
18-796/Spring 1999/Chen

Arithmetic Coding (Implementation #2)

Encoder

A symbol is encoded by using a specific array of integers (or a model) and by calling the following
procedure. The values of low, high, and opposite_bits are initialized to 0, Top, and 0,
respectively. The model is specified through cum_freq[], where cum_freq[0] acts as a scale
factor. The symbol is indexed as 1… N.

#define c 8
#define Top (2^c-1)
#define Qtr (Top/4+1)
#define Half (2*Qtr)
#define 3Qtr (3*Qtr)

static long low, high, opposite_bits, range;

void encode_a_symbol(int index, int cum_freq[])
{

range = high – low + 1;
high = low + (range * cum_freq[index-1]) / cum_freq[0] - 1;
low = low + (range * cum_freq[index]) / cum_freq[0];
for (; ;) {

if (high < Half) {
send out a bit “0”;
while (opposite_bits > 0) {

send out a bit “1”;
opposite_bits––;

}
}
else if (low >= Half) {

send out a bit “1”;
while (opposite_bits > 0) {

send out a bit “0”;
opposite_bits––;

}
low –= Half;
high –= Half;

}
else if (low >= Qtr && high < 3Qtr) {

opposite_bits += 1;
low –= Qtr;
high –= Qtr;

}
else break;

low = 2 * low;
high = 2 * high+1;

}
}

At the of the coding process, the encoder is flushed by calling the following procedure:

Flushing at the Encoder

18-796/Spring 1999/Chen

void encoder_flush()
{

opposite_bits++;
if (low < Qtr) {

send out a bit “0”;
while (opposite_bits > 0) {

send out a bit “1”;
opposite_bits––;

}
}
else {

send out a bit “1”;
while (opposite_bits > 0) {

send out a bit “0”;
opposite_bits––;

}
}
low = 0;
high = Top;

}

Decoder

A symbol is decoded by using the model and by calling the following procedure.

static long low, high, value, bit, range, index, cum;

int decode_a_symbol(int cum_freq[])
{

range = high – low + 1;
cum = ((value – low + 1) * cum_freq[0] - 1) / range;
find index such that cum_freq[index] <= cum < cum_freq[index-1];
high = low + (range * cum_freq[index–1]) / cum_freq[0] - 1;
low = low + (range * cum_freq[index]) / cum_freq[0];
for (; ;) {

if (high < Half);
else if (low >= Half) {

value -= Half;
low –= Half;
high –= Half;

}
else if (low >= Qtr && high < 3Qtr) {

value –= Qtr;
low –= Qtr;
high –= Qtr;

}
else break;

low = 2 * low;
high = 2 * high + 1;
get one bit;
value = 2 * value + bit;

}
return (index);

}

18-796/Spring 1999/Chen

Again the model is specified through cum_freq[]. The decoded symbol is returned through its index
in the model. The decoder is initialized to start decoding an arithmetic coded bitstream by calling the
following procedure:

Initialization at the Decoder

void decoder_reset()
{

value = 0;
low = 0;
high = Top;
for (int i = 1; i <= c; i++) {

get one bit;
value = 2 * value + bit;

}
}

NOTE: If there is no more bit to get, set bit = 1.

