. To arbitrate between
these messages, the algorithm uses the
lexicographical order on the identifiers of
sending processes. In Figure 11, we refer
to this order as the (ts(m), sender(m)) or-
der, where sender(m) is the identifier of the
sender process.

A simple example of the second variant
is illustrated in Figure 12. The algorithm
assumes that communication is FIFO, and
that sender processes broadcast messages
at the same rate. Destination processes ex-
ecute an infinite loop where they accept,
in a round-robin fashion, a single message
from each sender process. Aguilera and
Strom [2000] (Section 7.4.9), for instance,
propose a more elaborate algorithm based
on the same principle.

Note 14. The algorithms of Figure 11
and Figure 12 are not live. Indeed, con-
sider the algorithm of Figure 11 and a
scenario where a single process p broad-
casts a single message m, while no other
process ever broadcasts any message. Ac-
cording to the algorithm in Figure 11, a
process q can deliver m only after it has
received, from every process, a message
that was broadcast after the reception
of m. This is, of course, impossible if at
least one of the processes never broad-
casts any message. To overcome this prob-
lem, communication history algorithms
proposed in the literature usually send
empty messages when no application mes-
sages are broadcast.

Note 15. In synchronous systems, com-
munication history algorithms rely on
synchronized clocks, and use physical
timestamps (timestamps coming from the
synchronized clocks), instead of logical
ones. The nature of such systems makes

ACM Computing Surveys, Vol. 36, No. 4, December 2004.

Total Order Broadcast and Multicast Algorithms: Taxonomy and Survey 389

Fig. 13. Destinations agreement algorithms.

it unnecessary to send empty messages in
order to ensure liveness. Indeed, this can
be seen as an example of the use of time to
communicate [Lamport 1984].

4.5. Destinations Agreement

In destinations agreement algorithms, as
the name indicates, the delivery order re-
sults from an agreement between des-
tination processes (see Figure 13). We
distinguish three different variants of
agreement: (1) agreement on a message
sequence number, (2) agreement on a mes-
sage set, or (3) agreement on the accep-
tance of a proposed message order.

Figure 14 illustrates an algorithm of
the first variant: for each message, the
destination processes reach an agreement
on a unique (yet not consecutive) se-
quence number. The algorithm is adapted
from Skeen’s algorithm (Section 7.5.1), al-
though it operates in a decentralized man-
ner. Briefly, the algorithm works as fol-
lows. To broadcast a message m, a sender
sends m to all destinations. Upon receiv-
ing m, a destination assigns it a local
timestamp and sends this timestamp to
all destinations. Once a destination pro-
cess has received a local timestamp for
m from all destinations, a unique global
timestamp sn(m) is assigned to m, calcu-
lated as the maximum of all local times-
tamps. Messages are delivered in the order
of their global timestamp, that is, a mes-
sage m can only be delivered once it has
been assigned its global timestamp sn(m),
and no other undelivered message m′
can possibly receive a timestamp sn(m′)
smaller or equal to sn(m). As with the com-
munication history algorithm (Figure 11),
the identifier of the message sender is used
to break ties between messages with the
same global timestamp.

The most representative algorithm of
the second variant of agreement is the al-
gorithm proposed by Chandra and Toueg
[1996] (Section 7.5.4). The algorithm
transforms total order broadcast into a se-
quence of consensus problems.10 Each in-
stance of the consensus decides on a set
of messages to deliver, that is, consensus
number k allows the processes to agree
on a set Msgk of messages. For k < k′,
the messages in Msgk are delivered before
the messages in Msgk′

. The messages in a
set Msgk are delivered according to some
predetermined order (e.g., in lexical order
of their identifiers).

With the third variant of agreement, a
tentative message delivery order is first
proposed (usually by one of the desti-
nations). Then, the destination processes
must agree to either accept or reject the
proposal. In other words, this variant
of destinations agreement relies on an
atomic commitment protocol. The algo-
rithm proposed by Luan and Gligor [1990]
typically belongs to the third variant.

Note 16. There is a thin line between
the second and the third variants of agree-
ment. For instance, Chandra and Toueg’s
[1996] total order broadcast algorithm re-
lies on consensus, as described. However,
when it is combined with the rotating co-
ordinator consensus algorithm [Chandra
and Toueg 1996], the resulting algorithm
can be seen as an algorithm of the third
form. Indeed, the coordinator proposes a
tentative order (given as a set of message
plus message identifiers) that it tries to
validate. Thus it is important to note that
two seemingly identical algorithms may
use different forms of agreement, simply
because they are described at different lev-
els of abstraction.

4.6. Time-Free Versus Time-Based Ordering

We introduce a further distinction be-
tween algorithms, orthogonal to the above

10The consensus problem is informally defined as
follows: every process proposes some value, and all
processes must eventually decide on the same value,
which must be one (any one) of the proposed values.

ACM Computing Surveys, Vol. 36, No. 4, December 2004.

390 X. Défago et al.

Fig. 14. Simple destinations agreement algorithm.

classification. The distinction is between
algorithms that use physical time for mes-
sage ordering, and algorithms that do
not use physical time. For instance, in
Section 4.4 (see Figure 11), we presented a
simple communication-history algorithm
based on logical time. It is indeed pos-
sible to design a similar algorithm that
uses the physical time (and synchronized
clocks) instead.

In short, we distinguish algorithms with
time-based ordering, that rely on physical
time, and algorithms with time-free order-
ing that do not use physical time.

5. CONCEPTUAL ISSUES RELATED TO
FAILURES

In Section 4, we discussed ordering mecha-
nisms, ignoring the problem of fail-
ures. Mechanisms for fault-tolerance are
discussed below in Section 6. How-
ever, fault-tolerance cannot be discussed
without some prior discussion on sys-
tem model issues. This is done in this
section.

5.1. Synchrony and Timeliness

The synchrony of a system defines the
timing assumptions that are made on the
behavior of processes and communication
channels. More specifically, one usually
considers two major parameters. The first
parameter is the process speed inter-
val, which is given by the difference be-
tween the speed of the slowest and the
fastest processes in the system. The sec-
ond parameter is the communication de-
lay, which is given by the time elapsed
between the sending and the receipt of
messages. The synchrony of the system is
defined by considering various bounds on
these two parameters.

A system where both parameters have
a known upper bound is called a syn-
chronous system. At the other extreme,
a system in which process speed and
communication delays are unbounded is
called an asynchronous system. Between
those two extremes lie the definition
of various partially synchronous system
models [Dolev et al. 1987; Dwork et al.
1988].

ACM Computing Surveys, Vol. 36, No. 4, December 2004.

Total Order Broadcast and Multicast Algorithms: Taxonomy and Survey 391

A third model that is considered by sev-
eral total order broadcast algorithms is
the timed asynchronous model defined by
Cristian and Fetzer [1999]. In its most
simple form, this model can be seen as
an asynchronous model with the notion
of physical time and an assumption that
“most messages are likely to reach their
destination within a known delay δ” [Cris-
tian et al. 1997; Cristian and Fetzer 1999].

5.2. Impossibility Results

There is an important theoretical result
related to the consensus problem (see
Footnote 10). It has been proven that there
is no deterministic solution to the prob-
lem of consensus in asynchronous systems
if just a single process can crash [Fischer
et al. 1985]. Dolev et al. [1987] have shown
that total order broadcast can be trans-
formed into consensus, thus proving that
the impossibility of consensus also holds
for total order broadcast. These impossi-
bility results were the motivation to ex-
tend the asynchronous system with the
introduction of oracles to make consensus
and total order broadcast solvable.11

5.3. Oracles

In short, a (distributed) oracle can be seen
as some component that processes can
query. An oracle provides information that
algorithms can use to guide their choices.
The oracles most frequently considered in
distributed systems are failure detectors
and coin flips. Since the information pro-
vided by these oracles make consensus
and total order broadcast solvable, they
augment the power of the asynchronous
system model.

5.3.1. Failure Detectors. A failure detec-
tor is an oracle that provides informa-
tion about the current status of processes,

11Chandra and Toueg [1996] show that consensus
can be transformed into total order broadcast. The
result holds also for arbitrary failures. So, consensus
and total order broadcast are equivalent problems,
that is, if there exists an algorithm that solves one
problem, then it can be transformed into an algo-
rithm that solves the other problem.

for instance, whether a given process has
crashed or not.

The notion of failure detectors has been
formalized by Chandra and Toueg [1996].
Briefly, a failure detector is modeled as a
set of distributed modules, one module FDi
attached to each process pi. Any process pi
can query its failure detector module FDi
about the status of other processes.

Failure detectors may be unreliable, in
the sense that they provide information
that may not always correspond to the real
state of the system. For instance, a failure
detector module FDi may provide the er-
roneous information that some process pj
has crashed while, in reality, pj is correct
and running. Conversely, FDi may provide
the information that a process pk is cor-
rect, while pk has actually crashed.

To reflect the unreliability of the infor-
mation provided by failure detectors, we
say that a process pi suspects some pro-
cess pj whenever FDi, the failure detector
module attached to pi, returns the (unreli-
able) information that pj has crashed. In
other words, a suspicion is a belief (e.g., “pi
believes that pj has crashed”) as opposed
to a known fact (e.g., “pj has crashed and
pi knows that”).

There exist several classes of failure de-
tectors, depending on how unreliable the
information provided by the failure de-
tector can be. Classes are defined by two
properties, called completeness and accu-
racy, that constrain the range of possi-
ble mistakes. In this article, we consider
four different classes of failure detectors,
called P (perfect),
P (eventually perfect),
S (strong), and
S (eventually strong).
The four classes share the same property
of completeness, and only differ by their
accuracy property [Chandra and Toueg
1996]:

(STRONG COMPLETENESS) Eventually every
faulty process is permanently sus-
pected by all correct processes.

(STRONG ACCURACY) No process is sus-
pected before it crashes. [class P]

(EVENTUAL STRONG ACCURACY) There is a
time after which correct processes are
not suspected by any correct process.
[class
P]

ACM Computing Surveys, Vol. 36, No. 4, December 2004.

392 X. Défago et al.

(WEAK ACCURACY) Some process is never
suspected. [class S]

(EVENTUAL WEAK ACCURACY) There is a
time after which some correct process
is never suspected by any correct
process. [class
S]

A failure detector of class
S with a
majority of correct processes allows us
to solve consensus [Chandra and Toueg
1996]. Moreover, Chandra et al. [1996]
have shown that a failure detector of
class
S is the weakest failure detector
that allows us to solve consensus.12

5.3.2. Random Oracle. Another ap-
proach to extend the power of the asyn-
chronous system model is to introduce
the ability to generate random values.
For instance, processes could have access
to a module that generates a random bit
when queried (i.e., a Bernoulli random
variable).

This approach is used by a class of al-
gorithms called randomized algorithms.
These algorithms can solve problems such
as consensus (and so total order broadcast)
in a probabilistic manner. The probabil-
ity that such algorithms terminate before
some time t, goes to one, as t goes to in-
finity (e.g., Ben-Or [1983] and Chor and
Dwork [1989]). Note that solving a prob-
lem deterministically and solving it with
probability 1 are not the same.

5.4. Uniformity for Free

In Section 2, we explained the difference
between uniform and nonuniform specifi-
cations. Guerraoui [1995] shows that any
algorithm that solves Consensus with
P
(S,
S, respectively), also solves Uniform
Consensus with
P (S,
S, respectively).

It is easy to show that this result also
holds for total order broadcast. Assume
that there exists an algorithm that solves
nonuniform total order broadcast (nonuni-
form Agreement, nonuniform Total Order)

12The weakest failure detector to solve consensus is
usually said to be
W, which differs from
S by satis-
fying a weak completeness property instead of Strong
Completeness. However, Chandra and Toueg [1996]
prove the equivalence of
S and
W.

with
P, S, or
S, but does not solve
uniform total order broadcast. Using the
transformation of total order broadcast
to consensus (see Section 5.2), this algo-
rithm could be used to obtain an algo-
rithm that solves nonuniform consensus,
but not consensus. This is in contradiction
to Guerraoui [1995]. Hence, enforcing uni-
formity has no additional cost in the asyn-
chronous models with
P, S, and
S fail-
ure detectors.

Note however that the result does not
hold for total order broadcast algorithms
that rely on a perfect (P), or almost perfect
failure detector (see Section 5.5).

5.5. Process Controlled Crash

Process controlled crash is the ability
given to processes to kill other processes or
to commit suicide. In other words, this is
the ability to artificially force the crash of a
process. Allowing process controlled crash
in a system model augments its power. In-
deed, this makes it possible to transform
severe failures (e.g., omission, Byzantine)
into less severe failures (e.g., crash), and
to emulate an “almost perfect” failure de-
tector. However, this power does not come
without a price.

Automatic transformation of failures.
Neiger and Toueg [1990] present a tech-
nique that uses process controlled crash
to transform severe failures (e.g., omis-
sion, Byzantine) into less severe ones (i.e.,
crash failures). In short, the technique
is based on the idea that processes have
their behavior monitored. Then, whenever
a process begins to behave incorrectly (e.g.,
omission, Byzantine), it is killed.13

However, this technique cannot be used
in systems with lossy channels, or those
subject to partitions. Indeed, in such con-
texts, processes might end up killing each
other until not a single one is left alive in
the system.

Emulation of an almost perfect failure
detector. A perfect failure detector (P) sat-
isfies both strong completeness and strong
accuracy (no process is suspected before

13The actual technique is more complex than what is
described here, but this gives the basic idea.

ACM Computing Surveys, Vol. 36, No. 4, December 2004.

Total Order Broadcast and Multicast Algorithms: Taxonomy and Survey 393

it crashes [Chandra and Toueg 1996]). In
practical systems, perfect failure detectors
are extremely hard to implement because
of the difficulty in distinguishing crashed
processes from very slow ones. The idea of
the emulation is simple: whenever a fail-
ure detector suspects a process p, then p is
killed (forced to crash). Fetzer [2003] pro-
poses a different emulation, based on reli-
able watchdogs, to ensure that no process
is suspected before it crashes.

Cost of a free lunch. Process controlled
crash has a price. A fault-tolerant algo-
rithm can only tolerate the crash of a
bounded number of processes. In a sys-
tem with process controlled crash, this
limit includes not only genuine failures,
but also failures provoked through process
controlled crash. This means that each
provoked failure effectively decreases the
number of genuine failures that can be tol-
erated, thus degrading the actual fault-
tolerance of the system.

6. MECHANISMS FOR FAULT-TOLERANCE

The total order broadcast algorithms de-
scribed in Section 4 are not tolerant to
failures: if a single process crashes, the
properties specified in Section 2.3 are not
satisfied. To be fault-tolerant, total or-
der broadcast algorithms rely on vari-
ous techniques presented in this section.
Note that it is difficult to discuss these
techniques without getting into specific
implementation details. Nevertheless, we
try to keep the discussion as general
as possible. Notice also that algorithms
may actually combine several of these
techniques, for example, failure detection
(Section 6.1) with resilient communica-
tion patterns (Section 6.3).

6.1. Failure Detection

A recurrent pattern in all distributed al-
gorithms is for a process p to wait for a
message from some other process q. If q
crashes, process p is blocked. Failure de-
tection is one basic mechanism to prevent
p from being blocked.

Unreliable failure detection has been
formalized by Chandra and Toueg [1996]

in terms of two properties: accuracy and
completeness (see Section 5.3.1). Com-
pleteness prevents the blocking problem
just mentioned. Accuracy prevents algo-
rithms from running forever without solv-
ing the problem.

Unreliable failure detectors might be
too weak for some total order broadcast
algorithms which require reliable failure
detection information provided by a per-
fect failure detector, known as P (see
Section 5.5).

6.2. Group Membership Service

The low-level failure detection mechanism
is not the only way to address the block-
ing problem mentioned in the previous
section. Blocking can also be prevented
by relying on a higher-level mechanism,
namely a group membership service.

A group membership service is a dis-
tributed service that is responsible for
managing the membership of groups of
processes (see Section 3.4 and survey by
Chockler, Keidar, and Vitenberg [2001]).
The successive memberships of a group
are called the views of the group. When-
ever the membership changes, the service
reports change to all group members by
providing them with the new view.

A group membership service usually
provides strong completeness: if a pro-
cess p member of some group G crashes,
the membership service provides to the
surviving members of G a new view from
which p is excluded. In the primary-
partition model (see Section 3.4), the ac-
curacy of failure notifications is ensured
by forcing the crash of processes that
have been incorrectly suspected and ex-
cluded from the membership, a mecha-
nism called process-controlled crash (see
Section 5.5).

Moreover in the primary-partition
model, the group membership service
provides consistent notifications to the
group members: the successive views of a
group are notified in the same order to all
of its members.

To summarize, while failure detectors
provide inconsistent failure notifications,
a group membership service provides

ACM Computing Surveys, Vol. 36, No. 4, December 2004.

394 X. Défago et al.

consistent failure notifications. Moreover,
total order algorithms that rely on a group
membership service for fault-tolerance,
exploit another property that is usu-
ally provided along with the member-
ship service, namely view synchrony (see
Section 3.3). Roughly speaking, view syn-
chrony ensures that between two suc-
cessive views v and v′, processes in the
intersection v ∩ v′ deliver the same set
of messages. Group membership service
and view synchrony have been used to
implement complex group communica-
tion systems (e.g., Isis [Birman and van
Renesse 1994], Totem [Moser et al. 1996],
Transis [Dolev and Malkhi 1994, 1996;
Amir et al. 1992], Phoenix [Malloth et al.
1995; Malloth 1996]).

6.3. Resilient Communication Patterns

As shown in the previous sections, an algo-
rithm can rely on a failure detection mech-
anism, or on a group membership service,
to avoid the blocking problem. To be fault-
tolerant, another solution is to avoid any
potential blocking pattern.

Consider, for example, a process p wait-
ing for n− f messages, where n is the num-
ber of processes in the system, and f the
maximum number of processes that may
crash. If all correct processes send a mes-
sage to p, then the above pattern is non-
blocking. We call such a pattern a resilient
pattern. If an algorithm uses only resilient
patterns, it avoids the blocking problem
without using any failure detector mecha-
nism or group membership service. Such
algorithms have, for instance, been pro-
posed by Rabin [1983], Ben-Or [1983], and
Pedone et al. [2002] (the first two are con-
sensus algorithms, see Footnote 10).

6.4. Message Stability

Avoiding blocking is not the only problem
that fault-tolerant total order broadcasts
algorithms have to address. Figure 1 il-
lustrates a violation of the Uniform Agree-
ment property. Notice that this problem is
unrelated to blocking.

The mechanism that solves the prob-
lem is called message stability. A mes-

sage m is said to be k-stable, if m has
been received by k processes. In a system
in which at most f processes may crash,
f +1-stability is the important property to
detect. If some message m is f +1-stable,
then m is received by at least one correct
process. With such a guarantee, an algo-
rithm can easily ensure that m is even-
tually received by all correct processes.
f +1-stability is often simply called stabil-
ity. The detection of stability is generally
based on some acknowledgment scheme or
token passing.

Another use for message stability is the
reclaiming of resources. Indeed, when a
process detects that a message has be-
come stable throughout the system, it
can release resources associated with that
message.

6.5. Consensus

The mechanisms described so far are low-
level mechanisms on which fault-tolerant
total broadcast algorithms may rely.

Another option for a fault-tolerant to-
tal order broadcast algorithm is to rely
on higher-level mechanisms that solve all
the problems related to fault-tolerance
(i.e., the problems previously mentioned).
The consensus problem (see Footnote 10)
is such a mechanism. Some algorithms
solve total order broadcast by reducing
it to a consensus problem. This way,
fault-tolerance, including failure detection
and message stability detection, is hidden
within the consensus abstraction.

6.6. Mechanisms for Lossy Channels

Apart from the mechanisms used to tol-
erate process crashes, we need to say a
few words about mechanisms to tolerate
channel failures. First, it should be men-
tioned that several total order broadcast
algorithms avoid the issue by relying on
some communication layer that takes care
of message loss (i.e., these algorithms as-
sume reliable channels, and hence do not
discuss message loss). In contrast, other
algorithms are built directly on top of lossy
channels, and so address message loss
explicitly.

ACM Computing Surveys, Vol. 36, No. 4, December 2004.

Total Order Broadcast and Multicast Algorithms: Taxonomy and Survey 395

To address message loss, the stan-
dard solution is to rely on a positive or
a negative acknowledgment mechanism.
With positive acknowledgment, the re-
ceipt of messages is acknowledged; with
negative acknowledgment, the detection
of a missing message is signaled. The two
schemes can be combined.

Token-based algorithms (i.e., moving
sequencer or privilege-based algorithms)
rely on token passing to detect message
losses: the token can be used to convey ac-
knowledgments, or to detect missing mes-
sages. So token-based algorithms use the
token for ordering purpose, but also for im-
plementing reliable channels.

7. SURVEY OF EXISTING ALGORITHMS

This section provides an extensive survey
of total order broadcast algorithms. We
present about sixty algorithms published
in scientific journals or conference pro-
ceedings over the past three decades. We
have made every possible effort to be ex-
haustive, and we are quite confident that
this article presents a good picture of the
field at the time of writing. However, be-
cause of the continuous flow of papers on
the subject, we might have overlooked one
algorithm or two.

In Tables III–V, we present a condensed
overview of all surveyed algorithms, in
which we summarize the important char-
acteristics of each algorithm. The Tables
present only factual information about the
algorithms as it appears in the relevant
papers. In particular, the Tables do not
present information that is the result of
extrapolation, or nonobvious deduction;
the exception is when we had to inter-
pret information to overcome differences
in terminology. Also, properties that are
discussed in the original paper, yet not
proved correct, are reported as “informal”
in the Tables. For the sake of conciseness,
several symbols and abbreviations have
been used throughout the Tables. They are
explained in Table II. For each algorithm,
Tables III–V provide the following infor-
mation:

(1) General information, that is, the or-
dering mechanism (see Section 4), and

Table II. Abbreviations Used in Tables III–V
© yes
� somewhat explained in the

text
× no
spec. special explained in the

text
inf. informal explained in the

text
NS not specified means also “not

discussed”
n/a not applicable
+a positive acknowledgment
−a negative acknowledgment
GM group membership
FD failure detector/detection
Cons. consensus
RCP resilient communication

patterns
ByzA. Byzantine agreement

whether the mechanism is time-based or
not (Section 4.6).

(2) The General information rows are
followed by rows describing the assump-
tions upon which the algorithm is based,
that is, what is provided to it:

(a) The System model rows specify the
synchrony assumptions, the assump-
tions made about process failures
(rows: crash, omission, Byzantine), and
communication channels (rows: reli-
able, FIFO). Reliable channels guaran-
tee that if a correct process p sends a
message m to a correct process q, then
q will eventually receive m [Aguilera
et al. 1999]. The row partitionable in-
dicates whether or not the algorithm
works with partitionable membership
semantics (see Section 3.4). In particu-
lar, algorithms in which only processes
in a primary partition can work are not
considered partitionable.

(b) The rows called Condition for liveness
discuss the assumptions necessary to
ensure the liveness of the algorithm:
—The row live. . . X means that the

liveness of the algorithm requires
the liveness of the building block X
(on which the algorithm relies).
For example, live. . . GM means
that the algorithm is live, if the
group membership building block on
which the algorithm relies, is itself
live.

ACM Computing Surveys, Vol. 36, No. 4, December 2004.

396 X. Défago et al.

Ta
b

le
III

.
O

ve
rv

ie
w

of
To

ta
lO

rd
er

B
ro

ad
ca

st
A

lg
or

ith
m

s
(P

ar
tI

)
G

ar
ci

a-
M

.
Is

is
N

av
ar

at
.

C
h

an
g

P
in

-
O

n
-

G
op

al
A

m
oe

ba
M

T
P

T
an

de
m

S
pa

u
st

er
Ji

a
(s

eq
.)

et
al

.
P

h
oe

n
ix

R
am

pa
rt

M
ax

em
.

R
M

P
D

T
P

w
h

ee
l

de
m

an
d

T
ra

in
T

ok
en

-F
D

T
ot

em
T

P
M

T
ou

eg
R

T
C

A
S

T
M

A
R

S

A
lg

or
it

h
m

§7
.1

.1
§7

.1
.2

§7
.1

.3
§7

.1
.4

§7
.1

.5
§7

.1
.6

§7
.1

.7
§7

.1
.8

§7
.1

.9
§7

.2
.1

§7
.2

.2
§7

.2
.3

§7
.2

.4
§7

.3
.1

§7
.3

.2
§7

.3
.3

§7
.3

.4
§7

.3
.5

§7
.3

.6
§7

.3
.7

§7
.3

.8
O

rd
er

in
g

m
ec

h
an

is
m

cl
as

s
fi

xe
d

se
qu

en
ce

r
m

ov
in

g
se

qu
en

ce
r

pr
iv

il
eg

e-
ba

se
d

ti
m

e-
ba

se
d

©
S

ys
te

m
m

od
el

sy
n

ch
ro

n
y

as
yn

ch
ro

n
ou

s
ti

m
ed

as
yn

ch
ro

n
ou

s
sy

n
ch

.
sy

n
ch

ro
n

ou
s

as
yn

ch
ro

n
ou

s
(s

pe
c.

)
sy

n
ch

.c
lo

ck
s

cr
as

h
©

©
©

©
©

©
©

©
©

©
©

©
©

©
©

©
©

©
©

©
©

om
is

si
on

©
©

B
yz

an
ti

n
e

©
pa

rt
it

io
n

ab
le

©
re

li
ab

le
©

©
©

©
©

©
©

F
IF

O
©

©
©

©
©

©
C

on
d

it
io

n
n

ee
d

ed
fo

r
li

ve
n

es
s

li
ve

...
G

M
G

M
G

M
ot

h
er

N
S

�
N

S
re

co
ve

ry
N

S
N

S
N

S
N

S
N

S
N

S
N

S
sp

ec
.

N
S

N
S

n
/a

n
/a

n
/a

B
u

il
d

in
g

bl
oc

ks
vi

ew
sy

n
c.

©
©

©
re

li
ab

le
b.

ca
u

sa
lb

.
©

co
n

se
n

su
s

ot
h

er
P

ro
pe

rt
ie

s
en

su
re

d
A

gr
ee

m
en

t
in

f.
in

f.
in

f.
©

N
S

in
f.

in
f.

©
©

in
f.

in
f.

in
f.

©
in

f.
in

f.
©

©
©

©
©

N
S

U
n

if
.A

×
N

S
©

/×
©

×
©

©
/×

©
©

©
N

S
T

ot
al

O
rd

er
in

f.
©

in
f.

©
©

in
f.

in
f.

©
©

in
f.

in
f.

©
in

f.
in

f.
in

f.
©

©
©

©
©

N
S

U
n

if
.T

O
×

×
×

©
/×

©
©

©
©

/×
©

©
©

N
S

F
IF

O
or

de
r

�
©

©
©

ca
u

sa
lo

rd
.

�
©

©
©

D
es

ti
n

at
io

n
gr

ou
ps

m
u

lt
ip

le
©

©
�

op
en

©
F

au
lt

to
le

ra
n

ce
m

ec
h

an
is

m
pr

oc
es

s
G

M
sp

ec
.

G
M

bl
oc

k.
G

M
G

M
G

M
G

M
G

M
G

M
G

M
G

M
G

M
G

M
G

M
F

D
G

M
G

M
C

on
s.

G
M

G
M

co
m

m
.

+a
,−

a
−a

+a
−a

−a
n

/a
n

/a
n

/a
n

/a
+a

,−
a

+a
,−

a
+a

,−
a

−a
+a

,−
a

G
M

n
/a

−a
+a

,−
a

n
/a

G
M

n
/a

ACM Computing Surveys, Vol. 36, No. 4, December 2004.

Total Order Broadcast and Multicast Algorithms: Taxonomy and Survey 397

Ta
b

le
IV

.
O

ve
rv

ie
w

of
To

ta
lO

rd
er

B
ro

ad
ca

st
A

lg
or

ith
m

s
(P

ar
tI

I)
N

ew
to

p
D

et
er

m
.

R
ed

u
n

d.
Q

oS
N

ew
to

p
In

du
lg

.
O

pt
.T

O
L

am
po

rt
P

sy
n

c
(s

ym
.)

N
g

T
oT

o
T

ot
al

A
T

O
P

C
O

R
eL

m
er

ge
H

A
S

ch
an

.
Q

u
ic

k-
S

A
B

P
A

to
m

pr
es

er
v.

(a
sy

m
.)

H
yb

ri
d

u
n

if
.T

O
in

W
A

N

A
lg

or
it

h
m

§7
.4

.1
§7

.4
.2

§7
.4

.3
§7

.4
.4

§7
.4

.5
§7

.4
.6

§7
.4

.7
§7

.4
.8

§7
.4

.9
§7

.4
.1

0
§7

.4
.1

1
§7

.4
.1

2
§7

.4
.1

3
§7

.4
.1

4
§7

.4
.1

5
§7

.6
.1

§7
.6

.2
§7

.6
.3

§7
.6

.4
O

rd
er

in
g

m
ec

h
an

is
m

cl
as

s
co

m
m

u
n

ic
at

io
n

h
is

to
ry

h
yb

ri
d

ti
m

e-
ba

se
d

©
©

©
©

©
S

ys
te

m
m

od
el

sy
n

ch
ro

n
y

as
yn

ch
ro

n
ou

s
sy

n
ch

ro
n

ou
s

sp
ec

.
sy

n
c.

sy
n

ch
ro

n
ou

s
as

yn
ch

ro
n

ou
s

sy
n

c.
cl

oc
ks

sy
n

c.
cl

oc
ks

cr
as

h
©

©
©

©
©

©
©

©
©

©
©

©
©

©
©

©
©

om
is

si
on

©
/×

©
©

B
yz

an
ti

n
e

©
/×

©
/×

©
pa

rt
it

io
n

ab
le

©
©

©
©

©
©

re
li

ab
le

©
©

©
©

©
©

©
n

/a
©

©
©

©
©

©
F

IF
O

©
©

©
©

n
/a

©
©

©
©

C
on

d
it

io
n

n
ee

d
ed

fo
r

li
ve

n
es

s
li

ve
...

G
M

C
on

s.
ot

h
er

N
S

N
S

N
S

N
S

N
S

sp
ec

.
n

/a
n

/a
n

/a
n

/a
n

/a
n

/a
N

S
N

S
N

S
B

u
il

d
in

g
bl

oc
ks

vi
ew

sy
n

c.
©

©
©

©
©

©
re

li
ab

le
b.

©
©

ca
u

sa
lb

.
©

co
n

se
n

su
s

�
©

ot
h

er
sp

ec
.

B
yz

A
.

P
ro

pe
rt

ie
s

en
su

re
d

A
gr

ee
m

en
t

in
f.

�
©

©
©

�
×

©
©

©
©

©
©

©
×

©
in

f.
©

in
f.

U
n

if
.A

n
/a

�
×

©
©

/×
n

/a
n

/a
©

n
/a

×
×

©
/×

©
©

n
/a

×
©

T
ot

al
O

rd
er

in
f.

in
f.

©
in

f.
©

©
in

f.
©

©
©

©
©

©
©

©
©

in
f.

©
in

f.
U

n
if

.T
O

n
/a

×
©

/×
©

©
n

/a
×

×
©

/×
×

©
×

×
©

F
IF

O
or

de
r

©
©

©
©

©
©

©
ca

u
sa

lo
rd

.
©

©
©

©
©

©
D

es
ti

n
at

io
n

gr
ou

ps
m

u
lt

ip
le

©
©

©
op

en
F

au
lt

to
le

ra
n

ce
m

ec
h

an
is

m
pr

oc
es

s
n

/a
F

D
G

M
F

D
G

M
R

C
P

G
M

G
M

n
/a

R
C

P
R

C
P

B
yz

A
.

G
M

G
M

G
M

G
M

G
M

C
on

s.
N

S
co

m
m

.
n

/a
+a

n
/a

n
/a

n
/a

+a
,−

a
n

/a
n

/a
n

/a
fl

oo
d.

sp
ec

.
n

/a
+a

n
/a

n
/a

n
/a

n
/a

n
/a

n
/a

ACM Computing Surveys, Vol. 36, No. 4, December 2004.

398 X. Défago et al.

Ta
b

le
V.

O
ve

rv
ie

w
of

To
ta

lO
rd

er
B

ro
ad

ca
st

A
lg

or
ith

m
s

(P
ar

tI
II)

.
L

u
an

L
e

L
an

n
C

h
an

dr
a

R
od

ri
gu

es
S

ca
l-

F
ri

tz
ke

op
ti

m
.

pr
efi

x
ge

n
er

ic
th

ri
ft

y
w

ea
k

A
M

p
S

ke
en

G
li

go
r

B
re

s
T

ou
eg

R
ay

n
al

A
T

R
at

om
et

al
.

A
B

ca
st

ag
re

em
.

bc
as

t
ge

n
er

ic
or

de
r.

Q
u

ic
k-

A
xA

M
p

A
lg

or
it

h
m

§7
.5

.1
§7

.5
.2

§7
.5

.3
§7

.5
.4

§7
.5

.5
§7

.5
.6

§7
.5

.7
§7

.5
.8

§7
.5

.9
§7

.5
.1

0
§7

.5
.1

1
§7

.5
.1

2
§7

.5
.1

3
§7

.5
.1

4
§7

.5
.1

5
G

en
er

al
cl

as
s

de
st

in
at

io
n

s
ag

re
em

en
t

ti
m

e-
ba

se
d

S
ys

te
m

m
od

el
sy

n
ch

ro
n

y
as

yn
ch

ro
n

ou
s

sy
n

c.
cr

as
h

©
©

©
©

sp
ec

.
©

©
©

©
©

©
©

©
©

©
om

is
si

on
©

©
B

yz
an

ti
n

e
©

pa
rt

it
io

n
ab

le
re

li
ab

le
©

©
©

©
©

©
©

©
©

©
n

/a
©

F
IF

O
©

©
n

/a
C

on
d

it
io

n
n

ee
d

ed
fo

r
li

ve
n

es
s

li
ve

...
C

on
s.

C
on

s.
C

on
s.

C
on

s.
C

on
s.

C
on

s.
C

on
s.

B
yz

A
.

ot
h

er
N

S
N

S
N

S

P

�
�

sp
ec

.
B

u
il

d
in

g
bl

oc
ks

vi
ew

sy
n

c.
re

li
ab

le
b.

©
©

©
©

©
©

©
ca

u
sa

lb
.

co
n

se
n

su
s

©
©

©
©

©
©

©
ot

h
er

sp
ec

.
sp

ec
.

sp
ec

.
B

yz
A

.
P

ro
pe

rt
ie

s
en

su
re

d
A

gr
ee

m
en

t
in

f.
in

f.
×

©
©

©
©

©
©

©
©

©
©

©
©

U
n

if
.A

n
/a

×
©

©
©

©
×

©
©

©
©

©
/×

©
T

ot
al

O
rd

er
in

f.
in

f.
©

©
©

©
©

©
©

©
©

©
©

©
©

U
n

if
.T

O
×

×
©

©
©

©
×

©
©

©
©

©
/×

×
F

IF
O

or
de

r
©

©
ca

u
sa

lo
rd

.
©

©
D

es
ti

n
at

io
n

gr
ou

ps
m

u
lt

ip
le

©
©

©
op

en
©

©
F

au
lt

to
le

ra
n

ce
m

ec
h

an
is

m
pr

oc
es

s
G

M
F

D
R

C
P

C
on

s.
C

on
s.

G
M

C
on

s.
C

on
s.

C
on

s.
C

on
s.

C
on

s.
n

/a
R

C
P

C
on

s.
G

M
co

m
m

.
n

/a
−a

R
C

P
n

/a
go

ss
ip

.
n

/a
n

/a
n

/a
n

/a
n

/a
n

/a
n

/a
n

/a
n

/a
n

/a

ACM Computing Surveys, Vol. 36, No. 4, December 2004.

Total Order Broadcast and Multicast Algorithms: Taxonomy and Survey 399

—The row other adds the following in-
formation: NS = not specified means
that liveness is not discussed in the
article; n/a = not applicable means
that no additional assumption is
needed to ensure liveness (this ap-
plies mostly to algorithms that as-
sume a synchronous model); � =
somewhat and spec. = special refers
to a discussion of liveness later in the
article; recovery means that the al-
gorithm is blocking, that is, liveness
requires the recovery of crashed pro-
cesses;
P/
S refers to the failure
detector needed to ensure liveness.

(c) The next group of rows indicate
the building block(s) used by the
algorithm. The building blocks
considered are: view synchrony
(Section 6.2), which encompasses
a group membership service; reli-
able broadcast (Section 2.3) causal
broadcast (Section 2.6.2); consensus
(Section 4.5); or other. Other can be
either ByzA. = Byzantine agreement14

or spec.=special, which means that
the explanation is in the text.

(3) After discussing what is provided “to”
the algorithms, we discuss what is pro-
vided “by” the algorithms.

(a) The first rows give the Properties en-
sured by the algorithms. As discussed
in Section 2, total order broadcast is
specified by the following properties:
Validity, Uniform Agreement, Uni-
form Integrity, Uniform Total Order.
Validity and Uniform Integrity do not
appear in the Tables. The reason is
that these properties are rarely dis-
cussed in the papers (authors usually
assume they are trivially ensured).

14In the Byzantine agreement problem, also com-
monly known as the “Byzantine generals problem”
[Lamport et al. 1982], every process has an a priori
knowledge that a particular process s is supposed to
broadcast a single message m. Informally, the prob-
lem requires that all correct processes deliver the
same message, which must be m, if the sender s
is correct. As the name indicates, Byzantine agree-
ment has mostly been studied in relation to Byzan-
tine failures.

We first discuss Agreement and
Uniform Agreement, then Total Order
and Uniform Total Order. Finally,
we mention whether the algorithm
additionally ensures FIFO order or
causal order. In all these entries, one
would expect either a yes or a no.
Unfortunately, many papers do not
provide proofs (often only informal
arguments), which means that these
properties can be questioned. In this
case, inf. = informal appears in the
Table. If an algorithm does not discuss
the properties of total order broad-
cast at all, the corresponding entry
mentions NS = not specified. If the
nonuniform property is only discussed
informally, then the corresponding
entry for the uniform property is left
empty (in an informal discussion, the
distinction between the uniform and
the nonuniform property usually does
not appear). ©/× (=yes/no) appears
in some entries for the uniform prop-
erty, meaning that these algorithms
provide several levels of Quality of
Service (QoS), which include a uni-
form and a nonuniform version of
the algorithm, where the nonuniform
version is more efficient. Moreover,
for being able to compare nonparti-
tionable algorithms with partitionable
algorithms, we consider the properties
enforced by the former, when exe-
cuted in a nonpartitionable system
model.

For the rows FIFO order and causal
order, © = yes appears only if this
characteristic is explicit in the paper.
Otherwise the entry is simply left
blank. Finally, if an algorithm is not
fault-tolerant, then the distinction
between the uniform and the nonuni-
form properties does not make sense.
In this case, the entry mentions n/a =
not applicable.

(b) The rows called destination groups in-
dicate whether the algorithm supports
the total order broadcast of a message
to multiple groups (row multiple), and
whether the algorithms support open

ACM Computing Surveys, Vol. 36, No. 4, December 2004.

400 X. Défago et al.

groups (see Section 3). The entry is
left blank if the issue is not discussed
explicitly in the paper.

(4) The last group of rows, called fault-
tolerant mechanisms, discusses the mech-
anisms used to provide fault-tolerance.
The row process mentions the mecha-
nisms used to tolerate process crashes
(see Section 6). Note that some of these
fault-tolerant mechanisms also appear as
building blocks. However, not all build-
ing blocks have been reported as fault-
tolerant mechanisms (e.g., reliable broad-
cast, causal broadcast).15

The row comm. mentions the mecha-
nisms used to address message losses.
Most of the algorithms assume underly-
ing reliable channels, in which case the
entry mentions n/a = not applicable. The
acronyms +a and −a indicate a posi-
tive, respectively negative, acknowledg-
ment mechanism. The other entries are
flood (flooding), special (explanation in the
text below), and GM = group member-
ship. In the context of unreliable chan-
nels, the GM mechanism is used in the
case were some process p waits for a mes-
sage from some other process q and if no
message is received (e.g., due to loss), then
p requests the exclusion of q from the
membership.

In Sections 7.1 through 7.6, we give a
brief description of each individual algo-
rithm to complement the information pro-
vided in the Tables. Unlike the Tables, the
text descriptions also present information
that we have deduced from the relevant
papers. In some cases, the lack of technical
details about the algorithms (in particular,
in the case of failures) leads us to extrap-
olate their behavior. In this case, we have
attempted to avoid being too assertive (by,
e.g., using the conditional) and kindly rec-
ommend that the reader treat this specu-
lative information with an appropriate de-
gree of skepticism.

15The decision of what is a fault-tolerance mecha-
nism, and what is not is somewhat arbitrary. We have
decided to keep the number of mechanisms men-
tioned in Section 6 low, that is, to mention only key
mechanisms.

We think that it is useful to stress
again the respective roles of the Tables
and the accompanying text in Sections 7.1
to 7.6. The Tables provide factual infor-
mation about each algorithm, as it was
published in the relevant papers. In con-
trast, the text provides complementary
information, including information that
we have extrapolated. In particular, the
text explains the originality of each algo-
rithm, and complements items that are
left vague in the Tables (i.e., these points
are vague in the paper itself). Specifically,
for some of the algorithms, the properties
reported in the Tables are weaker than
those the algorithm might ensure. In such
a case, the text mentions (and discusses)
the stronger property that might hold. We
emphasize this point, as misunderstand-
ing the respective roles of text and Ta-
bles might lead to the erroneous impres-
sion that the text and the Tables are in
contradiction.

7.1. Fixed Sequencer Algorithms

Regardless of the variant they adopt (see
Section 4.1), all sequencer algorithms
assume an asynchronous system model
and use time-free ordering. They toler-
ate crash failures, except for Rampart,
which also tolerates Byzantine failures.
They all rely on process-controlled crash
to cope with failure; either explicitly (e.g.,
Tandem), or through group membership
and exclusion (e.g., Isis, Rampart).

7.1.1. Amoeba. The Amoeba [Kaashoek
and Tanenbaum 1996] group communi-
cation system supports algorithms of the
first two variants of fixed sequencer algo-
rithms. The first one corresponds to the
variant UB (unicast-broadcast) illustrated
in Figure 6(a) (Section 4.1). The second
variant corresponds to BB (broadcast-
broadcast), see Figure 6(b). The two vari-
ants share the same properties.

Amoeba assumes lossy channels and
implements message retransmission as
part of the total order broadcast algo-
rithm. Amoeba uses a combination of pos-
itive and negative acknowledgments. The

ACM Computing Surveys, Vol. 36, No. 4, December 2004.

Total Order Broadcast and Multicast Algorithms: Taxonomy and Survey 401

actual protocol is quite complex because
it is combined with flow control, and also
tries to minimize the communication cost.
Amoeba tolerates failures using a group
membership service. Suspected processes
are excluded from the group as the re-
sult of the unilateral decision of a single
process.

The properties of the Amoeba algo-
rithms are only discussed informally in
the paper. However, since messages are
delivered before they are stable, the al-
gorithm can only satisfy the nonuniform
properties of Agreement and Total Order.

7.1.2. MTP. MTP [Armstrong et al.
1992] is an algorithm primarily designed
for video streaming and similar multime-
dia applications. The algorithm assumes
that the system is not uniform with re-
spect to the probability of process fail-
ures. In particular, it assumes that a
process, called the master process, never
fails. The master is then designated as the
sequencer, and the protocols follow vari-
ant UUB (unicast-unicast-broadcast, see
Figure (c) 6). When a process p has a mes-
sage m to broadcast, p requests a sequence
number for m from the sequencer. Once
it has obtained the sequence number, it
sends m, together with the sequence num-
ber, to all destinations and the master. At
the same time, destination processes learn
about the status of previous messages and
deliver those that have been accepted by
the master.

The protocol tolerates crash failures of
destination processes and senders, since
all parts involving decisions are executed
by the master. The failure of the master
is briefly discussed at the end of the pa-
per. The authors suggest that the master
could be rendered more resilient by intro-
ducing redundancy and using replication
techniques.

7.1.3. Tandem. The Tandem global up-
date protocol [Carr 1985] is a fixed se-
quencer algorithm of variant UUB (see
Figure 6(c)). The algorithm allows, at
most, one application message to be broad-

cast at a time, and thus does not need
sequence numbers. Later, Cristian et al.
[1994] describe a variant UB of Tandem
that allows concurrent broadcasts (and
thus needs sequence numbers).

7.1.4. Garcia-Molina and Spauster. The al-
gorithm proposed by Garcia-Molina and
Spauster [1991] is based on a propagation
graph (a forest) to support multiple over-
lapping groups. The propagation graph
is constructed is such a way that each
group is assigned a starting node. Senders
send their messages to the corresponding
starting nodes and messages travel along
the edges of the propagation graph. Or-
dering decisions are resolved along the
path. When used in a single group setting,
the algorithm behaves like other fixed se-
quencer algorithms (i.e., the propagation
graph is a tree of depth 1).

The algorithm assumes an asyn-
chronous model and requires synchro-
nized clocks. However, synchronized
clocks are only needed to yield bounds on
the behavior of the algorithm when crash
failures occur. Neither the ordering mech-
anism nor the fault-tolerance mechanism
actually need them.

In the event of failures, the algorithm
behaves in an unconventional manner. In-
deed, if a nonleaf process p crashes, then
its descendants in the propagation graph
do not receive any message until p has
recovered. Hence, the algorithm tolerates
process crashes only if those processes are
guaranteed to eventually recover.

7.1.5. Jia. Jia [1995] proposed another
algorithm based on propagation graphs,
which creates simpler graphs than the al-
gorithm of Garcia-Molina and Spauster
[1991] (see Section 7.1.4). Unfortunately,
the algorithm originally proposed by Jia
[1995] is incorrect. Chiu and Hsiao [1998]
provide a correction to the algorithm
which works only in a more restricted
model (i.e., only for closed groups). Also,
Shieh and Ho [1997] provide a correction
to the message complexity calculated by
Jia [1995].

ACM Computing Surveys, Vol. 36, No. 4, December 2004.

402 X. Défago et al.

Jia’s algorithm relies on the notion of
meta-groups, defined in the paper as “the
set of processes which have exactly the
same group memberships” (i.e., the set
of processes which belong to the exact
same set of destination groups). The meta-
groups are organized into propagation
trees, according to the membership they
represent. The flow of messages is stream-
lined down the trees, thus creating the de-
livery order.

Jia [1995] describes a form of group
membership mechanism that is used to
redefine the parts of the propagation
graph that must change when a process
is deleted. Jia also suggests that, un-
like Garcia-Molina and Spauster’s algo-
rithm [1991] (Section 7.1.4), the nodes
in the tree consist of entire meta-groups,
rather than single processes. Thus, mes-
sages would not be stopped unless all
members in an intermediary meta-group
fail. The issue is, however, only addressed
informally.

7.1.6. Isis (Sequencer). Birman et al.
[1991] describe several broadcast primi-
tives of the Isis system, including a total
order broadcast primitive called ABCAST.
The ABCAST primitive is implemented
using a fixed sequencer algorithm (differ-
ent from the algorithm used in earlier ver-
sions of the system; see Section 7.5.1).
The Isis (sequencer) algorithm is a fixed
sequencer algorithm of variant BB (see
Figure 6 (b)), which uses a causal broad-
cast primitive. The algorithm assumes
crash failures.

Constructed over a causal broadcast
primitive, the Isis ABCAST algorithm pre-
serves causal order. Moreover, although
the algorithm does not support total
order for multiple overlapping groups,
causal order is nevertheless preserved
in this context. The total order broad-
cast algorithm ensures only the nonuni-
form properties of Agreement and Total
Order.

For fault-tolerance, the total order
broadcast algorithm relies on a group
membership service and view synchrony
(Section 6.2).

Finally, the authors also briefly mention
that moving the role of the sequencer in
the absence of failures might be a way to
avoid a bottleneck. However, the idea is
not developed further.

7.1.7. Navaratnam et al.. Navaratnam
et al. [1988] propose a fixed sequencer
protocol of variant UB (see Figure 6(a)).

The fault-tolerance of the algorithm
relies on a group membership service
and the ability to exclude wrongly sus-
pected processes. Similar to Amoeba (Sec-
tion 7.1.1), the decision to exclude a sus-
pected process can be taken unilaterally
by one single process.

The properties of this algorithm are dis-
cussed informally, and it is easy to see that
it satisfies the nonuniform properties of
Agreement and Total Order. The authors
also make a brief remark suggesting that
the algorithm does not guarantee uniform
properties, but the wording is a little am-
biguous and the information provided in
the paper is not sufficient to verify this
interpretation.

7.1.8. Phoenix. Phoenix [Wilhelm and
Schiper 1995] consists of three algorithms
which provide different levels of guar-
antees. The first algorithm (weak order)
only guarantees Total Order and Agree-
ment. The second algorithm (strong or-
der) guarantees both Uniform Total Or-
der and Uniform Agreement. Then, the
third algorithm (hybrid order) combines
both guarantees on a per-message basis.

The three algorithms are based on a
group membership service and view syn-
chrony (see Section 3.3).

7.1.9. Rampart. Unlike other sequencer
algorithms, which only assume crash fail-
ures, the algorithm of Rampart [Reiter
1994, 1996] is designed to tolerate Byzan-
tine failures. This sets this algorithm
somewhat apart from the other sequencer
algorithms.

Rampart assumes an asynchronous sys-
tem model with reliable FIFO chan-
nels, and a public key infrastructure in
which every process initially knows the

ACM Computing Surveys, Vol. 36, No. 4, December 2004.

Total Order Broadcast and Multicast Algorithms: Taxonomy and Survey 403

public key of every other process. In ad-
dition, communication channels are as-
sumed to be authenticated, so that the in-
tegrity of messages between two honest
(i.e., non-Byzantine) processes is always
guaranteed.

Unlike most early work on Byzan-
tine failures, Rampart treats honest and
Byzantine processes separately. In partic-
ular, the paper defines uniformity as a
property that applies to honest processes
only (see Note 1 in Section 2.4). With this
definition, Rampart satisfies both Uni-
form Agreement and Uniform Total Order.

The algorithm is based on a group
membership service, which requires that
at least one third of all processes in
the current view reach an agreement on
the exclusion of some process from the
group. This condition is necessary because
Byzantine processes could otherwise pur-
posely exclude correct processes from the
group.

7.2. Moving Sequencer Algorithms

We describe here four moving sequencer
algorithms, all of which are time-free. To
the best of our knowledge, there is no time-
based moving sequencer algorithm. It is
actually questionable whether time-based
ordering would even make sense for algo-
rithms of this class.

The four algorithms behave in a
very similar fashion. Actually, three of
them—Pinwheel (Section 7.2.4), RMP
(Section 7.2.2), and DTP (Section 7.2.3)—
are based on the fourth—Chang and
Maxemchuck’s algorithm [1984] (Sec-
tion 7.2.1)—which they each improve in
a different way. Pinwheel is optimized
for a uniform message arrival pattern,
RMP provides various levels of guaran-
tees, and DTP provides a faster detection
of message stability. The four algorithms
also handle process failures very similarly,
using a reformation algorithm (see Sec-
tion 7.2.1). Except for DTP (Section 7.2.4),
all algorithms rely on a logical ring along
which the token circulates.

The four algorithms tolerate message
loss by relying on a message retrans-
mission protocol that combines positive

and negative acknowledgments. More pre-
cisely, the token carries positive acknowl-
edgments, but when a process detects that
a message is missing, it sends a negative
acknowledgment to the token site. The
negative acknowledgment scheme is used
for message retransmission, while the pos-
itive scheme is used to detect message
stability.

7.2.1. Chang and Maxemchuck. The algo-
rithm proposed by Chang and Maxemchuk
[1984] is based on the existence of a logi-
cal ring along which a token is passed. The
process that holds the token, also known
as the token site, is responsible for se-
quencing the messages that it receives.
The passing of the token simultaneously
serves two purposes: (1) the transmission
of the sequencer role, and (2) the detec-
tion of message stability. Point (2) requires
that the logical ring spans all destina-
tion processes. This requirement is, how-
ever, not necessary for ordering messages
(point (1)), and hence the algorithm qual-
ifies as a sequencer-based algorithm ac-
cording to our classification.

When a process failure is detected (per-
haps wrongly) or when a process recovers,
the algorithm goes through a reformation
phase. The reformation phase redefines
the logical ring and elects a new initial to-
ken holder. The reformation algorithm can
be seen as an ad hoc implementation of a
group membership service.

The properties of the total order broad-
cast algorithm are discussed only infor-
mally. Nevertheless, it seems plausible
that the algorithm ensures Uniform Total
Order and Uniform Agreement.

7.2.2. RMP. RMP [Whetten et al. 1994]
differs from the other three algorithms in
this group in that it is designed to op-
erate with open groups. Additionally, the
authors claim that “RMP provides multi-
ple multicast groups, as opposed to a sin-
gle broadcast group.” However, according
to their description, supporting multiple
multicast groups is merely a character-
istic associated with the group member-
ship service. It is, therefore, dubious that

ACM Computing Surveys, Vol. 36, No. 4, December 2004.

404 X. Défago et al.

“multiple groups” is used with the mean-
ing that total order is guaranteed for pro-
cesses that are at the intersection of two
groups (see discussion in Section 3.2).

Depending on the user’s choice, RMP
satisfies Agreement, Uniform Agreement,
or neither of these properties. However,
in order to ensure the strong guarantees,
RMP must assume that a majority of the
processes remain correct and always con-
nected. Also, RMP does not preclude the
contamination of the group.

7.2.3. DTP. As mentioned, DTP [Kim
and Kim 1997] differs from the other al-
gorithms of this class in that it does not
rely on a logical ring for the passing of
the token. Instead, DTP follows a heuris-
tic, where the token is always passed to the
process seen as the least active. Doing this
ensures that messages are acknowledged
more quickly when the activity (i.e., broad-
casting messages) is not uniformly spread
among processes.

7.2.4. Pinwheel. The originality of Pin-
wheel [Cristian et al. 1997] is that the to-
ken circulates among the processes at a
speed proportional to the global activity
of the sending processes (i.e., broadcasting
rate).

Pinwheel assumes that a majority of the
processes remains correct and connected
at all times (majority group). The algo-
rithm is based on the timed asynchronous
model of Cristian and Fetzer [1999]. Al-
though it relies on physical clocks for time-
outs, Pinwheel does not need to assume
that these clocks are synchronized. Fur-
thermore, the algorithm is time-free, since
time is not used for ordering messages.

Pinwheel can ensure Uniform Total Or-
der, given an adequate support from its
group membership (not detailed in the pa-
per). Pinwheel only satisfies (nonuniform)
Agreement, but the authors argue that the
algorithm could easily be modified to sat-
isfy Uniform Agreement [Cristian et al.
1997]. Doing this would only require that
destination processes wait until a message
is known to be stable before delivering it.
The authors claim that the algorithm pre-

serves causal order, but this is valid only
under certain restrictions that make the
problem trivial to solve.16

7.3. Privilege-Based Algorithms

Like moving sequencer algorithms, most
privilege-based algorithms are based on
a logical ring, and for most of them rely
on some kind of group membership or re-
configuration protocol to handle process
failures.

7.3.1. On-Demand. The On-demand pro-
tocol [Cristian et al. 1997], unlike other
privilege-based algorithms, does not rely
on a logical ring. Instead, processes with
a message to broadcast must obtain the
token by issuing a request to the current
token holder. As a consequence, the pro-
tocol is more efficient if senders send long
bursts of messages and such bursts rarely
overlap. Also, in contrast to the other algo-
rithms, all processes must be aware of the
identity of the token holder. So, the pass-
ing of the token is done using a broadcast.

The On-demand protocol relies on the
same model as the Pinwheel protocol (Sec-
tion 7.2.4). In other words, it assumes
a timed asynchronous system model and
physical clocks for timeouts.

A similar algorithm, called Reqtoken, is
also described by Friedman and van Re-
nesse [1997].

7.3.2. Train. The Train protocol
[Cristian 1991] is inspired by the im-
age of a train that transports messages
and circulates among processes. More
concretely, a token (a.k.a., the train)
moves along a logical ring and carries
the messages. When a process gets the
token, it receives the new messages
carried by the token, acknowledges them,
and appends its own messages to the
token. Then, it passes the token to the
next process. The Train protocol, where
messages are carried by the token, is in

16In systems with a single closed group, where pro-
cesses are only allowed to communicate using total
order broadcast, causal order is satisfied trivially by
simply enforcing FIFO order.

ACM Computing Surveys, Vol. 36, No. 4, December 2004.

Total Order Broadcast and Multicast Algorithms: Taxonomy and Survey 405

clear contrast to the other algorithms
of the same class, where messages are
broadcast directly to the destinations.
The Train protocol is hence less attractive
than the others in a broadcast network.

7.3.3. Token-FD. Ekwall et al. [2004]
also present an algorithm based on token-
passing in a ring. The algorithm is spe-
cial because it relies on an unreliable fail-
ure detector to tolerate failures, while all
other token-based algorithms use a form
of group membership.

In the basic version of the algorithm,
the token is the only carrier of informa-
tion, just as in the Train protocol (an op-
timization is also described, in which the
token carries message identifiers). How-
ever, the token is sent not only to the
immediate successor in the ring, but to
f +1 successors, where f is the number of
crashes that the algorithm tolerates. The
additional copies are only used if a process
suspects the crash of its predecessor. For
its liveness, the algorithm requires a fail-
ure detector defined specifically for rings.
This failure detector is stronger than
S,
but weaker than
P (see Section 5.3.1).

7.3.4. Totem. The specificity of Totem
[Amir et al. 1995] compared to other
privilege-based algorithms is that it is de-
signed for partitionable systems. The or-
dering guarantee ensured is Strong Total
Order. Totem provides both (nonuniform)
agreement and total order (called agreed
order), and uniform agreement and total
order (called safe order), when operated in
a nonpartitionable system. Causal order is
also ensured.

The algorithm uses a membership pro-
tocol, which has the responsibility for de-
tecting processor failures, network parti-
tioning, and loss of the token. When such
failures are detected, the membership pro-
tocol reconstructs a new ring, generates
a new token, and recovers messages that
had not been received by some of the pro-
cessors when the failure occurred.

The authors observe that, while mov-
ing sequencer algorithms (in which hold-
ing the token is not required to broad-

cast a message) have good latency at low
loads, latency increases at high loads and
in the presence of processor crashes. More-
over, according to Agarwal et al. [1998],
the ring and the token-passing scheme
make privilege-based algorithms highly
efficient in broadcast LANs, but less suited
to interconnected LANs. To overcome this
problem, they extend Totem to an envi-
ronment consisting of multiple intercon-
nected LANs. The resulting algorithm per-
forms better in such an environment, but
otherwise has the same properties as the
original single-ring one.

7.3.5. TPM. TPM [Rajagopalan and
McKinley 1989] is closely related to
Totem. The main difference is that TPM
is not partitionable (it only supports pri-
mary partition membership). Moreover,
TPM only provides uniform agreement
and total order. Finally, while TPM only
supports a closed group, the authors
discuss some ideas on how to extend
the algorithm to support multiple closed
groups.

Rajagopalan and McKinley [1989] also
propose a modification of TPM in which re-
transmission requests are sent separately
from the token in order to improve the be-
havior in networks with a high rate of mes-
sage loss.

7.3.6. Gopal and Toueg. Gopal and
Toueg’s [1989] algorithm is based on the
round synchronous model. The round
synchronous model is a computation
model in which the execution of processes
is synchronized according to rounds. Dur-
ing each round, every process performs
the same actions: (1) send a message
to all processes, (2) receive a message
from all noncrashed processes, and then
(3) perform some computations.

The algorithm works as follows. For
each round, one of the processes is des-
ignated as the transmitter. The transmit-
ter of some round r is the only process
which is allowed to broadcast new appli-
cation messages in round r. In that round,
the other processes broadcast acknowl-
edgments of previous messages. Messages

ACM Computing Surveys, Vol. 36, No. 4, December 2004.

406 X. Défago et al.

are delivered once they are acknowledged,
three rounds after their initial broadcast.

7.3.7. RTCAST. RTCAST [Abdelzaher
et al. 1996] was designed for applica-
tions that need real-time guarantees.
The algorithm assumes a synchronous
system with synchronized clocks. These
strong guarantees allow for simplification
in the protocol. The paper also shows
how the maximum token rotation time
can be used for the admission control
and schedulability analysis of real-time
messages (with the goal to guarantee the
delivery deadline of these messages).

7.3.8. MARS. MARS [Kopetz et al.
1991] is based on the technique of time
division multiple-access (TDMA; see
Note 11). TDMA consists of predeter-
mined periodic time slots assigned to each
process. Processes are then allowed to
send or broadcast messages only during
their own time slots. The system assumes
that processes have synchronized clocks,
whereby they are able to accurately
determine the beginning and the end of
their own time slot. In addition, commu-
nication is assumed to be reliable, and
with bounded delays.

Based on the mutual exclusion provided
by TDMA and the communication model,
total order broadcast is easily imple-
mented. The ordering mechanism can be
seen as similar to Gopal and Toueg’s algo-
rithm (Section 7.3.6), but in a time-based
model, where communication uses time
rather than messages [Lamport 1984].

Kopetz et al. [1991] do not discuss the
behavior of their total order broadcast al-
gorithm in the presence of failures. This
makes it difficult to determine whether
the algorithm is uniform or not. We be-
lieve that it is not uniform, simply because
uniformity induces a cost in performance
that the authors are unlikely to consider
affordable.

7.4. Communication History Algorithms

7.4.1. Lamport. The principle of
Lamport’s algorithm [Lamport 1978b],
which uses logical clocks, was explained

in Section 4.4 (see Figure 11). Actually,
the paper describes a mutual exclusion al-
gorithm. However, it is straightforward to
derive a total order broadcast algorithm
from the mutual exclusion algorithm.
Since the delivery order of a message m
is determined by the timestamp of the
broadcast event of m, the total order is an
extension of causal order. The algorithm
is not tolerant to failures.

A similar algorithm is described by
Attiya and Welch [1994], when comparing
consistency criteria.

7.4.2. Psync. The Psync algorithm
[Peterson et al. 1989] is used in several
group communication systems: Consul
[Mishra et al. 1993], Coyote [Bhatti et al.
1998], and Cactus [Hiltunen et al. 1999].
In Psync, processes dynamically build a
causality graph of messages they receive.
Psync then delivers messages according
to a total order that is an extension of the
causal order.

Psync assumes an asynchronous sys-
tem model with (permanent) crash fail-
ures and (transient) lossy communication.
To tolerate process failures, the algorithm
seems to assume a perfect failure detec-
tor, although this is not stated explicitly
in the paper. To implement reliable chan-
nels, the algorithm uses negative acknowl-
edgments (to request the retransmission
of lost messages).

Psync is specified only informally. Nev-
ertheless, we believe that the protocol en-
sures Total Order in the absence of fail-
ures. The behavior in the face of failures
is unfortunately not described in enough
detail to make a confident claim about it.
Agreement is a little more complex. In
the absence of message loss, Psync en-
sures Agreement. However, with certain
combinations of process crash and mes-
sage loss, it is possible that some correct
processes discard messages that are oth-
erwise delivered by others. Hence, when
message loss is considered, Agreement can
be violated. This problem is discussed in
detail by the authors, who relate it to
an instance of the “last acknowledgment
problem.”

ACM Computing Surveys, Vol. 36, No. 4, December 2004.

Total Order Broadcast and Multicast Algorithms: Taxonomy and Survey 407

Malhis et al. [1996] provide an anal-
ysis of the performance of Psync in the
presence of message loss. They conclude
that Psync performs well if broadcasts are
frequent and message loss rare, but per-
forms poorly when broadcasts are infre-
quent and message loss common. They
show that the performance can be im-
proved by regularly sending empty mes-
sages, as is done by other communica-
tion history algorithms (see Note 14 in
Section 4.4).

7.4.3. Newtop (Symmetric). Ezhilchelvan
et al. [1995] propose two algorithms:
a symmetric one and an asymmetric
one. The symmetric algorithm extends
Lamport’s algorithm (Section 7.4.1) in
several ways: it makes it fault-tolerant,
allows a process to be member of multiple
groups, and allows the broadcast of a mes-
sage to multiple groups. As for Lamport’s
algorithm, Newtop preserves causal
order.

Newtop is based on a partitionable
group membership service (see Sec-
tion 3.4). The Newtop platform leaves it to
applications to decide whether or not they
should maintain more than one subgroup
in such a situation. Newtop satisfies the
property of Weak Total Order mentioned
in Section 3.4.

The asymmetric algorithm belongs to a
different class, and is hence discussed in
the relevant section (Section 7.6.1). The
two algorithms (symmetric and asymmet-
ric) can easily be combined to allow the
use of the symmetric algorithm in some
groups, and the asymmetric algorithm in
others.

7.4.4. Ng. Ng [1991] presents a com-
munication history algorithm that uses
a minimum-cost spanning tree to propa-
gate messages. The ordering of messages
is based on Lamport’s clocks, similar to
Lamport’s algorithm. However, messages
and acknowledgments are propagated and
gathered, using a minimum-cost spanning
tree. The use of a spanning tree improves
the scalability of the algorithm and makes
it adequate for wide-area networks.

7.4.5. ToTo. The ToTo algorithm [Dolev
et al. 1993] ensures Weak Total Order
(see Section 3.4; it is called “agreed mul-
ticast” in Dolev et al. [1993]). It is built
on top of the Transis partitionable group
communication system [Dolev and Malkhi
1996]. ToTo extends the order of an un-
derlying causal broadcast algorithm. It is
based on dynamically building a causal-
ity graph of received messages. The Tran-
sis system offers both a uniform and a
nonuniform variant of the algorithm. A
particularity of ToTo (nonuniform variant)
is that, to deliver a message m, a pro-
cess must have received acknowledgments
for m, from as few as a majority of the pro-
cesses in the current view (instead of all
view members).

7.4.6. Total. The Total algorithm [Moser
et al. 1993] is built on top of a reliable
broadcast algorithm called Trans (Trans
is defined together with Total). However,
Trans is not used as a black box (which
explains why we did not list reliable broad-
cast as a building block for this algorithm
in Table IV). Trans uses an acknowledg-
ment mechanism that defines a partial or-
der on messages. Total extends the par-
tial order of Trans into a total order. Two
variants are defined: the more efficient one
tolerates f < n/3 crashes, and the other
tolerates f < n/2 crashes.

The Total algorithm fulfills the Agree-
ment property (in fact, Uniform Agree-
ment) with high probability. Actually Total
requires the underlying Trans reliable
broadcast protocol to provide probabilis-
tic guarantees about not reordering mes-
sages. This has some similarities with
the notion of weak ordering oracles (see
Section 7.5.13).

Moser and Melliar-Smith [1999] pro-
pose an extension of Total to tolerate
Byzantine failures.

7.4.7. ATOP. ATOP [Chockler et al.
1998] is an algorithm following the deter-
ministic merge approach (Section 4.4). The
focus of the paper is on adapting the algo-
rithm to different, and possibly changing
sending rates. A pseudo-random number

ACM Computing Surveys, Vol. 36, No. 4, December 2004.

408 X. Défago et al.

generator is used in computing the deliv-
ery order.

The paper is mostly concerned with en-
suring an ordering property. This property
is Strong Total Order, defined in the con-
text of partitionable systems (Section 3.4).
The algorithm ensures FIFO order, and
ensures causal order trivially (see Foot-
note 16).

7.4.8. COReL. The COReL algorithm
[Keidar and Dolev 2000] is built on top
of a partitionable group membership ser-
vice like Transis. The underlying service
must also offer Strong Total Order (Sec-
tion 3.4), as well as causal order. COReL
gradually builds a global order (Reliable
Total Order) by tagging messages accord-
ing to three different color levels (red, yel-
low, green). A message starts as red (no
knowledge about its position in the global
order), then passes to yellow (received and
acknowledged when the process is a mem-
ber of a majority component), and green
(all members of the majority component
acknowledged the message, and its posi-
tion in the global order is known). Green
messages are delivered to the application.
Messages are retransmitted and promoted
to green whenever partitions merge. All
acknowledgments sent by the algorithm
are piggybacked. COReL provides the fol-
lowing liveness guarantee: if eventually
there is a stable majority component, all
messages sent by the members of this com-
ponent are delivered.

COReL also supports process recovery
if processes are equipped with stable stor-
age. This requires that processes log each
message that is sent (before sending the
message), and each message that is re-
ceived (before sending an acknowledg-
ment).

Fekete et al. [2001] formalize a variant
of the COReL algorithm and the guaran-
tees offered by the underlying group mem-
bership service, using I/O automata.

7.4.9. Deterministic Merge. The main mo-
tivation for the deterministic merge algo-
rithm of Aguilera and Strom [2000] is to
minimize the expected time that a mes-

sage is delayed to ensure total order, and
to have as few messages as possible sent
by destination processes. The algorithm
is designed for systems in which several
senders send a constant stream of mes-
sages (at an approximately fixed rate). In
this algorithm, each received message de-
terministically defines the sender of the
next message to be accepted. The algo-
rithm relies on approximately synchro-
nized clocks that are used by senders to
put a physical timestamp on their mes-
sages. Upon receiving such a timestamped
message, a destination process computes
(using the timestamp and the sending
rates of messages) the next sender from
which it will accept a message. The qual-
ity of the synchronization is important
to ensure good performance of the algo-
rithm, but it is not required for its cor-
rectness. The algorithm is most efficient if
clocks are synchronized (but works even
if they are not) and each sender sends
messages at some fixed rate known a pri-
ori (the rate may be different for each
sender). To ensure the liveness of the al-
gorithm, senders need to send empty mes-
sages when they have no message to send
(these messages divide the execution into
independent epochs). The algorithm, as
described, is not fault-tolerant.

7.4.10. HAS. Cristian et al. [1995] pro-
pose a collection of total order broad-
cast algorithms (called HAS) that as-
sume a synchronous system model with
ε-synchronized clocks. The authors de-
scribe three algorithms—HAS-O, HAS-T ,
and HAS-B—that are respectively toler-
ant to omission failures, timing failures,
and Byzantine failures. These algorithms
are based on the principle of information
diffusion, which is itself based on the no-
tion of flooding, or gossiping. In short,
when a process wants to broadcast a mes-
sage m, it timestamps it with the time of
emission T , according to its local clock,
and sends it to all neighbors. Whenever a
process receives m for the first time, it re-
lays it to its neighbors. Processes deliver
message m at time T + �, according to
their local clocks (where � is constant that

ACM Computing Surveys, Vol. 36, No. 4, December 2004.

Total Order Broadcast and Multicast Algorithms: Taxonomy and Survey 409

depends on the topology of the network,
the number of failures tolerated, and the
maximum clock drift ε).

The paper proves that the three HAS
algorithms satisfy Agreement. The au-
thors do not prove Total Order, but by the
properties of synchronized clocks and the
timestamps, Uniform Total Order is not
too difficult to enforce. However, if the syn-
chronous assumptions do not hold, the al-
gorithms could violate the safety of the
protocol (i.e., Total Order), rather than
just its liveness.

7.4.11. Redundant Broadcast Channels.
Cristian [1990] presents an adaption of
the HAS-O algorithm (omission failures)
to broadcast channels. The system model
assumes the availability of f + 1 inde-
pendent broadcast channels (or networks)
that connect all processes together, thus
creating f + 1 independent communi-
cation paths between any two processes
(where f is the maximum number of fail-
ures). Compared to HAS-O, the algorithm
for redundant broadcast channels issues
significantly fewer messages.

7.4.12. Quick-S. Berman and Bharali
[1993] present several closely related to-
tal order broadcast algorithms in a vari-
ety of system models. In synchronous sys-
tems (three variants in the paper), the
algorithms are similar to the HAS algo-
rithms: messages are timestamped (with
physical or logical timestamps, depend-
ing on the system model), and a message,
timestamped with T , can be delivered at
T + �, for some value of �. The difference
is that they use a Byzantine agreement al-
gorithm with a bounded termination time
to send messages. There are algorithms
that work with Byzantine failures, and
ones that work with crash failures only;
the latter ensure Uniform Prefix Order.
For Byzantine failures, the algorithm en-
sures only nonuniform properties. This is
because, unlike the specification of Ram-
part (Section 7.1.9), the specification used
by Quick-S does not distinguish between
Byzantine processes and those that only
fail by crashing.

The paper also presents an algorithm
for asynchronous systems. However, this
algorithm belongs to the class of desti-
nations agreement algorithms and is dis-
cussed there (Quick-A; Section 7.5.14).

7.4.13. ABP. The principle of ABP
[Minet and Anceaume 1991b; An-
ceaume 1993a] is close to the principle
of Lamport’s algorithm (Section 7.4.1):
messages are delivered according to
timestamps attached to messages by
their sender. Each process manages a
local sequence number variable, used
to timestamp messages. Let process p
broadcast message m. In the first phase,
m and its timestamp value tsm are sent to
all processes. Any process q that receives
message m sends back a reply to p. The
reply of process q to p may also include
some message m′, if q had previously
broadcast m′ with the same timestamp
value (tsm′ = tsm). Upon reception of all
replies from correct processes, process p
knows the set Msg(tsm) of all messages
with the same timestamp value tsm. Pro-
cess p delivers those messages (ordered
according to the identifier of the sender of
each message). Process p also broadcasts
the set Msg(tsm), thus allowing the other
processes to deliver the same sequence of
messages.

7.4.14. Atom. In Atom [Bar-Joseph
et al. 2002], streams of messages from
all senders are merged in a round-robin
fashion. To make the algorithms live,
senders need to send empty messages
if they have no message to send. This
approach can be seen as a special case of
deterministic merge (see Section 7.4.9).

7.4.15. QoS Preserving Atomic Broadcast.
Bar-Joseph et al. [2000] present another
algorithm, based on the same ordering
mechanism as Atom (Section 7.4.14). As
its name indicates, the QoS preserving al-
gorithm provides support for quality of
service (QoS), unlike Atom. On the other
hand, the QoS preserving algorithm does
not guarantee Agreement (i.e., uniform or
not), and only nonuniform Total Order.

ACM Computing Surveys, Vol. 36, No. 4, December 2004.

410 X. Défago et al.

7.5. Destinations Agreement Algorithms

7.5.1. Skeen. Skeen’s algorithm, des-
cribed by Birman and Joseph [1987], was
used in an early version of the Isis toolkit.
The algorithm corresponds roughly to the
algorithm in Figure 14. The main dif-
ference is that Skeen’s algorithm com-
putes the global timestamp in a cen-
tralized manner, while the algorithm in
Figure 14 does it in a decentralized way.
Fault-tolerance is achieved using a group
membership service, which excludes sus-
pected processes from the group.

Dasser [1992] propose a simple op-
timization of Skeen’s algorithm called
TOMP, where additional information is
appended to protocol messages in order
to deliver application messages a little
earlier.

7.5.2. Luan and Gligor. Luan and Gligor
[1990] proposed an algorithm based on
majority voting. The idea is the following.
Upon execution of TO-broadcast(m), mes-
sage m is sent to all processes. Upon re-
ception of m by some process q, m is put
into q’s receiving buffer. The message de-
livery order is then decided by a voting
protocol, which can be initiated by any of
the processes. In case of concurrent initia-
tion of the protocol, an arbitration rule is
used.

Voting is initiated by broadcasting an
“invitation” message. Consider this mes-
sage broadcast by process p. Processes
reply by sending the content of their re-
ceiving buffer to p. Process p waits for a
majority of replies. Based on the messages
received, process p then constructs a se-
quence of message identifiers, and broad-
casts this sequence. A process receiving
the sequence sends an acknowledgment
to p. Once p has received acknowledg-
ments from a majority of processes, the
proposed sequence is committed.

To summarize, the protocol tries to
reach consensus among the destination
processes on a sequence of messages. How-
ever, the authors did not identify consen-
sus as a subproblem to solve, which makes
the protocol more complex. The conse-
quence is that the conditions under which

liveness is ensured are not discussed (and
difficult to infer).

7.5.3. Le Lann and Bres. Le Lann and
Bres [1991] wrote a position paper dis-
cussing total order broadcast in a system
with omission faults. The paper sketches
a total order broadcast algorithm based on
quorums.

7.5.4. Chandra and Toueg. Chandra and
Toueg [1996] propose a transformation
of atomic broadcast into a sequence of
consensus problems, where each consen-
sus decides on a set of messages, easily
transformed into a sequence of messages.
The transformation uses reliable broad-
cast. The idea of this transformation, de-
scribed in Section 4.5, is not repeated here.

The algorithm assumes an asynchro-
nous system model, reliable broadcast,
and a black box that solves consensus.
The algorithm is extremely elegant, in the
sense that all difficult issues related to
fault-tolerance are hidden in the consen-
sus black box.

There have been several proposals to
optimize this algorithm. For example,
Mostéfaoui and Raynal [2000] propose an
optimistic approach in which the consen-
sus algorithm is split into two parts. The
first phase is optimized, but does not al-
ways succeed. If this happens, the full con-
sensus algorithm is executed.

7.5.5. Rodrigues and Raynal. Rodrigues
and Raynal [2000] present a total order
broadcast algorithm in a model where pro-
cesses have access to stable storage and
may recover after a crash. The algorithm
is very close to the Chandra-Toueg algo-
rithm (Section 7.5.4): it uses the same
transformation of total order broadcast to
consensus. The only difference is that, be-
cause of the crash-recovery model, the al-
gorithm relies on the crash-recovery con-
sensus algorithm of Aguilera, Chen, and
Toueg [2000]).

7.5.6. ATR. Delporte-Gallet and Fau-
connier [1999] describe the ATR algo-
rithm, which is based on an abstraction

ACM Computing Surveys, Vol. 36, No. 4, December 2004.

Total Order Broadcast and Multicast Algorithms: Taxonomy and Survey 411

called Synchronized Phase System (SPS).
The SPS abstraction is defined in an asyn-
chronous system. An SPS decomposes the
execution of an algorithm in rounds, al-
most like a synchronous round model.
The ATR algorithm distinguishes between
even and odd rounds. In even rounds, pro-
cesses send ordered sets of messages to
each other. Upon reception of these mes-
sages, each process constructs a sequence
of messages. In the subsequent odd round,
processes try to validate the order and de-
liver messages.

7.5.7. SCALATOM. SCALATOM Ro-
drigues et al. [1998] is based on Skeen’s
algorithm (Section 7.5.1) and supports the
broadcast of messages to multiple groups.
The algorithm satisfies the Strong Mini-
mality property (Section 3.2.4). The global
timestamp is computed using a variant
of Chandra and Toueg’s [1996] consensus
algorithm (Section 7.5.4). SCALATOM
corrects an earlier algorithm, called MTO
[Guerraoui and Schiper 1997].

7.5.8. Fritzke et al. Fritzke et al. [2001]
also propose an algorithm for the broad-
cast of messages to multiple groups. The
algorithm satisfies the Strong Minimality
property (Section 3.2.4). Consider a mes-
sage m broadcast to multiple groups. First,
the algorithm uses consensus to decide on
the timestamp of m within each destina-
tion group. The destination groups then
exchange information to compute the final
timestamp, and a second consensus is ex-
ecuted in each group to update the logical
clock.

7.5.9. Optimistic Atomic Broadcast. Opti-
mism is a technique used for several
years in the context of concurrency con-
trol [Bernstein et al. 1987] and file system
replication [Guy et al. 1993]. However, it
has only recently been considered in the
context of total order broadcast [Pedone
2001].

The optimistic atomic broadcast algo-
rithm of Pedone and Schiper [1998, 2003]
is based on the experimental observation
that messages broadcast in a LAN are usu-

ally received in the same order by every
process. When this assumption is met, the
algorithm delivers messages very quickly.
However, if the assumption does not hold,
the algorithm is less efficient than other
algorithms (but still delivers messages in
total order).

Unlike most optimistic algorithms, the
optimistic atomic broadcast of Pedone and
Schiper [2003] is optimistic internally.
This means that the optimistic mech-
anism of the algorithm is not appar-
ent to the application. In other words,
there is no weakening of the delivery
properties.

7.5.10. Prefix Agreement. Anceaume
[1997] defines a variant of consensus,
called prefix agreement, where processes
agree on a stream of values, rather than
on a single value. Considering streams
rather than single values makes the
prefix agreement algorithm particularly
well suited to solve total order broadcast.
The total order broadcast algorithm uses
prefix agreement to repeatedly decide on
the sequence of messages to be delivered
next.

7.5.11. Generic Broadcast. Generic broad-
cast [Pedone and Schiper 1999; 2002] is
not a total order broadcast per se. In-
stead, the algorithm assumes a conflict
relation on the messages, and two mes-
sages m and m′ are delivered in the same
order at each destination process, only
if they conflict. Two messages m and m′
that do not conflict are not ordered by
the algorithm. If all messages conflict,
then generic broadcast provides the same
guarantee as total order broadcast. If no
messages conflict, then generic broadcast
provides the guarantees of (uniform) re-
liable broadcast. The strong point of this
algorithm is that performance varies ac-
cording to the required “amount of or-
dering”. The generic broadcast algorithm
uses a consensus algorithm only in case of
conflicts.

7.5.12. Thrifty Generic Broadcast. Aguil-
era, Delporte-Gallet et al. [2000] also

ACM Computing Surveys, Vol. 36, No. 4, December 2004.

412 X. Défago et al.

propose a generic broadcast algorithm.
When conflicting messages are detected,
Pedone and Schiper [2002] solve generic
broadcast by reduction to consensus, while
Aguilera et al. [2000] solve generic broad-
cast by reduction to total order broadcast.
In addition, the algorithm is thrifty in the
sense that, if there is a time after which
broadcast messages do not conflict with
each other, then eventually atomic broad-
cast is no longer used. The algorithm of
Pedone and Schiper [2002] also satisfies
this property with respect to consensus,
but the property was not identified in the
paper.

7.5.13. Weak Ordering Oracles. Pedone
et al. [2002] define a weak ordering ora-
cle as an oracle that orders messages that
are broadcast, but is allowed to make mis-
takes (i.e., the messages broadcast may be
delivered out of order). This oracle models
the behavior observed in local-area net-
works, where broadcast messages are of-
ten spontaneously delivered in total order.
The paper shows that total order broad-
cast can be solved using a weak ordering
oracle. If the optimistic assumption is met,
the proposed algorithm, which assumes
f < n

3 , solves total order broadcast in two
communication steps.

Interestingly, the algorithm has the
same structure as the randomized consen-
sus algorithm proposed by Rabin [1983].
The authors also mention that the weak
ordering oracle could be used to design
a total order broadcast algorithm with
the same structure as the randomized
consensus algorithm proposed by Ben-Or
[1983].

7.5.14. Quick-A. Berman and Bharali
[1993] present a series of four algorithms,
three of which belong to another class (see
Quick-S, Section 7.4.12). Their algorithm
for asynchronous systems is quite differ-
ent from their algorithms for synchronous
systems (Section 7.4.12). Processes main-
tain a round number, and broadcast mes-
sages are timestamped with this round
number. The processes then execute a se-
quence of randomized binary consensus, to

decide on the round in which messages are
to be delivered.

7.5.15. AMp /xAMp. The AMp [Verı́ssimo
et al. 1989] and xAMp [Rodrigues and
Verı́ssimo 1992] algorithms rely on the as-
sumption that, most of the time, broadcast
messages are received by all destination
processes in the same order (a realistic as-
sumption in LANs, as already mentioned).
So, when a process broadcasts a message,
it initiates a commitment protocol. If the
messages are received in order by all des-
tination processes, then the outcome is
positive: all destination processes commit
and deliver the message. Otherwise, the
message is rejected and the sender must
try again (thus potentially leading to a
livelock).

7.6. Hybrid Algorithms

Here we discuss algorithms that do not
fit into one of our five classes of total
order broadcast algorithms. These algo-
rithms usually combine two different or-
dering mechanisms.

7.6.1. Newtop (Asymmetric). Ezhilchel-
van et al. [1995] propose two algorithms;
one symmetric and the other asymmetric.
The symmetric algorithm was described
earlier (Section 7.4.3).

The asymmetric algorithm uses a se-
quencer process, and allows a process to
be a member of multiple groups (each
group has an independent sequencer). For
ordering, the algorithm uses Lamport’s
logical clocks [1978b] in addition to the
sequencer. Hence the asymmetric algo-
rithm is a hybrid between a communica-
tion history algorithm (due to the use of
Lamport’s clocks) and a fixed sequencer al-
gorithm. The asymmetric algorithm, like
the symmetric one, preserves causal or-
der delivery. However, note that a pro-
cess p, which is a member of more than
one group, cannot broadcast a message
m to a group immediately after broad-
casting some message m′ to a different
group. Process p can only deliver m′ after
it has delivered m. Hence, the asymmet-
ric algorithm does not technically allow a

ACM Computing Surveys, Vol. 36, No. 4, December 2004.

Total Order Broadcast and Multicast Algorithms: Taxonomy and Survey 413

message to be broadcast to more than one
group.

As mentioned in Section 7.4.3, Newtop
[Ezhilchelvan et al. 1995] supports the
combination of groups, even if one group
uses the asymmetric algorithms and the
other group uses the symmetric one. Also,
Newtop is based on a partitionable group
membership service.

7.6.2. Hybrid. Rodrigues et al. [1996]
present an algorithm optimized for large
networks. The algorithm is hybrid: on a lo-
cal scale, a sequence number is attached to
each message by a fixed sequencer, and on
a global scale, the ordering is of type com-
munication history. More precisely, each
sender p has an associated sequencer pro-
cess that issues a sequence number for
each message of p. The original message
and its sequence number are sent to all,
and messages are finally ordered using
a standard communication history tech-
nique (see Section 7.4.1). The authors also
describe interesting heuristics to change
the sequencer process. The reasons for
such changes can be failures, membership
changes, or changes in the traffic pattern.

7.6.3. Indulgent Uniform Total Order. Vi-
cente and Rodrigues [2002] propose an op-
timistic algorithm for wide-area networks.
The algorithm is based on external op-
timism, as initially proposed by Kemme
et al. [1999, 2003]. This means that the
algorithm distinguishes between two de-
livery events following the broadcast of
message m: the optimistic delivery, de-
noted Opt-deliver(m), and the traditional
total order delivery, denoted Adeliver(m).
Upon Opt-deliver(m), the delivery order
of m is not yet decided. However, the ap-
plication can start processing m. If later,
To-deliver(m) invalidates the optimistic
delivery order, then the application must
rollback and undo the processing of m. The
optimism of Kemme et al. [2003] is re-
lated to the spontaneous total ordering in
LANs.

The optimistic algorithm of Vicente
and Rodrigues [2002] extends the hy-
brid algorithm of Rodrigues et al. [1996]

(Section 7.6.2). The delivery order is deter-
mined by sequence numbers attached to
messages. A sequence number attached to
a message m must be validated by a major-
ity of processes before the total order of m
is decided. Nevertheless, the algorithm op-
timistically delivers m according to its se-
quence number before the sequence num-
ber is actually validated.

7.6.4. Optimistic Total Order in WANs. Op-
timistic total order broadcast algorithms
rely heavily on the assumption that mes-
sages are very often received by all pro-
cesses in some spontaneous total order.
This assumption was motivated by obser-
vations made in local networks often over
a single hub. The assumption is, however,
questionable for wide-area networks, in
which the spontaneous total order is sig-
nificantly less likely to occur. Sousa et al.
[2002] propose a time-based solution to ad-
dress this problem and increase the prob-
ability of spontaneous total order in wide-
area networks. The technique, called delay
compensation, consists of artificially de-
laying received messages, so that all des-
tinations will process them at roughly the
same time. A delay is kept for each incom-
ing communication channel, and the dura-
tion of this delay is adapted dynamically.

8. OTHER WORK ON TOTAL ORDER AND
RELATED ISSUES

Apart from papers proposing total
order broadcast algorithms, there is
other closely related work that is worth
mentioning.

Backoff Protocol. Chockler, Malkhi,
and Reiter [2001] describe a replication
protocol which emulates state machine
replication [Lamport 1978a; Schneider
1990]. The protocol is based on quorum
systems and relies on a mutual exclusion
protocol. Basically, a client process want-
ing to perform some operation op on the
replicated servers proceeds as follows: the
client first waits to enter the critical sec-
tion, and then (1) accesses a quorum of
replicas to get an up-to-date state σ of the
replicated servers, (2) performs the opera-
tion op on σ which leads to a new state σ ′,

ACM Computing Surveys, Vol. 36, No. 4, December 2004.

414 X. Défago et al.

and (3) updates a quorum of replicas with
the new state σ ′. The protocol is safe even
if the mutual exclusion protocol violates
safety (more than one process in the criti-
cal section): safety of the mutual exclusion
protocol is only needed to ensure progress
of the replication protocol.

Optimistic Active Replication. Felber
and Schiper [2001] describe another repli-
cation protocol that is integrated with
a total order broadcast algorithm. The
replication protocol is based on an opti-
mistic fixed-sequencer total-order broad-
cast algorithm, which is executed among
the servers. The optimistic algorithm may
lead some servers to deliver messages
out of order, in which case these servers
have to rollback. Rollback is limited to
servers; client processes never have to
rollback.

Probabilistic Protocols. Recently,
Felber and Pedone [2002] have proposed
a total ordered broadcast algorithm with
probabilistic safety. This means that their
algorithms enforce the properties of total
order broadcast with a known probability.
Doing so makes room for extremely scal-
able solutions, but it is only acceptable
for applications with very weak require-
ments. In particular, Felber and Pedone
[2002] propose a specification where
agreement is guaranteed with probabil-
ity γa, total order with probability γo, and
validity with probability γv. The authors
propose an algorithm based on gossiping
and discuss sufficient conditions under
which their algorithm can enforce the
above properties with probability one.

Hardware-Based Protocols. Due to
their specificity, we have deliberately
omitted algorithms that make explicit
use of dedicated hardware. However, they
deserve to be cited here. Some protocols
are based on a modification of the network
controllers (e.g., Jalote [1998] and Minet
and Anceaume [1991a]). The idea is to
slightly modify the network so that it
can be used as a virtual sequencer. In
our classification system, these proto-
cols can be classified as fixed sequencer
protocols. Some other protocols rely on
the characteristics of specific networks
such as a specific topology [Córdova

and Lee 1996], or the ability to reserve
buffers [Chen et al. 1996].

Performance of Total Order Broadcast
Algorithms. Compared to the host of
publications describing algorithms, rel-
atively few papers are concerned with
evaluating the performance of total or-
der broadcast (e.g., Cristian et al. [1994],
Friedman and van Renesse [1997], Mayer
[1992], described in Section 1). Recently,
we presented a comparative performance
analysis based on the classification devel-
oped in this survey [Défago et al. 2003]:
algorithms are taken from all five classes
of ordering mechanisms, and both uni-
form and nonuniform algorithms are con-
sidered. Urbán et al. [2003] go beyond
simply evaluating some algorithm or com-
paring different algorithms. They propose
benchmarks including well-defined perfor-
mance metrics, workloads, and faultloads
describing how failures and related events
occur.

Formal Methods. Formal methods
have been applied both to the problem of
total order broadcast, in order to verify
the properties of algorithms [Zhou and
Hooman 1995; Toinard et al. 1999; Fekete
et al. 2001], and to the problem of consen-
sus, in order to construct a truly formal
proof for an algorithm [Nestmann et al.
2003]. The proofs of Fekete et al. [2001]
were subsequently checked by a theorem
prover. Liu et al. [2001] use the notion of
meta-properties to describe and analyze
a protocol which switches between two
total order broadcast algorithms.

Group Communication Controversy.
Eleven years ago, Cheriton and Skeen
[1993] published a polemic about group
communication systems that provide
causally and totally ordered communi-
cation primitives. Their major argument
against group communication systems
was that systems based on transactions
are more efficient, while providing a
stronger consistency model. This was
subsequently answered by Birman [1994]
and Shrivastava [1994]. More than a
decade later, it appears that work on
transaction systems and on group com-
munication systems tended to influence
each other for a mutual benefit [Schiper

ACM Computing Surveys, Vol. 36, No. 4, December 2004.

Total Order Broadcast and Multicast Algorithms: Taxonomy and Survey 415

and Raynal 1996; Agrawal et al. 1997;
Pedone et al. 1998; Kemme and Alonso
2000; Wiesmann et al. 2000; Kemme et al.
2003].

9. CONCLUSION

The vast literature on total order broad-
cast and the large number of published
algorithms show the complexity of the
problem. However, this abundance of in-
formation is a problem in itself, because it
makes it difficult to understand the exact
tradeoffs associated with each proposed
solution.

The main contribution of this article is
the definition of a classification for total
order broadcast algorithms, that makes it
easier to understand the relationship be-
tween them. It also provides a good basis
for comparing the algorithms and under-
standing some tradeoffs. Furthermore, the
article has presented a vast survey of most
of the existing algorithms and discussed
their respective characteristics.

In spite of the large number of total or-
der broadcast algorithms published, most
are merely improvements or variants of
each other (even if this is not immedi-
ately obvious to the untrained eye). Ac-
tually, there are only a few truly original
algorithms, but a large collection of vari-
ous optimizations. Nevertheless, it is im-
portant to stress that clever optimizations
of existing algorithms often have a very
significant impact on performance. For in-
stance, Friedman and van Renesse [1997]
show that piggybacking messages, in spite
of its simplicity, can significantly improve
the performance of algorithms.

Even though the specification of the to-
tal order broadcast problem dates back
to some of the earliest publications about
the subject, few papers actually specify
the problem that they solve. In fact, too
few algorithms are properly specified, let
alone proven correct. Fortunately, this is
changing and we hope that this article will
contribute to more rigorous work in the
future. Without pushing formalism to ex-
tremes, a clear specification and a sound
proof of correctness are as important as
the algorithm itself. Indeed, they clearly

define the limits within which the algo-
rithm can be used.

ACKNOWLEDGMENTS

We are grateful to the following people for their
helpful advice and constructive criticisms: David E.
Bakken, Bernadette Charron-Bost, Adel Cherif,
Alan D. Fekete, Takuya Katayama, Tohru Kikuno,
Dahlia Malkhi, Keith Marzullo, Rui C. Oliveira,
Fernando Pedone, Michel Raynal, Luis T. Rodrigues,
Richard D. Schlichting, Tatsuhiro Tsuchiya, and
Matthias Wiesmann, as well as Fred B. Schneider,
and the anonymous reviewers. We are also thankful
to Judith Steeh for proofreading this text.

REFERENCES

ABDELZAHER, T., SHAIKH, A., JAHANIAN, F., AND SHIN, K.
1996. RTCAST: Lightweight multicast for real-
time process groups. In IEEE Real-Time Tech-
nology and Applications Symposium (RTAS’96).
(Boston, MA). IEEE Computer Society Press.
250–259.

AGARWAL, D. A., MOSER, L. E., MELLIAR-SMITH, P. M.,
AND BUDHIA, R. K. 1998. The Totem multiple-
ring ordering and topology maintenance proto-
col. ACM Trans. Comput. Syst. 16, 2 (May), 93–
132.

AGRAWAL, D., ALONSO, G., EL ABBADI, A., AND STANOI,
I. 1997. Exploiting atomic broadcast in repli-
cated databases (extended abstract). In Proceed-
ings of EuroPar’97 (Passau, Germany). Lecture
Notes in Computer Science, vol. 1300. Springer-
Verlag. 496–503.

AGUILERA, M. K., CHEN, W., AND TOUEG, S. 1999. Us-
ing the heartbeat failure detector for quiescent
reliable communication and consensus in par-
titionable networks. Theor. Comput. Sci. 220, 1
(June), 3–30.

AGUILERA, M. K., CHEN, W., AND TOUEG, S. 2000.
On quiescent reliable communication. SIAM J.
Comput. 29, 6, 2040–2073.

AGUILERA, M. K., DELPORTE-GALLET, C., FAUCONNIER,
H., AND TOUEG, S. 2000. Thrifty generic broad-
cast. In Proceedings of 14th International Sym-
posium on Distributed Computing (DISC’00)
(Toledo, Spain). M. Herlihy, Ed. Lecture Notes
in Computer Science, vol. 1914. Springer-Verlag.
268–282.

AGUILERA, M. K. AND STROM, R. E. 2000. Efficient
atomic broadcast using deterministic merge.
In Proceedings of 19th ACM Symposium on
Principles of Distributed Computing (PODC-19)
(Portland, OR). ACM Press. 209–218.

AMIR, Y., DOLEV, D., KRAMER, S., AND MALKI, D.
1992. Transis: A communication sub-system
for high availability. In Proceedings of 22nd
International Symposium on Fault-Tolerant
Computing (FTCS-22) (Boston, MA). IEEE Com-
puter Society Press. 76–84.

ACM Computing Surveys, Vol. 36, No. 4, December 2004.

416 X. Défago et al.

AMIR, Y., MOSER, L. E., MELLIAR-SMITH, P. M., AGARWAL,
D. A., AND CIARFELLA, P. 1995. The Totem
single-ring ordering and membership protocol.
ACM Trans. Comput. Syst. 13, 4 (Nov.), 311–342.

ANCEAUME, E. 1993a. Algorithmique de fiabilisa-
tion de systèmes répartis. Ph.D. thesis, Univer-
sité de Paris-sud (Paris XI), Paris, France.

ANCEAUME, E. 1993b. A comparison of fault-
tolerant atomic broadcast protocols. In Proceed-
ings of 4th IEEE Computer Society Workshop on
Future Trends in Distributed Computing Sys-
tems (FTDCS-4) (Lisbon, Portugal). IEEE Com-
puter Society Press. 166–172.

ANCEAUME, E. 1997. A lightweight solution to uni-
form atomic broadcast for asynchronous sys-
tems. In Proceedings of 27th International Sym-
posium on Fault-Tolerant Computing (FTCS-27)
(Seattle, WA). IEEE Computer Society Press.
292–301.

ANCEAUME, E. AND MINET, P. 1992. Étude de pro-
tocoles de diffusion atomique. TR 1774, INRIA
(Oct.) Rocquencourt, France.

ARMSTRONG, S., FREIER, A., AND MARZULLO, K. 1992.
Multicast transport protocol. RFC 1301, IETF
(Feb.)

ATTIYA, H. AND WELCH, J. L. 1994. Sequential con-
sistency versus linearizability. ACM Trans. Com-
put. Syst. 12, 2 (May), 91–122.

BAR-JOSEPH, Z., KEIDAR, I., ANKER, T., AND LYNCH, N.
2000. QoS preserving totally ordered multi-
cast. In Proceedings of 4th International Con-
ference on Principles of Distributed Systems
(OPODIS). Studia Informatica, Paris, France,
143–162.

BAR-JOSEPH, Z., KEIDAR, I., AND LYNCH, N. 2002.
Early-delivery dynamic atomic broadcast. In
Proceedings of 16th International Symposium
on Distributed Computing (DISC’02) (Toulouse,
France). D. Malkhi, Ed. Lecture Notes in Com-
puter Science, vol. 2508. Springer-Verlag. 1–16.

BEN-OR, M. 1983. Another advantage of free
choice: Completely asynchronous agree-
ment protocols. In Proceedings of 2nd ACM
SIGACT-SIGOPS Symposium on Principles of
Distributed Computing (PODC-2) (Montreal
Quebec, Canada). ACM Press. 27–30.

BERMAN, P. AND BHARALI, A. A. 1993. Quick
atomic broadcast (extended abstract). In Pro-
ceedings of 7th International Workshop on
Distributed Algorithms (WDAG’93) (Lausanne,
Switzerland). A. Schiper Ed. Lecture Notes in
Computer Science, vol. 725. Springer-Verlag.
189–203.

BERNSTEIN, P. A., HADZILACOS, V., AND GOODMAN, N.
1987. Concurrency Control and Recovery in
Database Systems. Addison-Wesley, Boston, MA.
http://research.microsoft.com/pubs/ccontrol/.

BHATTI, N. T., HILTUNEN, M. A., SCHLICHTING, R. D.,
AND CHIU, W. 1998. Coyote: A system for con-
structing fine-grain configurable communication
services. ACM Trans. Comput. Syst. 16, 4 (Nov.),
321–366.

BIRMAN, K. 1994. A response to Cheriton and
Skeen’s criticism of causal and totally ordered
communication. ACM Operat. Syst. Rev. 28, 1
(Jan.), 11–21.

BIRMAN, K. AND VAN RENESSE, R. 1994. Reliable Dis-
tributed Computing with the Isis Toolkit (Los
Alamitos, CA). IEEE Computer Society Press.

BIRMAN, K. P. AND JOSEPH, T. A. 1987. Reliable com-
munication in the presence of failures. ACM
Trans. Comput. Syst. 5, 1 (Feb.), 47–76.

BIRMAN, K. P., SCHIPER, A., AND STEPHENSON, P. 1991.
Lightweight causal and atomic group multicast.
ACM Trans. Comput. Syst. 9, 3 (Aug.), 272–
314.

CARR, R. 1985. The Tandem global update proto-
col. Tandem Syst. Rev. 1, 2 (June), 74–85.

CHANDRA, T. D., HADZILACOS, V., AND TOUEG, S. 1996.
The weakest failure detector for solving consen-
sus. J. ACM 43, 4 (July), 685–722.

CHANDRA, T. D. AND TOUEG, S. 1996. Unreliable fail-
ure detectors for reliable distributed systems.
J. ACM 43, 2, 225–267.

CHANG, J.-M. AND MAXEMCHUK, N. F. 1984. Reli-
able broadcast protocols. ACM Trans. Comput.
Syst. 2, 3 (Aug.), 251–273.

CHARRON-BOST, B., PEDONE, F., AND DÉFAGO, X. 1999.
Private communications. (Showed an example il-
lustrating the fact that even the combination of
strong agreement, strong total order, and strong
integrity does not prevent a faulty process from
reaching an inconsistent state.)

CHARRON-BOST, B., TOUEG, S., AND BASU, A. 2000.
Revisiting safety and liveness in the context of
failures. In Concurrency Theory, 11th Interna-
tional Conference (CONCUR 2000) (University
Park, PA). Lecture Notes in Computer Science,
vol. 1877. Springer-Verlag. 552–565.

CHEN, X., MOSER, L. E., AND MELLIAR-SMITH, P. M.
1996. Reservation-based totally ordered mul-
ticasting. In Proceedings of 16th IEEE Interna-
tional Conference on Distributed Computing Sys-
tems (ICDCS-16) (Hong Kong). IEEE Computer
Society Press. 511–519.

CHERITON, D. R. AND SKEEN, D. 1993. Understand-
ing the limitations of causally and totally or-
dered communication. In Proceedings of 14th
ACM Symposium on Operating Systems Prin-
ciples (SoSP-14) (Ashville, NC). ACM Press.
44–57.

CHIU, G.-M. AND HSIAO, C.-M. 1998. A note on to-
tal ordering multicast using propagation trees.
IEEE Trans. Parall. Distrib. Syst. 9, 2 (Feb.),
217–223.

CHOCKLER, G., KEIDAR, I., AND VITENBERG, R. 2001.
Group communication specifications: A compre-
hensive study. ACM Comput. Surv. 33, 4 (Dec.),
427–469.

CHOCKLER, G. V., HULEIHEL, N., AND DOLEV, D.
1998. An adaptive total ordered multicast
protocol that tolerates partitions. In Proceed-
ings of 17th ACM Symposium on Principles

ACM Computing Surveys, Vol. 36, No. 4, December 2004.

Total Order Broadcast and Multicast Algorithms: Taxonomy and Survey 417

of Distributed Computing (PODC-17) (Puerto
Vallarta, Mexico). ACM Press. 237–246.

CHOCKLER, G. V., MALKHI, D., AND REITER, M. K. 2001.
Backoff protocols for distributed mutual exclu-
sion and ordering. In Proceedings of 21st IEEE
International Conference on Distributed Com-
puting Systems (ICDCS-21) (Phoenix, AZ). IEEE
Computer Society Press. 11–20.

CHOR, B. AND DWORK, C. 1989. Randomization in
Byzantine Agreement. Adv. Comput. Res. 5, 443–
497.

CÓRDOVA, J. AND LEE, Y.-H. 1996. Multicast trees
to provide message ordering in mesh networks.
Comput. Syst. Sci. Eng. 11, 1 (Jan.), 3–13.

CRISTIAN, F. 1990. Synchronous atomic broadcast
for redundant broadcast channels. Real-Time
Syst. 2, 3 (Sept.), 195–212.

CRISTIAN, F. 1991. Asynchronous atomic broad-
cast. IBM Technical Disclosure Bulletin 33, 9,
115–116.

CRISTIAN, F., AGHILI, H., STRONG, R., AND DOLEV, D.
1995. Atomic broadcast: From simple message
diffusion to Byzantine agreement. Inf. Com-
put. 18, 1, 158–179.

CRISTIAN, F., DE BEIJER, R., AND MISHRA, S. 1994.
A performance comparison of asynchronous
atomic broadcast protocols. Distrib. Syst. Eng.
J. 1, 4 (June), 177–201.

CRISTIAN, F. AND FETZER, C. 1999. The timed asyn-
chronous distributed system model. IEEE Trans.
Parall. Distrib. Syst. 10, 6 (June), 642–657.

CRISTIAN, F. AND MISHRA, S. 1995. The pinwheel
asynchronous atomic broadcast protocols. In
Proceedings of 2nd International Symposium
on Autonomous Decentralized Systems (Phoenix,
AZ). IEEE Computer Society Press. 215–
221.

CRISTIAN, F., MISHRA, S., AND ALVAREZ, G. 1997.
High-performance asynchronous atomic broad-
cast. Distrib. Syst. Eng. J. 4, 2 (June), 109–128.

DASSER, M. 1992. TOMP: A total ordering multi-
cast protocol. ACM Operat. Syst. Rev. 26, 1 (Jan.),
32–40.

DÉFAGO, X. 2000. Agreement-related problems:
From semi-passive replication to totally ordered
broadcast. Ph.D. thesis, École Polytechnique
Fédérale de Lausanne, Lausanne, Switzerland.
Number 2229.

DÉFAGO, X., SCHIPER, A., AND URBÁN, P. 2003.
Comparative performance analysis of order-
ing strategies in atomic broadcast algorithms.
IEICE Trans. Inf. Syst. E86–D, 12 (Dec.), 2698–
2709.

DELPORTE-GALLET, C. AND FAUCONNIER, H. 1999.
Real-time fault-tolerant atomic broadcast. In
Proceedings of 18th IEEE International Sympo-
sium on Reliable Distributed Systems (SRDS’99)
(Lausanne, Switzerland). IEEE Computer Soci-
ety Press. 48–55.

DELPORTE-GALLET, C. AND FAUCONNIER, H. 2000.
Fault-tolerant genuine Atomic Broadcast to mul-

tiple groups. In Proceedings of 4th International
Conference on Principles of Distributed Systems
(OPODIS). Studia Informatica, Paris, France,
143–162.

DOLEV, D., DWORK, C., AND STOCKMEYER, L. 1987. On
the minimal synchrony needed for distributed
consensus. J. ACM 34, 1 (Jan.), 77–97.

DOLEV, D., KRAMER, S., AND MALKI, D. 1993. Early
delivery totally ordered multicast in asyn-
chronous environments. In Proceedings of 23rd
International Symposium on Fault-Tolerant
Computing (FTCS-23) (Toulouse, France). IEEE
Computer Society Press. 544–553.

DOLEV, D. AND MALKHI, D. 1994. The design of the
Transis system. In Theory and Practice in Dis-
tributed Systems, K. Birman, F. Mattern, and
A. Schiper, Eds. Lecture Notes in Computer Sci-
ence, vol. 938. Springer-Verlag, 83–98.

DOLEV, D. AND MALKHI, D. 1996. The Transis ap-
proach to high availability cluster communnica-
tion. Comm. ACM 39, 4 (April), 64–70.

DWORK, C., LYNCH, N. A., AND STOCKMEYER, L. 1988.
Consensus in the presence of partial synchrony.
J. ACM 35, 2 (April), 288–323.

EKWALL, R., SCHIPER, A., AND URBÁN, P. 2004. Token-
based atomic broadcast using unreliable fail-
ure detectors. In Proceedings of 23nd IEEE In-
ternational Symposium on Reliable Distributed
Systems (SRDS’04) (Florianópolis, Brazil). IEEE
Computer Society Press. 52–65.

EZHILCHELVAN, P. D., MACÊDO, R. A., AND SHRIVASTAVA,
S. K. 1995. Newtop: A fault-tolerant group
communication protocol. In Proceedings of 15th
IEEE International Conference on Distributed
Computing Systems (ICDCS-15) (Vancouver,
Canada). IEEE Computer Society Press. 296–
306.

FEKETE, A. 1993. Formal models of communica-
tion services: A case study. IEEE Comput. 26, 8
(Aug.), 37–47.

FEKETE, A., LYNCH, N., AND SHVARTSMAN, A. 2001.
Specifying and using a partitionable group
communication service. ACM Trans. Comput.
Syst. 19, 2 (May), 171–216.

FELBER, P. AND PEDONE, F. 2002. Probabilistic
atomic broadcast. In Proceedings of 21st IEEE
International Symposium on Reliable Dis-
tributed Systems (SRDS’02) (Osaka, Japan).
IEEE Computer Society Press. 170–179.

FELBER, P. AND SCHIPER, A. 2001. Optimistic active
replication. In Proceedings of 21st IEEE Inter-
national Conference on Distributed Computing
Systems (ICDCS-21) (Phoenix, AZ). IEEE Com-
puter Society Press. 333–341.

FETZER, C. 2003. Perfect failure detection in timed
asynchronous systems. IEEE Trans. Com-
put. 52, 2 (Feb.), 99–112.

FISCHER, M. J., LYNCH, N. A., AND PATERSON, M. S.
1985. Impossibility of distributed consensus
with one faulty process. J. ACM 32, 2 (April),
374–382.

ACM Computing Surveys, Vol. 36, No. 4, December 2004.

418 X. Défago et al.

FRIEDMAN, R. AND VAN RENESSE, R. 1997. Packing
messages as a tool for boosting the performance
of total ordering protocols. In Proceedings of
6th IEEE Symposium on High Performance Dis-
tributed Computing (Portland, OR). IEEE Com-
puter Society Press. 233–242.

FRITZKE, U., INGELS, P., MOSTÉFAOUI, A., AND RAYNAL,
M. 2001. Consensus-based fault-tolerant to-
tal order multicast. IEEE Trans. Parall. Distrib.
Syst. 12, 2 (Feb.), 147–156.

GARCIA-MOLINA, H. AND SPAUSTER, A. 1989. Mes-
sage ordering in a multicast environment. In
Proceedings of 9th IEEE International Con-
ference on Distributed Computing Systems
(ICDCS-9) (Newport Beach, CA). IEEE Com-
puter Society Press. 354–361.

GARCIA-MOLINA, H. AND SPAUSTER, A. 1991. Ordered
and reliable multicast communication. ACM
Trans. Comput. Syst. 9, 3 (Aug.), 242–271.

GOPAL, A. AND TOUEG, S. 1989. Reliable broadcast
in synchronous and asynchronous environment.
In Proceedings of 3rd International Workshop
on Distributed Algorithms (WDAG’89) (Nice,
France). Lecture Notes in Computer Science, vol.
392. Springer-Verlag. 111–123.

GOPAL, A. AND TOUEG, S. 1991. Inconsistency and
contamination. In Proceedings of 10th ACM
Symposium on Principles of Distributed Com-
puting (PODC-10). ACM Press. 257–272.

GUERRAOUI, R. 1995. Revisiting the relationship
between non-blocking atomic commitment and
consensus. In Proceedings of 9th International
Workshop on Distributed Algorithms (WDAG’95)
(Le Mont-St-Michel, France). Lecture Notes in
Computer Science, vol. 972. Springer-Verlag.
87–100.

GUERRAOUI, R. AND SCHIPER, A. 1997. Genuine
atomic multicast. In Proceedings of 11th Inter-
national Workshop on Distributed Algorithms
(WDAG’97) (Saarbrücken, Germany). Lecture
Notes in Computer Science, vol. 1320. Springer-
Verlag. 141–154.

GUERRAOUI, R. AND SCHIPER, A. 2001. Genuine
atomic multicast in asynchronous distributed
systems. Theor. Comput. Sci. 254, 297–
316.

GUY, R. G., POPEK, G. J., AND PAGE JR., T. W. 1993.
Consistency algorithms for optimistic replica-
tion. In Proceedings of 1st IEEE International
Conference on Network Protocols (ICNP’93)
(San Francisco, CA). IEEE Computer Society
Press.

HADZILACOS, V. AND TOUEG, S. 1994. A modular ap-
proach to fault-tolerant broadcasts and related
problems. TR 94-1425, Dept. of Computer Sci-
ence, Cornell University, Ithaca, NY (May.)

HILTUNEN, M. A., SCHLICHTING, R. D., HAN, X., CARDOZO,
M. M., AND DAS, R. 1999. Real-time depend-
able channels: Customizing QoS attributes for
distributed systems. IEEE Trans. Parall. Dis-
trib. Syst. 10, 6 (June), 600–612.

JALOTE, P. 1998. Efficient ordered broadcasting
in reliable CSMA/CD networks. In Proceed-
ings of 18th IEEE International Conference
on Distributed Computing Systems (ICDCS-18)
(Amsterdam, The Netherlands). IEEE Com-
puter Society Press. 112–119.

JIA, X. 1995. A total ordering multicast protocol
using propagation trees. IEEE Trans. Parall.
Distrib. Syst. 6, 6 (June), 617–627.

KAASHOEK, M. F. AND TANENBAUM, A. S. 1996. An
evaluation of the Amoeba group communication
system. In Proceedings of 16th IEEE Interna-
tional Conference on Distributed Computing Sys-
tems (ICDCS-16) (Hong Kong). IEEE Computer
Society Press. 436–447.

KEIDAR, I. AND DOLEV, D. 2000. Totally ordered
broadcast in the face of network partitions. In
Dependable Network Computing, D. R. Avresky,
Ed. Kluwer Academic Pub., Chapter 3, 51–
75.

KEMME, B. AND ALONSO, G. 2000. Don’t be lazy, be
consistent: Postgres-r, a new way to implement
database replication. In Proceedings of 26th In-
ternational Conference on Very Large Data Bases
(VLDB 2000) (Cairo, Egypt). Morgan Kaufmann.
134–143.

KEMME, B., PEDONE, F., ALONSO, G., AND SCHIPER,
A. 1999. Processing transactions over opti-
mistic atomic broadcast protocols. In Proceed-
ings of 19th IEEE International Conference
on Distributed Computing Systems (ICDCS-19)
(Austin, TX). IEEE Computer Society Press.
424–431.

KEMME, B., PEDONE, F., ALONSO, G., SCHIPER, A., AND

WIESMANN, M. 2003. Using optimistic atomic
broadcast in transaction processing systems.
IEEE Trans. Know. Data Eng. 15, 4 (July), 1018–
1032.

KIM, J. AND KIM, C. 1997. A total ordering protocol
using a dynamic token-passing scheme. Distrib.
Syst. Eng. J. 4, 2 (June), 87–95.

KOPETZ, H., GRÜNSTEIDL, G., AND REISINGER, J. 1991.
Fault-tolerant membership service in a syn-
chronous distributed real-time system. In Pro-
ceedings of 2nd IFIP International Working Conf.
on Dependable Computing for Critical Appli-
cations (DCCA-1) (Tucson, AZ). A. Avižienis
and J.-C. Laprie, Eds. Springer-Verlag. 411–
429.

LAMPORT, L. 1978a. The implementation of reli-
able distributed multiprocess systems. Comput.
Netw. 2, 95–114.

LAMPORT, L. 1978b. Time, clocks, and the order-
ing of events in a distributed system. Comm.
ACM 21, 7 (July), 558–565.

LAMPORT, L. 1984. Using time instead of time-outs
in fault-tolerant systems. ACM Trans. Program.
Lang. Syst. 6, 2, 256–280.

LAMPORT, L. 1986a. The mutual exclusion prob-
lem: Part I—a theory of interprocess communi-
cation. J. ACM 33, 2 (April), 313–326.

ACM Computing Surveys, Vol. 36, No. 4, December 2004.

Total Order Broadcast and Multicast Algorithms: Taxonomy and Survey 419

LAMPORT, L. 1986b. On interprocess communica-
tion. part I: Basic formalism. Distrib. Com-
put. 1, 2, 77–85.

LAMPORT, L., SHOSTAK, R., AND PEASE, M. 1982. The
Byzantine generals problem. ACM Trans. Pro-
gram. Lang. Syst. 4, 3, 382–401.

LE LANN, G. AND BRES, G. 1991. Reliable atomic
broadcast in distributed systems with omission
faults. ACM Operat. Syst. Rev. SIGOPS 25, 2
(April), 80–86.

LIU, X., VAN RENESSE, R., BICKFORD, M., KREITZ, C., AND

CONSTABLE, R. 2001. Protocol switching: Ex-
ploiting meta-properties. In Proceedings of 21st
IEEE International Conference on Distributed
Computing Systems Workshops (ICDCSW’01),
Intl. Workshop on Applied Reliable Group Com-
munication (WARGC 2001) (Mesa, AZ). IEEE
Computer Society Press. 37–42.

LUAN, S.-W. AND GLIGOR, V. D. 1990. A fault-
tolerant protocol for atomic broadcast. IEEE
Trans. Parall. Distrib. Syst. 1, 3 (July), 271–285.

LYNCH, N. A. 1996. Distributed Algorithms. Mor-
gan Kaufmann, San Francisco, CA.

LYNCH, N. A. AND TUTTLE, M. R. 1989. An intro-
duction to input/output automata. CWI Quar-
terly 2, 3 (Sept.), 219–246.

MALHIS, L. M., SANDERS, W. H., AND SCHLICHTING, R. D.
1996. Numerical performability evaluation of
a group multicast protocol. Distrib. Syst. Eng.
J. 3, 1 (March), 39–52.

MALLOTH, C. P. 1996. Conception and implementa-
tion of a toolkit for building fault-tolerant dis-
tributed applications in large scale networks.
Ph.D. thesis, École Polytechnique Fédérale de
Lausanne, Switzerland. Number 1557.

MALLOTH, C. P., FELBER, P., SCHIPER, A., AND WILHELM,
U. 1995. Phoenix: A toolkit for building fault-
tolerant distributed applications in large scale.
In Workshop on Parallel and Distributed Plat-
forms in Industrial Products; 7th IEEE Sym-
posium on Parallel and Distributed Processing.
San Antonio, TX.

MAYER, E. 1992. An evaluation framework for
multicast ordering protocols. In Proceedings
of ACM International Conference on Appli-
cations, Technologies, Architecture, and Proto-
cols (SIGCOMM) (Baltimore, Maryland). ACM
Press. 177–187.

MINET, P. AND ANCEAUME, E. 1991a. ABP: An atomic
broadcast protocol. TR 1473, INRIA (June). Roc-
quencourt, France.

MINET, P. AND ANCEAUME, E. 1991b. Atomic broad-
cast in one phase. ACM Operat. Syst. Rev. 25, 2
(April), 87–90.

MISHRA, S., PETERSON, L. L., AND SCHLICHTING, R. D.
1993. Consul: a communication substrate for
fault-tolerant distributed programs. Distrib.
Syst. Eng. J. 1, 1, 87–103.

MOSER, L. E. AND MELLIAR-SMITH, P. M. 1999.
Byzantine-resistant total ordering algorithms.
Inf. Comput. 150, 1 (April), 75–111.

MOSER, L. E., MELLIAR-SMITH, P. M., AGRAWAL, D. A.,
BUDHIA, R. K., AND LINGLEY-PAPADOPOULOS, C. A.
1996. Totem: A fault-tolerant multicast group
communication system. Comm. ACM 39, 4
(April), 54–63.

MOSER, L. E., MELLIAR-SMITH, P. M., AND AGRAWALA, V.
1993. Asynchronous fault-tolerant total order-
ing algorithms. SIAM J. Comput. 22, 4 (Aug.),
727–750.

MOSTÉFAOUI, A. AND RAYNAL, M. 2000. Low cost
consensus-based atomic broadcast. In Proceed-
ings of 7th IEEE Pacific Rim Symposium on De-
pendable Computing (PRDC’00) (Los Angeles,
CA). IEEE Computer Society Press. 45–52.

NAVARATNAM, S., CHANSON, S. T., AND NEUFELD, G. W.
1988. Reliable group communication in dis-
tributed systems. In Proceedings of 8th IEEE In-
ternational Conference on Distributed Comput-
ing Systems (ICDCS-8) (San Jose, CA). IEEE
Computer Society Press. 439–446.

NEIGER, G. AND TOUEG, S. 1990. Automatically in-
creasing the fault-tolerance of distributed algo-
rithms. J. Algorithms 11, 3, 374–419.

NESTMANN, U., FUZZATI, R., AND MERRO, M. 2003.
Modeling consensus in a process calculus. In
(CONCUR 2003) Concurrency Theory, 14th In-
ternational Conference (Marseille, France). R. M.
Amadio and D. Lugiez, Eds. Lecture Notes in
Computer Science, vol. 2761. Springer-Verlag.
393–407.

NG, T. P. 1991. Ordered broadcasts for large ap-
plications. In Proceedings of 10th IEEE Interna-
tional Symposium on Reliable Distributed Sys-
tems (SRDS’91) (Pisa, Italy). IEEE Computer
Society Press. 188–197.

PEDONE, F. 2001. Boosting system performance
with optimistic distributed protocols. IEEE
Comput. 34, 12 (Dec.), 80–86.

PEDONE, F., GUERRAOUI, R., AND SCHIPER, A. 1998.
Exploiting atomic broadcast in replicated
databases. In Proceedings of EuroPar (Eu-
roPar’98) (Southampton, UK). Lecture Notes in
Computer Science, vol. 1470. Springer-Verlag.
513–520.

PEDONE, F. AND SCHIPER, A. 1998. Optimistic atomic
broadcast. In Proceedings of 12th Interna-
tional Symposium on Distributed Computing
(DISC’98) (Andros, Greece). Lecture Notes in
Computer Science, vol. 1499. Springer-Verlag.
318–332.

PEDONE, F. AND SCHIPER, A. 1999. Generic broad-
cast. In Proceedings of 13th International Sym-
posium on Distributed Computing (DISC’99)
(Bratislava, Slovak Republic). Lecture Notes in
Computer Science, vol. 1693. Springer-Verlag.
94–108.

PEDONE, F. AND SCHIPER, A. 2002. Handling mes-
sage semantics with generic broadcast protocols.
Distrib. Comput. 15, 2, 97–107.

PEDONE, F. AND SCHIPER, A. 2003. Optimistic atomic
broadcast: A pragmatic viewpoint. Theor. Com-
put. Sci. 291, 79–101.

ACM Computing Surveys, Vol. 36, No. 4, December 2004.

420 X. Défago et al.

PEDONE, F., SCHIPER, A., URBÁN, P., AND CAVIN, D.
2002. Solving agreement problems with weak
ordering oracles. In Proceedings of 4th European
Dependable Computing Conference (EDCC-4)
(Toulouse, France). Lecture Notes in Com-
puter Science, vol. 2485. Springer-Verlag. 44–
61.

PETERSON, L. L., BUCHHOLZ, N. C., AND SCHLICHTING,
R. D. 1989. Preserving and using context in-
formation in interprocess communication. ACM
Trans. Comput. Syst. 7, 3, 217–246.

POLEDNA, S. 1994. Replica determinism in dis-
tributed real-time systems: A brief survey. Real-
Time Syst. 6, 3 (May), 289–316.

RABIN, M. 1983. Randomized Byzantine generals.
In Proceedings of 24th Annual ACM Symposium
on Foundations of Computer Science (FOCS)
(Tucson, AZ). ACM Press. 403–409.

RAJAGOPALAN, B. AND MCKINLEY, P. 1989. A token-
based protocol for reliable, ordered multicast
communication. In Proceedings of 8th IEEE In-
ternational Symposium on Reliable Distributed
Systems (SRDS’89) (Seattle, WA). IEEE Com-
puter Society Press. 84–93.

REITER, M. K. 1994. Secure agreement protocols:
Reliable and atomic group multicast in Rampart.
In Proceedings of 2nd ACM Conf. on Computer
and Communications Security (CCS-2) (Fairfax,
VA). ACM Press. 68–80.

REITER, M. K. 1996. Distributing trust with the
Rampart toolkit. Comm. ACM 39, 4 (April), 71–
74.

RODRIGUES, L., FONSECA, H., AND VERı́SSIMO, P. 1996.
Totally ordered multicast in large-scale sys-
tems. In Proceedings of 16th IEEE International
Conference on Distributed Computing Systems
(ICDCS-16) (Hong Kong). IEEE Computer Soci-
ety Press. 503–510.

RODRIGUES, L., GUERRAOUI, R., AND SCHIPER, A. 1998.
Scalable atomic multicast. In Proceedings of 7th
IEEE International Conference on Computer
Communications and Networks (Lafayette,
LA). IEEE Computer Society Press. 840–
847.

RODRIGUES, L. T. AND RAYNAL, M. 2000. Atomic
broadcast in asynchronous crash-recovery
distributed systems. In Proceedings of 20th
IEEE International Conference on Distributed
Computing Systems (ICDCS-20) (Taipei,
Taiwan). IEEE Computer Society Press. 288–
295.

RODRIGUES, L. T. AND VERı́SSIMO, P. 1992. xAMP:
a multi-primitive group communications ser-
vice. In Proceedings of 11th IEEE International
Symposium on Reliable Distributed Systems
(SRDS’92) (Houston, TX). IEEE Computer So-
ciety Press. 112–121.

RODRIGUES, L. T., VERı́SSIMO, P., AND CASIMIRO, A.
1993. Using atomic broadcast to implement
a posteriori agreement for clock synchroniza-
tion. In Proceedings of 12th IEEE International

Symposium on Reliable Distributed Systems
(SRDS’93) (Princeton, NJ). IEEE Computer So-
ciety Press. 115–124.

SCHIPER, A. AND RAYNAL, M. 1996. From group com-
munication to transactions in distributed sys-
tems. Comm. ACM 39, 4 (April), 84–87.

SCHNEIDER, F. B. 1990. Implementing fault-
tolerant services using the state machine
approach: a tutorial. ACM Comput. Surv. 22, 4
(Dec.), 299–319.

SHIEH, S.-P. AND HO, F.-S. 1997. A comment on
“a total ordering multicast protocol using prop-
agation trees”. IEEE Trans. Parall. Distrib.
Syst. 8, 10 (Oct.), 1084.

SHRIVASTAVA, S. K. 1994. To CATOCS or not to
CATOCS, that is the. . . ACM Operat. Syst.
Rev. 28, 4 (Oct.), 11–14.

SOUSA, A., PEREIRA, J., MOURA, F., AND OLIVEIRA, R.
2002. Optimistic total order in wide area net-
works. In Proceedings of 21st IEEE Interna-
tional Symposium on Reliable Distributed Sys-
tems (SRDS’02) (Osaka, Japan). IEEE Computer
Society Press. 190–199.

TOINARD, C., FLORIN, G., AND CARREZ, C. 1999. A for-
mal method to prove ordering properties of mul-
ticast algorithms. ACM Operat. Syst. Rev. 33, 4
(Oct.), 75–89.

URBÁN, P., DÉFAGO, X., AND SCHIPER, A. 2000.
Contention-aware metrics for distributed algo-
rithms: Comparison of atomic broadcast algo-
rithms. In Proceedings of 9th IEEE International
Conference on Computer Communications and
Networks (IC3N’00) (Las Vegas, NV). IEEE Com-
puter Society Press. 582–589.

URBÁN, P., SHNAYDERMAN, I., AND SCHIPER, A. 2003.
Comparison of failure detectors and group mem-
bership: Performance study of two atomic broad-
cast algorithms. In Proceedings of IEEE Interna-
tional Conference on Dependable Systems and
Networks (DSN’03) (San Francisco, CA). IEEE
Computer Society Press. 645–654.

VERı́SSIMO, P., RODRIGUES, L., AND BAPTISTA, M. 1989.
AMp: A highly parallel atomic multicast pro-
tocol. Comput. Comm. Rev. 19, 4 (Sept.), 83–
93.

VICENTE, P. AND RODRIGUES, L. 2002. An indulgent
uniform total order algorithm with optimistic
delivery. In Proceedings of 21st IEEE Interna-
tional Symposium on Reliable Distributed Sys-
tems (SRDS’02) (Osaka, Japan). IEEE Computer
Society Press. 92–101.

WHETTEN, B., MONTGOMERY, T., AND KAPLAN, S. 1994.
A high performance totally ordered multicast
protocol. In Theory and Practice in Distributed
Systems (Dagstuhl Castle, Germany). K. P.
Birman, F. Mattern, and A. Schiper, Eds. Lec-
ture Notes in Computer Science, vol. 938.
Springer-Verlag. 33–57.

WIESMANN, M., PEDONE, F., SCHIPER, A., KEMME, B.,
AND ALONSO, G. 2000. Understanding repli-
cation in databases and distributed systems.

ACM Computing Surveys, Vol. 36, No. 4, December 2004.

Total Order Broadcast and Multicast Algorithms: Taxonomy and Survey 421

In Proceedings of 20th IEEE International
Conference on Distributed Computing Systems
(ICDCS-20) (Taipei, Taiwan). IEEE Computer
Society Press. 264–274.

WILHELM, U. AND SCHIPER, A. 1995. A hierarchy
of totally ordered multicasts. In Proceedings of
14th IEEE International Symposium on Reliable

Distributed Systems (SRDS’95) (Bad Neuenahr,
Germany). IEEE Computer Society Press. 106–
115.

ZHOU, P. AND HOOMAN, J. 1995. Formal specifica-
tion and compositional verification of an atomic
broadcast protocol. Real-Time Syst. 9, 2 (Sept.),
119–145.

Received September 2000; revised August 2003; accepted July 2004

ACM Computing Surveys, Vol. 36, No. 4, December 2004.

