INTERNATIONAL ORGANISATION FOR STANDARDISATION

ORGANISATION INTERNATIONALE DE NORMALISATION

ISO/IEC JTC1/SC29/WG11

CODING OF MOVING PICTURES AND AUDIO

ISO/IEC JTC1/SC29/WG11 N1901

21 November 1997

Source:�MPEG-4 Systems��Status:�Approved at the 41th Meeting��Title:�Text for CD 14496-1 Systems��Authors:�Alexandros Eleftheriadis, Carsten Herpel, Ganesh Rajan, and Liam Ward (Editors)��

© ISO/IEC��

Version of: � TIME \@ "d MMMM yyyy" �21 November 1997� � TIME \@ "HH:MM:ss" �20:11:48�

Please address any comments or suggestions to spec-sys@fzi.de

�Table of Contents

� TOC \o "1-6" �0.	Introduction	� PAGEREF _Toc404824258 \h ��1�

0.1	Architecture	� PAGEREF _Toc404824259 \h ��1�

0.2	Systems Decoder Model	� PAGEREF _Toc404824260 \h ��2�

0.2.1	Timing Model	� PAGEREF _Toc404824261 \h ��3�

0.2.2	Buffer Model	� PAGEREF _Toc404824262 \h ��3�

0.3	FlexMux and TransMux Layer	� PAGEREF _Toc404824263 \h ��3�

0.4	AccessUnit Layer	� PAGEREF _Toc404824264 \h ��3�

0.5	Compression Layer	� PAGEREF _Toc404824265 \h ��3�

0.5.1	Object Descriptor Elementary Streams	� PAGEREF _Toc404824266 \h ��3�

0.5.2	Scene Description Streams	� PAGEREF _Toc404824267 \h ��4�

0.5.3	Upchannel Streams	� PAGEREF _Toc404824268 \h ��4�

0.5.4	Object Content Information Streams	� PAGEREF _Toc404824269 \h ��4�

1.	Scope	� PAGEREF _Toc404824270 \h ��4�

2.	Normative References	� PAGEREF _Toc404824271 \h ��4�

3.	Additional References	� PAGEREF _Toc404824272 \h ��5�

4.	Definitions	� PAGEREF _Toc404824273 \h ��5�

5.	Abbreviations and Symbols	� PAGEREF _Toc404824274 \h ��6�

6.	Conventions	� PAGEREF _Toc404824275 \h ��7�

6.1	Syntax Description	� PAGEREF _Toc404824276 \h ��7�

7.	Specification	� PAGEREF _Toc404824277 \h ��8�

7.1	Systems Decoder Model	� PAGEREF _Toc404824278 \h ��8�

7.1.1	Introduction	� PAGEREF _Toc404824279 \h ��8�

7.1.2	Concepts of the Systems Decoder Model	� PAGEREF _Toc404824280 \h ��8�

7.1.2.1	DMIF Application Interface (DAI)	� PAGEREF _Toc404824281 \h ��8�

7.1.2.2	AL-packetized Stream (APS)	� PAGEREF _Toc404824282 \h ��8�

7.1.2.3	Access Units (AU)	� PAGEREF _Toc404824283 \h ��9�

7.1.2.4	Decoding Buffer (DB)	� PAGEREF _Toc404824284 \h ��9�

7.1.2.5	Elementary Streams (ES)	� PAGEREF _Toc404824285 \h ��9�

7.1.2.6	Elementary Stream Interface (ESI)	� PAGEREF _Toc404824286 \h ��9�

7.1.2.7	Media Object Decoder	� PAGEREF _Toc404824287 \h ��9�

7.1.2.8	Composition Units (CU)	� PAGEREF _Toc404824288 \h ��9�

7.1.2.9	Composition Memory (CM)	� PAGEREF _Toc404824289 \h ��9�

7.1.2.10	Compositor	� PAGEREF _Toc404824290 \h ��9�

7.1.3	Timing Model Specification	� PAGEREF _Toc404824291 \h ��9�

7.1.3.1	System Time Base (STB)	� PAGEREF _Toc404824292 \h ��10�

7.1.3.2	Object Time Base (OTB)	� PAGEREF _Toc404824293 \h ��10�

7.1.3.3	Object Clock Reference (OCR)	� PAGEREF _Toc404824294 \h ��10�

7.1.3.4	Decoding Time Stamp (DTS)	� PAGEREF _Toc404824295 \h ��10�

7.1.3.5	Composition Time Stamp (CTS)	� PAGEREF _Toc404824296 \h ��10�

7.1.3.6	Occurrence of timing information in Elementary Streams	� PAGEREF _Toc404824297 \h ��11�

7.1.3.7	Example	� PAGEREF _Toc404824298 \h ��11�

7.1.4	Buffer Model Specification	� PAGEREF _Toc404824299 \h ��11�

7.1.4.1	Elementary decoder model	� PAGEREF _Toc404824300 \h ��11�

7.1.4.2	Assumptions	� PAGEREF _Toc404824301 \h ��12�

7.1.4.2.1	Constant end-to-end delay	� PAGEREF _Toc404824302 \h ��12�

7.1.4.2.2	Demultiplexer	� PAGEREF _Toc404824303 \h ��12�

7.1.4.2.3	Decoding Buffer	� PAGEREF _Toc404824304 \h ��12�

7.1.4.2.4	Decoder	� PAGEREF _Toc404824305 \h ��12�

7.1.4.2.5	Composition Memory	� PAGEREF _Toc404824306 \h ��12�

7.1.4.2.6	Compositor	� PAGEREF _Toc404824307 \h ��12�

7.1.4.3	Managing Buffers: A Walkthrough	� PAGEREF _Toc404824308 \h ��12�

7.2	Scene Description	� PAGEREF _Toc404824309 \h ��14�

7.2.1	Introduction	� PAGEREF _Toc404824310 \h ��14�

7.2.1.1	Scope	� PAGEREF _Toc404824311 \h ��14�

7.2.1.2	Composition	� PAGEREF _Toc404824312 \h ��14�

7.2.1.3	Scene Description	� PAGEREF _Toc404824313 \h ��15�

7.2.1.3.1	Grouping of objects	� PAGEREF _Toc404824314 \h ��15�

7.2.1.3.2	Spatio-Temporal positioning of objects	� PAGEREF _Toc404824315 \h ��15�

7.2.1.3.3	Attribute value selection	� PAGEREF _Toc404824316 \h ��15�

7.2.2	Concepts	� PAGEREF _Toc404824317 \h ��16�

7.2.2.1	Global structure of a BIFS Scene Description	� PAGEREF _Toc404824318 \h ��16�

7.2.2.2	BIFS Scene graph	� PAGEREF _Toc404824319 \h ��16�

7.2.2.3	2D Coordinate System	� PAGEREF _Toc404824320 \h ��17�

7.2.2.4	3D Coordinate System	� PAGEREF _Toc404824321 \h ��18�

7.2.2.5	Standard Units	� PAGEREF _Toc404824322 \h ��19�

7.2.2.6	Mapping of scenes to screens	� PAGEREF _Toc404824323 \h ��19�

7.2.2.7	Nodes and fields	� PAGEREF _Toc404824324 \h ��19�

7.2.2.7.1	Nodes	� PAGEREF _Toc404824325 \h ��19�

7.2.2.7.2	Fields and Events	� PAGEREF _Toc404824326 \h ��19�

7.2.2.8	Basic data types	� PAGEREF _Toc404824327 \h ��19�

7.2.2.8.1	Numerical data and string data types	� PAGEREF _Toc404824328 \h ��19�

7.2.2.8.1.1	SFBool	� PAGEREF _Toc404824329 \h ��20�

7.2.2.8.1.2	SFColor/MFColor	� PAGEREF _Toc404824330 \h ��20�

7.2.2.8.1.3	SFFloat/MFFloat	� PAGEREF _Toc404824331 \h ��20�

7.2.2.8.1.4	SFInt32/MFInt32	� PAGEREF _Toc404824332 \h ��20�

7.2.2.8.1.5	SFRotation/MFRotation	� PAGEREF _Toc404824333 \h ��20�

7.2.2.8.1.6	SFString/MFString	� PAGEREF _Toc404824334 \h ��20�

7.2.2.8.1.7	SFTime	� PAGEREF _Toc404824335 \h ��20�

7.2.2.8.1.8	SFVec2f/MFVec2f	� PAGEREF _Toc404824336 \h ��20�

7.2.2.8.1.9	SFVec3f/MFVec3f	� PAGEREF _Toc404824337 \h ��20�

7.2.2.8.2	Node data types	� PAGEREF _Toc404824338 \h ��20�

7.2.2.9	Attaching nodeIDs to nodes	� PAGEREF _Toc404824339 \h ��20�

7.2.2.10	Using pre-defined nodes	� PAGEREF _Toc404824340 \h ��20�

7.2.2.11	Scene Structure and Semantics	� PAGEREF _Toc404824341 \h ��21�

7.2.2.11.1	2D Grouping Nodes	� PAGEREF _Toc404824342 \h ��21�

7.2.2.11.2	2D Geometry Nodes	� PAGEREF _Toc404824343 \h ��21�

7.2.2.11.3	2D Material Nodes	� PAGEREF _Toc404824344 \h ��21�

7.2.2.11.4	Face and Body nodes	� PAGEREF _Toc404824345 \h ��21�

7.2.2.11.5	Mixed 2D/3D Nodes	� PAGEREF _Toc404824346 \h ��21�

7.2.2.12	Internal, ASCII and Binary Representation of Scenes	� PAGEREF _Toc404824347 \h ��22�

7.2.2.12.1	Binary Syntax Overview	� PAGEREF _Toc404824348 \h ��22�

7.2.2.12.1.1	Scene Description	� PAGEREF _Toc404824349 \h ��22�

7.2.2.12.1.2	Node Description	� PAGEREF _Toc404824350 \h ��22�

7.2.2.12.1.3	Fields description	� PAGEREF _Toc404824351 \h ��22�

7.2.2.12.1.4	ROUTE description	� PAGEREF _Toc404824352 \h ��22�

7.2.2.13	BIFS Elementary Streams	� PAGEREF _Toc404824353 \h ��22�

7.2.2.13.1	BIFS-Update commands	� PAGEREF _Toc404824354 \h ��22�

7.2.2.13.2	BIFS Access Units	� PAGEREF _Toc404824355 \h ��22�

7.2.2.13.3	Requirements on BIFS elementary stream transport	� PAGEREF _Toc404824356 \h ��23�

7.2.2.13.4	Time base for the scene description	� PAGEREF _Toc404824357 \h ��23�

7.2.2.13.5	Composition Time Stamp semantics for BIFS Access Units	� PAGEREF _Toc404824358 \h ��23�

7.2.2.13.6	Multiple BIFS streams	� PAGEREF _Toc404824359 \h ��23�

7.2.2.13.7	Time Fields in BIFS nodes	� PAGEREF _Toc404824360 \h ��23�

7.2.2.13.7.1	Example	� PAGEREF _Toc404824361 \h ��23�

7.2.2.13.8	Time events based on media time	� PAGEREF _Toc404824362 \h ��24�

7.2.2.14	Sound	� PAGEREF _Toc404824363 \h ��24�

7.2.2.14.1	Overview of sound node semantics	� PAGEREF _Toc404824364 \h ��25�

7.2.2.14.1.1	Sample-rate conversion	� PAGEREF _Toc404824365 \h ��25�

7.2.2.14.1.2	Number of output channels	� PAGEREF _Toc404824366 \h ��26�

7.2.2.14.2	Audio-specific BIFS	� PAGEREF _Toc404824367 \h ��26�

7.2.2.14.2.1	Audio-related BIFS nodes	� PAGEREF _Toc404824368 \h ��26�

7.2.2.15	Drawing Order	� PAGEREF _Toc404824369 \h ��26�

7.2.2.15.1	Scope of Drawing Order	� PAGEREF _Toc404824370 \h ��26�

7.2.2.16	Bounding Boxes	� PAGEREF _Toc404824371 \h ��26�

7.2.2.17	Sources of modification to the scene	� PAGEREF _Toc404824372 \h ��27�

7.2.2.17.1	Interactivity and behaviors	� PAGEREF _Toc404824373 \h ��27�

7.2.2.17.2	External modification of the scene: BIFS Update	� PAGEREF _Toc404824374 \h ��27�

7.2.2.17.2.1	Overview	� PAGEREF _Toc404824375 \h ��27�

7.2.2.17.2.2	Update examples	� PAGEREF _Toc404824376 \h ��28�

7.2.2.17.3	External animation of the scene: BIFS-Anim	� PAGEREF _Toc404824377 \h ��28�

7.2.2.17.3.1	Overview	� PAGEREF _Toc404824378 \h ��28�

7.2.2.17.3.2	Animation Mask	� PAGEREF _Toc404824379 \h ��29�

7.2.2.17.3.3	Animation Frames	� PAGEREF _Toc404824380 \h ��29�

7.2.2.17.3.4	Animation Examples	� PAGEREF _Toc404824381 \h ��29�

7.2.3	BIFS Binary Syntax	� PAGEREF _Toc404824382 \h ��29�

7.2.3.1	BIFS Scene and Nodes Syntax	� PAGEREF _Toc404824383 \h ��29�

7.2.3.1.1	BIFSScene	� PAGEREF _Toc404824384 \h ��29�

7.2.3.1.2	BIFSNodes	� PAGEREF _Toc404824385 \h ��29�

7.2.3.1.3	SFNode	� PAGEREF _Toc404824386 \h ��30�

7.2.3.1.4	MaskNodeDescription	� PAGEREF _Toc404824387 \h ��30�

7.2.3.1.5	ListNodeDescription	� PAGEREF _Toc404824388 \h ��30�

7.2.3.1.6	NodeType	� PAGEREF _Toc404824389 \h ��31�

7.2.3.1.7	Field	� PAGEREF _Toc404824390 \h ��31�

7.2.3.1.8	MFField	� PAGEREF _Toc404824391 \h ��31�

7.2.3.1.9	SFField	� PAGEREF _Toc404824392 \h ��31�

7.2.3.1.9.1	SFBool	� PAGEREF _Toc404824393 \h ��32�

7.2.3.1.9.2	SFColor	� PAGEREF _Toc404824394 \h ��32�

7.2.3.1.9.3	SFFloat	� PAGEREF _Toc404824395 \h ��32�

7.2.3.1.9.4	SFImage	� PAGEREF _Toc404824396 \h ��33�

7.2.3.1.9.5	SFInt32	� PAGEREF _Toc404824397 \h ��33�

7.2.3.1.9.6	SFRotation	� PAGEREF _Toc404824398 \h ��33�

7.2.3.1.9.7	SFString	� PAGEREF _Toc404824399 \h ��33�

7.2.3.1.9.8	SFTime	� PAGEREF _Toc404824400 \h ��33�

7.2.3.1.9.9	SFUrl	� PAGEREF _Toc404824401 \h ��34�

7.2.3.1.9.10	SFVec2f	� PAGEREF _Toc404824402 \h ��34�

7.2.3.1.9.11	SFVec3f	� PAGEREF _Toc404824403 \h ��34�

7.2.3.1.10	QuantizedField	� PAGEREF _Toc404824404 \h ��34�

7.2.3.1.11	Field IDs syntax	� PAGEREF _Toc404824405 \h ��35�

7.2.3.1.11.1	defID	� PAGEREF _Toc404824406 \h ��35�

7.2.3.1.11.2	inID	� PAGEREF _Toc404824407 \h ��35�

7.2.3.1.11.3	outID	� PAGEREF _Toc404824408 \h ��35�

7.2.3.1.11.4	dynID	� PAGEREF _Toc404824409 \h ��35�

7.2.3.1.12	ROUTE syntax	� PAGEREF _Toc404824410 \h ��36�

7.2.3.1.12.1	ROUTEs	� PAGEREF _Toc404824411 \h ��36�

7.2.3.1.12.2	ListROUTEs	� PAGEREF _Toc404824412 \h ��36�

7.2.3.1.12.3	VectorROUTEs	� PAGEREF _Toc404824413 \h ��36�

7.2.3.2	BIFS-Update Syntax	� PAGEREF _Toc404824414 \h ��36�

7.2.3.2.1	Update Frame	� PAGEREF _Toc404824415 \h ��36�

7.2.3.2.2	Update Command	� PAGEREF _Toc404824416 \h ��37�

7.2.3.2.3	Insertion Command	� PAGEREF _Toc404824417 \h ��37�

7.2.3.2.3.1	Node Insertion	� PAGEREF _Toc404824418 \h ��37�

7.2.3.2.3.2	IndexedValue Insertion	� PAGEREF _Toc404824419 \h ��37�

7.2.3.2.3.3	ROUTE Insertion	� PAGEREF _Toc404824420 \h ��38�

7.2.3.2.4	Deletion Command	� PAGEREF _Toc404824421 \h ��38�

7.2.3.2.4.1	Node Deletion	� PAGEREF _Toc404824422 \h ��38�

7.2.3.2.4.2	IndexedValue Deletion	� PAGEREF _Toc404824423 \h ��38�

7.2.3.2.4.3	ROUTE Deletion	� PAGEREF _Toc404824424 \h ��39�

7.2.3.2.5	Replacement Command	� PAGEREF _Toc404824425 \h ��39�

7.2.3.2.5.1	Node Replacement	� PAGEREF _Toc404824426 \h ��39�

7.2.3.2.5.2	Field Replacement	� PAGEREF _Toc404824427 \h ��39�

7.2.3.2.5.3	IndexedValue Replacement	� PAGEREF _Toc404824428 \h ��39�

7.2.3.2.5.4	ROUTE Replacement	� PAGEREF _Toc404824429 \h ��40�

7.2.3.2.5.5	Scene Replacement	� PAGEREF _Toc404824430 \h ��40�

7.2.3.3	BIFS-Anim Syntax	� PAGEREF _Toc404824431 \h ��40�

7.2.3.3.1	BIFS AnimationMask	� PAGEREF _Toc404824432 \h ��40�

7.2.3.3.1.1	AnimationMask	� PAGEREF _Toc404824433 \h ��40�

7.2.3.3.1.2	Elementary mask	� PAGEREF _Toc404824434 \h ��40�

7.2.3.3.1.3	InitialFieldsMask	� PAGEREF _Toc404824435 \h ��40�

7.2.3.3.1.4	}InitialAnimQP	� PAGEREF _Toc404824436 \h ��41�

7.2.3.3.2	Animation Frame Syntax	� PAGEREF _Toc404824437 \h ��42�

7.2.3.3.2.1	AnimationFrame	� PAGEREF _Toc404824438 \h ��42�

7.2.3.3.2.2	AnimationFrameHeader	� PAGEREF _Toc404824439 \h ��42�

7.2.3.3.2.3	AnimationFrameData	� PAGEREF _Toc404824440 \h ��42�

7.2.3.3.2.4	AnimationField	� PAGEREF _Toc404824441 \h ��43�

7.2.3.3.2.5	AnimQP	� PAGEREF _Toc404824442 \h ��43�

7.2.3.3.2.6	AnimationIValue	� PAGEREF _Toc404824443 \h ��46�

7.2.3.3.2.7	AnimationPValue	� PAGEREF _Toc404824444 \h ��46�

7.2.4	BIFS Decoding Process and Semantic	� PAGEREF _Toc404824445 \h ��47�

7.2.4.1	BIFS Scene and Nodes Decoding Process	� PAGEREF _Toc404824446 \h ��47�

7.2.4.1.1	BIFS Scene	� PAGEREF _Toc404824447 \h ��47�

7.2.4.1.2	BIFS Nodes	� PAGEREF _Toc404824448 \h ��47�

7.2.4.1.3	SFNode	� PAGEREF _Toc404824449 \h ��47�

7.2.4.1.4	MaskNodeDescription	� PAGEREF _Toc404824450 \h ��48�

7.2.4.1.5	ListNodeDescription	� PAGEREF _Toc404824451 \h ��48�

7.2.4.1.6	NodeType	� PAGEREF _Toc404824452 \h ��48�

7.2.4.1.7	Field	� PAGEREF _Toc404824453 \h ��48�

7.2.4.1.8	MFField	� PAGEREF _Toc404824454 \h ��48�

7.2.4.1.9	SFField	� PAGEREF _Toc404824455 \h ��49�

7.2.4.1.10	QuantizedField	� PAGEREF _Toc404824456 \h ��49�

7.2.4.1.11	Field and Events IDs Decoding Process	� PAGEREF _Toc404824457 \h ��50�

7.2.4.1.11.1	DefID	� PAGEREF _Toc404824458 \h ��51�

7.2.4.1.11.2	inID	� PAGEREF _Toc404824459 \h ��51�

7.2.4.1.11.3	outID	� PAGEREF _Toc404824460 \h ��51�

7.2.4.1.11.4	dynID	� PAGEREF _Toc404824461 \h ��51�

7.2.4.1.12	ROUTE Decoding Process	� PAGEREF _Toc404824462 \h ��51�

7.2.4.2	BIFS-Update Decoding Process	� PAGEREF _Toc404824463 \h ��51�

7.2.4.2.1	Update Frame	� PAGEREF _Toc404824464 \h ��51�

7.2.4.2.2	Update Command	� PAGEREF _Toc404824465 \h ��51�

7.2.4.2.3	Insertion Command	� PAGEREF _Toc404824466 \h ��51�

7.2.4.2.3.1	Node Insertion	� PAGEREF _Toc404824467 \h ��51�

7.2.4.2.3.2	IndexedValue Insertion	� PAGEREF _Toc404824468 \h ��51�

7.2.4.2.3.3	ROUTE Insertion	� PAGEREF _Toc404824469 \h ��51�

7.2.4.2.4	Deletion Command	� PAGEREF _Toc404824470 \h ��51�

7.2.4.2.4.1	Node Deletion	� PAGEREF _Toc404824471 \h ��51�

7.2.4.2.4.2	IndexedValue Deletion	� PAGEREF _Toc404824472 \h ��52�

7.2.4.2.4.3	ROUTE Deletion	� PAGEREF _Toc404824473 \h ��52�

7.2.4.2.5	Replacement Command	� PAGEREF _Toc404824474 \h ��52�

7.2.4.2.5.1	Node Replacement	� PAGEREF _Toc404824475 \h ��52�

7.2.4.2.5.2	Field Replacement	� PAGEREF _Toc404824476 \h ��52�

7.2.4.2.5.3	IndexedValue Replacement	� PAGEREF _Toc404824477 \h ��52�

7.2.4.2.5.4	ROUTE Replacement	� PAGEREF _Toc404824478 \h ��52�

7.2.4.2.5.5	Scene Replacement	� PAGEREF _Toc404824479 \h ��52�

7.2.4.2.5.6	Scene Repeat	� PAGEREF _Toc404824480 \h ��52�

7.2.4.3	BIFS-Anim Decoding Process	� PAGEREF _Toc404824481 \h ��52�

7.2.4.3.1	BIFS AnimationMask	� PAGEREF _Toc404824482 \h ��53�

7.2.4.3.1.1	AnimationMask	� PAGEREF _Toc404824483 \h ��53�

7.2.4.3.1.2	Elementary mask	� PAGEREF _Toc404824484 \h ��53�

7.2.4.3.1.3	InitialFieldsMask	� PAGEREF _Toc404824485 \h ��53�

7.2.4.3.1.4	InitialAnimQP	� PAGEREF _Toc404824486 \h ��53�

7.2.4.3.2	Animation Frame Decoding Process	� PAGEREF _Toc404824487 \h ��53�

7.2.4.3.2.1	AnimationFrame	� PAGEREF _Toc404824488 \h ��53�

7.2.4.3.2.2	AnimationFrameHeader	� PAGEREF _Toc404824489 \h ��53�

7.2.4.3.2.3	AnimationFrameData	� PAGEREF _Toc404824490 \h ��54�

7.2.4.3.2.4	AnimationField	� PAGEREF _Toc404824491 \h ��54�

7.2.4.3.2.5	AnimQP	� PAGEREF _Toc404824492 \h ��54�

7.2.4.3.2.6	AnimationIValue	� PAGEREF _Toc404824493 \h ��54�

7.2.4.3.2.7	AnimationPValue	� PAGEREF _Toc404824494 \h ��54�

7.2.5	Nodes Semantic	� PAGEREF _Toc404824495 \h ��54�

7.2.5.1	Shared Nodes	� PAGEREF _Toc404824496 \h ��54�

7.2.5.1.1	Shared Nodes Overview	� PAGEREF _Toc404824497 \h ��54�

7.2.5.1.2	Shared MPEG-4 Nodes	� PAGEREF _Toc404824498 \h ��55�

7.2.5.1.2.1	AnimationStream	� PAGEREF _Toc404824499 \h ��55�

7.2.5.1.2.2	AudioDelay	� PAGEREF _Toc404824500 \h ��56�

7.2.5.1.2.3	AudioMix	� PAGEREF _Toc404824501 \h ��56�

7.2.5.1.2.4	AudioSource	� PAGEREF _Toc404824502 \h ��57�

7.2.5.1.2.5	AudioFX	� PAGEREF _Toc404824503 \h ��58�

7.2.5.1.2.6	AudioSwitch	� PAGEREF _Toc404824504 \h ��59�

7.2.5.1.2.7	Conditional	� PAGEREF _Toc404824505 \h ��59�

7.2.5.1.2.8	MediaTimeSensor	� PAGEREF _Toc404824506 \h ��60�

7.2.5.1.2.9	QuantizationParameter	� PAGEREF _Toc404824507 \h ��60�

7.2.5.1.2.10	StreamingText	� PAGEREF _Toc404824508 \h ��62�

7.2.5.1.2.11	Valuator	� PAGEREF _Toc404824509 \h ��62�

7.2.5.1.3	Shared VRML Nodes	� PAGEREF _Toc404824510 \h ��63�

7.2.5.1.3.1	Appearance	� PAGEREF _Toc404824511 \h ��63�

7.2.5.1.3.2	AudioClip	� PAGEREF _Toc404824512 \h ��63�

7.2.5.1.3.3	Color	� PAGEREF _Toc404824513 \h ��64�

7.2.5.1.3.4	ColorInterpolator	� PAGEREF _Toc404824514 \h ��65�

7.2.5.1.3.5	FontStyle	� PAGEREF _Toc404824515 \h ��65�

7.2.5.1.3.6	ImageTexture	� PAGEREF _Toc404824516 \h ��65�

7.2.5.1.3.7	MovieTexture	� PAGEREF _Toc404824517 \h ��65�

7.2.5.1.3.8	ScalarInterpolator	� PAGEREF _Toc404824518 \h ��66�

7.2.5.1.3.9	Shape	� PAGEREF _Toc404824519 \h ��66�

7.2.5.1.3.10	Sound	� PAGEREF _Toc404824520 \h ��67�

7.2.5.1.3.11	Switch	� PAGEREF _Toc404824521 \h ��68�

7.2.5.1.3.12	Text	� PAGEREF _Toc404824522 \h ��68�

7.2.5.1.3.13	TextureCoordinate	� PAGEREF _Toc404824523 \h ��68�

7.2.5.1.3.14	TextureTransform	� PAGEREF _Toc404824524 \h ��68�

7.2.5.1.3.15	TimeSensor	� PAGEREF _Toc404824525 \h ��69�

7.2.5.1.3.16	TouchSensor	� PAGEREF _Toc404824526 \h ��69�

7.2.5.1.3.17	WorldInfo	� PAGEREF _Toc404824527 \h ��69�

7.2.5.2	2D Nodes	� PAGEREF _Toc404824528 \h ��69�

7.2.5.2.1	2D Nodes Overview	� PAGEREF _Toc404824529 \h ��69�

7.2.5.2.2	2D MPEG-4 Nodes	� PAGEREF _Toc404824530 \h ��69�

7.2.5.2.2.1	Background2D	� PAGEREF _Toc404824531 \h ��69�

7.2.5.2.2.2	Circle	� PAGEREF _Toc404824532 \h ��70�

7.2.5.2.2.3	Coordinate2D	� PAGEREF _Toc404824533 \h ��71�

7.2.5.2.2.4	Curve2D	� PAGEREF _Toc404824534 \h ��71�

7.2.5.2.2.5	DiscSensor	� PAGEREF _Toc404824535 \h ��72�

7.2.5.2.2.6	Form	� PAGEREF _Toc404824536 \h ��72�

7.2.5.2.2.7	Group2D	� PAGEREF _Toc404824537 \h ��74�

7.2.5.2.2.8	Image2D	� PAGEREF _Toc404824538 \h ��75�

7.2.5.2.2.9	IndexedFaceSet2D	� PAGEREF _Toc404824539 \h ��75�

7.2.5.2.2.10	IndexedLineSet2D	� PAGEREF _Toc404824540 \h ��76�

7.2.5.2.2.11	Inline2D	� PAGEREF _Toc404824541 \h ��76�

7.2.5.2.2.12	Layout	� PAGEREF _Toc404824542 \h ��77�

7.2.5.2.2.13	LineProperties	� PAGEREF _Toc404824543 \h ��79�

7.2.5.2.2.14	Material2D	� PAGEREF _Toc404824544 \h ��79�

7.2.5.2.2.15	VideoObject2D	� PAGEREF _Toc404824545 \h ��80�

7.2.5.2.2.16	PlaneSensor2D	� PAGEREF _Toc404824546 \h ��81�

7.2.5.2.2.17	PointSet2D	� PAGEREF _Toc404824547 \h ��81�

7.2.5.2.2.18	Position2DInterpolator	� PAGEREF _Toc404824548 \h ��81�

7.2.5.2.2.19	Proximity2DSensor	� PAGEREF _Toc404824549 \h ��82�

7.2.5.2.2.20	Rectangle	� PAGEREF _Toc404824550 \h ��82�

7.2.5.2.2.21	ShadowProperties	� PAGEREF _Toc404824551 \h ��82�

7.2.5.2.2.22	Switch2D	� PAGEREF _Toc404824552 \h ��83�

7.2.5.2.2.23	Transform2D	� PAGEREF _Toc404824553 \h ��83�

7.2.5.2.2.24	VideoObject2D	� PAGEREF _Toc404824554 \h ��84�

7.2.5.3	3D Nodes	� PAGEREF _Toc404824555 \h ��85�

7.2.5.3.1	3D Nodes Overview	� PAGEREF _Toc404824556 \h ��85�

7.2.5.3.2	3D MPEG-4 Nodes	� PAGEREF _Toc404824557 \h ��85�

7.2.5.3.2.1	ListeningPoint	� PAGEREF _Toc404824558 \h ��85�

7.2.5.3.2.2	FBA	� PAGEREF _Toc404824559 \h ��85�

7.2.5.3.2.3	Face	� PAGEREF _Toc404824560 \h ��86�

7.2.5.3.2.4	FIT	� PAGEREF _Toc404824561 \h ��87�

7.2.5.3.2.5	FAP	� PAGEREF _Toc404824562 \h ��89�

7.2.5.3.2.6	FDP	� PAGEREF _Toc404824563 \h ��91�

7.2.5.3.2.7	FBADefTable	� PAGEREF _Toc404824564 \h ��92�

7.2.5.3.2.8	FBADefTransform	� PAGEREF _Toc404824565 \h ��92�

7.2.5.3.2.9	FBADefMesh	� PAGEREF _Toc404824566 \h ��93�

7.2.5.3.3	3D VRML Nodes	� PAGEREF _Toc404824567 \h ��93�

7.2.5.3.3.1	Background	� PAGEREF _Toc404824568 \h ��93�

7.2.5.3.3.2	Billboard	� PAGEREF _Toc404824569 \h ��94�

7.2.5.3.3.3	Box	� PAGEREF _Toc404824570 \h ��94�

7.2.5.3.3.4	Collision	� PAGEREF _Toc404824571 \h ��94�

7.2.5.3.3.5	Cone	� PAGEREF _Toc404824572 \h ��94�

7.2.5.3.3.6	Coordinate	� PAGEREF _Toc404824573 \h ��95�

7.2.5.3.3.7	CoordinateInterpolator	� PAGEREF _Toc404824574 \h ��95�

7.2.5.3.3.8	Cylinder	� PAGEREF _Toc404824575 \h ��95�

7.2.5.3.3.9	DirectionalLight	� PAGEREF _Toc404824576 \h ��95�

7.2.5.3.3.10	ElevationGrid	� PAGEREF _Toc404824577 \h ��95�

7.2.5.3.3.11	Extrusion	� PAGEREF _Toc404824578 \h ��96�

7.2.5.3.3.12	Group	� PAGEREF _Toc404824579 \h ��96�

7.2.5.3.3.13	IndexedFaceSet	� PAGEREF _Toc404824580 \h ��97�

7.2.5.3.3.14	IndexedLineSet	� PAGEREF _Toc404824581 \h ��97�

7.2.5.3.3.15	Inline	� PAGEREF _Toc404824582 \h ��98�

7.2.5.3.3.16	LOD	� PAGEREF _Toc404824583 \h ��98�

7.2.5.3.3.17	Material	� PAGEREF _Toc404824584 \h ��98�

7.2.5.3.3.18	Normal	� PAGEREF _Toc404824585 \h ��98�

7.2.5.3.3.19	NormalInterpolator	� PAGEREF _Toc404824586 \h ��98�

7.2.5.3.3.20	OrientationInterpolator	� PAGEREF _Toc404824587 \h ��99�

7.2.5.3.3.21	PointLight	� PAGEREF _Toc404824588 \h ��99�

7.2.5.3.3.22	PointSet	� PAGEREF _Toc404824589 \h ��99�

7.2.5.3.3.23	PositionInterpolator	� PAGEREF _Toc404824590 \h ��99�

7.2.5.3.3.24	ProximitySensor	� PAGEREF _Toc404824591 \h ��99�

7.2.5.3.3.25	Sphere	� PAGEREF _Toc404824592 \h ��100�

7.2.5.3.3.26	SpotLight	� PAGEREF _Toc404824593 \h ��100�

7.2.5.3.3.27	Semantic Table	� PAGEREF _Toc404824594 \h ��100�

7.2.5.3.3.28	Transform	� PAGEREF _Toc404824595 \h ��100�

7.2.5.3.3.29	Viewpoint	� PAGEREF _Toc404824596 \h ��101�

7.2.5.4	Mixed 2D/3D Nodes	� PAGEREF _Toc404824597 \h ��101�

7.2.5.4.1	Mixed 2D/3D Nodes Overview	� PAGEREF _Toc404824598 \h ��101�

7.2.5.4.2	2D/3D MPEG-4 Nodes	� PAGEREF _Toc404824599 \h ��101�

7.2.5.4.2.1	Layer2D	� PAGEREF _Toc404824600 \h ��101�

7.2.5.4.2.2	Layer3D	� PAGEREF _Toc404824601 \h ��102�

7.2.5.4.2.3	Composite2DTexture	� PAGEREF _Toc404824602 \h ��103�

7.2.5.4.2.4	Composite3DTexture	� PAGEREF _Toc404824603 \h ��104�

7.2.5.4.2.5	CompositeMap	� PAGEREF _Toc404824604 \h ��105�

7.2.6	Node Coding Parameters	� PAGEREF _Toc404824605 \h ��106�

7.2.6.1	Table Semantic	� PAGEREF _Toc404824606 \h ��106�

7.2.6.2	Node Data Type tables	� PAGEREF _Toc404824607 \h ��107�

7.2.6.2.1	SF2DNode	� PAGEREF _Toc404824608 \h ��107�

7.2.6.2.2	SF3DNode	� PAGEREF _Toc404824609 \h ��107�

7.2.6.2.3	SFAppearanceNode	� PAGEREF _Toc404824610 \h ��108�

7.2.6.2.4	SFAudioNode	� PAGEREF _Toc404824611 \h ��108�

7.2.6.2.5	SFColorNode	� PAGEREF _Toc404824612 \h ��108�

7.2.6.2.6	SFCoordinate2DNode	� PAGEREF _Toc404824613 \h ��108�

7.2.6.2.7	SFCoordinateNode	� PAGEREF _Toc404824614 \h ��109�

7.2.6.2.8	SFFAPNode	� PAGEREF _Toc404824615 \h ��109�

7.2.6.2.9	SFFBADefNode	� PAGEREF _Toc404824616 \h ��109�

7.2.6.2.10	SFFBADefTableNode	� PAGEREF _Toc404824617 \h ��109�

7.2.6.2.11	SFFDPNode	� PAGEREF _Toc404824618 \h ��109�

7.2.6.2.12	SFFaceNode	� PAGEREF _Toc404824619 \h ��109�

7.2.6.2.13	SFFitNode	� PAGEREF _Toc404824620 \h ��109�

7.2.6.2.14	SFFontStyleNode	� PAGEREF _Toc404824621 \h ��109�

7.2.6.2.15	SFGeometryNode	� PAGEREF _Toc404824622 \h ��110�

7.2.6.2.16	SFLayerNode	� PAGEREF _Toc404824623 \h ��110�

7.2.6.2.17	SFLinePropertiesNode	� PAGEREF _Toc404824624 \h ��110�

7.2.6.2.18	SFMaterialNode	� PAGEREF _Toc404824625 \h ��110�

7.2.6.2.19	SFNormalNode	� PAGEREF _Toc404824626 \h ��110�

7.2.6.2.20	SFShadowPropertiesNode	� PAGEREF _Toc404824627 \h ��111�

7.2.6.2.21	SFStreamingNode	� PAGEREF _Toc404824628 \h ��111�

7.2.6.2.22	SFTextureCoordinateNode	� PAGEREF _Toc404824629 \h ��111�

7.2.6.2.23	SFTextureNode	� PAGEREF _Toc404824630 \h ��111�

7.2.6.2.24	SFTextureTransformNode	� PAGEREF _Toc404824631 \h ��111�

7.2.6.2.25	SFTimerNode	� PAGEREF _Toc404824632 \h ��111�

7.2.6.2.26	SFTopNode	� PAGEREF _Toc404824633 \h ��111�

7.2.6.2.27	SFWorldInfoNode	� PAGEREF _Toc404824634 \h ��112�

7.2.6.2.28	SFWorldNode	� PAGEREF _Toc404824635 \h ��112�

7.2.6.3	Node Coding Tables	� PAGEREF _Toc404824636 \h ��114�

7.2.6.3.1	Key for Node Coding Tables	� PAGEREF _Toc404824637 \h ��114�

7.2.6.3.2	AnimationStream	� PAGEREF _Toc404824638 \h ��114�

7.2.6.3.3	AudioDelay	� PAGEREF _Toc404824639 \h ��114�

7.2.6.3.4	AudioMix	� PAGEREF _Toc404824640 \h ��114�

7.2.6.3.5	AudioSource	� PAGEREF _Toc404824641 \h ��115�

7.2.6.3.6	AudioFX	� PAGEREF _Toc404824642 \h ��115�

7.2.6.3.7	AudioSwitch	� PAGEREF _Toc404824643 \h ��115�

7.2.6.3.8	Conditional	� PAGEREF _Toc404824644 \h ��115�

7.2.6.3.9	MediaTimeSensor	� PAGEREF _Toc404824645 \h ��116�

7.2.6.3.10	QuantizationParameter	� PAGEREF _Toc404824646 \h ��116�

7.2.6.3.11	StreamingText	� PAGEREF _Toc404824647 \h ��117�

7.2.6.3.12	Valuator	� PAGEREF _Toc404824648 \h ��117�

7.2.6.3.13	Appearance	� PAGEREF _Toc404824649 \h ��118�

7.2.6.3.14	AudioClip	� PAGEREF _Toc404824650 \h ��118�

7.2.6.3.15	Color	� PAGEREF _Toc404824651 \h ��118�

7.2.6.3.16	ColorInterpolator	� PAGEREF _Toc404824652 \h ��118�

7.2.6.3.17	FontStyle	� PAGEREF _Toc404824653 \h ��118�

7.2.6.3.18	ImageTexture	� PAGEREF _Toc404824654 \h ��119�

7.2.6.3.19	MovieTexture	� PAGEREF _Toc404824655 \h ��119�

7.2.6.3.20	ScalarInterpolator	� PAGEREF _Toc404824656 \h ��119�

7.2.6.3.21	Shape	� PAGEREF _Toc404824657 \h ��120�

7.2.6.3.22	Sound	� PAGEREF _Toc404824658 \h ��120�

7.2.6.3.23	Switch	� PAGEREF _Toc404824659 \h ��120�

7.2.6.3.24	Text	� PAGEREF _Toc404824660 \h ��120�

7.2.6.3.25	TextureCoordinate	� PAGEREF _Toc404824661 \h ��120�

7.2.6.3.26	TextureTransform	� PAGEREF _Toc404824662 \h ��121�

7.2.6.3.27	TimeSensor	� PAGEREF _Toc404824663 \h ��121�

7.2.6.3.28	TouchSensor	� PAGEREF _Toc404824664 \h ��121�

7.2.6.3.29	WorldInfo	� PAGEREF _Toc404824665 \h ��121�

7.2.6.3.30	Background2D	� PAGEREF _Toc404824666 \h ��122�

7.2.6.3.31	Circle	� PAGEREF _Toc404824667 \h ��122�

7.2.6.3.32	Coordinate2D	� PAGEREF _Toc404824668 \h ��122�

7.2.6.3.33	Curve2D	� PAGEREF _Toc404824669 \h ��122�

7.2.6.3.34	DiscSensor	� PAGEREF _Toc404824670 \h ��122�

7.2.6.3.35	Form	� PAGEREF _Toc404824671 \h ��123�

7.2.6.3.36	Group2D	� PAGEREF _Toc404824672 \h ��123�

7.2.6.3.37	Image2D	� PAGEREF _Toc404824673 \h ��123�

7.2.6.3.38	IndexedFaceSet2D	� PAGEREF _Toc404824674 \h ��123�

7.2.6.3.39	IndexedLineSet2D	� PAGEREF _Toc404824675 \h ��124�

7.2.6.3.40	Inline2D	� PAGEREF _Toc404824676 \h ��124�

7.2.6.3.41	Layout	� PAGEREF _Toc404824677 \h ��124�

7.2.6.3.42	LineProperties	� PAGEREF _Toc404824678 \h ��124�

7.2.6.3.43	Material2D	� PAGEREF _Toc404824679 \h ��125�

7.2.6.3.44	PlaneSensor2D	� PAGEREF _Toc404824680 \h ��125�

7.2.6.3.45	PointSet2D	� PAGEREF _Toc404824681 \h ��125�

7.2.6.3.46	Position2DInterpolator	� PAGEREF _Toc404824682 \h ��125�

7.2.6.3.47	Proximity2DSensor	� PAGEREF _Toc404824683 \h ��125�

7.2.6.3.48	Rectangle	� PAGEREF _Toc404824684 \h ��126�

7.2.6.3.49	ShadowProperties	� PAGEREF _Toc404824685 \h ��126�

7.2.6.3.50	Switch2D	� PAGEREF _Toc404824686 \h ��126�

7.2.6.3.51	Transform2D	� PAGEREF _Toc404824687 \h ��126�

7.2.6.3.52	VideoObject2D	� PAGEREF _Toc404824688 \h ��127�

7.2.6.3.53	ListeningPoint	� PAGEREF _Toc404824689 \h ��127�

7.2.6.3.54	FBA	� PAGEREF _Toc404824690 \h ��127�

7.2.6.3.55	Face	� PAGEREF _Toc404824691 \h ��127�

7.2.6.3.56	FIT	� PAGEREF _Toc404824692 \h ��128�

7.2.6.3.57	FAP	� PAGEREF _Toc404824693 \h ��128�

7.2.6.3.58	FDP	� PAGEREF _Toc404824694 \h ��131�

7.2.6.3.59	FBADefMesh	� PAGEREF _Toc404824695 \h ��131�

7.2.6.3.60	FBADefTable	� PAGEREF _Toc404824696 \h ��131�

7.2.6.3.61	FBADefTransform	� PAGEREF _Toc404824697 \h ��131�

7.2.6.3.62	Background	� PAGEREF _Toc404824698 \h ��131�

7.2.6.3.63	Billboard	� PAGEREF _Toc404824699 \h ��132�

7.2.6.3.64	Box	� PAGEREF _Toc404824700 \h ��132�

7.2.6.3.65	Collision	� PAGEREF _Toc404824701 \h ��132�

7.2.6.3.66	Cone	� PAGEREF _Toc404824702 \h ��132�

7.2.6.3.67	Coordinate	� PAGEREF _Toc404824703 \h ��133�

7.2.6.3.68	CoordinateInterpolator	� PAGEREF _Toc404824704 \h ��133�

7.2.6.3.69	Cylinder	� PAGEREF _Toc404824705 \h ��133�

7.2.6.3.70	DirectionalLight	� PAGEREF _Toc404824706 \h ��133�

7.2.6.3.71	ElevationGrid	� PAGEREF _Toc404824707 \h ��133�

7.2.6.3.72	Extrusion	� PAGEREF _Toc404824708 \h ��134�

7.2.6.3.73	Group	� PAGEREF _Toc404824709 \h ��134�

7.2.6.3.74	IndexedFaceSet	� PAGEREF _Toc404824710 \h ��135�

7.2.6.3.75	IndexedLineSet	� PAGEREF _Toc404824711 \h ��135�

7.2.6.3.76	Inline	� PAGEREF _Toc404824712 \h ��135�

7.2.6.3.77	LOD	� PAGEREF _Toc404824713 \h ��136�

7.2.6.3.78	Material	� PAGEREF _Toc404824714 \h ��136�

7.2.6.3.79	Normal	� PAGEREF _Toc404824715 \h ��136�

7.2.6.3.80	NormalInterpolator	� PAGEREF _Toc404824716 \h ��136�

7.2.6.3.81	OrientationInterpolator	� PAGEREF _Toc404824717 \h ��136�

7.2.6.3.82	PointLight	� PAGEREF _Toc404824718 \h ��137�

7.2.6.3.83	PointSet	� PAGEREF _Toc404824719 \h ��137�

7.2.6.3.84	PositionInterpolator	� PAGEREF _Toc404824720 \h ��137�

7.2.6.3.85	ProximitySensor	� PAGEREF _Toc404824721 \h ��137�

7.2.6.3.86	Sphere	� PAGEREF _Toc404824722 \h ��138�

7.2.6.3.87	SpotLight	� PAGEREF _Toc404824723 \h ��138�

7.2.6.3.88	Transform	� PAGEREF _Toc404824724 \h ��138�

7.2.6.3.89	Viewpoint	� PAGEREF _Toc404824725 \h ��138�

7.2.6.3.90	Layer2D	� PAGEREF _Toc404824726 \h ��139�

7.2.6.3.91	Layer3D	� PAGEREF _Toc404824727 \h ��139�

7.2.6.3.92	Composite2DTexture	� PAGEREF _Toc404824728 \h ��139�

7.2.6.3.93	Composite3DTexture	� PAGEREF _Toc404824729 \h ��139�

7.2.6.3.94	CompositeMap	� PAGEREF _Toc404824730 \h ��140�

7.3	Identification and Association of Elementary Streams	� PAGEREF _Toc404824731 \h ��141�

7.3.1	Introduction	� PAGEREF _Toc404824732 \h ��141�

7.3.2	Object Descriptor Elementary Stream	� PAGEREF _Toc404824733 \h ��141�

7.3.2.1	Structure of the Object Descriptor Elementary Stream	� PAGEREF _Toc404824734 \h ��141�

7.3.2.2	OD-Update Syntax and Semantics	� PAGEREF _Toc404824735 \h ��142�

7.3.2.2.1	ObjectDescriptorUpdate	� PAGEREF _Toc404824736 \h ��142�

7.3.2.2.1.1	Syntax	� PAGEREF _Toc404824737 \h ��142�

7.3.2.2.1.2	Semantics	� PAGEREF _Toc404824738 \h ��142�

7.3.2.2.2	ObjectDescriptorRemove	� PAGEREF _Toc404824739 \h ��142�

7.3.2.2.2.1	Syntax	� PAGEREF _Toc404824740 \h ��142�

7.3.2.2.2.2	Semantics	� PAGEREF _Toc404824741 \h ��142�

7.3.2.2.3	ES_DescriptorUpdate	� PAGEREF _Toc404824742 \h ��142�

7.3.2.2.3.1	Syntax	� PAGEREF _Toc404824743 \h ��142�

7.3.2.2.3.2	Semantics	� PAGEREF _Toc404824744 \h ��143�

7.3.2.2.4	ES_DescriptorRemove	� PAGEREF _Toc404824745 \h ��143�

7.3.2.2.4.1	Syntax	� PAGEREF _Toc404824746 \h ��143�

7.3.2.2.4.2	Semantics	� PAGEREF _Toc404824747 \h ��143�

7.3.2.3	Descriptor tags	� PAGEREF _Toc404824748 \h ��143�

7.3.3	Object Descriptor Syntax and Semantics	� PAGEREF _Toc404824749 \h ��143�

7.3.3.1	ObjectDescriptor	� PAGEREF _Toc404824750 \h ��144�

7.3.3.1.1	Syntax	� PAGEREF _Toc404824751 \h ��144�

7.3.3.1.2	Semantics	� PAGEREF _Toc404824752 \h ��144�

7.3.3.2	ES_descriptor	� PAGEREF _Toc404824753 \h ��145�

7.3.3.2.1	Syntax	� PAGEREF _Toc404824754 \h ��145�

7.3.3.2.2	Semantics	� PAGEREF _Toc404824755 \h ��145�

7.3.3.3	DecoderConfigDescriptor	� PAGEREF _Toc404824756 \h ��146�

7.3.3.3.1	Syntax	� PAGEREF _Toc404824757 \h ��146�

7.3.3.3.2	Semantics	� PAGEREF _Toc404824758 \h ��147�

7.3.3.4	ALConfigDescriptor	� PAGEREF _Toc404824759 \h ��148�

7.3.3.5	IPI_Descriptor	� PAGEREF _Toc404824760 \h ��148�

7.3.3.5.1	Syntax	� PAGEREF _Toc404824761 \h ��148�

7.3.3.5.2	Semantics	� PAGEREF _Toc404824762 \h ��149�

7.3.3.5.3	IP Identification Data Set	� PAGEREF _Toc404824763 \h ��149�

7.3.3.5.3.1	Syntax	� PAGEREF _Toc404824764 \h ��149�

7.3.3.5.3.2	Semantics	� PAGEREF _Toc404824765 \h ��149�

7.3.3.6	QoS_Descriptor	� PAGEREF _Toc404824766 \h ��150�

7.3.3.6.1	Syntax	� PAGEREF _Toc404824767 \h ��150�

7.3.3.6.2	Semantics	� PAGEREF _Toc404824768 \h ��151�

7.3.3.7	extensionDescriptor	� PAGEREF _Toc404824769 \h ��151�

7.3.3.7.1	Syntax	� PAGEREF _Toc404824770 \h ��151�

7.3.3.7.2	Semantics	� PAGEREF _Toc404824771 \h ��151�

7.3.4	Usage of Object Descriptors	� PAGEREF _Toc404824772 \h ��151�

7.3.4.1	Association of Object Descriptors to Media Objects	� PAGEREF _Toc404824773 \h ��151�

7.3.4.2	Rules for Grouping Elementary Streams within one ObjectDescriptor	� PAGEREF _Toc404824774 \h ��152�

7.3.4.3	Usage of URLs in Object Descriptors	� PAGEREF _Toc404824775 \h ��152�

7.3.4.4	Object Descriptors and the MPEG�4 Session	� PAGEREF _Toc404824776 \h ��153�

7.3.4.4.1	MPEG�4 session	� PAGEREF _Toc404824777 \h ��153�

7.3.4.4.2	The initial Object Descriptor	� PAGEREF _Toc404824778 \h ��153�

7.3.4.4.3	Scope of objectDescriptorID and ES_ID labels	� PAGEREF _Toc404824779 \h ��154�

7.3.4.5	Session set up	� PAGEREF _Toc404824780 \h ��154�

7.3.4.5.1	Pre-conditions	� PAGEREF _Toc404824781 \h ��154�

7.3.4.5.2	Session set up procedure	� PAGEREF _Toc404824782 \h ��154�

7.3.4.5.2.1	Example	� PAGEREF _Toc404824783 \h ��154�

7.3.4.5.3	Set up for retrieval of a single Elementary Stream from a remote location	� PAGEREF _Toc404824784 \h ��155�

7.4	Synchronization of Elementary Streams	� PAGEREF _Toc404824785 \h ��156�

7.4.1	Introduction	� PAGEREF _Toc404824786 \h ��156�

7.4.2	Access Unit Layer	� PAGEREF _Toc404824787 \h ��156�

7.4.2.1	AL-PDU Specification	� PAGEREF _Toc404824788 \h ��157�

7.4.2.1.1	Syntax	� PAGEREF _Toc404824789 \h ��157�

7.4.2.1.2	Semantics	� PAGEREF _Toc404824790 \h ��157�

7.4.2.2	AL-PDU Header Configuration	� PAGEREF _Toc404824791 \h ��157�

7.4.2.2.1	Syntax	� PAGEREF _Toc404824792 \h ��157�

7.4.2.2.2	Semantics	� PAGEREF _Toc404824793 \h ��158�

7.4.2.3	AL-PDU Header Specification	� PAGEREF _Toc404824794 \h ��159�

7.4.2.3.1	Syntax	� PAGEREF _Toc404824795 \h ��159�

7.4.2.3.2	Semantics	� PAGEREF _Toc404824796 \h ��161�

7.4.2.4	Clock Reference Stream	� PAGEREF _Toc404824797 \h ��162�

7.4.3	Elementary Stream Interface	� PAGEREF _Toc404824798 \h ��162�

7.4.4	Stream Multiplex Interface	� PAGEREF _Toc404824799 \h ��163�

7.5	Multiplexing of Elementary Streams	� PAGEREF _Toc404824800 \h ��164�

7.5.1	Introduction	� PAGEREF _Toc404824801 \h ��164�

7.5.2	FlexMux Tool	� PAGEREF _Toc404824802 \h ��164�

7.5.2.1	Simple Mode	� PAGEREF _Toc404824803 \h ��164�

7.5.2.2	MuxCode mode	� PAGEREF _Toc404824804 \h ��164�

7.5.2.3	FlexMux-PDU specification	� PAGEREF _Toc404824805 \h ��165�

7.5.2.3.1	Syntax	� PAGEREF _Toc404824806 \h ��165�

7.5.2.3.2	Semantics	� PAGEREF _Toc404824807 \h ��165�

7.5.2.3.3	Configuration for MuxCode Mode	� PAGEREF _Toc404824808 \h ��165�

7.5.2.3.3.1	Syntax	� PAGEREF _Toc404824809 \h ��166�

7.5.2.3.3.2	Semantics	� PAGEREF _Toc404824810 \h ��166�

7.5.2.4	Usage of MuxCode Mode	� PAGEREF _Toc404824811 \h ��166�

7.5.2.4.1	Example	� PAGEREF _Toc404824812 \h ��166�

7.6	Syntactic Description Language	� PAGEREF _Toc404824813 \h ��168�

7.6.1	Introduction	� PAGEREF _Toc404824814 \h ��168�

7.6.2	Elementary Data Types	� PAGEREF _Toc404824815 \h ��168�

7.6.2.1	Constant-Length Direct Representation Bit Fields	� PAGEREF _Toc404824816 \h ��168�

7.6.2.2	Variable Length Direct Representation Bit Fields	� PAGEREF _Toc404824817 \h ��169�

7.6.2.3	Constant-Length Indirect Representation Bit Fields	� PAGEREF _Toc404824818 \h ��169�

7.6.2.4	Variable Length Indirect Representation Bit Fields	� PAGEREF _Toc404824819 \h ��170�

7.6.3	Composite Data Types	� PAGEREF _Toc404824820 \h ��170�

7.6.3.1	Classes	� PAGEREF _Toc404824821 \h ��170�

7.6.3.2	Parameter types	� PAGEREF _Toc404824822 \h ��171�

7.6.3.3	Arrays	� PAGEREF _Toc404824823 \h ��172�

7.6.4	Arithmetic and Logical Expressions	� PAGEREF _Toc404824824 \h ��173�

7.6.5	Non-Parsable Variables	� PAGEREF _Toc404824825 \h ��173�

7.6.6	Syntactic Flow Control	� PAGEREF _Toc404824826 \h ��173�

7.6.7	Bult-In Operators	� PAGEREF _Toc404824827 \h ��174�

7.6.8	Scoping Rules	� PAGEREF _Toc404824828 \h ��175�

7.7	Object Content Information	� PAGEREF _Toc404824829 \h ��176�

7.7.1	Introduction	� PAGEREF _Toc404824830 \h ��176�

7.7.2	Object Content Information (OCI) Data Stream	� PAGEREF _Toc404824831 \h ��176�

7.7.3	Object Content Information (OCI) Syntax and Semantics	� PAGEREF _Toc404824832 \h ��176�

7.7.3.1	OCI Decoder Configuration	� PAGEREF _Toc404824833 \h ��176�

7.7.3.1.1	Syntax	� PAGEREF _Toc404824834 \h ��176�

7.7.3.1.2	Semantics	� PAGEREF _Toc404824835 \h ��176�

7.7.3.2	OCI_Events	� PAGEREF _Toc404824836 \h ��176�

7.7.3.2.1	Syntax	� PAGEREF _Toc404824837 \h ��176�

7.7.3.2.2	Semantics	� PAGEREF _Toc404824838 \h ��177�

7.7.3.3	Descriptors	� PAGEREF _Toc404824839 \h ��177�

7.7.3.3.1	OCI_Descriptor Class	� PAGEREF _Toc404824840 \h ��177�

7.7.3.3.1.1	Syntax	� PAGEREF _Toc404824841 \h ��177�

7.7.3.3.1.2	Semantics	� PAGEREF _Toc404824842 \h ��177�

7.7.3.3.2	Content classification descriptor	� PAGEREF _Toc404824843 \h ��178�

7.7.3.3.2.1	Syntax	� PAGEREF _Toc404824844 \h ��178�

7.7.3.3.2.2	Semantics	� PAGEREF _Toc404824845 \h ��178�

7.7.3.3.3	Key wording descriptor	� PAGEREF _Toc404824846 \h ��178�

7.7.3.3.3.1	Syntax	� PAGEREF _Toc404824847 \h ��178�

7.7.3.3.3.2	Semantics	� PAGEREF _Toc404824848 \h ��178�

7.7.3.3.4	Rating descriptor	� PAGEREF _Toc404824849 \h ��179�

7.7.3.3.4.1	Syntax	� PAGEREF _Toc404824850 \h ��179�

7.7.3.3.4.2	Semantics	� PAGEREF _Toc404824851 \h ��179�

7.7.3.3.5	Language descriptor	� PAGEREF _Toc404824852 \h ��179�

7.7.3.3.5.1	Syntax	� PAGEREF _Toc404824853 \h ��179�

7.7.3.3.5.2	Semantics	� PAGEREF _Toc404824854 \h ��179�

7.7.3.3.6	Short textual descriptor	� PAGEREF _Toc404824855 \h ��180�

7.7.3.3.6.1	Syntax	� PAGEREF _Toc404824856 \h ��180�

7.7.3.3.6.2	Semantics	� PAGEREF _Toc404824857 \h ��180�

7.7.3.3.7	Expanded textual descriptor	� PAGEREF _Toc404824858 \h ��180�

7.7.3.3.7.1	Syntax	� PAGEREF _Toc404824859 \h ��180�

7.7.3.3.7.2	Semantics	� PAGEREF _Toc404824860 \h ��181�

7.7.3.3.8	Name of content creators descriptor	� PAGEREF _Toc404824861 \h ��182�

7.7.3.3.8.1	Syntax	� PAGEREF _Toc404824862 \h ��182�

7.7.3.3.8.2	Semantics	� PAGEREF _Toc404824863 \h ��182�

7.7.3.3.9	Date of content creation descriptor	� PAGEREF _Toc404824864 \h ��182�

7.7.3.3.9.1	Syntax	� PAGEREF _Toc404824865 \h ��182�

7.7.3.3.9.2	Semantics	� PAGEREF _Toc404824866 \h ��182�

7.7.3.3.10	Name of OCI creators descriptor	� PAGEREF _Toc404824867 \h ��182�

7.7.3.3.10.1	Syntax	� PAGEREF _Toc404824868 \h ��182�

7.7.3.3.10.2	Semantics	� PAGEREF _Toc404824869 \h ��183�

7.7.3.3.11	Date of OCI creation descriptor	� PAGEREF _Toc404824870 \h ��183�

7.7.3.3.11.1	Syntax	� PAGEREF _Toc404824871 \h ��183�

7.7.3.3.11.2	Semantics	� PAGEREF _Toc404824872 \h ��183�

7.7.4	Annex: Conversion between time and date conventions	� PAGEREF _Toc404824873 \h ��184�

7.8	Profiles	� PAGEREF _Toc404824874 \h ��186�

7.8.1	Scene Description Profiles.	� PAGEREF _Toc404824875 \h ��186�

7.8.1.1	2D profile	� PAGEREF _Toc404824876 \h ��186�

7.8.1.2	3D profile	� PAGEREF _Toc404824877 \h ��186�

7.8.1.3	VRML profile	� PAGEREF _Toc404824878 \h ��186�

7.8.1.4	Complete profile	� PAGEREF _Toc404824879 \h ��186�

7.8.1.5	Audio profile	� PAGEREF _Toc404824880 \h ��186�

7.9	Elementary Streams for Upstream Control Information	� PAGEREF _Toc404824881 \h ��187�

Annex A: Bibliography	� PAGEREF _Toc404824882 \h ��188�

Annex B: Time Base Reconstruction (Informative)	� PAGEREF _Toc404824883 \h ��189�

B.1	Time base reconstruction	� PAGEREF _Toc404824884 \h ��189�

B.1.1	Adjusting the receivers OTB	� PAGEREF _Toc404824885 \h ��189�

B.1.2	Mapping Time Stamps to the STB	� PAGEREF _Toc404824886 \h ��189�

B.1.3	Adjusting the STB to an OTB	� PAGEREF _Toc404824887 \h ��190�

B.1.4	System Operation without Object Time Base	� PAGEREF _Toc404824888 \h ��190�

B.2	Temporal aliasing and audio resampling	� PAGEREF _Toc404824889 \h ��190�

B.3	Reconstruction of a synchronised audiovisual scene: a walkthrough	� PAGEREF _Toc404824890 \h ��190�

Annex C: Embedding of MPEG-4 Streams in TransMux Instances (Informative)	� PAGEREF _Toc404824891 \h ��191�

C.1	ISO/IEC 14496 content embedded in ISO/IEC 13818-1 Transport Stream	� PAGEREF _Toc404824892 \h ��191�

C.1.1	Introduction	� PAGEREF _Toc404824893 \h ��191�

C.1.2	IS 14496 Stream Indication in Program Map Table	� PAGEREF _Toc404824894 \h ��191�

C.1.3	Object Descriptor and Stream Map Table Encapsulation	� PAGEREF _Toc404824895 \h ��192�

C.1.4	Scene Description Stream Encapsulation	� PAGEREF _Toc404824896 \h ��194�

C.1.5	Audio Visual Stream Encapsulation	� PAGEREF _Toc404824897 \h ��194�

C.1.6	Framing of AL-PDU and FM-PDU into TS packets	� PAGEREF _Toc404824898 \h ��195�

C.1.6.1	Use of MPEG-2 TS Adaptation Field	� PAGEREF _Toc404824899 \h ��195�

C.1.6.2	Use of MPEG-4 PaddingFlag and PaddingBits	� PAGEREF _Toc404824900 \h ��195�

C.2	MPEG-4 content embedded in MPEG-2 DSM-CC Data Carousel	� PAGEREF _Toc404824901 \h ��197�

C.2.1	Scope	� PAGEREF _Toc404824902 \h ��197�

C.2.2	Introduction	� PAGEREF _Toc404824903 \h ��197�

C.2.3	DSM-CC Data Carousel	� PAGEREF _Toc404824904 \h ��197�

C.2.4	General Concept	� PAGEREF _Toc404824905 \h ��197�

C.2.5	Design of Broadcast Applications	� PAGEREF _Toc404824906 \h ��198�

C.2.5.1	Program Map Table	� PAGEREF _Toc404824907 \h ��199�

C.2.5.2	FlexMux Descriptor	� PAGEREF _Toc404824908 \h ��200�

C.2.5.3	Application Signaling Channel and Data Channels	� PAGEREF _Toc404824909 \h ��200�

C.2.5.4	Stream Map Table	� PAGEREF _Toc404824910 \h ��201�

C.2.5.5	TransMux Channel	� PAGEREF _Toc404824911 \h ��203�

C.2.5.6	FlexMux Channel	� PAGEREF _Toc404824912 \h ��203�

C.2.5.7	Payload	� PAGEREF _Toc404824913 \h ��205�

C.3	MPEG-4 content embedded in a Single FlexMux Stream	� PAGEREF _Toc404824914 \h ��206�

C.3.1	Initial Object Descriptor	� PAGEREF _Toc404824915 \h ��206�

C.3.2	Stream Map Table	� PAGEREF _Toc404824916 \h ��206�

C.3.2.1	Syntax	� PAGEREF _Toc404824917 \h ��206�

C.3.2.2	Semantics	� PAGEREF _Toc404824918 \h ��206�

C.3.3	Single FlexMux Stream Payload	� PAGEREF _Toc404824919 \h ��206�

Annex D: View Dependent Object Scalability (Normative)	� PAGEREF _Toc404824920 \h ��208�

D.1	Introduction	� PAGEREF _Toc404824921 \h ��208�

D.2	Bitstream Syntax	� PAGEREF _Toc404824922 \h ��208�

D.2.1	View Dependent Object	� PAGEREF _Toc404824923 \h ��208�

D.2.2	View Dependent Object Layer	� PAGEREF _Toc404824924 \h ��209�

D.3	Bitstream Semantics	� PAGEREF _Toc404824925 \h ��209�

D.3.1	View Dependent Object	� PAGEREF _Toc404824926 \h ��209�

D.3.2	View Dependent Object Layer	� PAGEREF _Toc404824927 \h ��210�

D.4	Decoding Process of a View-Dependent Object	� PAGEREF _Toc404824928 \h ��210�

D.4.1	Introduction	� PAGEREF _Toc404824929 \h ��210�

D.4.2	General Decoding Scheme	� PAGEREF _Toc404824930 \h ��210�

D.4.2.1	View-dependent parameters computation	� PAGEREF _Toc404824931 \h ��210�

D.4.2.2	VD mask computation	� PAGEREF _Toc404824932 \h ��211�

D.4.2.3	Differential mask computation	� PAGEREF _Toc404824933 \h ��211�

D.4.2.4	DCT coefficients decoding	� PAGEREF _Toc404824934 \h ��211�

D.4.2.5	Texture update	� PAGEREF _Toc404824935 \h ��211�

D.4.2.6	IDCT	� PAGEREF _Toc404824936 \h ��211�

D.4.2.7	Rendering	� PAGEREF _Toc404824937 \h ��211�

D.4.3	Computation of the View-Dependent Scalability parameters	� PAGEREF _Toc404824938 \h ��212�

D.4.3.1	Distance criterion:	� PAGEREF _Toc404824939 \h ��213�

D.4.3.2	Rendering criterion:	� PAGEREF _Toc404824940 \h ��213�

D.4.3.3	Orientation criteria:	� PAGEREF _Toc404824941 \h ��213�

D.4.3.4	Cropping criterion:	� PAGEREF _Toc404824942 \h ��214�

D.4.4	VD mask computation	� PAGEREF _Toc404824943 \h ��214�

D.4.5	Differential mask computation	� PAGEREF _Toc404824944 \h ��215�

D.4.6	DCT coefficients decoding	� PAGEREF _Toc404824945 \h ��215�

D.4.7	Texture update	� PAGEREF _Toc404824946 \h ��215�

D.4.8	IDCT	� PAGEREF _Toc404824947 \h ��216�

�

�List of Figures

� TOC \c "Figure" �Figure 0-1: Processing stages in an audiovisual terminal	� PAGEREF _Toc404824948 \h ��2�

Figure 7-1: Systems Decoder Model	� PAGEREF _Toc404824949 \h ��8�

Figure 7-2: Flow diagram for the Systems Decoder Model	� PAGEREF _Toc404824950 \h ��11�

Figure 7-3: An example of an MPEG-4 multimedia scene	� PAGEREF _Toc404824951 \h ��14�

Figure 7-4: Logical structure of the scene	� PAGEREF _Toc404824952 \h ��15�

Figure 7-5: A complete scene graph example. We see the hierarchy of 3 different scene graphs: the 2D graphics scene graph, 3D graphics scene graph, and the layers 3D scene graphs. As shown in the picture, the 3D layer-2 view the same scene as 3D-layer1, but the viewpoint may be different. The 3D object-3 is a Appearance node that uses the 2D-Scene 1 as a texture node.	� PAGEREF _Toc404824953 \h ��17�

Figure 7-6: 2D Coordinate System	� PAGEREF _Toc404824954 \h ��18�

Figure 7-7: 3D Coordinate System	� PAGEREF _Toc404824955 \h ��19�

Figure 7-8: Standard Units	� PAGEREF _Toc404824956 \h ��19�

Figure 7-9: Media start times and CTS	� PAGEREF _Toc404824957 \h ��24�

Figure 7-10: BIFS-Update Commands	� PAGEREF _Toc404824958 \h ��28�

Figure 7-11: Encoding dynamic fields	� PAGEREF _Toc404824959 \h ��52�

Figure 7-12: An example FIG	� PAGEREF _Toc404824960 \h ��87�

Figure 7-13: Three Layer2D and Layer3D examples. Layer2D are signaled by a plain line, Layer3D with a dashed line. Image (a) shows a Layer3D containing a 3D view of the earth on top of a Layer2D composed of a video, a logo and a text. Image (b) shows a Layer3D of the earth with a Layer2D containing various icons on top. Image (c) shows 3 views of a 3D scene with 3 non overlaping Layer3D.	� PAGEREF _Toc404824961 \h ��103�

Figure 7-14: A Composite2DTexture example. The 2D scene is projected on the 3D cube	� PAGEREF _Toc404824962 \h ��104�

Figure 7-15: A Composite3Dtexture example: The 3D view of the earth is projected onto the 3D cube	� PAGEREF _Toc404824963 \h ��105�

Figure 7-16: A CompositeMap example: The 2D scene as defined in Fig. yyy composed of an image, a logo, and a text, is drawn in the local X,Y plane of the back wall.	� PAGEREF _Toc404824964 \h ��106�

Figure 7-17: Session setup example	� PAGEREF _Toc404824965 \h ��155�

Figure 7-18 Systems Layers	� PAGEREF _Toc404824966 \h ��156�

Figure 7-19 : Structure of FlexMux-PDU in simple mode	� PAGEREF _Toc404824967 \h ��164�

Figure 7-20: Structure of FlexMux-PDU in MuxCode mode	� PAGEREF _Toc404824968 \h ��165�

Figure 7-21 Example for a FlexMux-PDU in MuxCode mode	� PAGEREF _Toc404824969 \h ��167�

Figure 7-22: Conversion routes between Modified Julian Date (MJD) and Coordinated Universal Time (UTC)	� PAGEREF _Toc404824970 \h ��184�

Figure C-1 : An example of stuffing for the MPEG-2 TS packet	� PAGEREF _Toc404824971 \h ��195�

Figure D-1: General Decoding Scheme of a View-Dependent Object	� PAGEREF _Toc404824972 \h ��212�

Figure D-2: Definition of (and (angles	� PAGEREF _Toc404824973 \h ��213�

Figure D-3: Definition of Out of Field of View cells	� PAGEREF _Toc404824974 \h ��214�

Figure D-4: VD mask of an 8x8 block using VD parameters	� PAGEREF _Toc404824975 \h ��215�

Figure D-5: Differential mask computation scheme	� PAGEREF _Toc404824976 \h ��215�

Figure D-6: Texture update scheme	� PAGEREF _Toc404824977 \h ��216�

�

�List of Tables

� TOC \c "Table" �Table 7-1: Alignment Constraints	� PAGEREF _Toc404824978 \h ��73�

Table 7-2: Distribution Constraints	� PAGEREF _Toc404824979 \h ��73�

Table 7-3: List of Descriptor Tags	� PAGEREF _Toc404824980 \h ��143�

Table 7-4: profileAndLevelIndication Values	� PAGEREF _Toc404824981 \h ��147�

Table 7-5: streamType Values	� PAGEREF _Toc404824982 \h ��147�

Table 7-6: type_of_content Values	� PAGEREF _Toc404824983 \h ��149�

Table 7-7: type_of_content_identifier Values	� PAGEREF _Toc404824984 \h ��150�

Table 7-8: Predefined QoS_Descriptor Values	� PAGEREF _Toc404824985 \h ��151�

Table 7-9: descriptorTag Values	� PAGEREF _Toc404824986 \h ��151�

Table 7-10: Overview of predefined ALConfigDescriptor values	� PAGEREF _Toc404824987 \h ��158�

Table 7-11: Detailed predefined ALConfigDescriptor values	� PAGEREF _Toc404824988 \h ��158�

Table C-1 : Transport Stream Program Map Section of ISO/IEC 13818-1	� PAGEREF _Toc404824989 \h ��192�

Table C-2 : ISO/IEC 13818-1 Stream Type Assignment	� PAGEREF _Toc404824990 \h ��192�

Table C-3 : OD SMT Section	� PAGEREF _Toc404824991 \h ��193�

Table C-4 : Stream Map Table	� PAGEREF _Toc404824992 \h ��193�

Table C-5 : Private section for the BIFS stream	� PAGEREF _Toc404824993 \h ��194�

Table C-6: Transport Stream Program Map Section	� PAGEREF _Toc404824994 \h ��199�

Table C-7: Association Tag Descriptor	� PAGEREF _Toc404824995 \h ��200�

Table C-8: DSM-CC Section	� PAGEREF _Toc404824996 \h ��200�

Table C-9: DSM-CC table_id Assignment	� PAGEREF _Toc404824997 \h ��201�

Table C-10: DSM-CC Message Header	� PAGEREF _Toc404824998 \h ��202�

Table C-11: Adaptation Header	� PAGEREF _Toc404824999 \h ��202�

Table C-12: DSM-CC Adaptation Types	� PAGEREF _Toc404825000 \h ��202�

Table C-13: DownloadInfoIndication Message	� PAGEREF _Toc404825001 \h ��203�

Table C-14: DSM-CC Download Data Header	� PAGEREF _Toc404825002 \h ��204�

Table C-15: DSM-CC Adaptation Types	� PAGEREF _Toc404825003 \h ��204�

Table C-16: DSM-CC DownloadDataBlock() Message	� PAGEREF _Toc404825004 \h ��205�

�

�0.	Introduction

The Systems part of the Committee Draft of International Standard describes a system for communicating audiovisual information. This information consists of the coded representation of natural or synthetic objects (media objects) that can be manifested audibly and/or visually. At the sending side, audiovisual information is compressed, composed, and multiplexed in one or more coded binary streams that are transmitted. At the receiver these streams are demultiplexed, decompressed, composed, and presented to the end user. The end user may have the option to interact with the presentation. Interaction information can be processed locally or transmitted to the sender. This specification provides the semantic and syntactic rules that integrate such natural and synthetic audiovisual information representation.

The Systems part of the Committee Draft of International Standard specifies the following tools: a terminal model for time and buffer management; a coded representation of interactive audiovisual scene information; a coded representation of identification of audiovisual streams and logical dependencies between stream information; a coded representation of synchronization information; multiplexing of individual components in one stream; and a coded representation of audiovisual content related information. These various elements are described functionally in this clause and specified in the normative clauses that follow.

0.1	Architecture

The information representation specified in the Committee Draft of International Standard allows the presentation of an interactive audiovisual scene from coded audiovisual information and associated scene description information. The presentation can be performed by a standalone system, or part of a system that needs to utilize information represented in compliance with this Committee Draft of International Standard. In both cases, the receiver will be generically referred to as an “audiovisual terminal” or just “terminal.”

The basic operations performed by such a system are as follows. Initial information that provides handles to Elementary Streams is known as premises by the terminal. Part 6 of this Committee Draft of International Standard provides for the specification to resolve these premises as well as the interface (TransMux Interface) with the storage or transport medium. Some of these elementary streams may have been grouped together using the FlexMux multiplexing tool (FlexMux Layer) described in this Committee Draft of International Standard.

Elementary streams contain the coded representation of the content data: scene description information (BIFS – Binary Format for Scenes – elementary streams), audio information or visual information (audio or visual elementary streams), content related information (OCI elementary streams) as well as additional data sent to describe the type of the content for each individual stream (elementary stream Object Descriptors). Elementary streams may be downchannel streams (sender to receiver) or upchannel streams (receiver to sender).

Elementary streams are decoded (Compression Layer), composed according to the scene description information and presented to the terminal’s presentation device(s). All these processes are synchronized according to the terminal decoding model (SDM, Systems Decoder Model) and the synchronization information provided at the AcessUnit Layer. In cases where the content is available in random access storage facilities, additional information may be present in the stream in order to allow random access functionality.

These basic operations are depicted in � REF _Ref384388540 * MERGEFORMAT �Figure 0-1�, and are described in more detail below.

�

Figure � STYLEREF 1 \n * MERGEFORMAT �0�-� SEQ Figure * ARABIC �1�: Processing stages in an audiovisual terminal

0.2	Systems Decoder Model

The purpose of the Systems Decoder Model (SDM) is to provide an abstract view of the behavior of a terminal complying to this Committee Draft of International Standard. It can be used by the sender to predict how the receiver will behave in terms of buffer management and synchronization when reconstructing the audiovisual information that composes the session. The Systems Decoder Model includes a timing model and a buffer model.

0.2.1	Timing Model

The System Timing Model enables the receiver to recover the notion of time according to the sender in order to perform certain events at specified instants in time, such as decoding data units or synchronization of audiovisual information. This requires that the transmitted data streams contain implicit or explicit timing information. A first set of timing information, the clock references, is used to convey an encoder time base to the decoder, while a second set, the time stamps, convey the time (in units of an encoder time base) for specific events such as the desired decoding or composition time for portions of the encoded audiovisual information.

0.2.2	Buffer Model

The Systems Buffering Model enables the sender to monitor the minimum buffer resources that are needed to decode each individual Elementary Stream in the session. These required buffer resources are conveyed to the receiver by means of Elementary Streams Descriptors before the start of the session so that it can decide whether it is capable of handling this session. The model assumptions further allow the sender to manage a known amount of receiver buffers, and schedule data transmission accordingly.

0.3	FlexMux and TransMux Layer

The demultiplexing process is not part of this specification. This Committee Draft of International Standard specifies just the interface to the demultiplexer. It is termed Stream Multiplex Interface and may be embodied by the DMIF Application Interface specified in Part 6 of this Committee Draft of International Standard. It is assumed that a diversity of suitable delivery mechanisms exists below this interface. Some of them are listed in � REF _Ref384388540 \h � * MERGEFORMAT �Figure 0-1�. These mechanisms serve for transmission as well as storage of streaming data. A simple tool for multiplexing, FlexMux, that addresses the specific MPEG�4 needs of low delay and low overhead multiplexing is specified and may optionally be used depending on the properties that a specific delivery protocol stack offers.

0.4	AccessUnit Layer

The Elementary Streams are the basic abstraction of any streaming data source. They are packaged into AL-packetized Streams when they arrive at the Stream Multiplex Interface. This allows it on the Access Unit Layer to extract the timing information that is necessary to enable a synchronized decoding and, subsequently, composition of the Elementary Streams.

0.5	Compression Layer

Decompression recovers the data of a media object from its encoded format (syntax) and performs the necessary operations to reconstruct the original media object (semantics). The reconstructed media object is made available to the composition process for potential use during scene rendering. Composition and rendering are outside the scope of in this Committee Draft of International Standard. The coded representation of audio information and visual information are described in Parts 2 and 3, respectively of this Committee Draft of International Standard. The following subclauses provide for a functional description of the content streams specified in the part of Committee Draft of International Standard.

0.5.1	Object Descriptor Elementary Streams

In order to access the content of Elementary Streams, the streams must be properly identified. The identification information is carried in a specific stream by entities called Object Descriptors. Identification of Elementary Streams includes information about the source of the conveyed media data, in form of a URL or a numeric identifier, as well as the encoding format, the configuration for the Access Unit Layer packetization of the Elementary Stream and intellectual property information. Optionally more information can be associated to a media object, most notably Object Content Information. The Object Descriptors’ unique identifiers (objectDescriptorIDs) are used to resolve the association between media objects.

0.5.2	Scene Description Streams

Scene description addresses the organization of audiovisual objects in a scene, in terms of both spatial and temporal positioning. This information allows the composition and rendering of individual audiovisual objects after they are reconstructed by their respective decoders. This specification, however, does not mandate particular composition or rendering algorithms or architectures; these are considered implementation-dependent.

The scene description is represented using a parametric description (BIFS, Binary Format for Scenes). The parametric description is constructed as a coded hierarchy of nodes with attributes and other information (including event sources and targets). The scene description can evolve over time by using coded scene description updates.

In order to allow active user involvement with the presented audiovisual information, this specification provides support for interactive operation. Interactive features are integrated with the scene description information, which defines the relationship between sources and targets of events. It does not, however, specify a particular user interface or a mechanism that maps user actions (e.g., keyboard key pressed or mouse movements) to such events. Local or client-side interactivity is provided via the ROUTES and SENSORS mechanism of BIFS. Such an interactive environment does not need an upstream channel. This Committee Draft of International Standard also provides means for client-server interactive sessions with the ability to set up upchannel elementary streams.

0.5.3	Upchannel Streams

Media Objects may require upchannel stream control information to allow for interactivity. An Elementary Stream flowing from receiver to transmitter is treated the same way as any downstream Elementary Stream as described in � REF _Ref384388540 \h � * MERGEFORMAT � Figure 0-1�. The content of upstream control streams is specified in the same part of this specification that defines the content of the downstream data for this Media Object. For example, control streams for video compression algorithms are defined in 14496-2.

0.5.4	Object Content Information Streams

The Object Content Information (OCI) stream carries information about the audiovisual objects. This stream is organized in a sequence of small, synchronized entities called events that contain information descriptors. The main content descriptors are: content classification descriptors, keyword descriptors, rating descriptors, language descriptors, textual descriptors, and descriptors about the creation of the content. These streams can be associated to other media objects with the mechanisms provided by the Object Descriptor.

1.	Scope

This part of Committee Draft of International Standard 14496 has been developed to support the combination of audiovisual information in the form of natural or synthetic, aural or visual, 2D and 3D objects coded with methods defined in Parts 1, 2 and 3 of this Committee Draft of International Standard within the context of content-based access for digital storage media, digital audiovisual communication and other applications. The Systems layer supports seven basic functions:

the coded representation of an audiovisual scene composed of multiple media objects (i.e., their spatio-temporal positioning), including user interaction;

the coded representation of content information related to media objects;

the coded representation of identification of audiovisual streams and logical dependencies between streams information, including information for the configuration of the receiving terminal;

the coded representation of synchronization information for timing identification and recovery mechanisms;

the support and the coded representation of return channel information;

the interleaving of multiple audiovisual object streams into one stream (multiplexing);

the initialization and continuous management of the receiving terminal’s buffers.

2.	Normative References

The following ITU-T Recommendations and International Standards contain provisions which, through reference in this text, constitute provisions of this Committee Draft of International Standard. At the time of publication, the editions indicated were valid. All Recommendations and Standards are subject to revision, and parties to agreements based on this Committee Draft of International Standard are encouraged to investigate the possibility of applying the most recent editions of the standards indicated below. Members of IEC and ISO maintain registers of currently valid International Standards. The Telecommunication Standardization Bureau maintains a list of currently valid ITU-T Recommendations.

3.	Additional References

[1] ISO/IEC International Standard 13818-1 (MPEG-2 Systems), 1994.

[2] ISO/IEC 14472-1 Draft International Standard, Virtual Reality Modeling Language (VRML), 1997.

[3] ISO 639, Code for the representation of names of languages, 1988.

[4] ISO 3166-1, Codes for the representation of names of countries and their subdivisions – Part 1: Country codes, 1997.

[5] The Unicode Standard, Version 2.0, 1996.

4.	Definitions

Access Unit (AU): A logical sub-structure of an Elementary Stream to facilitate random access or bitstream manipulation. All consecutive data that refer to the same decoding time form a single Access Unit.

Access Unit Layer (AL): A layer to adapt Elementary Stream data for the communication over the Stream Multiplex Interface. The AL carries the coded representation of time stamp and clock reference information., provides AL-PDU numbering and byte alignment of AL-PDU Payload. The Adaptation Layer syntax is configurable and can eventually be empty.

Access Unit Layer Protocol Data Unit (AL-PDU): The smallest protocol unit exchanged between peer AL Entities. It consists of AL-PDU Header and AL-PDU Payload.

Access Unit Layer Protocol Data Unit Header (AL-PDU Header): Optional information preceding the AL-PDU Payload. It is mainly used for Error Detection and Framing of the AL-PDU Payload. The format of the AL-PDU Header is determined through the ALConfigDescriptor conveyed in an Object Descriptor.

Access Unit Layer Protocol Data Unit Payload (AL-PDU Payload): The data field of an AL-PDU containing Elementary Stream data.

Media Object: A Media object is a representation of a natural or synthetic object that can be manifested aurally and/or visually.

Audiovisual Scene (AV Scene) : An AV Scene is set of media objects together with scene description information that defines their spatial and temporal positioning, including user interaction.

Buffer Model: This model enables a terminal complying to this specification to monitor the minimum buffer resources that are needed to decode a session. Information on the required resources may be conveyed to the decoder before the start of the session.

Composition: The process of applying scene description information in order to identify the spatio-temporal positioning of audiovisual objects.

Elementary Stream (ES): A sequence of data that originates from a single producer in the transmitting Terminal and terminates at a single recipient, e. g., Media Objects.

FlexMux Channel: The sequence of data within a FlexMux Stream that carries data from one Elementary Stream packetized in a sequence of AL-PDUs.

FlexMux Protocol Data Unit (FlexMux-PDU): The smallest protocol unit of a FlexMux Stream exchanged between peer FlexMux Entities. It consists of FlexMux-PDU Header and FlexMux-PDU Payload. It carries data from one FlexMux Channel.

FlexMux Protocol Data Unit Header (FlexMux-PDU Header): Information preceding the FlexMux-PDU Payload. It identifies the FlexMux Channel(s) to which the payload of this FlexMux-PDU belongs.

FlexMux Protocol Data Unit Payload (FlexMux-PDU Payload): The data field of the FlexMux-PDU, consisting of one or more AL-PDUs.

FlexMux Stream: A sequence of FlexMux-PDUs originating from one or more FlexMux Channels forming one data stream.

Terminal: A terminal here is defined as a system that allows Presentation of an interactive Audiovisual Scene from coded audiovisual information. It can be a standalone application, or part of a system that needs to use content complying to this specification.

Object Descriptor (OD): A syntactic structure that provides for the identification of elementary streams (location, encoding format, configuration, etc.) as well as the logical dependencies between elementary streams.

Object Time Base (OTB): The Object Time Base (OTB) defines the notion of time of a given Encoder. All Timestamps that the encoder inserts in a coded AV object data stream refer to this Time Base.

Quality of Service (QoS) - The performance that an Elementary Stream requests from the delivery channel through which it is transported, characterized by a set of parameters (e.g., bit rate, delay jitter, bit error rate).

Random Access: The capability of reading, decoding, or composing a coded bitstream starting from an arbitrary point.

Scene Description: Information that describes the spatio-termporal positioning of media objects as well as user interaction.

Session: The, possibly interactive, communication of the coded representation of an audiovisual scene between two terminals. A uni-directional session corresponds to a program in a broadcast application.

Syntactic Description Language (SDL): A language defined by this specification and which allows the description of a bitstream’s syntax.

Systems Decoder Model: This model is part of the Systems Receiver Model, and provides an abstract view of the behavior of the MPEG-4 Systems. It consists of the Buffering Model, and the Timing Model.

System Time Base (STB): The Systems Time Base is the terminal’s Time Base. Its resolution is implementation-dependent. All operations in the terminal are performed according to this time base.

Time Base: A time base provides a time reference.

Timing Model: Specifies how timing information is incorporated (explicitly or implicitly) in the coded representation of information, and how it can be recovered at the terminal.

Timestamp: An information unit related to time information in the Bitstream (see Composition Timestamp and Decoding Timestamp).

User Interaction: The capability provided to a user to initiate actions during a session.

TransMux: A generic abstraction for delivery mechanisms able to store or transmit a number of multiplexed Elementary Streams. This specification does not specify a TransMux layer.

5.	Abbreviations and Symbols

The following symbols and abbreviations are used in this specification.

APS - AL-packetized Stream

AL - Access Unit Layer

AL-PDU - Access Unit Layer Protocol Data Unit

AU - Access Unit

BIFS - Binary Format for Scene

CU - Composition Unit

CM - Composition Memory

CTS - Composition Time Stamp

DB - Decoding Buffer

DTS - Decoding Time Stamp

ES - Elementary Stream

ES_ID - Elementary Stream Identification

IP - Intellectual Property

IPI - Intellectual Property Information

OCI - Object Content Information

OCR - Object Clock Reference

OD - Object Descriptor

OTB - Object Time Base

PDU - Protocol Data Unit

PLL - Phase locked loop

QoS - Quality of Service

SDL - Syntactic Description Language

STB - System Time Base

URL - Universal Resource Locator

6.	Conventions

6.1	Syntax Description

For the purpose of unambiguously defining the syntax of the various bitstream components defined by the normative parts of this Committee Draft of International Standard a syntactic description language is used. This language allows the specification of the mapping of the various parameters in a binary format as well as how they should be placed in a serialized bitstream. The definition of the language is provided in Subclause � REF _Ref404095952 \n �7.6�.

�7.	Specification

7.1	Systems Decoder Model

7.1.1	Introduction

The purpose of the Systems Decoder Model (SDM) is to provide an abstract view of the behavior of a terminal complying to this Committee Draft of International Standard. It can be used by the sender to predict how the receiver will behave in terms of buffer management and synchronization when reconstructing the audiovisual information that composes the session. The Systems Decoder Model includes a timing model and a buffer model.

The Systems Decoder Model specifies the access to demultiplexed data streams via the DMIF Application Interface, Decoding Buffers for compressed data for each Elementary Stream, the behavior of media object decoders, composition memory for decompressed data for each media object and the output behavior towards the compositor, as outlined in � REF _Ref385363632 * MERGEFORMAT �Figure 7-1�. Each Elementary Stream is attached to one single Decoding Buffer. More than one Elementary Stream may be connected to a single media object decoder (e.g.: scaleable media decoders).

�EMBED Word.Picture.8���

Figure � STYLEREF 1 \n �7�-� SEQ Figure * ARABIC \r 1 �1�: Systems Decoder Model

7.1.2	Concepts of the Systems Decoder Model

This subclause defines the concepts necessary for the specification of the timing and buffering model. The sequence of definitions corresponds to a walk from the left to the right side of the SDM illustration in � REF _Ref385363632 \h ��Figure 7-1�.

7.1.2.1	DMIF Application Interface (DAI)

For the purpose of the Systems Decoder Model, the DMIF Application Interface, which encapsulates the demultiplexer, is a black box that provides multiple handles to streaming data and fills up Decoding Buffers with this data. The streaming data received through the DAI consists of AL-packetized Streams.

7.1.2.2	AL-packetized Stream (APS)

An AL-packetized Stream (AL=Access Unit Layer) consists of a sequence of packets, according to the syntax and semantics specified in Subclause � REF _Ref403916893 \n �7.4.2� that encapsulate a single Elementary Stream. The packets contain Elementary Stream data partitioned in Access Units as well as side information e.g. for timing and Access Unit labeling. APS data enters the Decoding Buffers.

7.1.2.3	Access Units (AU)

Elementary stream data is partitioned into Access Units. The delineation of an Access Unit is completely determined by the entity that generates the Elementary Stream (e.g. the Compression Layer). An Access Unit is the smallest data entity to which timing information can be attributed. Any further structure of the data in an Elementary Stream is not visible for the purpose of the Systems Decoder Model. Access Units are conveyed by AL-packetized streams and are received by the Decoding Buffer. Access Units with the necessary side information (e.g. time stamps) are taken from the Decoding Buffer through the Elementary Stream Interface.

Note:	An MPEG�4 terminal implementation is not required to process each incoming Access Unit as a whole. It is furthermore possible to split an Access Unit into several fragments for transmission as specified in Subclause � REF _Ref403916893 \n �7.4.2�. This allows the encoder to dispatch partial AUs immediately as they are generated during the encoding process.

7.1.2.4	Decoding Buffer (DB)

The Decoding Buffer is a receiver buffer that contains Access Units. The Systems Buffering Model enables the sender to monitor the minimum Decoding Buffer resources that are needed during a session.

7.1.2.5	Elementary Streams (ES)

Streaming data received at the output of a Decoding Buffer, independent of its content, is considered as Elementary Stream for the purpose of this specification. The integrity of an Elementary Stream is preserved from end to end between two systems. Elementary Streams are produced and consumed by Compression Layer entities (encoder, decoder).

7.1.2.6	Elementary Stream Interface (ESI)

The Elementary Stream Interface models the exchange of Elementary Stream data and associated control information between the Compression Layer and the Access Unit Layer. At the receiving terminal the ESI is located at the output of the Decoding Buffer. The ESI is specified in Subclause � REF _Ref403916971 \n �7.4.3�.

7.1.2.7	Media Object Decoder

For the purpose of this model, the media object decoder is a black box that takes Access Units out of the Decoding Buffer at precisely defined points in time and fills up the Composition Memory with Composition Units. A Media Object Decoder may be attached to several Decoding Buffers

7.1.2.8	Composition Units (CU)

Media object decoders produce Composition Units from Access Units. An Access Unit corresponds to an integer number of Composition Units. Composition Units are received by or taken from the Composition Memory.

7.1.2.9	Composition Memory (CM)

The Composition Memory is a random access memory that contains Composition Units. The size of this memory is not normatively specified.

7.1.2.10	Compositor

The compositor is not specified in this Committee Draft of International Standard. The Compositor takes Composition Units out of the Composition Memory and either composits and presents them or skips them. This behavior is not relevant within the context of the model. Subclause � REF _Ref404733707 \r \h ��7.1.4� details the specifics of which Composition Unit is available to the Compositor at any instant of time.

7.1.3	Timing Model Specification

The timing model relies on two well-known concepts to synchronize media objects conveyed by one or more Elementary Streams. The concept of a clock and associated clock reference time stamps are used to convey the notion of time of an encoder to the receiving terminal. Time stamps are used to indicate when an event shall happen in relation to a known clock. These time events are attached to Access Units and Composition Units. The semantics of the timing model is defined in the subsequent subclauses. The syntax to convey timing information is specified in Subclause � REF _Ref403916893 \n �7.4.2�.

Note: 	This model is designed for rate-controlled (“push”) applications.

7.1.3.1	System Time Base (STB)

The System Time Base (STB) defines the receiving terminal's notion of time. The resolution of this STB is implementation dependent. All actions of the terminal are scheduled according to this time base for the purpose of this timing model.

Note:	This does not imply that all compliant receiver terminals operate on one single STB.

7.1.3.2	Object Time Base (OTB)

The Object Time Base (OTB) defines the notion of time of a given media object encoder. The resolution of this OTB can be selected as required by the application or is governed by a profile . All time stamps that the encoder inserts in a coded media object data stream refer to this time base. The OTB of an object is known at the receiver either by means of information inserted in the media stream, as specified in Subclause � REF _Ref404096072 \n �7.1.3.3�, or by indication that its time base is slaved to a time base conveyed with another stream, as specified in Subclause � REF _Ref404063021 \n �7.4.2.2�.

Note:	Elementary streams may be created for the sole purpose of conveying time base information.

Note:	The receiver terminals’ System Time Base need not be locked to any of the Object Time Bases in an MPEG�4 session.

7.1.3.3	Object Clock Reference (OCR)

A special kind of time stamps, Object Clock Reference (OCR), are used to convey the OTB to the media object decoder. The value of the OCR corresponds to the value of the OTB at the time the transmitting terminal generates the Object Clock Reference time stamp. OCR time stamps are placed in the AL-PDU header as described in Subclause � REF _Ref403916893 \n �7.4.2�. The receiving terminal shall extract and evaluate the OCR when its first byte enters the Decoding Buffer in the receiver system. OCRs shall be conveyed at regular intervals, with the minimum frequency at which OCRs are inserted being application-dependent.

7.1.3.4	Decoding Time Stamp (DTS)

Each Access Unit has an associated nominal decoding time, the time at which it must be available in the Decoding Buffer for decoding. The AU is not guaranteed to be available in the Decoding Buffer either before or after this time.

This point in time is implicitly known, if the (constant) temporal distance between successive Access Units is indicated in the setup of the Elementary Stream (see Subclause � REF _Ref404063122 \n �7.4.2.2�). Otherwise it is conveyed by a decoding time stamp (DTS) placed in the Access Unit Header. It contains the value of the OTB at the nominal decoding time of the Access Unit.

Decoding Time Stamps shall not be present for an Access Unit unless the DTS value is different from the CTS value. Presence of both time stamps in an AU may indicate a reversal between coding order and composition order.

7.1.3.5	Composition Time Stamp (CTS)

Each Composition Unit has an associated nominal composition time, the time at which it must be available in the Composition Memory for composition. The CU is not guaranteed to be available in the Composition Memory for composition before this time. However, the CU is already available in the Composition Memory for use by the decoder (e.g. prediction) at the time indicated by DTS of the associated AU, since the SDM assumes instantaneous decoding.

This point in time is implicitly known, if the (constant) temporal distance between successive Composition Units is indicated in the setup of the Elementary Stream. Otherwise it is conveyed by a composition time stamp (CTS) placed in the Access Unit Header. It contains the value of the OTB at the nominal composition time of the Composition Unit.

The current CU is available to the compositor between its composition time and the composition time of the subsequent CU. If a subsequent CU does not exist, the current CU becomes unavailable at the end of the life time of its Media Object.

7.1.3.6	Occurrence of timing information in Elementary Streams

The frequency at which DTS, CTS and OCR values are to be inserted in the bitstream is application and profile dependent.

7.1.3.7	Example

The example below illustrates the arrival of two Access Units at the Systems Decoder. Due to the constant delay assumption of the model, the arrival times correspond to the point in time when the respective AU have been sent by the transmitter. This point in time must be selected by the transmitter such that the Decoder Buffer never overflows nor underflows. At DTS an AU is instantaneously decoded and the resulting CU(s) are placed in the Composition Memory and remain there until the subsequent CU(s) arrive.

�EMBED Word.Picture.8���

7.1.4	Buffer Model Specification

7.1.4.1	Elementary decoder model

The following simplified model is assumed for the purpose of the buffer model specification. Each Elementary Stream is regarded separately. The definitions as given in the previous subclause remain.

�EMBED Word.Picture.8���

Figure � STYLEREF 1 \n �7�-� SEQ Figure * ARABIC �2�: Flow diagram for the Systems Decoder Model

7.1.4.2	Assumptions

7.1.4.2.1	Constant end-to-end delay

Media objects being presented and transmitted in real time, have a timing model in which the end-to-end delay from the encoder input to the decoder output is a constant. This delay is the sum of encoding, encoder buffering, multiplexing, communication or storage, demultiplexing, decoder buffering and decoding delays.

Note that the decoder is free to add a temporal offset (delay) to the absolute values of all time stamps if it copes with the additional buffering needed. However, the temporal difference between two time stamps, that determines the temporal distance between the associated AU or CU, respectively, has to be preserved for real-time performance.

7.1.4.2.2	Demultiplexer

The end-to-end delay between multiplexer output and demultiplexer input is constant.

7.1.4.2.3	Decoding Buffer

The needed Decoding Buffer size is known by the sender and conveyed to the receiver as specified in Subclause � REF _Ref403959199 \r \h ��7.3.3.3�.

The size of the Decoding Buffer is measured in bytes.

Decoding Buffers are filled at the rate given by the maximum bit rate for this Elementary Stream if data is available from the demultiplexer and else with rate zero. Maximum bit rate is conveyed in the decoder configuration during set up of each Elementary Stream (see Subclause � REF _Ref404063205 \n �7.3.3.3�).

AL-PDUs are received from the demultiplexer. The AL-PDU Headers are removed at the input to the Decoding Buffers.

7.1.4.2.4	Decoder

The decoding time is assumed to be zero for the purposes of the Systems Decoder Model.

7.1.4.2.5	Composition Memory

The size of the Composition Memory is measured in Composition Units.

The mapping of AU to CU is known implicitly (by the decoder) to the sender and the receiver.

7.1.4.2.6	Compositor

The composition time is assumed to be zero for the purposes of the Systems Decoder Model.

7.1.4.3	Managing Buffers: A Walkthrough

The model is assumed to be used in a “push” scenario. In case of interactive applications where non-real time content is to be transmitted, flow control by suitable signaling may be established to request Access Units at the time they are needed at the receiver. This is currently not further specified in this document.

The behavior of the SDM elements are modeled as follows:

The sender signals the required buffer resources to the receiver before starting the transmission. This is done as specified in Subclause � REF _Ref404063297 \n �7.3.3.3� either explicitly by requesting buffer sizes for individual Elementary Streams or implicitly by specification of an MPEG�4 profile and level. The buffer size is measured in bytes for the DB.

The sender models the buffer behavior by making the following assumptions :

The Decoding Buffer is filled at the maximum bitrate for this Elementary Stream if data is available.

At DTS, an AU is instantaneously decoded and removed from DB.

At DTS, a known amount of CUs corresponding to the AU are put in the Composition Memory,

The current CU is available to the compositor between its composition time and the composition time of the subsequent CU. If a subsequent CU does not exist, the CU becomes unavailable at the end of lifetime of its Media object.

With these model assumptions the sender may freely use the space in the buffers. For example it may transfer data for several Access Units of a non-real time stream to the receiver and pre-store them in the DB some time before they have to be decoded if there is sufficient space. Then the full channel bandwidth may be used to transfer data of a real time stream just in time afterwards. The Composition Memory may be used, for example, as a reordering buffer to contain decoded P-frames which are needed by the video decoder for the decoding of intermediate B-frames before the arrival of the CTS for the P�frame.

�7.2	Scene Description

7.2.1	Introduction

7.2.1.1	Scope

MPEG-4 addresses the coding of objects of various types: Traditional video and audio frames, but also natural video and audio objects as well as textures, text, 2- and 3-dimensional graphic primitives, and synthetic music and sound effects. To reconstruct a multimedia scene at the terminal, it is hence no longer sufficient to encode the raw audiovisual data and transmit it, as MPEG-2 does, in order to convey a video and a synchronized audio channel. In MPEG-4, all objects are multiplexed together at the encoder and transported to the terminal. Once de-multiplexed, these objects are composed at the terminal to construct and present to the end user a meaningful multimedia scene, as illustrated in � REF _Ref403468011 \h ��Figure 7-3�. The placement of these elementary Media Objects in space and time is described in what is called the Scene Description layer. The action of putting these objects together in the same representation space is called the Composition of Media Objects. The action of transforming these Media Objects from a common representation space to a specific rendering device (speakers and a viewing window for instance) is called Rendering.

�

Figure � STYLEREF 1 \n �7�-� SEQ Figure * ARABIC �3�: An example of an MPEG-4 multimedia scene

The independent coding of different objects may achieve a higher compression rate, but also brings the ability to manipulate content at the terminal. The behaviours of objects and their response to user inputs can thus also be represented in the Scene Description layer, allowing richer multimedia content to be delivered as an MPEG-4 stream.

7.2.1.2	Composition

The intention here is not to describe a standardized way for the MPEG-4 terminal to compose or render the scene at the terminal. Only the syntax that describes the spatio-temporal relationships of Scene Objects is standardized.

7.2.1.3	Scene Description

In addition to providing support for coding individual objects, MPEG-4 also provides facilities to compose a set of such objects into a scene. The necessary composition information forms the scene description, which is coded and transmitted together with the Media Objects which comprise the scene.

In order to facilitate the development of authoring, manipulation and interaction tools, scene descriptions are coded independently from streams related to primitive Media Objects. Special care is devoted to the identification of the parameters belonging to the scene description. This is done by differentiating parameters that are used to improve the coding efficiency of an object (e.g. motion vectors in video coding algorithm), from those used as modifiers of an object’s characteristics within the scene (e.g. position of the object in the global scene). In keeping with MPEG-4’s objective to allow the modification of this latter set of parameters without having to decode the primitive Media Objects themselves, these parameters form part of the scene description and are not part of the primitive Media Objects. The following sections detail characteristics that can be described with the MPEG-4 scene description.

7.2.1.3.1	Grouping of objects

An MPEG-4 scene follows a hierarchical structure which can be represented as a Directed Acyclic Graph. Each node of the graph is a scene object, as illustrated in � REF _Ref403468279 \h ��Figure 7-4�. The graph structure is not necessarily static; the relationships can change in time and nodes may be added or deleted.

�

Figure � STYLEREF 1 \n �7�-� SEQ Figure * ARABIC �4�: Logical structure of the scene

7.2.1.3.2	Spatio-Temporal positioning of objects

Scene Objects have both a spatial and a temporal extent. Objects may be located in 2-dimensional or 3-dimensional space. Each Scene Object has a local co-ordinate system. A local co-ordinate system for an object is a co-ordinate system in which the object has a fixed spatio-temporal location and scale (size and orientation). The local co-ordinate system serves as a handle for manipulating the Scene Object in space and time. Scene Objects are positioned in a scene by specifying a co-ordinate transformation from the object’s local co-ordinate system into a global co-ordinate system defined by its parent Scene Object in the tree. As shown on � REF _Ref403468279 \h ��Figure 7-4�, these relationships are hierarchical, therefore the objects are placed in space and time according to their parent.

7.2.1.3.3	Attribute value selection

Individual Scene Objects expose a set of parameters to the composition layer through which part of their behaviour can be controlled by the scene description. Examples include the pitch of a sound, the colour of a synthetic visual object, or the speed at which a video is to be played. A clear distinction should be made between the Scene Object itself , the attributes that enable the placement of such an object in a scene, and any Media Stream that contains coded information representing some attributes of the object (a Scene Object that has an associated Media Stream is called a Media Object). For instance, a video object may be connected to an MPEG-4 encoded video stream, and have a start time and end time as attributes attached to it.

MPEG-4 also allows for user interaction with the presented content. This interaction can be separated into two major categories: client-side interaction and server-side interaction. In this section, we are only concerned by the client side interactivity that can be described within the scene description.

Client-side interaction involves content manipulation which is handled locally at the end-user’s terminal, and can be interpreted as the modification of attributes of Scene Objects according to specified user inputs. For instance, a user can click on a scene to start an animation or a video. This kind of user interaction has to be described in the scene description in order to ensure the same behaviour on all MPEG-4 terminals.

7.2.2	Concepts

7.2.2.1	Global structure of a BIFS Scene Description

A BIFS scene description is a compact binary format representing a pre-defined set of Scene Objects and behaviours along with their spatio-temporal relationships. The BIFS format contains four kinds of information:

The attributes of Scene Objects, which define their audio-visual properties

The structure of the scene graph which contains these Scene Objects

The pre-defined spatio-temporal changes (or “self-behaviours”) of these objects, independent of the user input. For instance, “this red sphere rotates forever at a speed of 5 radians per second, around this axis”.

The spatio-temporal changes triggered by user interaction. For instance, “start the animation when the user clicks on this object”.

These properties are intrinsic to the BIFS format. Further properties relate to the fact that the BIFS scene description data is itself conveyed to the receiver as an Elementary Stream. Portions of BIFS data that become valid at a given point in time are delivered within time-stamped Access Units as defined in Subclause � REF _Ref404688651 \w \h ��7.2.2.13.2�. This streaming nature of BIFS allows modification of the scene description at given points in time by means of BIFS-Update or BIFS-Anim as specified in Subclause � REF _Ref404688683 \w \h ��7.2.2.17�. The semantics of a BIFS stream are specified in Subclause � REF _Ref404688717 \w \h ��7.2.2.13�.

7.2.2.2	BIFS Scene graph

Conceptually, BIFS scenes represent, as in the ISO/IEC DIS 14772-1:1997, a set of visual and aural primitives distributed in a Direct Acyclic Graph, in a 3D space. However, BIFS scenes may fall into several sub-categories representing particular cases of this conceptual model. In particular, BIFS scene descriptions supports scenes composed of aural primitives as well as:

2D only primitives

3D only primitives

A mix of 2D and 3D primitives, in several ways:

2D and 3D complete scenes layered in a 2D space with depth

2D and 3D scenes used as texture maps for 2D or 3D primitives

2D scenes drawn in the local X-Y plane of the local coordinate system in a 3D scene

The following figure describes a typical BIFS scene structure.

�EMBED Word.Picture.8���

Figure � STYLEREF 1 \n �7�-� SEQ Figure * ARABIC �5�: A complete scene graph example. We see the hierarchy of 3 different scene graphs: the 2D graphics scene graph, 3D graphics scene graph, and the layers 3D scene graphs. As shown in the picture, the 3D layer-2 view the same scene as 3D-layer1, but the viewpoint may be different. The 3D object-3 is a Appearance node that uses the 2D-Scene 1 as a texture node.

7.2.2.3	2D Coordinate System

For the 2D coordinate system, the origin is positioned at lower left-hand corner of the viewing area, X positive to the right, Y positive upwards. 1.0 corresponds to the width and the height of the rendering area. The rendering area is either the whole screen, when viewing a single 2D scene, or the rectangular area defined by the parent grouping node, or a Composite2DTexture, CompositeMap or Layer2D that embeds a complete 2D scene description.

�EMBED Word.Picture.8���

Figure � STYLEREF 1 \n �7�-� SEQ Figure * ARABIC �6�: 2D Coordinate System

7.2.2.4	3D Coordinate System

The 3D coordinate system is as described in ISO/IEC DIS 14772-1:1997, Section 4.4.5. The following figure illustrates the coordinate system.

�EMBED Word.Picture.8���

Figure � STYLEREF 1 \n �7�-� SEQ Figure * ARABIC �7�: 3D Coordinate System

7.2.2.5	Standard Units

As described in ISO/IEC DIS 14772-1:1997, Section 4.4.5, the standard units used in the scene description are the following:

Category�Unit��Distance in 2D�Rendering area width and height��Distance in 3D�Meter��Colour space�RGB [0,1], [0,1] [0,1]��Time�seconds��Angle�radians��Figure � STYLEREF 1 \n �7�-� SEQ Figure * ARABIC �8�: Standard Units

7.2.2.6	Mapping of scenes to screens

BIFS scenes enable the use of still images and videos by copying, pixel by pixel the output of the decoders to the screen. In this case, the same scene will appear different on screens with different resoultions.

BIFS scenes that do not use these primitives are independent from the screen on which they are viewed.

7.2.2.7	Nodes and fields

7.2.2.7.1	Nodes

The BIFS scene description consists of a collection of nodes which describe the scene and its layout. An object in the scene is described by one or more nodes, which may be grouped together (using a grouping node). Nodes are grouped into Node Data Types and the exact type of the node is specified using a nodeType field.

An object may be completely described within the BIFS information, e.g. Box with Appearance, or may also require streaming data from one or more AV decoders, e.g. MovieTexture or AudioSource. In the latter case, the node points to an ObjectDescriptor which indicates which Elementary Stream(s) is (are) associated with the node, or directly to a URL description (see ISO/IEC DIS 14772-1, Section 4.5.2). ObjectDescriptors are denoted in the URL field with the scheme "mpeg4od:<number>", <number> being the ObjectDescriptorID.

7.2.2.7.2	Fields and Events

See ISO/IEC DIS 14772-1:1997, Section 5.1.

7.2.2.8	Basic data types

There are two general classes of fields and events; fields/events that contain a single value (e.g. a single number or a vector), and fields/events that contain multiple values. Multiple-valued fields/events have names that begin with MF, single valued begin with SF.

7.2.2.8.1	Numerical data and string data types

For each basic data types, single fields and multiple fields data types are defined in ISO/IEC DIS 14772-1:1997, Section 5.2. Some further restrictions are described herein.

7.2.2.8.1.1	SFBool

7.2.2.8.1.2	SFColor/MFColor

7.2.2.8.1.3	SFFloat/MFFloat

7.2.2.8.1.4	SFInt32/MFInt32

When ROUTEing values between two SFInt32s note shall be taken of the valid range of the destination. If the value being conveyed is outside the valid range, it shall be clipped to be equal to either the maximum or minimum value of the valid range, as follows:

if x > max, x := max

if x < min, x := min

7.2.2.8.1.5	SFRotation/MFRotation

7.2.2.8.1.6	SFString/MFString

7.2.2.8.1.7	SFTime

The SFTime field and event specifies a single time value. Time values shall consist of 64-bit floating point numbers indicating a duration in seconds or the number of seconds elapsed since the origin of time as defined in the semantics for each SFTime field.

7.2.2.8.1.8	SFVec2f/MFVec2f

7.2.2.8.1.9	SFVec3f/MFVec3f

7.2.2.8.2	Node data types

Nodes in the scene are also represented by a data type, namely SFNode and MFNode types. MPEG-4 has also defined a set of sub-types, such as SFColorNode, SFMaterialNode. These Node Data Types are used for better compression of BIFS scenes to take into account the context to achieve better compression, but are not used at runtime. SFNode and MFNode types are sufficient for internal representations of BIFS scenes.

7.2.2.9	Attaching nodeIDs to nodes

Each node in a BIFS scene graph may have a nodeID associated with it, for referencing. ISO/IEC DIS 14772-1:1997, Section 4.6.2 describes the DEF semantic which is used to attachnames to nodes. In BIFS scenes, an integer represented as 10 bits is used for nodeIDs, allowing for a maximum of 1024 nodes to be simultaneously referenced.

7.2.2.10	Using pre-defined nodes

In the scene graph, nodes may be accessed for future changes of their fields. There are two main sources for changes of the BIFS nodes' fields:

The modifications occurring from the ROUTE mechanism, which enables the description of behaviours in the scene

The modifications occurring from the BIFS update mechanism (see �REF _Ref393517303 \n �7.2.2.17�).

The mechanism for naming and reusing nodes is given in ISO/IEC DIS 14772-1:1997, Section 4.6.3. The following restrictions apply:

Nodes are identified by the use of nodeIDs, which are binary numbers conveyed in the BIFS bitstream.

The scope of nodeIDs is given in Subclause � REF _Ref404690186 \w \h ��7.2.2.13.6�

No two nodes delivered in a single Elementary Stream may have the same nodeID.

7.2.2.11	Scene Structure and Semantics

The BIFS Scene Structure is as described in ISO/IEC DIS 14772-1:1997. However, MPEG-4 includes new nodes that extend the capabilities of the scene graph.

7.2.2.11.1	2D Grouping Nodes

The 2D grouping nodes enable the ordered drawing of 2D primitives. The 2D Grouping Nodes are:

Group2D

Transform2D

Layout

Form

7.2.2.11.2	2D Geometry Nodes

The 2D Geometry Nodes represent 2D graphic primitives. They are:

Circle

Rectangle

IndexedFaceSet2D

IndexedLineSet2D

7.2.2.11.3	2D Material Nodes

2D Material Nodes have color and transparency fields, and have additional 2D nodes as fields to describe the graphic properties. The following nodes fall into this category:

Material2D

LineProperties2D

ShadowProperties2D

7.2.2.11.4	Face and Body nodes

To offer a complete support for Face and Body animation, BIFS has a set of nodes that defines the Face and Body parameters.

FBA

Face

Body

FDP

FBADefTables

FBADefTransform

FBADefMesh

FIT

FaceSceneGraph

7.2.2.11.5	Mixed 2D/3D Nodes

These nodes that enable the mixing of 2D and 3D primitives.

Layer2D

Layer3D

Composite2Dtexture

Composite3DTexture

CompositeMap

7.2.2.12	Internal, ASCII and Binary Representation of Scenes

MPEG-4 describes the attributes of Scene Objects using Node structures and fields. These fields can be one of several types (see �REF _Ref393516887 \n �7.2.2.7.2�). To facilitate animation of the content and modification of the objects’ attributes in time, within the MPEG-4 terminal, it is necessary to use an internal representation of nodes and fields as described in the node specifications (Subclause � REF _Ref404688861 \w \h ��7.2.5�). This is essential to ensure deterministic behaviour in the terminal’s compositor, for instance when applying ROUTEs or differentially coded BIFS-Anim frames. The observable behaviour of compliant decoders shall not be affected by the way in which they internally represent and transform data; i.e., they shall behave as if their internal representation is as defined herein.

However, at transmission time, different attributes need to be quantized or compressed appropriately. Thus, the binary representation of fields may differ according to the precision needed to represent a given Media Object, or according to the types of fields. The semantic of nodes is described in Subclause � REF _Ref404688903 \w \h ��7.2.5�, and the binary syntax which represents the binary format as transported in MPEG-4 streams is provided in the Node Coding Tables, in Subclause � REF _Ref404688928 \w \h ��7.2.6.3�.

7.2.2.12.1	Binary Syntax Overview

The Binary syntax represents a complete BIFS scene.

7.2.2.12.1.1	Scene Description

The whole scene is represented by a binary representation of the scene structure. The binary encoding of the scene structure restricts the VRML Grammar as defined in ISO/IEC DIS 14772-1:1997, Annex A, but still enables representation of any scene observing this grammar to be represented. For instance, all ROUTEs are represented at the end of the scene, and a global grouping node is inserted at the top level of the scene.

7.2.2.12.1.2	Node Description

Node types are encoded according to the context of the node.

7.2.2.12.1.3	Fields description

Fields are quantized whenever possible. The degradation of the scene can be controlled by adjusting the parameters of the QuantizationParameter node.

7.2.2.12.1.4	ROUTE description

All ROUTEs are represented at the end of the scene.

7.2.2.13	BIFS Elementary Streams

The BIFS Scene Description may, in general, be time variant. Consequently, BIFS data is itself of a streaming nature, i.e. it forms an elementary stream, just as any media stream associated with the scene.

7.2.2.13.1	BIFS-Update commands

BIFS data is encapsulated in BIFS-Update commands. For the detailed specification of all BIFS-Update commands see Subclause � REF _Ref403469167 \r \h \w��7.2.3.2�. Note that this does not imply that a BIFS-Update command must contain a complete scene description.

7.2.2.13.2	BIFS Access Units

BIFS data is further composed of BIFS Access Units. An Access Unit groups one or more BIFS-update commands that shall become valid (in an ideal compositor) at a specific point in time. Access Units in BIFS elementary streams therefore must be labeled and time stamped by suitable means.

7.2.2.13.3	Requirements on BIFS elementary stream transport

Framing of Access Units for random access into the BIFS stream as well as time stamping must be provided. In the context of the tools specified by this Working Draft of International Standard this is achieved by means of the related flags and the Composition Time Stamp, respectively, in the AL_PDU Header.

7.2.2.13.4	Time base for the scene description

As for every media stream, the BIFS elementary stream has an associated time base as specified in Subclause � REF _Ref404770126 \r \h ��7.1.3�. The syntax to convey time bases to the receiver is specified in Subclause � REF _Ref404770160 \r \h ��7.4�. It is possible to indicate on set up of the BIFS stream from which other Elementary Stream it inherits its time base. All time stamps in the BIFS are expressed in SFTime format but refer to this time base.

7.2.2.13.5	Composition Time Stamp semantics for BIFS Access Units

The AL-packetized Stream that carries the Scene Description shall contain Composition Time Stamps (CTS) only. The CTS of a BIFS Access Unit indicates the point in time that the BIFS description in this Access Unit becomes valid (in an ideal compositor). This means that any audiovisual objects that are described in the BIFS Access Unit will ideally become visible or audible exactly at this time unless a different behavior is specified by the fields of their nodes.

7.2.2.13.6	Multiple BIFS streams

Scene description data may be conveyed in more than one BIFS elementary stream. This is indicated by the presence of one or more Inline/Inline2D nodes in a BIFS scene description that refer to further elementary streams as specified in Subclause � REF _Ref404689438 \w \h ��7.2.5.3.3.15�/� REF _Ref404689459 \w \h ��7.2.5.2.2.11�. Therefore multiple BIFS streams have a hierarchical dependency. Note, however, that it is not required that all BIFS streams adhere to the same time base. An example for such an application is a multi-user virtual conferencing scene.

The scope for names (nodeID, objectDescriptorID) used in a BIFS stream is given by the grouping of BIFS streams within one Object Descriptor (see Subclause � REF _Ref403958748 \w \h ��7.3.3�). Conversely, BIFS streams that are not declared in the same Object Descriptor form separate name spaces. As a consequence, an Inline node always opens a new name space that is populated with data from one or more BIFS streams. It is forbidden to reference parts of the scene outside the name scope of the BIFS stream.

7.2.2.13.7	Time Fields in BIFS nodes

In addition to the Composition Time Stamps that specify the validity of BIFS Access Units, several time dependent BIFS nodes have fields of type SFTime that identify a point in time at which an event happens (change of a parameter value, start of a media stream, etc). These fields are time stamps relative to the time base that applies to the BIFS elementary stream that has conveyed the respective nodes. More specifically this means that any time duration is therefore unambiguously specified.

SFTime fields of some nodes require absolute time values. Absolute time (wall clock time) can not be directly derived through knowledge of the time base, since time base ticks need not have a defined relation to the wall clock. However, the absolute time can be related to the time base if the wall clock time that corresponds to the composition time stamp of the BIFS Access Unit that has conveyed the respective BIFS node is known. This is achieved by an optional wallClockTimeStamp as specified in Subclause � REF _Ref403964583 \w \h ��7.4.2.2�. After reception of one such time association, all absolute time references within this BIFS stream can be resolved.

Note specifically that SFTime fields that define the start or stop of a media stream are relative to the BIFS time base. If the time base of the media stream is a different one, it is not generally possible to set a startTime that corresponds exactly to the Composition Time of a Composition Unit of this media stream.

7.2.2.13.7.1	Example

The example below shows a BIFS Access Unit that is to become valid at CTS. It conveys a media node that has an associated media stream. Additionally it includes a MediaTimeSensor that indicates an elapsedTime that is relative to the CTS of the BIFS AU. Third a ROUTE node routes Time=(now) to the startTime of the Media Node when the elapsedTime of the MediaTimeSensor has passed. The Composition Unit (CU) that is available at that time CTS+MediaTimeSensor.elapsedTime is the first CU available for composition.

�

Figure � STYLEREF 1 \n �7�-� SEQ Figure * ARABIC �9�: Media start times and CTS

7.2.2.13.8	Time events based on media time

Regular SFTime time values in the scene description allow to trigger events based on the BIFS time base. In order to be able to trigger events in the scene at a specific point on the media time line, a MediaTimeSensor node is specified in Subclause � REF _Ref404689122 \w \h ��7.2.5.1.2.7�.

7.2.2.14	Sound

Sound nodes are used for building audio scenes in the MPEG-4 decoder terminal from audio sources coded with MPEG-4 tools. The audio scene description is meant to serve two requirements:

“Physical modelling” composition for virtual-reality applications, where the goal is to recreate the acoustic space of a real or virtual environment

“Post-production” composition for traditional content applications, where the goal is to apply high-quality signal-processing transforms as they are needed artistically.

Sound may be included in either the 2D or 3D scene graphs. In a 3D scene, the sound may be spatially presented to apparently originate from a particular 3D direction, according to the positions of the object and the listener.

The Sound node is used to attach sound to 3D and 2D scene graphs. As with visual objects, the audio objects represented by this node has a position in space and time, and are transformed by the spatial and grouping transforms of nodes hierarchically above them in the scene.

The nodes below the Sound nodes, however, constitute an audio subtree. This subtree is used to describe a particular audio object through the mixing and processing of several audio streams. Rather than representing a hierarchy of spatiotemporal tranformations, the nodes within the audio subtree represent a signal-flow graph that describes how to create the audio object from the sounds coded in the AudioSource streams. That is, each audio subtree node (AudioSource, AudioMix, AudioSwitch, AudioFX) accepts one or several channels of input sound, and describes how to turn these channels of input sound into one or more channels of output sound. The only sounds presented in the audiovisual scene are those sounds which are the output of audio nodes that are children of a Sound node (that is, the “highest” outputs in the audio subtree).

The normative semantics of each of the audio subtree nodes describe the exact manner in which to compute the output sound from the input sound for each node based on its parameters.

7.2.2.14.1	Overview of sound node semantics

This section describes the concepts for normative calculation of the sound objects in the scene in detail, and describes the normative procedure for calculating the sound which is the output of a Sound object given the sounds which are its input.

Recall that the audio nodes present in an audio subtree do not each represent a sound to be presented in the scene. Rather, the audio subtree represents a signal-flow graph which computes a single (possibly multichannel) audio object based on a set of audio inputs (in AudioSource nodes) and parametric transformations. The only sounds which are presented to the listener are those which are the “output” of these audio subtrees, as connected to Sound node. This section describes the proper computation of this signal-flow graph and resulting audio object.

As each audio source is decoded, it produces Composition Buffers (CBs) of data. At a particular time step in the scene composition, the compositor shall request from each audio decoder a CB such that the decoded time of the first audio sample of the CB for each audio source is the same (that is, the first sample is synchronized at this time step). Each CB will have a certain length, depending on the sampling rate of the audio source and the clock rate of the system. In addition, each CB has a certain number of channels, depending on the audio source.

Each node in the audio subtree has an associated input buffer and output buffer of sound, except for the AudioSource node, which has no input buffer. The CB for the audio source acts as the input buffer of sound for the AudioSource with which the decoder is associated. As with CBs, each input and output buffer for each node has a certain length, and a certain number of channels.

As the signal-flow graph computation proceeds, the output buffer of each node is placed in the input buffer of its parent node, as follows:

If a Sound node N has n children, and each of the children produces k(i) channels of output, for 1 <= i <= n, then the node N shall have k(1) + k(2) + ... + k(n) channels of input, where the first k(1) channels [number 1 through k(1)] shall be the channels of the first child, the next k(2) channels [number k(1)+1 through k(1)+k(2)] shall be the channels of the second child, and so forth.

Then, the output buffer of the node is calculated from the input buffer based on the particular rules for that node.

7.2.2.14.1.1	Sample-rate conversion

If the various children of a Sound node do not produce output at the same sampling rate, then the lengths of the output buffers of the children do not match, and the sampling rates of the childrens’ output must be brought into alignment in order to place their output buffers in the input buffer of the parent node. The sampling rate of the input buffer for the node shall be the fastest of the sampling rates of the children. The output buffers of the children shall be resampled to be at this sampling rate. The particular method of resampling is non-normative, but the quality shall be at least as high as that of quadratic interpolation, that is, the noise power level due to the interpolation shall be no more than –12dB relative to the power of the signal. Implementors are encouraged to build the most sophisticated resampling capability possible into MPEG-4 terminals.

The output sampling rate of a node shall be the output sampling rate of the input buffers after this resampling procedure is applied.

Content authors are advised that content which contains audio sources operating at many different sampling rates, especially sampling rates which are not related by simple rational values, may produce a high computational complexity.

7.2.2.14.1.1.1	Example

 Suppose that node N has children M1 and M2, all three Sound nodes, and that M1 and M2 produce output at S1 and S2 sampling rates respectively, where S1 > S2. Then if the decoding frame rate is F frames per second, then M1’s output buffer will contain S1/F samples of data, and M2’s output buffer will contain S2/F samples of data. Then, since M1 is the faster of the children, its output buffer values are placed in the input buffer of N. Then, the output buffer of M2 is resampled by the factor S1/S2 to be S1/F samples long, and these values are placed in the input buffer of N. The output sampling rate of N is S1.

7.2.2.14.1.2	Number of output channels

If the numChan field of an audio object, which indicates the number of output channels, differs from the number of channels produced according to the calculation procedure in the node description, or if the numChan field of an AudioSource node differs in value from the number of channels of an input audio stream, then the numChan field shall take precedence when including the source in the audio subtree calculation, as follows:

If the value of the numChan field is strictly less than the number of channels produced, then only the first numChan channels shall be used in the output buffer.

If the value of the numChan field is strictly greater than the number of channels produced, then the “extra” channels shall be set to all 0’s in the output buffer.

7.2.2.14.2	Audio-specific BIFS

This section summarizes where issues related specifically to audio, or that have special implications for audio, can be found in this document.

7.2.2.14.2.1	Audio-related BIFS nodes

In the following table, nodes that are related to audio scene description are listed.

Node �Purpose�Subclause��AudioClip�Insert an audio clip to scene�� REF _Ref403896787 \w \h ��7.2.5.1.3.2���AudioDelay�Insert delay to sound�� REF _Ref403899146 \w \h ��7.2.5.1.2.2���AudioMix�Mix sounds�� REF _Ref403899133 \w \h ��7.2.5.1.2.3���AudioSource�Define audio source input to scene�� REF _Ref403899159 \w \h ��7.2.5.1.2.4���AudioFX�Attach structured audio objects to sound�� REF _Ref403899222 \w \h ��7.2.5.1.2.5���AudioSwitch�Switching of audio sources in scene�� REF _Ref403899240 \w \h ��7.2.5.1.2.6���Group, Group2D�Grouping of nodes and subtrees in a scene�� REF _Ref404765121 \r \h ��7.2.5.2.2.7�, � REF _Ref404765158 \r \h ��7.2.5.3.3.12���ListeningPoint�Define listening point in a scene�� REF _Ref403899403 \w \h ��7.2.5.3.2.1���Sound�Define properties of sound�� REF _Ref403899418 \w \h ��7.2.5.1.3.10���

7.2.2.15	Drawing Order

2D scenes are considered to have zero depth. Nonetheless, it is important to be able to specify the order in which 2D objects are composited. For this purpose, the Transform2D node contains a field which is called drawingOrder.

The drawingOrder field provides a mechanism for explicitly specifying the order in which 2D objects are drawn. drawingOrder values are floating point numbers and may be negative. By default, drawingOrder for all 2D objects is 0 and the following rules include methods for resolving conflicts between multiple objects having the same drawingOrder.

Objects are drawn in order.

The object having the lowest drawingOrder is drawn first (taking into account negative values).

Objects having the same drawingOrder are drawn in the order in which they appear in the scene description.

7.2.2.15.1	Scope of Drawing Order

The scope of drawing orders, explicit and implicit, is limited to any sub-scene to which they may belong. Note that sub-scenes, as a whole, have a drawing order within the higher level scene or sub-scene to which they belong.

7.2.2.16	Bounding Boxes

Some 2D nodes have bounding box fields. The bounding box gives rendering hints to the implementation and is not necessary. However, when a bounding box is specified, it shall enclose the shape.

The bounding box dimensions are specified by two fields. The bboxCenter specifies the point, in the node’s local coordinate, about which the box is centred. The bboxSize fields specify the bounding box’s size. A default bboxSize value, (-1, -1), implies that the bounding box is not specified and, if needed, is calculated by the browser.

7.2.2.17	Sources of modification to the scene

7.2.2.17.1	Interactivity and behaviors

To describe interactivity and behavior of Scene Objects, the event passing mechanism defined in ISO/IEC DIS 14772-1:1997, Section 4.10, is used

Sensors and ROUTEs describe interactivity and behaviors. Sensor nodes sense changes based on user interaction or a change in the scene. Sensor nodes then generate events that are ROUTEd to Interpolator or other nodes to change the attributes of these nodes. If ROUTEd to an Interpolator, a new parameter is interpolated according to the input value, and is finally ROUTEd to the node which must process the event.

ROUTE <name>.<field/eventName> TO <name>.<field/eventName>

7.2.2.17.2	External modification of the scene: BIFS Update

The BIFS-Update mechanism enables to change any property of the scene graph. For instance, Transform nodes can be modified to move objects in space, Material nodes can be changed to modify the objects aspect, fields of geometric nodes can be totally or partially changed to modify the geometry of objects on the fly. Finally, nodes and behaviors can be added or removed.

7.2.2.17.2.1	Overview

BIFS-Update commands are used to modify a set of properties of the scene at a given time instant in time. However, for continuous changes of the parameters of the scene, the animation scheme as following section needs to be used. Update Commands are grouped into Update Frames to sned several commands in an access unit. The following four basic commands are possible:

Insertion.

Deletion.

Replacement.

Replacement of the whole scene

Scene Repeat

All first three commands can take three kinds of parameters:

A node.

A field or an indexed value in a multiple field.

A ROUTE.

In addition to these three, the Replacement command can also take a specific field as parameter.

The replacement of the whole scene requires a node tree representing a valid BIFS scene. The SceneReplace command is the only random access point in the BIFS stream.

The Repeat Scene command enables to repeat all the updates from the last Replace Scene.

In order to modify the scene the sender must transmit a BIFS-Update frame which contains one or more update commands. The identification of a node in the scene is provided by a nodeID. It should be noted that it is the sender’s responsibility to provide this nodeID, which must be unique (see � REF _Ref403470465 \w \h ��7.2.2.13.6�). A single source of update is assumed. The identification of node field is provided by sending its fieldIndex, its position in the fields list of that node.

The time of application of the update is specified using the time stamp mechanism provided by the Flex Mux.

�EMBED Word.Picture.8���

Figure � STYLEREF 1 \n �7�-� SEQ Figure * ARABIC �10�: BIFS-Update Commands

7.2.2.17.2.2	Update examples

The following are examples of the use of BIFS-Update commands:

BIFS- Update may be used in order to enable progressive loading of a large scene, by adding progressively more and more objects.

In a Broadcast environment, BIFS-Update may be used to Add a logo, a sub title, or any object on top of the existing Image of a Digital TV.

In a 3D interactive shared world, BIFS-Update may be used to add an avatar in an existing 3D world.

In a shared content creation application, BIFS-Update may be used to send to all participants the modifications of sizes, or properties of the scene being created.

7.2.2.17.3	External animation of the scene: BIFS-Anim

The BIFS-Update commands provide a mechanism for describing changes in the BIFS. However, this format is not well-suited for continuous changes of parameters of the scene. A header format called “ BIFS-Anim ” is used to integrate different kinds of animation, including the ability to animate Face models as well as meshes, 2D and 3D positions, rotations, scale factors and colour attributes. BIFS-Anim is used for streaming animations.

7.2.2.17.3.1	Overview

The principle of the BIFS-Anim consists in transmitting the following parameters in order:

Configuration parameters of the animation also called the “Animation Mask”.

These describe the transmitted fields and may specify their quantization and compression parameters. The parameters may be eventIn or exposedField fields of updatable nodes in the scene, i.e. nodes having a nodeID, that have been assigned a dynID. Such fields are called “dynamic” fields. The Animation Mask is composed of several elementary masks defining these parameters.

Animation parameters are sent as a set of “Animation Frames”.

An Animation Frame contains all the new values of the animation parameters at a specified time, except if it is specified that for some frames, these parameters are not sent. The parameters can be sent in Intra (the absolute value is sent) and Predictive (the difference between the current and previous values is sent) modes.

Animation parameters can be applied to any field of any node of a scene which has been previously declared as a dynamic field by assigning a dynID. The types of dynamic fields are all scalar types, single or multiple:

SFInt32/MFInt32

SFFloat/MFFloat

SFRotation/MFRotation

SFColor/MFColor

7.2.2.17.3.2	Animation Mask

Animation Masks represent the fields that will be transmitted in the animation frames for a given animated node, and their associated quantization parameters. In an Animation Mask, the dynamic fields are specified, along with any quantization parameters. For each node of a scene that is to be animated, an Elementary Mask is transmitted that specifies these parameters.

7.2.2.17.3.3	Animation Frames

Animation Frames specify the values of the dynamic fields of nodes that are being animated in streams. The specific coding is defined in the binary syntax for elementary types. The precise syntax for other types of fields is specified in the binary format description.

7.2.2.17.3.4	Animation Examples

Typical use of BIFS-Anim include:

In a broadcast digital TV application, the Animation Stream may be used to animate an existing logo or creating a special effect for a scene transition.

In a personal communication service, an application using Facial Animation may be completed by animating also the viewpoint, the position and lighting of the faces in the scene.

In a shared game, the animation stream may be used to animate the position of a user in the scene.

In a multimedia consultation application, an animation stream may be used to drive the animation of an object in the scene.

7.2.3	BIFS Binary Syntax

7.2.3.1	BIFS Scene and Nodes Syntax

The scene syntax describes the syntax for an entire BIFS scene description.

7.2.3.1.1	BIFSScene

class BIFSScene {

	BIFSNodes 	nodes ;		// Description of the nodes

	bit(1)	hasROUTEs

	if (hasROUTEs)

		ROUTEs 	routes ;	// Description of the ROUTEs

}

7.2.3.1.2	BIFSNodes

class BIFSNodes{

	bit(1)	hasWorldInfo ;

	if (hasWorldInfo)

		SFNode(SFWorldInfoNode) node ;	

// Only one WorldInfo node per BIFS description

	SFNode(SFTopNode)	node ;

// This a Group2D, Group, Layer2D or Layer3D node

}

7.2.3.1.3	SFNode

class SFNode(NDT) {

bit(1) isReused ;		// This bit describes whether this node is

// a reused nodes or a newly defined one

// This is equivalent to the USE statement

	if (isReused)

	{

bit(10) nodeID; // The NodeID to be re-used

	}

	else

	{

	bit (1) predefined;	// Is the node a predefined node?

if (predefined)

{

NodeType(NDT) NType ;// This represents the type of the node.

 // of the node should be inferred from

 //the fields type

		}

bit(1) isUpdatable

if (isUpdatable)

{

bit(10) nodeID;

}

bit(1) MaskAccess ;

if (MaskAccess) {

		MaskNodeDescription node ;

}

else {

		ListNodeDescription node ;

}

}

}

7.2.3.1.4	MaskNodeDescription

Class MaskNodeDescription {

for (i=0 ; i< NumberOfFields ; i++)

{

bit(1) Mask;

if Mask

Field(fieldType) value;// get field value using

// nodeType and fieldReference

// to find out the appropriate

// field type. This field can

 // itself be a new node

}

}

7.2.3.1.5	ListNodeDescription

Class ListNodeDescrition

{

bit(1) endFlag;

while (!EndFlag){

	defID fieldReference; // this identifies the field

// for this nodeType. Length

// is derived from the number

// of fields in the node of

// type defField and is the

// number of bits necessary

// to represent the field

// number

Field(fieldType) value;	 // get field value using

 // nodeType and

// fieldReference to find out

// the appropriate field type.

// This field can itself be a

// new node

	bit(1) endFlag;

}

}

}

7.2.3.1.6	NodeType

class NodeType(NDT) {

bit(vlcNbBits) type;		// Accoridng to Node Quantization Tables

}

7.2.3.1.7	Field

class Field(fieldType) {

switch fieldType {

case SFFieldType :

SFField(fieldType) value;

break ;

case MFFieldType :

MFField(fieldType) value;

break ;

}

}

7.2.3.1.8	MFField

class MFField(fieldType) {

bit (1) isListDescription

if (isListDescription) {

		MFListDescription(fieldType) field;

}

else

	MFVectorDescription(fieldType) field;

}

class MFListDescription(fieldType) {

	do {

		SField(fieldType) 	field ;

		bit(1)	moreFields;

	while (moreFields)

}

class MFVectorDescription {

	int (5)	NbBits ;		// Number of bits for the number

// of fields

	int(NbBits)	numberOfFields;	// Number of Fields

	for (i=0 ; i< ; i++) {

		SFField(fieldType) field ;

	}

}

7.2.3.1.9	SFField

class SFField(fieldType) {

switch fieldType {

case SFNodeType :

SFNode(fieldType) value;

break ;

case SFBoolType :

SFBool value;

break ;

case SFColorType :

SFColor value;

break ;

case SFFloatType :

SFFloatvalue;

break ;

case SFImageType :

SFImage value;

break ;

case SFInt32Type :

SFInt32 value;

break ;

case SFRotationType :

SFRotation value;

break ;

case SFStringType :

SFString value;

break ;

case SFTimeType :

SFTime value;

break ;

case SFUrlType :

SFUrl value;

break ;

case SFVec2fType :

SFVec2f value;

break ;

case SFVec3fType :

SFVec3f value;

break ;

}

}

7.2.3.1.9.1	SFBool

class SFBool {

bit(1) value;

}

7.2.3.1.9.2	SFColor

class SFColor {

	if (QUANTIZED) {

		QuantizedField value;

	}

	else {

float rValue;

float gValue;

float bValue;

	}

}

7.2.3.1.9.3	SFFloat

class SFColor {

	if (QUANTIZED) {

		QuantizedField value;

	}

	else {

float value;

	}

}

7.2.3.1.9.4	SFImage

class SFImage {

uint(10)	width;

uint(10)	height;

bit(2)	numComponents;

uchar(8)	pixels[numComponents*width*height];

}

7.2.3.1.9.5	SFInt32

class SFInt32 {

	if (QUANTIZED) {

		QuantizedField value;

	}

	else {

int(32)	value;

	}

}

7.2.3.1.9.6	SFRotation

class SFRotation {

	if (QUANTIZED) {

		QuantizedField value;

	}

	else {

float	xAxis;

float	yAxis;

float	zAxis;

float	angle;

	}

}

7.2.3.1.9.7	SFString

class SFString {

	if (QUANTIZED) {

		QuantizedField value;

	}

	else {

UTF8String		value;

	}

}

7.2.3.1.9.8	SFTime

class SFInt32 {

	if (QUANTIZED) {

		QuantizedField value;

	}

	else {

float		value;

	}

}

7.2.3.1.9.9	SFUrl

class SFUrl {

	bit(1) isOD;

	if (isOD) {

		bit(10)	ODid;

	}

	else {

SFString	urlValue;

	}

}

7.2.3.1.9.10	SFVec2f

class SFVec2f {

	if (QUANTIZED) {

		QuantizedField value;

	}

	else {

float	value1;

float	value2;

	}

}

7.2.3.1.9.11	SFVec3f

class SFVec3f {

	if (QUANTIZED) {

		QuantizedField value;

	}

	else {

float	value1;

float	value2;

float	value3;

	}

}

7.2.3.1.10	QuantizedField

class QuantizedField {

switch QUANTType {

case 1 :	// 3D Positions

int(position3DNbBits) x;

int(position3DNbBits) y;

int(position3DNbBits) z;

break ;

case 2 :	// 2D Positions

int(position2DNbBits) x;

int(position2DNbBits) y;

break ;

case 3 :	// Drawing Order

int(drawOrderNbBits) d;

break ;

case 4 :	// Color

int(colorNbBits) r;

int(colorNbBits) g;

int(colorNbBits) b;

break ;

case 5 :	//TextureCoordinate

int(textureCoordinateNbBits)	xPos;

int(textureCoordinateNbBits)	yPos;

break ;

case 6 :	// Angle

int(angleNbBits) angle;

break ;

case 7 :	// Scale

int(scaleNbBits) xScale;

int(scaleNbBits) yScale;

if (3D)

	int(scaleNbBits) zScale;

break ;

case 8 :	//Interpolator Key

int(keyNbBits) key;

break ;

case 9 :	// Normal

int(3)		octantNb;

int(2)		triantNb;

int(normalNbBits)	xPos;

int(normalNbBits)	yPos;

break ;

case 10 :	// Rotation

int(3)		octantNb;

int(2)		triantNb;

int(normalNbBits)	xPos;

int(normalNbBits)	yPos;

int(angleNbBits) angle;

break ;

case 11 :	// Object Size 3D

int(position3DNbBits) size;

break ;

case 12 :	// Object Size 2D

int(position2DNbBits) size;

break ;

case 13 :	// Linear Quantization

int(nbBits) value;

break ;

}

}

7.2.3.1.11	Field IDs syntax

7.2.3.1.11.1	defID

class defID {

	int(vlcNbBits)	id;

}

7.2.3.1.11.2	inID

class inID {

	int(vlcNbBits)	id;

}

7.2.3.1.11.3	outID

class outID {

	int(vlcNbBits)	id;

}

7.2.3.1.11.4	dynID

class dynID {

	int(vlcNbBits)	id;

}

7.2.3.1.12	ROUTE syntax

7.2.3.1.12.1	ROUTEs

class ROUTEs {

	bit(1)	ListDescription ;

	if (ListROUTEsDesciprion)

		ListROUTEs	nodes ;

	else

		VectorROUTEs	nodes ;

}

7.2.3.1.12.2	ListROUTEs

class ListROUTEs{

	do {

		ROUTE 	route ;

		bit(1)		moreROUTEs ;

	}

	while (moreROUTEs)

	

}

7.2.3.1.12.3	VectorROUTEs

class VectorROUTEs {

int(10)	numberOfROUTEs ;	// We allow for a maximum of 1024

//ROUTEs

	for (i=0 ; i< numberOfROUTEs < i++) {

		ROUTE 	route ;

	}

}

7.2.3.1.12.3.1	ROUTE

class ROUTE {

bit(1) isUpdatable

if (isUpdatable)

{

bit(10) ROUTEID;

}

bit(10)	outNodeID ;

outID	outFieldReference;	// this identifies the field

// for the nodeType of.

// outNodeID Length is derived

// from the number of fields

// in the node of this type

// nodetype and is the

// number of bits necessary

// to represent the field

// number

bit(10)	inNodeID ;

inID	inFieldReference;		// Same as above

}

7.2.3.2	BIFS-Update Syntax

7.2.3.2.1	Update Frame

class UpdateFrame {

do {

		UpdateCommand command;	// this is the code of a complete

					// update command

		bit (1) continue;

	} while (continue)

}

7.2.3.2.2	Update Command

class UpdateCommand {

bit(3) Command ;		// this is the code of the basic Command

switch Command {

case 0 :

InsertionCommand insert;

break ;

case 1 :

DeletionCommand delete ;

break ;

case 2 :

ReplacementCommand replace ;

break ;

case 3 :

SceneReplaceCommand sceneReplace ;

break ;

	case 4:

		break:			// RepeatCommand, empty

}

7.2.3.2.3	Insertion Command

class InsertionCommand {

bit(2) parameterType ;	// this is the code of the basic Command

switch parameterType {

case ‘00’ :

NodeInsertion nodeInsert;

break ;

case ‘10’ :

IndexedValueInsertion idxInsert;

break ;

case ‘11’ :

ROUTEInsertion ROUTEInsert;

break ;

}

}

7.2.3.2.3.1	Node Insertion

class NodeInsertion {

	bit(10) nodeID ;		// This is the ID of the grouping node to which

					// the node is added

	bit(2) insertionPosition;	// The position in the children field

	switch (insertionPosition) {

	case ‘00’ :			// insertion at a specified position

		bit (8) position;	// the position in the children field

		SFNode(NDT) node;	// the node to be inserted

		break;

	case ‘10’: 			// insertion at the beginning of the field

		SFNode(NDT) node;	// the node to be inserted

		break;

	case ‘11’: 			// insertion at the end of the field

		SFNode(NDT) node;	// the node to be inserted

		break;

	}

}

7.2.3.2.3.2	IndexedValue Insertion

class IndexedValueInsertion {

	bit(10) nodeID ;		// This is the ID of the node to be modified

	inID id;			// the field to be changed. x is inferred from

					// the number of exposed and event in fields

					// of the node, according to the specification

	bit(2) insertionPosition;	// The position of the value in the field

	switch (insertionPosition) {

	case ‘00’ :			// insertion at a specified position

		bit (16) position;	// the absolute position in the field

		SFField(fieldType) value;	// the value to be inserted

		break;

	case ‘10’: 			// insertion at the beginning of the field

		SFField(fieldType) value;	// the value to be inserted

		break;

	case ‘11’: 			// insertion at the end of the field

		SFField(fieldType) value;	// the value to be inserted

		break;

	}

}

7.2.3.2.3.3	ROUTE Insertion

class ROUTEInsertion {

	bit(10) departureNodeID ;		// the ID of the departure node

						// it still needs to be clarified

						// how ROUTEs are designated

	outID departureID;		// the index of the departure field

	bit(10) arrivalNodeID ;		// the ID of the arrival node

	inID arrivalID;		// the index of the arrival field

}

7.2.3.2.4	Deletion Command

class DeletionCommand {

bit(2) parameterType ;	// this is the code of the basic Command

switch parameterType {

case ‘00’ :

		NodeDeletion nodeDelete;

break ;

case ‘10’ :

		IndexedValueDeletion idxDelete;

break ;

case ‘11’ :

		ROUTEDeletion ROUTEDelete;

break ;

}

}

7.2.3.2.4.1	Node Deletion

class NodeDeletion {

	bit(10) nodeID ;		// the ID of the node to be deleted

}

7.2.3.2.4.2	IndexedValue Deletion

class IndexedValueDeletion {

	bit(10) nodeID ;		// This is the ID of the node to be modified

	inID id;			// the field to be deleted.

	bit(2) deletionPosition;	// The position in the children field

	switch (deletionPosition) {

	case ‘00’ :			// deletion at a specified position

		bit (16) position;	// the absolute position in the field

		SFField(fieldType) value;	// the new value

		break;

	case ‘10’: 			// deletion at the beginning of the field

		SFField(fieldType) value;	// the new value

		break;

	case ‘11’: 			// deletion at the end of the field

		SFField(fieldType) value;	// the new value

		break;

	}

}

7.2.3.2.4.3	ROUTE Deletion

class ROUTEDeletion {

	bit(10) ROUTEID ;		// the ID of the ROUTE to be deleted

}

7.2.3.2.5	Replacement Command

class ReplacementCommand {

bit(2) parameterType ;	// this is the code of the basic Command

switch parameterType {

case 0 :

NodeReplacement nodeReplace;

break ;

case 1:

	FieldReplacement fieldReplace;

	break;

case 2 :

IndexedValueReplacement idxReplace;

break ;

case 3 :

ROUTEReplacement ROUTEReplace;

break ;

}

}

7.2.3.2.5.1	Node Replacement

class NodeReplacement {

	bit(10) nodeID ;			// the ID of the node to be replaced

	SFNode(SFWorldNode) node;		// the new node

}

7.2.3.2.5.2	Field Replacement

class FieldReplacement {

	bit(10) nodeID ;		// This is the ID of the node to be modified

	inID id;			// the index of the field to be replaced

	Field(fieldType) value;	// the new field value, either single or list

}

7.2.3.2.5.3	IndexedValue Replacement

class IndexedValueReplacement {

	bit(10) nodeID ;		// This is the ID of the node to be modified

	inField id;		// the index of the field to be replaced

	bit(2) replacementPosition;	// The position in the children field

	switch (replacementPosition) {

	case ‘00’ :			// replacement at a specified position

		bit (16) position;	// the absolute position in the field

		SFField(fieldType) value;		// the new value

		break;

	case ‘10’: 			// replacement at the beginning of the field

		SFField(fieldType) value;	// the new value

		break;

	case ‘11’: 			// replacement at the end of the field

		SFField(fieldType) value;	// the new value

		break;

	}

}

7.2.3.2.5.4	ROUTE Replacement

class ROUTEReplacement {

	bit(10) ROUTEID ;			// the ID of the ROUTE to be replaced

	bit(10) departureNodeID ;		// the ID of the departure node

	outID departureID;		// the index of the departure field

	bit(10) arrivalNodeID ;		// the ID of the arrival node

	inID arrivalID;		// the index of the arrival field

}

7.2.3.2.5.5	Scene Replacement

class SceneReplacementCommand {

	BIFSScene scene;		// the current scene graph is completely

					// replaced by this new node which should						// contains a whole new scene graph

}

7.2.3.3	BIFS-Anim Syntax

7.2.3.3.1	BIFS AnimationMask

7.2.3.3.1.1	AnimationMask

Class AnimationMask

{

do {

	ElementaryMask eMask;

	bit(1) Continue ;

} while (Continue) ;

}

7.2.3.3.1.2	Elementary mask

Class ElementaryMask {

	int (10) nodeID ;		// The nodeID of the node to be animated

	switch (NodeType) {

		case FDPtype:	// No initial mask for face

			break;

		case BDPtype:	// No initial mask for body

			break;

		default:

InitialFieldsMask mask ;

// Describes which of the dynamic

// fields are animated and their

// parameters

	}

}

7.2.3.3.1.3	InitialFieldsMask

class InitialFieldsMask {

bit(1) animatedFields[numFields]; // read binary mask of dynamic

						// fields for this kind of nodes.

						//numField is the number of Dynamic fields

						// of the animated node.

						// 0 if field is animated, 1 otherwise

	for(int i=0; i < numFields; i++) {

		if(animatedFields[i]) {	// is this field animated ?

 			if(field[i] instanceof (Mfield)) {

// Do we have a multiple field ?

	bit(1) isTotal ; // if 1, all the elements of

 // the Multiple fields are

 // animated

	if(! isTotal) {	// animate specified indices

		do {

			uint(32) index;

			bit(1) Continue ;

		} while (Continue) ;

}

 			InitialAnimQP QP[i];

// read initial quantization

// parameters QP[i] for field i

		}

7.2.3.3.1.4	}InitialAnimQP

InitialAnimQP {

	Switch (category)

		case 0 :			// Position 3D		

			float(32) 	Ix3Min;

			float(32) 	Iy3Min;

float(32) 	Iz3Min;

			float(32) 	Ix3Max;

float(32) 	Iy3Max ;

float(32) 	Iz3Max;

			float(32) 	Px3Min;

			float(32) 	Py3Min;

float(32) 	Pz3Min;

			float(32) 	Px3Max;

float(32) 	Py3Max ;

float(32) 	Pz3Max;

int (5)	position3DNbBits ;

			break ;

		case 1 :			// Position 2D

			float(32) 	Ix2Min ;

			float(32) 	Iy2Min ;

			float(32) 	Ix2Max ;

float(32) 	Iy2Max ;

float(32) 	Px2Min ;

			float(32) 	Py2Min ;

			float(32) 	Px2Max ;

float(32) 	Py2Max ;

			int (5)	position2DNbBits ;

			break ;

		case 2 :			// SFColor

			float(32) 	IcMin ;

			float(32) 	IcMax ;

			float(32) 	PcMin ;

			float(32) 	PcMax ;

			int (5)	colorNbBits ;

			break ;

		case 3:				// Angles

			float(32) 	IangleMin ;

			float(32) 	PangleMax ;

			float(32) 	IangleMin ;

			float(32) 	PangleMax ;

			int (5)	angleNbBits ;

			break ;

		case 4:				// Normals

			int(5) 	normalNbBits ;

			break ;

		case 5:				// Scale

			float(32) 	IscaleMin ;

			float(32) 	IscaleMax ;

float(32) 	PscaleMin ;

			float(32) 	PscaleMax ;

			int(5)	scaleNbBits;

break ;

case 6:				// Rotation

			bit(1)	hasAxis;

			if (hasAxis) {

				int (5)	axisNbBits ;

			}

			bit(1)	hasAngle;

			if (hasAngle) {

				float(32) 	IangleMin ;

				float(32) 	IangleMax ;

				float(32) 	PangleMin ;

				float(32) 	PangleMax ;

				int (5)	angleNbBits ;

	}

break ;

case 7:				// Size of objects

			float(32) 	IsizeMin ;

			float(32) 	PsizeMax ;

			int (5)	sizeNbBits ;

			break ;

}

7.2.3.3.2	Animation Frame Syntax

7.2.3.3.2.1	AnimationFrame

class AnimationFrame

{

	AnimationFrameHeader	header;

	AnimationFrameData	data;

}

7.2.3.3.2.2	AnimationFrameHeader

class AnimationFrameHeader {

if(next_bit() == ’00000000000000000000000’)

{

uint(32) AnimationStartCode ;	// synchronization code for Intra

	}

	bit(1) isIntra;

bit(1) nodeMask[numNodes]; 	// Mask for setting which of the

// nodes are animated

	if (isIntra) {	

bit(1) isFrameRate;

		if (isFrameRate) {

			FrameRate rate;	// decode_frame_rate() function of FBA

		}

		bit(1) isTimeCode;

		if (isTimeCode) {

			uint(18) timeCode;

		}

	}

bit(1) hasSkipFrames;

	if (hasSkipFrames)

		SkipFrames	skip;		// decode_skip_frames() in FBA

}

7.2.3.3.2.3	AnimationFrameData

Class AnimationFrameData (nodeMask){

for(int i=0; i<numNodes; i++) {	// for each animated nodes

if(nodeMask[i]) {		// do we have values for node i ?

	switch (nodeType) {

		{			case FaceorBody :

				FBAFrameData data;	// As defined in visual CD

				Break;

			case IndexedFaceSet2D:

				Mesh2DframeData data;	//As defined in visual CD

				Break,

			default: 	// All other types of nodes

for(int j=0; j < numFields[i] ; j++) {

// for each animated

// dynamic field

AnimationField AField;

// The syntax of the animated

// field. This depends on the

// field and node type

					}

				}

}

		}

}

}

7.2.3.3.2.4	AnimationField

class AnimationField

{

if(animatedFields[j]) {	// is this field animated ?

if (isIntra) {

bit(1) hasQP ;

// Do we send new

//quantizationparameters ?

						if(hasQP)

{	// read new QP for field

// of the current node

// QuantizationParameter

AnimQP QP;

					}

AnimIValue value;

// read intra-coded

//value of field

					}

					else

						AnimPValue value;

// read predicted-coded

//value of field

				}

			}

}

7.2.3.3.2.5	AnimQP

AnimQP {

	Switch (category)

		case 0:

			bit (1) IMinMax ;

			if (IMinMax)

			{

				float(32) 	Ix3Min;

				float(32) 	Iy3Min;

float(32) 	Iz3Min;

				float(32) 	Ix3Max;

float(32) 	Iy3Max ;

float(32) 	Iz3Max;

			}

			bit (1) PMinMax ;

			if (PMinMax)

			{

				float(32) 	Px3Min;

				float(32) 	Py3Min;

float(32) 	Pz3Min;

				float(32) 	Px3Max;

float(32) 	Py3Max ;

float(32) 	Pz3Max;

			}

			bit (1) hasNbBits ;

			if (hasNbBits) {

int (5)	position3DNbBits ;

			}

			break ;

		case 1 :		// Position 2D

			bit (1) IMinMax ;

			if (IMinMax)

			{

float(32) 	Ix2Min ;

				float(32) 	Iy2Min ;

				float(32) 	Ix2Max ;

float(32) 	Iy2Max ;

}

bit (1) PMinMax ;

			if (PMinMax)

			{

float(32) 	Px2Min ;

				float(32) 	Py2Min ;

				float(32) 	Px2Max ;

float(32) 	Py2Max ;

			}

			bit (1) hasNbBits ;

			if (hasNbBits) {

int (5)	position2DNbBits ;

			}

break ;

		case 2 :			// SFColor

			bit (1) IMinMax ;

			if (IMinMax)

			{

float(32) 	IcMin ;

				float(32) 	IcMax ;

			}

			if (PMinMax)

if (PMinMax)

			{

float(32) 	PcMin ;

				float(32) 	PcMax ;

			}

			bit (1) hasNbBits ;

			if (hasNbBits) {

int (5)	colorNbBits ;

			}

break ;

		case 3:				// Angles

			bit (1) IMinMax ;

			if (IMinMax)

			{

float(32) 	IangleMin ;

				float(32) 	IangleMax ;

			}

			bit (1) PMinMax ;

			if (PMinMax)

			{

float(32) 	PangleMin ;

				float(32) 	PangleMax ;

			}

bit (1) hasNbBits ;

			if (hasNbBits) {

int (5)	NbBits ;

			}

break ;

		case 4:				// Normals

			int(5) 	normalNbBits ;

			break ;

		case 5:				// SFRotation 3D

			bit (1) IMinMax ;

			if (IMinMax)

			{

float(32) 	IscaleMin ;

				float(32) 	IscaleMax ;

			}

bit (1) PMinMax ;

			if (PMinMax)

			{

float(32) 	PscaleMin ;

				float(32) 	PscaleMax ;

			}

			bit (1) hasNbBits ;

			if (hasNbBits) {

int (5)	scaleNbBits ;

			}

break ;

case 6:				// Rotation

	bit(1) hasAngle;

	bit(1) hasNormal;

			bit (1) IMinMax ;

			if (IMinMax)

			{

float(32) 	IangleMin ;

				float(32) 	IangleMax ;									}

bit (1) PMinMax ;

			if (PMinMax)

			{

float(32) 	PangleMin ;

				float(32) 	PangleMax ;

			}

			bit (1) hasNbBits ;

			if (hasNbBits) {

				if (hasAngle)

int(5)	angleNbBits ;

				if (hasNormal)

int(5)	normalNbBits ;

}

break ;

case 7:				// Size of objects

			bit (1) IMinMax ;

			if (IMinMax)

			{

float(32) 	IsizeMin ;

float(32) 	IsizeMax ;

			}

			bit (1) PMinMax ;

			if (PMinMax)

			{	

				float(32) 	PsizeMin ;

				float(32) 	PsizeMax ;

				

}

bit (1) hasNbBits ;

			if (hasNbBits) {

int (5)	sizeNbBits ;

			}

break ;

}

7.2.3.3.2.6	AnimationIValue

class AnimationIValue {

switch DYNType {

case 0 :	// 3D Positions

int(vlcNbBits) x;

int(vlcNbBits) y;

int(vlcNbBits) z;

break ;

case 1 :	// 2D Positions

int(vlcNbBits) x;

int(vlcNbBits) y;

break ;

case 2 :	// Color

int(vlcNbBits) r;

int(vlcNbBits) g;

int(vlcNbBits) b;

break ;

case 3 :	// Angle

int(vlcNbBits) angle;

break ;

case 5 :	// Scale

int(vlcNbBits) xScale;

int(vlcNbBits) yScale;

if (3D)

	int(vlcNbBits) zScale;

break ;

case 6 :	// Rotation

	if (hasAxis) {

int(3)		octantNb;

int(2)		triantNb;

int(vlcNbBits)	xPos;

int(vlcNbBits)	yPos;

}

if (hasAngle) {

int(vlcNbBits) angle;

			}

break ;

case 7 :	// Object Size 3D

int(vlcNbBits) size;

break ;

}

}

7.2.3.3.2.7	AnimationPValue

class AnimationPsValue {

switch DYNType {

case 0 :	// 3D Positions

int(vlcNbBits) x;

int(vlcNbBits) y;

int(vlcNbBits) z;

break ;

case 1 :	// 2D Positions

int(vlcNbBits) x;

int(vlcNbBits) y;

break ;

case 2 :	// Color

int(vlcNbBits) r;

int(vlcNbBits) g;

int(vlcNbBits) b;

break ;

case 3 :	// Angle

int(vlcNbBits) angle;

break ;

case 5 :	// Scale

int(vlcNbBits) xScale;

int(vlcNbBits) yScale;

if (3D)

	int(vlcNbBits) zScale;

break ;

case 6 :	// Rotation

	if (hasAxis) {

int(3)		octantNb;

int(2)		triantNb;

int(vlcNbBits)	xPos;

int(vlcNbBits)	yPos;

}

if (hasAngle) {

int(vlcNbBits) angle;

			}

break ;

case 7 :	// Object Size 3D

int(vlcNbBits) size;

break ;

}

}

7.2.4	BIFS Decoding Process and Semantic

7.2.4.1	BIFS Scene and Nodes Decoding Process

The scene syntax describes the syntax for an entire BIFS scene description. However, this syntax is always used in combination with a BIFS-Update command, as described in the next section.

7.2.4.1.1	BIFS Scene

The BIFS Scene represents the global scene. A BIFS Scene is always associated to a BIFS-Update ReplaceScene command. The BIFS Scene is tructured in the following way:

The Nodes

The ROUTEs

7.2.4.1.2	BIFS Nodes

The BIFS Nodes represent all the nodes contain in the scene. The BIFS nodes are organized in the following way:

First, a WorldInfo node is optionally sent.

Second, one of the four Top nodes is sent. The top node can be either a Group2D , Layer2D, Group or Layer3D node.

7.2.4.1.3	SFNode

The SFNode represents a general node representation. The encoding depends on the Node Data Type of the node (NDT).

A reused node means that a USE statement is present, and hence the node is ony a pointer to an already DEF’ed node signaled by the nodeID.

If isReused is FALSE, the node is entirely defined. The predefined flag enables to distinguish between nodes defined in the current BIFS spec, and nodes defined in future extensions.

Next the NodeType is inferred from the Node Data Type, as explained in the following section.

The isUpdatable flag enables to assign a nodeID to the node.

The node definition is then sent, either with a MaskNodeDescription, or with a ListNodeDescription.

7.2.4.1.4	MaskNodeDescription

In the MaskNodeDescription, a Mask indicates for each def field of the node (according to the node type), if the field is defined or not. Fields are sent in the order of the specification of the semantinc of the node. According to the order of the fields, the field type is known and used to decode the field.

7.2.4.1.5	ListNodeDescription

In the ListNodeDescription, fields are directly addressed by their fieldReference. The reference is sent as a defID and its parsing depends on the node type, as explained in the defID section.

7.2.4.1.6	NodeType

The nodeType is a number that represents the type of the node. This nodeType is coded using a variable number of bits for efficiency reasons. The following explains how to determine the exact type of node from the nodeType:

1.	The data type of the field parsed indicates the Node Data Type: SF2DNode, SFColorNode, and so on. The first node is always of type SFTopNode.

2.	From the Node Data Type expected and the total number of nodes type in the category, the number of bits representing the nodeType is inferred

3.	Finally, the nodeType gives the nature of the node to be parsed.

A typical example is the Shape node.

The Shape node has 2 fields defined as:

exposedField SFAppearanceNode Appearance NULL

exposedField SFGeometry3DNode geometry NULL

When decoding a Shape node, if the first field is transmitted, a node of type SFAppearanceNode is expected. The only node with SFAppearanceNode type is the Appearance node, and hence the nodeType can be coded using 0 bits. When decoding the Appearance node, the following fields can be found:

exposedField SFMaterialNode		 Material NULL

exposedField SFTextureNode		 texture NULL

exposedField SFTextureTransformNode	 TextureTransform NULL

If a texture is applied on the geometry, a texture field will be transmitted. Currently, the MovieTexture, the PixelTexture and ImageTexture, Composite2Dtexture and Composite3DTexture are available. This means the nodeType for the texture node can be coded using 3 bits.

7.2.4.1.7	Field

A field is encoded according to its type: single or multiple. A multiple field is a collection of single fields.

7.2.4.1.8	MFField

Multiple fields can be encoded. MFField types can be encoded with a list-like or mask-like description. The MaskFieldDescription or ListFieldDescription may be used and the choice is normally made according to the number of elements in the multiple field.

7.2.4.1.9	SFField

Single fields are coded according to the type of the field. The fields have a default syntax that specifies a raw encoding when no quantization is applied. The quantization parameters are read from a special node called QuantizationParameter. For quantization, the following categories have been identified.

0�None��1�3D Position��2�2D positions��3�depth��4�SFColor��5�Texture Coordinate��6�Angle��7�Scale��8�Interpolator keys��9�Normals��10�Rotations (9+5)��11�Object Size 3D (1)��12�Object Size 2D (2)��13�Linear Scalar Quantization��14�Reserved��

For each field that may be quantized, a quantization parameter is assigned, refering to the table of quantization types. Along with quantization parameters, min and max values are specified for each filed of each node.

The scope of the quantization is only a single BIFS access unit. The quantization schemes fall into four main categories:

No Quantization (0): If no QuantizationParameter nodes are sent, no quantization is applied.

Generic quantization scheme: In that case, a linear scalar quantization scheme is applied. The parameters that set this quantization scheme are conveyed in QuantizationParameter nodes. The use of a QuantizationParameter node enables to set the QUANTIZATION boolean (present in the QuantizedField syntax) to TRUE.

Linear Quantization Scheme (13): In that case, a fixed number of bits is used to quantize the field. The number of bits used is specified in the field declaration, as well as the minimum and maximum values.

Specific Quantization schemes can be applied (14) when requested. In that case, the syntax is documented directly in the node.

7.2.4.1.10	QuantizedField

If the QUANTIZATION boolean is TRUE, a linear scalar quantization is applied on fields. For each category of fields, a min and max value is given, as well as the number of bits to represnt the value. For a value v to be quantified, define Nb the number of allowed bits, (Vmin,Vmax) its minimal and maximal values. Then, the quantized value vq is defined by:

�EMBED Equation.3���

For the inverse quantization:

�EMBED Equation.3���

The min value used for quantization is the largest of the values defined in the QuantizationParameters node and the specific field parameters as described in the node table.

The max value used for quantization is the smallest of the values defined in the QuantizationParameters node and the specific field parameters, as described in the node table.

If the value assigned is infinite, the meaning is the max or min value for the numerical type encoded (32 bit integer, ANSI C float,..).

Note that in the case of a vectorial field value 2 cases may arise:

1.	The min and max values given Smin and Smax are scalar, in which case Vmin and Vmax given by the multiplication of the constant 1 vector (a vector with all components set to 1), with Smin and Smax. This is in particular true for the scale factors.

2.	The min and max values are given in a vectorial form, in which these values are directly Vmin and Vmax. This is in particular the case of the 2D and 3D positions.

There are 3 special cases in the categories specified in the previous tabular:

For normals, the quantization method is the following: A normal is a set of 3 floating values representing a vector in 3-d space with unit length. The quantization process first divides the unit sphere into eight octants. The signs of the 3 coordinates of the nomal determine the octant and the first 3 bits of the quantized normal. Then each octant is further symetrically divided into 3 ‘triants’ of equal size (a triant is a quadrilateral on the sphere). The index of the most significant coordinate (the one with the largest absolute value) determines the triant and the 2 next bits. Each triant is then mapped into a unit square. Finally each axis of the square is evenly subdivided into 2QNORMAL so that position within a triant can be associated with a couple (aq,bq), where aq and bq have integer values between 0 and 2normalNbBits -1 The mapping of the triant {x>0, y>0, z>0, x>z, x>y} into a unit square is �EMBED Equation.3���, �EMBED Equation.3���. The inverse mapping is �EMBED Equation.3���, �EMBED Equation.3���, �EMBED Equation.3���.

The mapping is defined similarly for the other triants. bits wll be used to designate the octant used. 2 bits will be used to designate the triant. The parameter normalNbBits specify that we code the normal value on a square grid with 2normalNbBits elements on each axis. Normals will be thus be coded with normalNbBits+5 in total.

fields of type SFRotation are made of 4 floats: 3 for an axis of rotation and 1 for an angle. For this field, two quantizers are used: one for the axis of rotation which is a normal and one for the angle.

For the values related to the sizes of the primitives, such as the Sphere, Circle, Cone nodes, the distance of the diagonal of the bounding box specified by the position min and max values is taken into account for the Vmax value. The minimal value is considered to be zero. Hence the Vmax value can be represented as the euclidian distance of diagonal of the surrounding bounding box, given by �EMBED Equation.3���, where �EMBED Equation.3��� and �EMBED Equation.3��� are the vectorial 2D or 3D min and max positions.

For values quantized with scheme 13, the number of bits used for quantization is specified in the node tables.

For fields named url, a specific encoding is used. A flag indicates whether an object descriptor is used, or a url described as a SFString.

For SFImage types, the width and height of the Image are sent. numComponents defines the image type. The 4 following types are enabled:

If the value is ‘00’, then a grey scale image is defined.

If the value is ‘01’, a grey scale with alpha channel is used.

If the value is ‘10’, then an r, g, b image is used.

If the value is ‘11’, then an r,g, b image with alpha channel is used.

7.2.4.1.11	Field and Events IDs Decoding Process

Four different fieldIDs have been identified to refer to fields in the nodes. All field Ids are encoded with a variable number of bit. For each field of each node, the binary values of the field Ids are defined in the node tables.

7.2.4.1.11.1	DefID

The defIDs correspond to the Ids for the fields defined with nodes declaration. They correspond to exposedField and field types.

7.2.4.1.11.2	inID

The inIDs correspond to the Ids for the events and fields that can be modified from outside the node. They correspond to exposedField and eventIn types.

7.2.4.1.11.3	outID

The outIDs correspond to the Ids for the events and fields that can be output from the node. They correspond to exposedField and eventOut types.

7.2.4.1.11.4	dynID

The dynIDs correspond to the Ids for fields that can be animated using the BIFS-Anim scheme. They correspond to a subset of the fields designated by inIDs.

7.2.4.1.12	ROUTE Decoding Process

ROUTEs are encoded using list or vector descriptions, as multiple fields and nodes. ROUTEs, as nodes, can be assigned an ID. inID and outID are used for the ROUTE syntax.

7.2.4.2	BIFS-Update Decoding Process

7.2.4.2.1	Update Frame

An UpdateFrame is a collection of BIFS update commands, and corresponds to one access unit. The UpdateFame is the only valid syntax for carrying BIFS scenes in an access unit.

7.2.4.2.2	Update Command

For each UpdateCommand, a 3 bit flag, command, signals one of the 5 basic commands.

7.2.4.2.3	Insertion Command

There are four basic insertion commands, signalled by a 2 bit flag.

7.2.4.2.3.1	Node Insertion

A node can be inserted in the children field of a grouping node. The node can be inserted at the beginning, at the end, or at a specified position in the children list. This in particular useful for 2D nodes. The NodeDataType (NDT) of the inserted node is known from the NDT of the children field in which the node is inserted.

7.2.4.2.3.2	IndexedValue Insertion

The field in which the value is inserted must a multiple value type of field. The field is signalled with an inID. The inID is parsed using the table for the Node Type of the node in which the value is inserted, which is inferred from the nodeID.

7.2.4.2.3.3	ROUTE Insertion

A ROUTE is inserted in the list of ROUTEs simply by specifying a new ROUTE.

7.2.4.2.4	Deletion Command

There are three types of deletion commands, signalled by a 2 bit flag.

7.2.4.2.4.1	Node Deletion

The node deletion is simply signalled by the nodeID of the node to be deleted. When deleting a node, all fields are also deleted, as well as all ROUTEs related to the node or its fields.

7.2.4.2.4.2	IndexedValue Deletion

This command enables to delete an element of a multiple value field. As for the insertion, it is possible to delete at a specified position, at the beginning or at the end.

7.2.4.2.4.3	ROUTE Deletion

Deleting a ROUTE is simply performed by giving the ROUTE ID. This is similar to the deleting of a node.

7.2.4.2.5	Replacement Command

There are 3 replacement commands, signalled by a 2 bits flag.

7.2.4.2.5.1	Node Replacement

When a node is replaced, all teh ROUTEs pointing to this node are deleted. The node to be replaced is signalled by its nodeID. The new node is encoded with the SFWorldNode Node Data Type, which is valid for all BIFS nodes, in order to avoid a request to the Node Data Type of the replaced node.

7.2.4.2.5.2	Field Replacement

Replacing a field enables to replace a given field of an existing node. The node in which the field is replaced is signalled with the nodeID. The field is signalled with an inID, which is encoded according to the Node Type of the changed node. If the replaced field is a node, then the same consequences as for a node replacement are assumed.

7.2.4.2.5.3	IndexedValue Replacement

The IndexedValueReplacement command enables to modify the value of an element of a multiple field. As for any multiple field access, it is possible to replace at the beginning, the end or at a specified position in the multiple field.

7.2.4.2.5.4	ROUTE Replacement

Replacing a ROUTE deletes the replaced ROUTE and replaces it with the new specified ROUTE.

7.2.4.2.5.5	Scene Replacement

Replacing a new scene simply consists in replacing entirely the scene with a new BIFSScene scene. When used inside an Inline command, the semantic means replacing the sub scene which is previously empty. This thus simply inserts a new sub scene as expected in an Inline node.

In a BIFS Stream, the SceneReplacement commands are the only random access points in the BIFS streams.

7.2.4.2.5.6	Scene Repeat

The SceneRepeat command enables to repeat all updates since the last random access point in the BIFS stream.

7.2.4.3	BIFS-Anim Decoding Process

The dynamic fields are quantized and coded by a predictive coding scheme as shown in � REF _Ref404689170 \h ��Figure 7-11�. For each parameter to be coded in the current frame, the decoded value of this parameter in the previous frame is used as the prediction. Then the prediction error, i.e., the difference between the current parameter and its prediction, is computed and coded by variable length coding. This predictive coding scheme prevents the coding error from accumulating.

�EMBED Word.Picture.8���

Figure � STYLEREF 1 \n �7�-� SEQ Figure * ARABIC �11�: Encoding dynamic fields

Each dynamic field, that is field that can be animated is assigned, through the InitialAnimQP or AnimQP some quantization parameters than enable to control the quality and precision of the reconstructed animation stream.

The decoding process performs the reverse operations, by applying first an adaptive arithmetic decoder, then the inverse quantization and adding the previous field, in predictive (P) mode, or taking the new value directly in Intra (I) mode.

7.2.4.3.1	BIFS AnimationMask

The AnimationMask sets up the parameters for an animation. In particular, it specifies the fields and the nodes to be animated in the scene and their parameters. The Mask is sent in the ObjectDescriptor pointing to the BIFS-Anim stream.

7.2.4.3.1.1	AnimationMask

The AnimationMask of ElementaryMask for animated nodes and their associated parameters.

7.2.4.3.1.2	Elementary mask

The ElementaryMask links an InitialFieldsMask with a node specified by its nodeID.The InitialFieldsMask is not used for FDP, BDP or IndexedFaceSet2D nodes.

7.2.4.3.1.3	InitialFieldsMask

The InitialFieldsMask specifies which fields of a given node are animated. In the case of a multiple field, either all the fields or a selected list of fields are animated.

7.2.4.3.1.4	InitialAnimQP

The initial quantization masks are defined according to the categories of fields addressed. In the nodes specification, it is specified for each field whether it is a dynamic field or no, and in the case which type of quantization and coding scheme is applied. The fields are grouped in the following category for animation:

0�3D Position��1�2D positions��2�SFColor��3�Angle��4�Normals��5�Scale��6�Rotations3D (3+4)��7�Object Size ��

For each type of quantization, the min and max values for I and P mode, as well as the number of bits to be used for each type is specified. For the rotation, it is possible to choose to animate the angle and/or the axis with the hasAxis and hasAngle bits. When the flags are set to TRUE, the validity of the flag is for the current parsed frame; and untill the next AnimQP that sets the flag to a different value.

7.2.4.3.2	Animation Frame Decoding Process

7.2.4.3.2.1	AnimationFrame

The AnimationFrame is the Access Unit for the BIFS-Anim stream. It contains the AnimationFrameHeader, which specifies some timing, and selects which nodes are being animated in the list of animated nodes, and the AnimationFrameData, which contains the data for all nodes being animated.

7.2.4.3.2.2	AnimationFrameHeader

In the AnimationFrameHeader, a start code is sent optionally at each I or P frame. Additionally, a mask for nodes being animated is sent. The mask has the length of the number of nodes specified in the AnimationMask. A 1 in the header specifies that the node is animated for that frame, 0 that is is not animated in the current frame. In the header, if in Intra mode, some additional timing information are also specified. The timing information follows the syntax of the Facial Animation specification in the Visual MPEG-4 Specification. Finally, it is possible to skip a number of AnimationFrame by using the FrameSkip syntax specified in the afore mentioned document.

7.2.4.3.2.3	AnimationFrameData

The AnimationFrameData corresponds to the field data for the nodes being animated. In the case of an IndexedFaceSet2D, a face, or a body, the syntax used is the one of the MPEG-4 Visual Specification. In other cases, for each field animated node and for each animated field the AnimationField is sent. NumFields [i] represents the number of animated fields for node i.

7.2.4.3.2.4	AnimationField

In an AnimationField, if in Intra mode, a new QuantizationParameter value is optionally sent. Then comes the I or P frame.

All numerical parameters as defined in the categories below follow the same coding scheme. This scheme is identical to the FBA animation stream, except for the quantization parameters:

In P (Predictive) mode: for each new value to send, we code its difference with the preceding value. Values are quantized with a uniform scalar scheme, and then coded with an adaptive arithmetic encoder, as described in ISO/IEC CD 14496-2.

In I (Intra) mode: values of dynamic fields are directly quantized and coded with the same arithmetic adaptive coding scheme

The syntax for all the numerical field animation is the same for all types of fields. The category corresponds to the table below:

0�3D Position��1�2D positions��2�SFColor��3�Angle��4�Normals��5�Scale��6�Rotations3D (3+4)��7�Object Size or Scalar��

7.2.4.3.2.5	AnimQP

The AnimQP is identical to the InitialAnimQP, except that it enables to send min and max values as well as number of bits for quantization optionally, for each type of fields.

7.2.4.3.2.6	AnimationIValue

Intra Values are coded as described in the Animation field section

7.2.4.3.2.7	AnimationPValue

Predictive values are coded as described in the AnimationField section.

7.2.5	Nodes Semantic

7.2.5.1	Shared Nodes

7.2.5.1.1	Shared Nodes Overview

The Shared nodes are those nodes which may be used in both 2D and 3D scenes.

7.2.5.1.2	Shared MPEG-4 Nodes

The following nodes are specific to MPEG-4.

7.2.5.1.2.1	AnimationStream

7.2.5.1.2.1.1	Semantic Table

AnimationStream {

�exposedField�SFBool�loop�FALSE�� �exposedField�SFFloat�speed�1�� �exposedField�SFTime�startTime�0�� �exposedField�SFTime�stopTime�0�� �exposedField�MFString�url�[""]�� �eventOut�SFBool�isActive�FALSE��}

7.2.5.1.2.1.2	Main Functionality

The AnimationStream node is a node aimed at controlling interactively an animation stream as defined in the BIFS-Animation format. The syntax and semantic is almost the same as the MovieTexture node which controls a video stream.

7.2.5.1.2.1.3	Detailed Semantic

The loop exposedField, when TRUE, specifies that the video sequence shall play continuously. Having displayed the final available time VOP available, it shall begin the next loop by playing the first VOP. When loop is FALSE, playback shall occur once.

The speed exposedField controls playback speed. If a AnimationStream is inactive when the sequence is first loaded and the speed is non-negative, then frame 0 shall be used as the texture. If a AnimationStream is inactive when the sequence is first loaded and the speed is negative, then the last frame of the sequence shall be used as the texture. A AnimationStream shall display frame 0 if speed is 0. For positive values of speed, the frame an active AnimationStream will display at time now corresponds to the frame at movie time (i.e., in the movie's local time system with frame 0 at time 0, at speed = 1):

 fmod (now - startTime, duration/speed)

If speed is negative, then the frame to display is the frame at movie time:

 duration + fmod(now - startTime, duration/speed).

When a AnimationStream becomes inactive, the frame corresponding to the time at which the MovieTexture became inactive shall persist as the texture. The speed exposedField indicates how fast the movie should be played. A speed of 2 indicates the movie plays twice as fast. Note that the duration_changed eventOut is not affected by the speed exposedField. set_speed events shall be ignored while the movie is playing. A negative speed specifies that the video sequence shall play backwards. However, content creators should note that this may not work for streaming movies or very large movie files.

The startTime exposedField specifies the moment at which the animation sequence shall begin to play.

The stopTime exposedField specifies the moment at which the animation sequence shall stop playing.

The url field specifies the data source to be used (see � REF _Ref403473406 \w \h ��7.2.2.7.1�).

The duration_changed eventOut shall be sent when the length (in time) of the animation sequence has been determined. Otherwise, it shall be set to -1.

The isActive eventOut shall be sent as TRUE when the animation stream is playing. Otherwise, it shall be set to FALSE.

7.2.5.1.2.2	AudioDelay

The AudioDelay node allows sounds to be started and stopped under temporal control. The start time and stop time of the child sounds are delayed or advanced accordingly.

7.2.5.1.2.2.1	Semantic Table

AudioDelay {

 �exposedField�MFNode�children�NULL�� �exposedField�SFTime�delay�0 �� �field�SFInt32�numChan�1 �� �field�MFInt32�phaseGroup�NULL��}

7.2.5.1.2.2.2	Main Functionality

This node is used to delay a group of sounds, so that they start and stop playing later than specified in the AudioSource nodes.

7.2.5.1.2.2.3	Detailed Semantics

The children array specifies the nodes affected by the delay.

The delay field specifies the delay to apply to each chld.

The numChan field specifies the number of channels of audio output by this node.

The phaseGroup field specifies the phase relationships among the various output channels; see � REF _Ref404689702 \w \h ��7.2.2.14�.

7.2.5.1.2.3	AudioMix

7.2.5.1.2.3.1	Semantic Table

AudioMix {

�exposedField�MFNode�children�NULL�� �exposedField�SFInt32�numInputs�1 �� �exposedField�MFFloat�matrix�NULL�� �field�SFInt32�numChan�1 �� �field�MFInt32�phaseGroup�NULL��}

7.2.5.1.2.3.2	Main Functionality

This node is used to mix together several audio signals in a simple, multiplicative way. Any relationship that may be specified in terms of a mixing matrix may be described using this node.

7.2.5.1.2.3.3	Detailed Semantics

The children field specifies which nodes’ outputs to mix together.

The numInputs field specifies the number of input channels. It should be the sum of the number of channels of the children.

The matrix array specifies the mixing matrix which relates the inputs to the outputs. matrix is an unrolled numInputs x numChan matrix which describes the relationship between numInputs input channels and numChan output channels. The numInputs * numChan values are in row-major order. That is, the first numInputs values are the scaling factors applied to each of the inputs to produce the first output channel; the next numInputs values produce the second output channel, and so forth.

That is, if the desired mixing matrix is�EMBED Equation.3���, specifying a “2 into 3” mix, the value of the matrix field should be [a b c d e f].

The numchan field specifies the number of channels of audio output by this node.

The phaseGroup field specifies the phase relationships among the various output channels; see � REF _Ref404689727 \w \h ��7.2.2.14�.

7.2.5.1.2.3.4	Calculation

The value of the output buffer for an AudioMix node is calculated as follows. For each sample number x of output channel i, 1 <= i <= numChan, the value of that sample is

	matrix[(i – 1) * numChan + 1] * input[1][x] +

	matrix[(i – 1) * numChan + 2] * input[2][x] + ...

	matrix[(i – 1) * numChan + numInputs] * input[numInputs][x],

where children[i][j] represents the jth output sample of the ith channel of the input buffer.

7.2.5.1.2.4	AudioSource

7.2.5.1.2.4.1	Semantic Table

AudioSource {

�exposedField�MFString�url�NULL�� �exposedField�SFFloat�pitch�1 �� �exposedField�SFTime�startTime�0 �� �exposedField�SFTime�stopTime�0 �� �field�SFInt32�numChan�1 �� �field�MFInt32�phaseGroup�NULL��}

7.2.5.1.2.4.2	Main Functionality

This node is used to add sound to an MPEG-4 scene. See the ISO/IEC CD 14496-3:1997 for information on the various audio tools available for coding sound.

7.2.5.1.2.4.3	Detailed Semantics

The objectDescriptorID field specifies which decoded bitstream to include.

The pitch field controls the playback pitch for the Parametric and Structured Audio decoders. It is specified as a ratio, where 1 indicates the original bitstream pitch, values other than 1 indicate pitch-shifting by the given ratio. This field controls the Parametric decoder directly; it is available as the globalPitch variable in the Structured Audio decoder. See the Structured Audio section of the Audio WD for more details.

The startTime field specifies a time at which to start the audio playing.

The stopTime field specifies a time at which to turn off the Sound. Sounds which have limited extent in time turn themselves off when finished. If the stopTime field is 0, the Sound continues until it is finished or plays forever.

The numChan field describes how many channels of audio are in the decoded bitstream.

The phaseGroup array specifies whether or not there are important phase relationships between the multiple channels of audio. If there are such relationships – for example, if the Sound is a multichannel spatialized set or a “stereo pair” – it is in general dangerous to do anything more complex than scaling to the Sound. Further filtering or repeated “spatialization” will destroy these relationships. The values in the array divide the channels of audio into groups; if phaseGroup[i] = phaseGroup[j] then channel i and channel j are phase-related. Channels for which the phaseGroup value is 0 are not related to any other channel.

The url field specifies the data source to be used (see � REF _Ref403473406 \w \h ��7.2.2.7.1�).

7.2.5.1.2.4.4	Calculation

The audio output from the decoder according to the bitstream(s) referenced in the specified object descriptor is placed in the output buffer for this node.

For audio sources decoded using the Structured Audio decoder (CD 14496-3 Subpart 5) Profile 3 or Profile 4, several variables from the scene description must be mapped into standard names in the orchestra. See CD 14496-3, Subclause 5.11.

7.2.5.1.2.5	AudioFX

7.2.5.1.2.5.1	Semantic Table

AudioFX {

�exposedField�MFNode�children�NULL�� �exposedField�SFString�orch�"" �� �exposedField�SFString�score�"" �� �exposedField�MFFloat�params�NULL�� �field�SFInt32�numChan�1 �� �field�MFInt32�phaseGroup�NULL��}

7.2.5.1.2.5.2	Main Functionality

The AudioFX node is used to allow arbitrary signal-processing functions to be included and applied to the child inputs. Any function which operates on an array of signals and returns another array of signals may be written in this language.

7.2.5.1.2.5.3	Detailed Semantics

The children array contains the nodes operated upon by this effect If this array is empty, the node has no function (the node may not be used to create new synthetic audio in the middle of a scene graph).

The orch string contains a tokenised block of signal-processing code written in SAOL, the MPEG-4 orchestra language. This code block should contain an orchestra header and some instrument definitions, and conform to the bitstream syntax of the orchestra class as defined in ISO/IEC CD 14496-3, Subpart 5, sections 5.1 and 5.4.

The score string may contain a tokenized score for the given orchestra written in SASL, the MPEG-4 score language. This score may contain control operators to adjust the parameters of the orchestra, or even new instrument instantiations. A score is not required; if present it shall conform to the bitstream syntax of the score_file class as defined in CD 14496-3, Subclause 5.1.

The params field allows BIFS updates and events to affect the sound-generation process in the orchestra. The values of params[] are available to the FX orchestra as the global array ‘global ksig params[128]’; see ISO/IEC CD 14496-3, Subclause 5.11.

The numchan field specifies the number of channels of audio output by this node.

The phaseGroup field specifies the phase relationships among the various output channels; see � REF _Ref404689825 \w \h ��7.2.2.14�.

7.2.5.1.2.5.4	Calculation

The node is evaluated according to the semantics of the orchestra code contained in the orch field. See ISO/IEC CD 14496-3 Subpart 5 for the normative sections of this process, especially ISO/IEC CD 14496-3 Subclause 5.11. Within the orchestra code, the multiple channels of input sound are placed on the global bus input; first, all channels of the first child, then all the channels of the second child, and so on. The orchestra header should ‘send’ this bus to an instrument for processing. The phaseGroup arrays of the children are made available as the inGroup variable within the instrument(s) to which the input bus is sent.

The orchestra code block shall not contain the spatialize statement.

The output buffer of this node is the sound produced as the final output of the orchestra applied to the input sounds, as described in CD 14496-3 Subclause 5.3.3.3.

7.2.5.1.2.6	AudioSwitch

7.2.5.1.2.6.1	Semantic Table

AudioSwitch {

 �exposedField�MFNode�children�NULL�� �exposedField�MFInt32�WhichChoice�NULL�� �field�SFInt32�NumChan�1 �� �field�MFInt32�PhaseGroup�NULL��}

7.2.5.1.2.6.2	Main Functionality

The AudioSwitch node is used to select one from a set of audio nodes. One input is passed through unchanged; the rest are ignored.

7.2.5.1.2.6.3	Detailed Semantics

The children field specifies a list of child options.

The which field specifies which channels should be passed through. If which[i] is 1, then the ith child channel should be passed through.

The numchan field specifies the number of channels of audio output by this node; ie, the number of channels in the passed child.

The phaseGroup field specifies the phase relationships among the various output channels; see � REF _Ref404689862 \w \h ��7.2.2.14�.

7.2.5.1.2.6.4	Calculation

The values for the output buffer are calculated as follows:

For each sample number x of channel number i of the output buffer, 1 <= i <= numChan, the value in the buffer is the same as the value of sample number x in the jth channel of the input, where j is the least value such that which[0] + which[1] + ... + which[j] = i.

7.2.5.1.2.7	Conditional

7.2.5.1.2.7.1	Semantic Table

Conditional {

 �EventIn�SFBool�activate�FALSE�� �EventIn�SFBool�reverseActivate�FALSE�� �ExposedField�SFString�buffer�""�� �EventOut�SFBool�isActive�FALSE��}

7.2.5.1.2.7.2	Main Functionality

A Conditional node interprets a buffered bit stream when it is activated. This allows events to trigger node updates, deletions, and other modifications to the scene. The buffered bit stream is interpreted as if it had just been received. The typical use of this node for the implementation of the action of a button is the following: the button geometry is enclosed in a grouping node which also contains a TouchSensor node. The isActive eventOut of the TouchSensor is routed to the activate eventIn of Conditional C1 and to the reverseActivate eventIn of Conditional C2; C1 then implements the “mouse-down” action and C2 implements the “mouse-up” action.

7.2.5.1.2.7.3	Detailed Semantics

Upon reception of either an SFBool event of value TRUE on the activate eventIn, or an SFBool event of value FALSE on the reverseActivate eventIn, the contents of the buffer field are interpreted as BIFS updates. These updates are not time-stamped; they are executed at the time of the event.

7.2.5.1.2.8	MediaTimeSensor

7.2.5.1.2.8.1	Semantic Table

MediaTimeSensor {

 �exposedField�SFNode�Media�NULL�� �field�SFNode�Timer�NULL��}

7.2.5.1.2.8.2	Main Functionality

The MediaTimeSensor node provides a mechanism to attach a media stream to a Timer node, slaving the timer to the media stream’s timebase.

7.2.5.1.2.8.3	Detailed Semantics

The MediaTimeSensor is a way to link a TimeSensor clock to a specific streaming media clock. The media field is a pointer to a node that is linked to a streaming media. All the SFTime values in the attached Timer node will then be interpreted as values related to the conveyed Time Base of the pointed stream. This enables in particular to start an animation after a given time that a media stream is streaming, whether it has been stopped or not. If the value of media is NULL, then the time events in the TimeSensor will be refering to the Time Base used by the BIFS stream.

7.2.5.1.2.9	QuantizationParameter

7.2.5.1.2.9.1	Semantic Table

QuantizationParameter {

�field�SFBool�isLocal�FALSE �� �field�SFBool�position3DQuant�TRUE �� �field�SFVec3f�position3DMin�-¥, -¥, -¥ �� �field�SFVec3f�position3DMax�+¥, +¥, +¥ �� �field�SFInt32�position3DNbBits�16 �� �field�SFBool�position2DQuant�TRUE �� �field�SFVec2f�position2DMin�-¥, -¥ �� �field�SFVec2f�position2DMax�+¥, +¥ �� �field�SFInt32�position2DNbBits�16 �� �field�SFBool�drawOrderQuant�TRUE �� �field�SFVec3f�drawOrderMin�-¥ �� �field�SFVec3f�drawOrderMax�+¥ �� �field�SFInt32�drawOrderNbBits�8 �� �field�SFBool�colorQuant�TRUE �� �field�SFFloat�colorMin�0 �� �field�SFFloat�colorMax�1 �� �field�SFInt32�colorNbBits�8 �� �field�SFBool�textureCoordinateQuant�TRUE �� �field�SFFloat�textureCoordinateMin�0 �� �field�SFFloat�textureCoordinateMax�1 �� �field�SFInt32�textureCoordinateNbBits�16 �� �field�SFBool�angleQuant�TRUE �� �field�SFFloat�angleMin�0 �� �field�SFFloat�angleMax�2.p �� �field�SFInt32�angleNbBits�16 �� �field�SFBool�scaleQuant�TRUE �� �field�SFFloat�scaleMin�0 �� �field�SFFloat�scaleMax�+¥ �� �field�SFInt32�scaleNbBits�8 �� �field�SFBool�keyQuant�TRUE �� �field�SFFloat�keyMin�0 �� �field�SFFloat�keyMax�1 �� �field�SFInt32�keyNbBits�8 �� �field�SFBool�normalQuant�TRUE �� �field�SFInt32�normalNbBits�8 ��}

7.2.5.1.2.9.2	Main Functionality

The QuantizationParameter node describes the quantization values to be applied on single fields of numerical types. For each of identified categories of fields, a minimal and maximal value is given as well as a number of bits to represent the given class of fields. Additionally, it is possible to set a local field to apply the quantization only to the node following the QuantizationParameter node. The significant advantage given by using a node structure for declaring the quantization parameters lies in the possibility to DEF and USE the QuantizationParameter Node.

7.2.5.1.2.9.3	Detailed Semantics

7.2.5.1.2.9.4	Example

The following example illustrates these possibilities :

DEF Q1 QuantizationParameter	// defines a local

{						// quantization node

	isLocal		TRUE

}

DEF Q2 QuantizationParameter			// define a global

{							 quantization node

position3Dmin		-5 -5 -5 	// bounds for 3D positions

	position3Dmax		 5 5 5

	positon3DNbBits	8			// bits to encode 3D positions

	colorNbBits		6			// bits to encode colors

}

Transform

{

	translation 10 10 10				// coded by Q2.position3D

	children [

Shape{

			geometry Cube {}

			Appearance Appearance{

				DEF Mat Material Material{

					emissiveColor 1 0 0	// coded by

				}					 Q2.color

			}

QuantizationParameter USE Q1

Shape{

			geometry Cone {}

			Appearance Appearance{

				DEF Mat Material Material{

					emissiveColor 0 1 0	// coded by

			}					 Q1.color

		}

Shape{

		geometry Sphere {}

		Appearance Appearance{

			DEF Mat Material Material{

				emissiveColor 0 0 1	// coded by

			}					 Q2.color

		}

]

}

7.2.5.1.2.10	StreamingText

7.2.5.1.2.10.1	Semantic Table

StreamingText {

 �ExposedField�MFString�url�NULL�� �ExposedField�SFNode�fontStyle�NULL�� �ExposedField�SFBool�ucs_2�FALSE ��}

7.2.5.1.2.10.2	Main Functionality

The StreamingText node defines a time dependent streaming text and parameters used to specify the text properties.

7.2.5.1.2.10.3	Detailed Semantics

The url field specifies the data source to be used (see � REF _Ref403473406 \w \h ��7.2.2.7.1�).

The ucs_2 field selects UCS-2 format when TRUE and UTF-8 format when FALSE. The characters in the data stream will be specified using the 2-byte Basic Multilingual Plane (BMP) specifications (UCS-2) or the UCS Transformation Format 8 (UTF-8) as given by ISO/IEC 10646. In the BMP (or UCS-2), the basic Latin characters are covered within the span of 0x0020 - 0x007E. For example, the letter “a” is encoded as 0x0061 while the letter “A” is encoded as 0x0041. Numerals 0-9 are covered by representations 0x0030-0x0039. The 2-byte (UCS-2 or UTF-8) representation also covers a variety of international character sets, for example, basic and extended Greek, Cyrillic, basic and extended Latin, Hiragana, Katakana, etc. Mathematical operators and characters are also covered within this set. In UTF-8, the UCS-2 representations spanning 0x0000 - 0x007F are mapped to the 1-byte representation 0x00-0x7F. For example, the letter “a” is represented as 0x61 while the letter “A” is represented as 0x41. A 2-byte UTF-8 representation is necessary for other characters beyond this span within the BMP space. The StreamingText node supports the formatting capability of character value 13 representing CR-LF.

The fontStyle field contains one FontStyle2D node that specifies the font type, font size, font style, spacing and language.

7.2.5.1.2.11	Valuator

7.2.5.1.2.11.1	Semantic Table

Valuator {

 �eventIn�SFBool�inSFBool�NULL�� �eventIn�SFColor�inSFColor�NULL�� �eventIn�MFColor�inMFColor�NULL�� �eventIn�SFFloat�inSFFloat�NULL�� �eventIn�MFFloat�inMFFloat�NULL�� �eventIn�SFInt32�inSFInt32�NULL�� �eventIn�MFInt32�inMFInt32�NULL�� �eventIn�SFRotation�inSFRotation�NULL�� �eventIn�MFRotation�inMFRotation�NULL�� �eventIn�SFString�inSFString�NULL�� �eventIn�MFString�inMFString�NULL�� �eventIn�SFTime�inSFTime�NULL�� �EventIn�SFVec2f�inSFVec2f�NULL�� �EventIn�MFVec2f�inMFVec2f�NULL�� �eventIn�SFVec3f�inSFVec3f�NULL�� �eventIn�MFVec3f�inMFVec3f�NULL�� �exposedField�SFBool�outSFBool�FALSE �� �exposedField�SFColor�outSFColor�0, 0, 0 �� �exposedField�MFColor�outMFColor�NULL�� �exposedField�SFFloat�outSFFloat�0 �� �exposedField�MFFloat�outMFFloat�NULL�� �exposedField�SFInt32�outSFInt32�0 �� �exposedField�MFInt32�outMFInt32�NULL�� �exposedField�SFRotation�outSFRotation�0 �� �exposedField�MFRotation�outMFRotation�NULL�� �exposedField�SFString�outSFString�"" �� �exposedField�MFString�outMFString�NULL�� �exposedField�SFTime�outSFTime�0 �� �exposedField�SFVec2f�outSFVec2f�0, 0 �� �exposedField�MFVec2f�outMFVec2f�NULL�� �exposedField�SFVec3f�outSFVec3f�0, 0, 0 �� �exposedField�MFVec3f�outMFVec3f�NULL��}

7.2.5.1.2.11.2	Main Functionality

A Valuator node can receive an event of any type, and this reception will trigger the eventOut of an event of any kind with a constant value. It can be seen as an event type adapter. One use of this node is the modification of the SFInt whichChoice field of a Switch node by an event. There is no interpolator or sensor node with an SFInt eventOut. Thus, if a two-state button is described with a Switch containing the description of each state in choices 0 and 1, the triggering event of any type can be routed to a Valuator node which outInt field is set to 1 and routed to the whichChoice field of the Switch. The return to the 0 state needs another Valuator node.

7.2.5.1.2.11.3	Detailed Semantics

Upon reception of an event on any of the in<typeIn> fields, on each out<typeOut> connected to a ROUTE, an event will be generated. The value of this event is the current value of the out<typeOut> field. Note: the value of the out<typeOut> event bears no relationship with the value of the in<typeIn> event, even if typeIn and typeOut are the same. As such, this node does not do type casting.

7.2.5.1.3	Shared VRML Nodes

The following nodes have their semantic specified in ISO/IEC DIS 14772-1:1997 with further restrictions and extensions defined herein.

7.2.5.1.3.1	Appearance

7.2.5.1.3.1.1	Semantic Table

Appearance {

 �exposedField�SFNode�material�NULL�� �exposedField�SFNode�texture�NULL�� �exposedField�SFNode�textureTransform�NULL��}

7.2.5.1.3.2	AudioClip

The AudioClip node is used to provide an interface for short snippets of audio to be used in an interactive scene, such as sounds triggered as “auditory icons” upon mouse clicks. It buffers up the audio generated by its children, so that it can provide random restart capability upon interaction.

7.2.5.1.3.2.1	Semantic Table

AudioClip {

 �exposedField�SFBool�loop�FALSE �� �exposedField�SFFloat�pitch�1 �� �exposedField�SFTime�startTime�0 �� �exposedField�SFTime�stopTime�0 �� �exposedField�MFString�url�NULL�� �eventOut�SFTime�duration_changed�NULL�� �eventOut�SFBool�isActive�FALSE ��}

7.2.5.1.3.2.2	Main Functionality

The AudioClip node provides a special “buffering” interface to streaming audio, to convert it into a non-streaming form so that it can be used interactively, such as for auditory feedback of event triggers or other interactive “sound effect” processes.

7.2.5.1.3.2.3	Detailed Semantics

The semantics of this node are the semantics of the VRML node with the same name, with the following exceptions and additions:

The children field specifies one or more child Sounds to use as the sound clip corresponding to this node.

7.2.5.1.3.2.4	Calculation

The output of this node is not calculated based on the current input values, but according to the startTime event, the pitch field and the contents of the clip buffer. When the startTime is reached, if isReady is set, the sound output begins at the beginning of the clip buffer and isActive is set to 1. At each time step thereafter, the value of the output buffer is the value of the next portion of the clip buffer, upsampled or downsampled as necessary according to pitch. When the end of the clip buffer is reached, if loop is set, the audio begins again from the beginning of the clip buffer; if not, the playback ends.

The clip buffer is calculated as follows: when the node is instantiated, isReady is set to 0, and for the first length [units], the audio input to this node is copied into the clip buffer; that is, after t seconds, where t < length, audio sample number t * S of channel i in the buffer contains the audio sample corresponding to time t of channel i of the input, where S is the sampling rate of this node. After the first length [units], the input to this node has no effect and isReady is set to 1.

When the playback ends, either because stopTime is reached or because the end of the clip buffer is reached for a non-looping clip, the isActive fireld is set to 0.

When the playback is not active, the output of the node is all 0s. If the startTime is reached before the isReady field is set, the output of the node is all 0s.

If pitch is negative, the buffer is played backward, beginning with the last segment.

7.2.5.1.3.3	Color

7.2.5.1.3.3.1	Semantic Table

Color {

�exposedField�MFColor�color�NULL��}

7.2.5.1.3.4	ColorInterpolator

7.2.5.1.3.4.1	Semantic Table

ColorInterpolator {

�eventIn�SFFloat�set_fraction�NULL�� �exposedField�MFFloat�key�NULL�� �exposedField�MFColor�keyValue�NULL�� �eventOut�SFColor�value_changed�NULL��}

7.2.5.1.3.5	FontStyle

7.2.5.1.3.5.1	Semantic Table

FontStyle {

 �field�MFString�family�["SERIF"] �� �field�SFBool�horizontal�TRUE �� �field�MFString�justify�["BEGIN"] �� �field�SFString�language�"" �� �field�SFBool�leftToRight�TRUE �� �field�SFFloat�size�1 �� �field�SFFloat�spacing�1 �� �field�SFString�style�"PLAIN" �� �field�SFBool�topToBottom�TRUE ��}

7.2.5.1.3.6	ImageTexture

7.2.5.1.3.6.1	Semantic Table

ImageTexture {

�exposedField�MFString�url�NULL�� �field�SFBool�repeatS�TRUE �� �field�SFBool�repeatT�TRUE ��}

7.2.5.1.3.6.2	Detailed Semantics

The url field specifies the data source to be used (see � REF _Ref403473406 \w \h ��7.2.2.7.1�).

7.2.5.1.3.7	MovieTexture

7.2.5.1.3.7.1	Semantic Table

MovieTexture {

 �exposedField�SFBool�loop�FALSE �� �exposedField�SFFloat�speed�1 �� �exposedField�SFTime�startTime�0 �� �exposedField�SFTime�stopTime�0 �� �exposedField�MFString�url�NULL�� �field�SFBool�repeatS�TRUE �� �field�SFBool�repeatT�TRUE �� �eventOut�SFTime�duration_changed�NULL�� �eventOut�SFBool�isActive�NULL��}

7.2.5.1.3.7.2	Detailed Semantics

startTime and stopTime refer to the time base of the Scene Description and are relative to the Decoding Time Stamp of the BIFS Access Unit that contained this node. In that case the currently available Composition Unit when startTime is reached will be presented.

If the Scene Description and the attached Elementary Stream(s) refer to the same time base then this method allows precise reference to each Composition Unit. Otherwise this may not be possible.

The loop exposedField, when TRUE, specifies that the video sequence shall play continuously. Having displayed the final available time VOP, it shall begin the next loop by playing the first VOP. When loop is FALSE, playback shall occur once.

Loop shall be FALSE when the attached sequence is received from a source that prohibits looping.

The speed exposedField controls playback speed. A MovieTexture shall display frame 0 if speed is 0. For positive values of speed, the frame an active MovieTexture will display at time now corresponds to the frame at movie time (i.e., in the movie's local time system with frame 0 at time 0, at speed = 1):

 fmod (now - startTime, duration/speed)

If speed is negative, then the frame to display is the frame at movie time:

 duration + fmod(now - startTime, duration/speed).

Time now is relative to the decoding time stamp of the BIFS Access Unit that contains this node, in the same time basis as startTime.

Speed shall have the value 1.0 in applications where the control of the speed is not possible.

A MovieTexture node is inactive before startTime is reached. If speed is non-negative, then the first VOP shall be used as texture, if it is already available. If speed is negative, then the last VOP shall be used as texture, if it is already available. (CH: What do we do if it is not available?)

When a MovieTexture becomes inactive, the VOP corresponding to the time at which the MovieTexture became inactive shall persist as the texture. The speed exposedField indicates how fast the movie should be played. A speed of 2 indicates the movie plays twice as fast. Note that the duration_changed eventOut is not affected by the speed exposedField. set_speed events shall be ignored while the movie is playing. A negative speed specifies that the video sequence shall play backwards. However, content creators should note that this may not work for streaming movies or very large movie files.

The url field specifies the data source to be used (see � REF _Ref403473406 \w \h ��7.2.2.7.1�).

7.2.5.1.3.8	ScalarInterpolator

7.2.5.1.3.8.1	Semantic Table

ScalarInterpolator {

 �eventIn�SFFloat�set_fraction�NULL�� �exposedField�MFFloat�key�NULL�� �exposedField�MFFloat�keyValue�NULL�� �eventOut�SFFloat�value_changed�NULL��}

7.2.5.1.3.9	Shape

7.2.5.1.3.9.1	Semantic Table

Shape {

�exposedField�SFNode�appearance�NULL�� �exposedField�SFNode�geometry�NULL��}

7.2.5.1.3.10	Sound

7.2.5.1.3.10.1	Semantic Table

Sound {

 �exposedField�SFVec3f�direction�0, 0, 1 �� �exposedField�SFFloat�intensity�1 �� �exposedField�SFVec3f�location�0, 0, 0 �� �exposedField�SFFloat�maxBack�10 �� �exposedField�SFFloat�maxFront�10 �� �exposedField�SFFloat�minBack�1 �� �exposedField�SFFloat�minFront�1 �� �exposedField�SFFloat�priority�0 �� �exposedField�SFNode�source�NULL�� �field�SFBool�spatialize�TRUE ��}

7.2.5.1.3.10.2	Main Functionality

The Sound node is used to attach sound to a scene, thereby giving it spatial qualities and relating it to the visual content of the scene.

The Sound node relates an audio BIFS subtree to the rest of an audiovisual scene. By using this node, sound may be attached to a group, and spatialized or moved around as appropriate for the spatial transforms above the node. By using the functionality of the audio BIFS nodes, sounds in an MPEG-4 audio scene may be filtered and mixed before being spatially composited into the scene.

7.2.5.1.3.10.3	Detailed Semantics

The semantics of this node are as the semantics of the VRML node of the same name, with the following exceptions and additions:

The source field allows the connection of an audio source containing the sound.

The spatialize field determines whether the Sound should be spatialized. If this flag is set, the Sound should be presented spatially according to the local coordinate system and current listeningPoint, so that it apparently comes from a source located at the location point, facing in the direction given by direction. The exact manner of spatialization is implementation-dependant, but implementators are encouraged to provide the maximum sophistication possible depending on terminal resources.

If there are multiple channels of sound output from the child Sound, they may or may not be spatialized, according to the phaseGroup properties of the child, as follows. Any individual channels, that is, channels not phase-related to other channels, are summed linearly and then spatialized. Any phase-grouped channels are not spatialized, but passed through this node unchanged. The sound presented in the scene is thus a single spatialized sound, represented by the sum of the individual channels, plus an “ambient” sound represented by mapping all the remaining channels into the presentation system as discussed in Subclause � REF _Ref404689235 \w \h ��7.2.2.14.1.2�.

If the spatialize field is not set, the audio channels from the child are passed through unchanged, and the sound presented in the scene due to this node is an “ambient” sound represented by mapping all the audio channels output by the child into the presentation system as discussion in Subclause � REF _Ref404689257 \w \h ��7.2.2.14.1.2�.

7.2.5.1.3.10.4	Nodes above the Sound node

As with the visual objects in the scene, the Sound node may be included as a child or descendant of any of the grouping or transform nodes. For each of these nodes, the sound semantics are as follows:

Affine transformations presented in the grouping and transform nodes affect the apparant spatialization position of spatialized sound. They have no effect on “ambient” sounds.

If a particular grouping or transform node has multiple Sound nodes as descendants, then they are combined for presentation as follows. Each of the Sound nodes may be producing a spatialized sound, a multichannel ambient sound, or both. For all of the spatialized sounds in descendant nodes, the sounds are linearly combined through simple summation from presentation. For multichannel ambient sounds, the sounds are linearly combined channel-by-channel for presentation.

7.2.5.1.3.10.5	Example

Sound node S1 generates a spatialized sound s1 and five channels of multichannel ambient sound a1[1-5]. Sound node S2 generates a spatialized sound s2 and two channels of multichannel ambient sound a2[1-2]. S1 and S2 are grouped under a single Group node. The resulting sound is the superposition of the spatialized sound s1, the spatialized sound s2, and the five-channel ambient multichannel sound represented by a3[1-5], where

a3[1] = a1[1] + a2[1]

a3[2] = a1[2] + a2[2]

a3[3] = a1[3]

a3[4] = a1[4]

a3[5] = a1[5].

7.2.5.1.3.11	Switch

7.2.5.1.3.11.1	Semantic Table

Switch {

�exposedField�MFNode�choice�NULL�� �exposedField�SFInt32�whichChoice�-1 ��}

7.2.5.1.3.12	Text

7.2.5.1.3.12.1	Semantic Table

Text {

 �exposedField�SFString�string�"" �� �exposedField�MFFloat�length�NULL�� �exposedField�SFNode�fontStyle�NULL�� �exposedField�SFFloat�maxExtent�0 ��}

7.2.5.1.3.13	TextureCoordinate

7.2.5.1.3.13.1	Semantic Table

TextureCoordinate {

 �exposedField�MFVec2f�point�NULL��}

7.2.5.1.3.14	TextureTransform

7.2.5.1.3.14.1	Semantic Table

TextureTransform {

�exposedField�SFVec2f�center�0, 0 �� �exposedField�SFFloat�rotation�0 �� �exposedField�SFVec2f�scale�1, 1 �� �exposedField�SFVec2f�translation�0, 0 ��}

7.2.5.1.3.15	TimeSensor

7.2.5.1.3.15.1	Semantic Table

TimeSensor {

 �exposedField�SFTime�cycleInterval�1 �� �exposedField�SFBool�enabled�TRUE �� �exposedField�SFBool�loop�FALSE �� �exposedField�SFTime�startTime�0 �� �exposedField�SFTime�stopTime�0 �� �eventOut�SFTime�cycleTime�NULL�� �eventOut�SFFloat�fraction_changed�NULL�� �eventOut�SFBool�isActive�NULL�� �eventOut�SFTime�time�NULL��}

7.2.5.1.3.16	TouchSensor

7.2.5.1.3.16.1	Semantic Table

TouchSensor {

 �exposedField�SFBool�enabled�TRUE �� �eventOut�SFVec3f�hitNormal_changed�NULL�� �eventOut�SFVec3f�hitPoint_changed�NULL�� �eventOut�SFVec2f�hitTexCoord_changed�NULL�� �eventOut�SFBool�isActive�NULL�� �eventOut�SFBool�isOver�NULL�� �eventOut�SFTime�touchTime�NULL��}

7.2.5.1.3.17	WorldInfo

7.2.5.1.3.17.1	Semantic Table

WorldInfo {

 �field�MFString�info�NULL�� �field�SFString�title�"" ��}

7.2.5.2	2D Nodes

7.2.5.2.1	2D Nodes Overview

The 2D nodes are those nodes which may be used in 2D scenes and with nodes that permit the use of 2D nodes in 3D scenes.

7.2.5.2.2	2D MPEG-4 Nodes

7.2.5.2.2.1	Background2D

7.2.5.2.2.1.1	Semantic Table

Background2D {

 �eventIn�SFBool�set_bind�NULL�� �exposedField�MFString�url�NULL�� �eventOut�SFBool�isBound�NULL��}

7.2.5.2.2.1.2	Main Functionality

There exists a Background2D stack, in which the top-most background is the current active background one. The Background2D node allows a background to be displayed behind a 2D scene. The functionality of this node can also be accomplished using other nodes, but use of this node may be more efficient in some implementations.

7.2.5.2.2.1.3	Detailed Semantics

If set_bind is set to TRUE the Background2D is moved to the top of the stack.

If set_bind is set to FALSE, the Background2D is removed from the stack so the previous background which is contained in the stack is on again.

The url specifies the stream used for the backdrop.

The isBound event is sent as soon as the backdrop is put at the top of the stack, so becoming the current backdrop.

The url field specifies the data source to be used (see � REF _Ref403473406 \w \h ��7.2.2.7.1�).

This is not a geometry node and the top-left corner of the image is displayed at the top-left corner of the screen, regardless of the current transformation. Scaling and/or rotation do not have any effect on this node.

7.2.5.2.2.1.4	Example

Changing the background for 5 seconds.

Group2D {

 children [

 …

DEF TIS TimeSensor {

StartTime 5.0

StopTime 10.0

}

DEF BG1 Background2D {…

 	}	

]

}

ROUTE TIS.isActive TO BG1.set_bind

7.2.5.2.2.2	Circle

7.2.5.2.2.2.1	Semantic Table

Circle {

�exposedField�SFFloat�radius�1 ��}

7.2.5.2.2.2.2	Main Functionality

This node draws a circle.

7.2.5.2.2.2.3	Detailed Semantics

The radius field determines the radius of the rendered circle.

7.2.5.2.2.3	Coordinate2D

7.2.5.2.2.3.1	Semantic Table

Coordinate2D {

�exposedField�MFVec2f�point�NULL��}

7.2.5.2.2.3.2	Main Functionality

This node defines a set of 2D coordinates to be used in the coord field of geometry nodes.

7.2.5.2.2.3.3	Detailed Semantics

The point field contains a list of points in the 2D coordinate space. See Subclause � REF _Ref404689903 \w \h ��7.2.2.3�.

7.2.5.2.2.4	Curve2D

7.2.5.2.2.4.1	Semantic Table

Curve2D {

 �exposedField�SFNode�points�NULL�� �exposedField�SFInt32�fineness�0 ��}

7.2.5.2.2.4.2	Main Functionality

This node is used to include the Bezier approximation of a polygon in the scene at an arbitrary level of precision. It behaves as other “lines”, which means it is sensitive to modifications of line width and “dotted-ness”, and can be filled or not.

The given parameters are a control polygon and a parameter setting the quality of approximation of the curve. Internally, another polygon of fineness points is computed on the basis of the control polygon. The coordinates of that internal polygon are given by the following formula:

�EMBED Equation.3���,

where x[j] is the jth x coordinate of the internal polygon, n is the number of points in the control polygon, xc[i] is the ith x coordinate of the control polygon and f is short for the above fineness parameter which is also the number of points in the internal polygon. A symmetrical formula yields the y coordinates.

7.2.5.2.2.4.3	Detailed Semantics

The points field lists the vertices of the control polygon. The fineness field contains the number of points in the internal polygon which constitutes the Bezier interpolation of the control polygon. fineness should sensibly be greater than the number of points in the control polygon.

7.2.5.2.2.4.4	Example

The following defines a 20-points Bezier approximation of a 4-points polygon.

geometry Curve2D {

	points Coordinate2D {

		point [-10.00 0.00 0.00 50.00 15.00 25.00 25.00 15.00]

		fineness 20

	}

}

7.2.5.2.2.5	DiscSensor

7.2.5.2.2.5.1	Semantic Table

DiscSensor {

 �exposedField�SFBool�autoOffset�TRUE �� �exposedField�SFVec2f�center�0, 0 �� �exposedField�SFBool�enabled�TRUE �� �exposedField�SFFloat�maxAngle�-1 �� �exposedField�SFFloat�minAngle�-1 �� �exposedField�SFFloat�offset�0 �� �eventOut�SFBool�isActive�NULL�� �eventOut�SFRotation�rotation_changed�NULL�� �eventOut�SFVec3f�trackPoint_changed�NULL��}

7.2.5.2.2.5.2	Main Functionality

This sensor enables to rotate the object in the 2D plane around an axis with a coordinate specified in the local coordinate system.

7.2.5.2.2.5.3	Detailed Semantics

The detailed semantic is the one of the ISO/IEC DIS 14772-1:1997 Section 6.15, restricted to a 2D case.

7.2.5.2.2.6	Form

7.2.5.2.2.6.1	Semantic Table

Form {

 �field�MFNode�children�NULL�� �exposedField�SFVec2f�size�-1, -1 �� �field�MFInt32�groups�NULL�� �field�MFInt32�constraint�NULL��}

7.2.5.2.2.6.2	Main Functionality

The Form node specifies the placement of its children according to relative alignment and distribution constraints. Distribution spreads objects regularly, with an equal spacing between them.

7.2.5.2.2.6.3	Detailed Semantics

The children MF2DNode shall specify a list of nodes that are laid out. Note that the children’s position is implicit and that order is important.

The width field specifies the width of the layout frame.

The height field specifies the height of the layout frame.

The groups field specifies the list of groups of objects on which the constraints can be applied. The children of the Form are numbered from 1 to n, 0 being reserved for a reference to the layout itself. One group is a list of child indices, terminated by a -1.

The constraints field specifies the list of constraints. One constraint is constituted by a constraint type, optionally followed by a distance, followed by the indices of the objects and groups it is to be applied on and terminated by a –1. The numbering scheme is:

0 for a reference to the layout,

1 to n for a reference to one of the children,

n+1 to n+m for a reference to one of the m specified groups.

Constraints belong to two categories: alignment and distribution constraints.

	

Table � STYLEREF 1 \n �7�-� SEQ Table * ARABIC �1�: Alignment Constraints

Alignment Constraints�Type Index�Effect��AL: Align Left edges�0�The xmin of constrained components become equal to the xmin of the left-most component.��AH: Align centers Horizontally�1�The (xmin+xmax)/2 of constrained components become equal to the (xmin+xmax)/2 of the group of constrained components.��AR: Align Right edges�2�The xmax of constrained components become equal to the xmax of the right-most component.��AT: Align Top edges�3�The ymax of all constrained components become equal to the ymax of the top-most component.��AV: Align centers Vertically�4�The (ymin+ymax)/2 of constrained components become equal to the (ymin+ymax)/2 of the group of constrained components.��AB: Align Bottom edges�5�The ymin of constrained components become equal to the ymin of the bottom-most component.��ALspace: Align Left edges

 by specified space�6�The xmin of the second and following components become equal to the xmin of the first component plus the specified space.��ARspace: Align Right edges

 by specified space�7�The xmax of the second and following components become equal to the xmax of the right-most component minus the specified space.��ATspace: Align Top edges

 by specified space�8�The ymax of the second and following components become equal to the ymax of the top-most component minus the specified space.��ABspace: Align Bottom edges

 by specified space�9�The ymin of the second and following components become equal to the ymin of the bottom-most component plus the specified space.��				

The purpose of distribution constraints is to specify the space between components, by making such pairwise gaps equal either to a given value or to the effect of filling available space.

	

Table � STYLEREF 1 \n �7�-� SEQ Table * ARABIC �2�: Distribution Constraints

Distribution Constraints�Type Index�Effect��SH: Spread Horizontally�10�The differences between the xmin of each component and the xmax of the previous one become all equal. The first and the last component should be constrained horizontally already.��Shin: Spread Horizontally

	in container�11�The differences between the xmin of each component and the xmax of the previous one become all equal.

References are the edges of the layout.��SHspace: Spread Horizontally

	by specified space�12�The difference between the xmin of each component and the xmax of the previous one become all equal to the specified space.��SV: Spread Vertically�13�The differences between the ymin of each component and the ymax of the previous one become all equal. The first and the last component should be constrained vertically already.��Svin: Spread Vertically

	in container�14�The differences between the ymin of each component and the ymax of the previous one become all equal.

References are the edges of the layout.��SVspace: Spread Vertically

	by specified space�15�The difference between the ymin of each component and the ymax of the previous one become all equal to the specified space.��All objects start at the center of the layout. The constraints are then applied once in sequence.

7.2.5.2.2.6.4	Example

Laying out five 2D objects.

 Shape {

Geometry2D Rectangle { size 50 55 } // draw the Form’s frame.

Visualprops use VPSRect

}

Transform2D {

	Translation 10 10 {

		Children [

 		Form {

				children [

					Shapes2D { use OBJ1 }

					Shapes2D { use OBJ2 }

					Shapes2D { use OBJ3 }

					Shapes2D { use OBJ4 }

					Shapes2D { use OBJ5 }

]

				Width 50 Height 55

Groups [1 3 -1]

Constraints [7 6 -1 9 1 -1 3 0 2 -1 0 0 2 -1 12 6 0 3 –1

12 7 0 4 -1 15 7 0 4 -1 13 -2 0 5 -1 14 -2 0 5 –1

]

			}

]

	}

}

7.2.5.2.2.7	Group2D

7.2.5.2.2.7.1	Semantic Table

Group2D {

 �eventIn�MFNode�addChildren�NULL�� �eventIn�MFNode�removeChildren�NULL�� �exposedField�MFNode�children�NULL�� �field�SFVec2f�bboxCenter�0, 0 �� �field�SFVec2f�bboxSize�-1, -1 ��}

7.2.5.2.2.7.2	Main Functionality

The Group2D node is one of the grouping 2D nodes. It is, itself, a 2D scene. A Group2D node contains children nodes without introducing any transformation.

7.2.5.2.2.7.3	Detailed Semantics

The addChildren eventIn specifies a list of 2D objects that must be added to the Group2D node.

The removeChildren eventIn specifies a list of 2D objects that must be removed from the Group2D node.

The children field is the current list of 2D objects contained in the Group2D node.

The bboxCenter field specifies the center of the bounding box and the bboxSize field specifies the width and the height of the bounding box. It is possible not to transmit the bboxCenter and bboxSize fields, but if they are transmitted, the corresponding box must contain all the children. The behaviour of the terminal in other cases is not specified. The bounding box semantic is described in more detail in Subclause � REF _Ref394188649 \n �7.2.2.14�.

7.2.5.2.2.7.4	Example

This example illustrates a means of avoiding any 2D objects of a group to be, simultaneously, in any other one by ROUTEing the children of the first to the removeChildren eventIn of the second:

DEF GSrc Group2D {

 children [

 …

]

}

DEF GDst Group2D {	

 children [

 …

]

}

ROUTE GSrc.children TO GDst.removeChildren

7.2.5.2.2.8	Image2D

7.2.5.2.2.8.1	Semantic Table

Image2D {

 �exposedField�MFString�url�NULL��}

7.2.5.2.2.8.2	Main Functionality

This node includes an image in its native size, transmitted in a stream, in a 2D scene. It is different from an ImageTexture image in that the image is not scaled to fit the underlying geometry on which it is texture mapped.

7.2.5.2.2.8.3	Detailed Semantics

The url field specifies the data source to be used (see � REF _Ref403473406 \w \h ��7.2.2.7.1�).

This is not a geometry node and by default, the bottom-left corner of the image is drawn at (0,0). The Image2D node is not affected by rotation or scaling.

7.2.5.2.2.9	IndexedFaceSet2D

7.2.5.2.2.9.1	Semantic Table

IndexedFaceSet2D {

�eventIn�MFInt32�set_colorIndex�NULL�� �eventIn�MFInt32�set_coordIndex�NULL�� �eventIn�MFInt32�set_texCoordIndex�NULL�� �exposedField�SFNode�color�NULL�� �exposedField�SFNode�coord�NULL�� �exposedField�SFNode�texCoord�NULL�� �field�MFInt32�colorIndex�NULL�� �field�SFBool�colorPerVertex�TRUE �� �field�SFBool�convex�TRUE �� �field�MFInt32�coordIndex�NULL�� �field�MFInt32�texCoordIndex�NULL��}

7.2.5.2.2.9.2	Main Functionality

The IndexedFaceSet2D node represents a 2D shape formed by constructing 2D faces (polygons) from points specified in the coord field.

7.2.5.2.2.9.3	Detailed Semantics

IndexedFaceSet2D shall be specified in the local coordinate system and shall be affected by parent transformations. Each face of an IndexedFaceSet2D node shall have at least three vertices which do not coincide. Each polygon defined by the vertices of a face shall not be self-intersecting. The faces of a IndexedFaceSet2D node shall not overlap each other.

7.2.5.2.2.10	IndexedLineSet2D

7.2.5.2.2.10.1	Semantic Table

IndexedLineSet2D {

�eventIn�MFInt32�set_colorIndex�NULL�� �eventIn�MFInt32�set_coordIndex�NULL�� �exposedField�SFNode�color�NULL�� �exposedField�SFNode�coord�NULL�� �field�MFInt32�colorIndex�NULL�� �field�SFBool�colorPerVertex�TRUE �� �field�MFInt32�coordIndex�NULL��}

7.2.5.2.2.10.2	Main Functionality

The IndexedLineSet node causes a collection of lines or polygons (depending on the properties2D node) to be rendered.

7.2.5.2.2.10.3	Detailed Semantics

The coord field lists the vertices of the lines. When coordIndex is empty, the order of vertices is assumed to be sequential in the coord field. Otherwise, the coordIndex field determines the ordering of the vertices, with an index of -1 representing an end to the current polyline.

If the color field is not NULL, it shall contain a Color node, and the colors are applied to the line(s) as follows with IndexedLineSet.

7.2.5.2.2.11	Inline2D

7.2.5.2.2.11.1	Semantic Table

Inline2D {

 �exposedField�MFString�url�NULL�� �field�SFVec2f�bboxCenter�0, 0 �� �field�SFVec2f�bboxSize�-1, -1 ��}

7.2.5.2.2.11.2	Main Functionality

Inline2D allows the inclusion of a 2D scene from an external source in the current 2D scene graph.

7.2.5.2.2.11.3	Detailed Semantics

The url field specifies the data source to be used (see � REF _Ref403473406 \w \h ��7.2.2.7.1�). The external source must contain a valid 2D BIFS scene, and may include BIFS-Updates and BIFS-Anim frames.

The bboxCenter and bboxSize semantics are specified in Subclause � REF _Ref394188649 \n �7.2.2.14�

7.2.5.2.2.11.4	Example

Including a 2D scene from the BIFS stream whose the decriptor index is 5.

�Group2D {

�	….

Inline2D {

		url "mpeg4od:5"

}

…

}

7.2.5.2.2.12	Layout

7.2.5.2.2.12.1	Semantic Table

Layout {

�exposedField�MFNode�children�NULL�� �exposedField�SFBool�wrap�FALSE �� �exposedField�SFVec2f�size�-1, -1 �� �exposedField�SFBool�horizontal�TRUE �� �exposedField�MFString�justify�["BEGIN"] �� �exposedField�SFBool�leftToRight�TRUE �� �exposedField�SFBool�topToBottom�TRUE �� �exposedField�SFFloat�spacing�1 �� �exposedField�SFBool�smoothScroll�FALSE �� �exposedField�SFBool�loop�FALSE �� �exposedField�SFBool�scrollVertical�TRUE �� �exposedField�SFFloat�scrollRate�0 �� �eventIn�MFNode�addChildren�NULL�� �eventIn�MFNode�removeChildren�NULL��}

7.2.5.2.2.12.2	Main functionality

The Layout node specifies the placement (layout) of its children in various alignment modes as specified, for the Text children, by their FontStyle fields, and for non-text children, by the fields horizontal, justify, leftToRight, topToBottom and spacing present in this node. It also includes the ability to scroll its children horizontally or vertically.

7.2.5.2.2.12.3	Detailed Semantics

The children MF2DNode shall specify a list of nodes that are laid out. Note that the children’s position is implicit and that order is important.

The wrap field specifies whether children are allowed to wrap to the next row (or column in vertical alignment cases) after the edge of the layout frame is reached. If wrap is set to TRUE, children that would be positioned across or past the frame boundary are wrapped (vertically or horizontally) to the next row or column. If wrap is set to FALSE, children are placed in a single row or column that is clipped if it is larger than the layout.

When wrap is TRUE, if Text objects larger than the layout frame need to be placed, these Texts shall be broken down into smaller-than-the-layout pieces. The preferred places for breaking a Text are spaces, tabs, carriage returns and line feeds. When there is no such character in the Texts to be broken, the Texts shall be broken at the last character that is entirely placed in the layout frame.

The size field specifies the width and height of the layout frame.

The horizontal, justify, leftToRight, topToBottom and spacing fields have the same meaning as in the FontStyle node. See ISO/IEC DIS 14772-1:1997, Subclause 6.20, for complete semantics.

The scrollRate field specifies the scroll rate per second specified in the units determined by the CoordinateSystem node. When scrollRate is zero, then there is no scrolling and the remaining scroll-related fields are ignored.

The smoothScroll field selects between smooth and line-by-line/character-by-character scrolling of children. When TRUE, smooth scroll is applied.

The loop field specifies continuous looping of children when set to TRUE. When loop is FALSE, child nodes that scroll out of the scroll frame will be deleted. When loop is TRUE, then the set of children is supposed to constitute the entire space to be scrolled. That space is considered as a cylinder. When scrollVertical is TRUE and loop is TRUE and scrollRate is negative (top-to-bottom scrolling), then the bottom-most object will reappear on top of the layout frame as soon as the top-most object has scrolled entirely into the layout frame.

The scrollVertical field specifies whether the scrolling is done vertically or horizontally. When set to TRUE, the scrolling rate shall be understood as a vertical scrolling rate, and a positive rate shall mean scrolling to the top. When set to FALSE, the scrolling rate shall be understood as a horizontal scrolling rate, and a positive rate shall mean scrolling to the right.

Objects are placed one by one, in the order they are given in the children list. Text objects are placed according to the horizontal, justify, leftToRight, topToBottom and spacing fields of their FontStyle node. Other objects are placed according to the same fields of the Layout node. The reference point for the placement of an object is the reference point as left by the placement of the previous object in the list.

Spacing shall be coherent only within sequences of objects with the same orientation (same value of horizontal field). The notions of top edge, bottom edge, base line, vertical center, left edge, right edge, horizontal center, line height and row width shall have a single meaning over coherent sequences of objects. This means that over a sequence of objects where horizontal is TRUE, topToBottom is TRUE and spacing has the same value, then:

the vertical size of the lines is computed as follows:

maxAscent is the maximum of the ascent on all text objects.

maxDescent is the maximum of the descent on all text objects.

maxHeight is the maximum height of non-text objects.

If the minor mode in the justify field of the layout is “FIRST” (baseline alignment), then the non-text objects shall be aligned on the baseline, which means the vertical size of the line is: 	�size = max(maxAscent, maxHeight) +maxDescent

If the minor mode in the justify field of the layout is anything else, then the non-text objects shall be aligned with respect to the top, bottom or center, which means the size of the line is:	�size = max(maxAscent+maxDescent, maxHeight)

the first line is placed with its top edge flush to the top edge of the layout; the base line is placed maxAscent units lower, and the bottom edge is placed maxDescent units lower; the center line is in the middle between the top and bottom edges; the top edge of following lines are placed at regular intervals of value spacing (size.

The other cases can be inferred from the above description. When the orientation is vertical, then the baseline, ascent and descent are not useful for the computation of the width of the rows. All objects have only a width. Column size is the maximum width over all objects.

7.2.5.2.2.12.4	Example

If wrap is FALSE:

	If horizontal is TRUE, then objects are placed in a single line. The layout direction is given by the leftToRight field. Horizontal alignment in the row is done according to the first argument in justify (major mode = flush left, flush right, centered), and vertical alignment is done according to the second argument in justify (minor mode = flush top, flush bottom, flush baseline, centered). The topToBottom field is meaningless in this configuration.

	If horizontal is FALSE, then objects are placed in a single column. The layout direction is given by the topToBottom field. Vertical alignment in the column is done according to the first argument in justify (major mode), and horizontal alignment is done according to the second argument in justify (minor mode).

If wrap is TRUE:

	If horizontal is TRUE, then objects are placed in multiple lines. The layout direction is given by the leftToRight field. The wrapping direction is given by the topToBottom field. Horizontal alignment in the lines is done according to the first argument in justify (major mode), and vertical alignment is done according to the second argument in justify (minor mode).

	If horizontal is FALSE, then objects are placed in multiple column. The layout direction is given by the topToBottom field. The wrapping direction is given by the leftToRight field. Vertical alignment in the columns is done according to the first argument in justify (major mode), and horizontal alignment is done according to the second argument in justify (minor mode).

If scrollRate is 0, then the Layout is static and positions change only when children are modified.

If scrollRate is non zero, then the position of the children is updated according to the values of scrollVertical, scrollRate, smoothScroll and loop.

If scrollVertical is TRUE:

	If scrollRate is positive, then the scrolling direction is left-to-right, and vice-versa.

If scrollVertical is FALSE:

	If scrollRate is positive, then the scrolling direction is bottom-to-top, and vice-versa.

7.2.5.2.2.13	LineProperties

7.2.5.2.2.13.1	Semantic Table

LineProperties {

 �exposedField�SFColor�lineColor�0, 0, 0 �� �exposedField�SFInt32�lineStyle�0 �� �exposedField�SFFloat�width�1 ��}

7.2.5.2.2.13.2	Main Functionality

The LineProperties node specifies line parameters used in 2D rendering. The fields apply to certain geometry2DNodes only.

7.2.5.2.2.13.3	Detailed Semantics

The lineColor field determines the color with which to draw the lines and outlines of 2D geometries.

The lineStyle field contains the number of the line style to apply to lines: the allowed values are:

0 = solid

1 = dashed

2 = dotted

3 = dashed-dotted

4 = dashed-dashed-dotted

5 = dashed-dotted-dotted

The terminal shall draw each line style in a manner that is distiguishable from each other line style.

The width field determines the width, in the local coordinate system, of rendered lines. The apparent width depends on the local transformation.

7.2.5.2.2.14	Material2D

7.2.5.2.2.14.1	Semantic Table

Material2D {

 �exposedField�SFColor�diffuseColor�0.8, 0.8, 0.8 �� �exposedField�SFBool�filled�FALSE �� �exposedField�SFNode�lineProps�NULL�� �exposedField�SFNode�shadowsProps�NULL�� �exposedField�SFFloat�transparency�0 ��}

7.2.5.2.2.14.2	Main Functionality

The Material2D node determines the characteristics of a rendered Shape2D. This node only appears inside an Appearance field, which only appears inside a Shape2D node.

7.2.5.2.2.14.3	Detailed Semantics

The diffuseColor field specifies the color of the Shape.

The filled field determines if rendered nodes are filled or drawn using lines. This field affects IndexedFaceSet2D, Circle and Rectangle.

The lineProps field contains information about line rendering. If the field is null, lines are drawn solid with a width of one pixel, in the color specified in diffuseColor. See the LineProperties node (see Subclause � REF _Ref404689994 \w \h ��7.2.5.2.2.13�) for more information.

The shadowProps field contains information about the presence of shadows for the 2D geometries. If the field is null, then no shadow is drawn. See the ShadowProperties node for more information.

The transparency field specifies the transparency of the Shape.

7.2.5.2.2.15	VideoObject2D

7.2.5.2.2.15.1	Semantic Table

VideoObject2D�SF2DNode, SFStreamingNode �10000, ?��field name�field type�field data type�Q�A��defID�inID�outID�dynID�default value�min value�max value��loop�exposedField �SFBool����000�000�000��FALSE ����speed�exposedField �SFFloat�0 ���001�001�001��1.0 �0�+I��startTime�exposedField �SFTime����010�010�010��0 ����stopTime�exposedField �SFTime����011�011�011��0 ����url�exposedField �MFString����100�100�100��[]����duration_changed�eventOut �SFFloat������101��-1 ����isActive�eventOut �SFBool������110��FALSE ����7.2.5.2.2.15.2	Main Functionality

The VideoObject2D node includes a video sequence using its natural size into a 2D scene. It is different from an MovieTexture image in that the video sequence is not scaled to fit the underlying geometry on which it is texture mapped.

7.2.5.2.2.15.3	Detailed Semantics

As soon as the movie is started, a duration_changed eventOut is sent. This indicates the duration of the movie in seconds. This eventOut value can be read to determine the duration of a movie. A value of "-1" implies the movie has not yet loaded or the value is unavailable for some reason.

The loop, startTime, and stopTime exposedFields and the isActive eventOut, and their effects on the VideoObject2D node, are discussed in detail in the section describing “Time dependent nodes". The cycle of a VideoObject2D node is the length of time in seconds for one playing of the movie at the specified speed.

The speed exposedField indicates how fast the movie shall be played. A speed of 2 indicates the movie plays twice as fast. The duration_changed eventOut is not affected by the speed exposedField. set_speed events are ignored while the movie is playing. A negative speed implies that the movie will play backwards.

If a VideoObject2D node is inactive when the movie is first loaded, frame 0 of the movie texture is displayed if speed is non-negative or the last frame of the movie texture is shown if speed is negative. A VideoObject2D node shall display frame 0 if speed = 0. For positive values of speed, an active VideoObject2D node displays the frame at movie time t as follows (i.e., in the movie's local time system with frame 0 at time 0 with speed = 1):

 t = (now - startTime) modulo (duration/speed)

If speed is negative, the VideoObject2D node displays the frame at movie time:

 t = duration - ((now - startTime) modulo ABS(duration/speed))

When a VideoObject2D node becomes inactive, the frame corresponding to the time at which the VideoObject2D became inactive will remain visible.

The url field specifies the data source to be used (see � REF _Ref403473406 \w \h ��7.2.2.7.1�).

7.2.5.2.2.16	PlaneSensor2D

7.2.5.2.2.16.1	Semantic Table

PlaneSensor2D {

�exposedField�SFBool�autoOffset�TRUE �� �exposedField�SFBool�enabled�TRUE �� �exposedField�SFVec2f�maxPosition�0, 0 �� �exposedField�SFVec2f�minPosition�0, 0 �� �exposedField�SFVec2f�offset�0, 0 �� �eventOut�SFVec2f�trackPoint_changed�NULL��}

7.2.5.2.2.16.2	Main Functionality

This sensor detects pointer device dragging and enables the dragging of objects on the 2D rendering plane.

7.2.5.2.2.16.3	Detailed Semantics

The semantic is a restricted case for 2D of the PlaneSensor as defined in ISO/IEC DIS 14772-1:1997.

7.2.5.2.2.17	PointSet2D

7.2.5.2.2.17.1	Semantic Table

PointSet2D {

�exposedField�SFNode�color�NULL�� �exposedField�SFNode�coord�NULL��}

7.2.5.2.2.17.2	Main Functionality

7.2.5.2.2.17.3	Detailed Semantics

7.2.5.2.2.18	Position2DInterpolator

7.2.5.2.2.18.1	Semantic Table

Position2DInterpolator {

 �eventIn�SFFloat�set_fraction�NULL�� �exposedField�MFFloat�key�NULL�� �exposedField�MFVec2f�keyValue�NULL�� �eventOut�SFVec2f�value_changed�NULL��}

7.2.5.2.2.18.2	Main Functionality

7.2.5.2.2.18.3	Detailed Semantics

This interpolator works as the other interpolators.

7.2.5.2.2.19	Proximity2DSensor

7.2.5.2.2.19.1	Semantic Table

Proximity2DSensor {

 �exposedField�SFVec2f�center�0, 0 �� �exposedField�SFVec2f�size�0, 0 �� �exposedField�SFBool�enabled�TRUE �� �eventOut�SFBool�isActive�NULL�� �eventOut�SFVec2f�position_changed�NULL�� �eventOut�SFFloat�orientation_changed�NULL�� �eventOut�SFTime�enterTime�NULL�� �eventOut�SFTime�exitTime�NULL��}

7.2.5.2.2.19.2	Main Functionality

7.2.5.2.2.19.3	Detailed Semantics

7.2.5.2.2.20	Rectangle

7.2.5.2.2.20.1	Semantic Table

Rectangle {

 �exposedField�SFVec2f�size�2, 2 ��}

7.2.5.2.2.20.2	Main Functionality

This node renders a rectangle.

7.2.5.2.2.20.3	Detailed Semantics

The size field specifies the horizontal and vertical size of the rendered rectangle.

7.2.5.2.2.21	ShadowProperties

ShadowProperties {

�exposedField�SFVec2f�shadowPos�5, 5 �� �exposedField�SFColor�shadowColor�0, 0, 0 ��}

7.2.5.2.2.21.1	Main Functionality

The ShadowProperties node specifies shadow parameters used in 2D rendering. The fields apply to certain geometry2DNodes only.

7.2.5.2.2.21.2	Detailed Semantics

The shadowPos determines an offset for the shadow of a rendered object.

The shadowColor determines the color with which the shadow the shadow should be drawn.

7.2.5.2.2.22	Switch2D

7.2.5.2.2.22.1	Semantic Table

Switch2D {

�exposedField�MFNode�choice�NULL�� �exposedField�SFInt32�whichChoice�-1 ��}

7.2.5.2.2.22.2	Main functionality

The Switch2D grouping node traverses zero or one of the 2D nodes specified in the choice field. All nodes under a Switch2D continue to receive and send events regardless of the choice of the traversed one.

7.2.5.2.2.22.3	Detailed Semantics

The choice field specifies the switchable nodes list.

The whichChoice field specifies the index of the child to traverse, with the first child having index 0. If whichChoice is less than zero or greater than the number of nodes in the choice field, nothing is chosen.

7.2.5.2.2.23	Transform2D

7.2.5.2.2.23.1	Semantic Table

Transform2D {

 �eventIn�MFNode�addChildren�NULL�� �eventIn�MFNode�removeChildren�NULL�� �exposedField�SFVec2f�center�0, 0 �� �exposedField�MFNode�children�NULL�� �exposedField�SFFloat�rotationAngle�0 �� �exposedField�SFVec2f�scale�1, 1 �� �exposedField�SFFloat�scaleOrientation�0 �� �exposedField�SFFloat�drawingOrder�0 �� �exposedField�SFVec2f�translation�0, 0 �� �field�SFVec2f�bboxCenter�0, 0 �� �field�SFVec2f�bboxSize�-1, -1 ��}

7.2.5.2.2.23.2	Main Functionality

The Transform2D node allows the translation, rotation and scaling of 2D objects which form the children of an Transform2D node.

7.2.5.2.2.23.3	Detailed Semantics

The bboxCenter and bboxSize semantics are specified in Subclause � REF _Ref394188649 \n �7.2.2.14�.

The rotation field specifies a rotation of the child objects, in radians, which occurs about the point specified by center.

The scale field specifies a 2D scaling of the child objects. The scaling operation takes place following a rotation of the 2D co-ordinate system that is specified, in radians, by the scaleOrientation field. The rotation of the co-ordinate system is notional and purely for the purpose of applying the scaling and is undone before any further actions are performed. No permanent rotation of the co-ordinate system is implied.

The translation field specifies a 2D vector which translates the child objects.

The scaling, rotation and translation are applied in the following order: scale, rotate, translate.

The drawingOrder field specifies the order in which this node’s children are drawn with respect to other objects in the scene (see � REF _Ref404690121 \w \h ��7.2.2.15�) . When a Transform2D node has more than one child node, its children are drawn in order. The exception to this rule occurs when one or more child node has an explicit drawingOrder. In this case, the explicit drawingOrder is respected for that child node without affecting the implicit drawing order of its siblings.

The children field contains a list of zero or more children nodes which are grouped by the Transform2D node.

The addChildren and removeChildren eventIns are used to add or remove child nodes from the children field of the node. Children are added to the end of the list of children and special note should be taken of the implications of this for implicit drawing orders.

7.2.5.2.2.24	VideoObject2D

Semantic Table

VideoObject2D {

�exposedField�SFBool�loop�FALSE �� �exposedField�SFFloat�speed�1 �� �exposedField�SFTime�startTime�0 �� �exposedField�SFTime�stopTime�0 �� �exposedField�MFString�url�NULL�� �eventOut�SFFloat�duration_changed�-1 �� �eventOut�SFBool�isActive�FALSE ��}

1.4.2.18.2	Main Functionality

The VideoObject2D node includes a video sequence using its natural size into a 2D scene. It is different from an MovieTexture image in that the video sequence is not scaled to fit the underlying geometry on which it is texture mapped.

1.4.2.18.3	Detailed Semantics

As soon as the movie is started, a duration_changed eventOut is sent. This indicates the duration of the movie in seconds. This eventOut value can be read to determine the duration of a movie. A value of "-1" implies the movie has not yet loaded or the value is unavailable for some reason.

The loop, startTime, and stopTime exposedFields and the isActive eventOut, and their effects on the VideoObject2D node, are discussed in detail in the section describing “Time dependent nodes". The cycle of a VideoObject2D node is the length of time in seconds for one playing of the movie at the specified speed.

The speed exposedField indicates how fast the movie shall be played. A speed of 2 indicates the movie plays twice as fast. The duration_changed eventOut is not affected by the speed exposedField. set_speed events are ignored while the movie is playing. A negative speed implies that the movie will play backwards.

If a VideoObject2D node is inactive when the movie is first loaded, frame 0 of the movie texture is displayed if speed is non-negative or the last frame of the movie texture is shown if speed is negative. A VideoObject2D node shall display frame 0 if speed = 0. For positive values of speed, an active VideoObject2D node displays the frame at movie time t as follows (i.e., in the movie's local time system with frame 0 at time 0 with speed = 1):

 t = (now - startTime) modulo (duration/speed)

If speed is negative, the VideoObject2D node displays the frame at movie time:

 t = duration - ((now - startTime) modulo ABS(duration/speed))

When a VideoObject2D node becomes inactive, the frame corresponding to the time at which the VideoObject2D became inactive will remain visible.

The url field specifies the data source to be used (see � REF _Ref403473406 \w \h ��7.2.2.7.1�).

7.2.5.3	3D Nodes

7.2.5.3.1	3D Nodes Overview

The 3D nodes are those nodes which may be used in 3D scenes.

7.2.5.3.2	3D MPEG-4 Nodes

The following nodes are specific to MPEG-4.

7.2.5.3.2.1	ListeningPoint

7.2.5.3.2.1.1	Semantic Table

ListeningPoint {

 �eventIn�SFBool�set_bind�NULL�� �exposedField�SFBool�jump�TRUE �� �exposedField�SFRotation�orientation�0, 0, 1, 0 �� �exposedField�SFVec3f�position�0, 0, 10 �� �field�SFString�description�"" �� �eventOut�SFTime�bindTime�NULL�� �eventOut�SFBool�isBound�NULL��}

7.2.5.3.2.1.2	Main Functionality

The ListeningPoint specifies the reference position and orientation for spatial audio presentation. If there is no ListeningPoint given in a scene, the apparent listener position is slaved to the active ViewPoint.

7.2.5.3.2.1.3	Detailed Semantics

7.2.5.3.2.2	FBA

7.2.5.3.2.2.1	Semantic Table

FBA {

�exposedField�SFNode�face�NULL�� �exposedField�SFNode�body�NULL��}

7.2.5.3.2.2.2	Main Functionality

This node contains one face and one body. They reside in the same coordinate system. The face is subject to body motion.

7.2.5.3.2.2.3	Detailed Semantics

face	contains a Face node

body	contains a Body node, not yet defined

7.2.5.3.2.3	Face

7.2.5.3.2.3.1	Semantic Table

Face {

�exposedField�SFNode�fit�NULL�� �exposedField�SFNode�fdp�NULL�� �exposedField�SFNode�fap�NULL�� �eventOut�MFNode�renderedFace�NULL��}

7.2.5.3.2.3.2	Main Functionality

Organizes definition and animation of a face. The FAP node is mandatory, the FDP node, definening the particular look of a face by means of downloading the position of face definition points or an entire model, is optional. If the fdp node is not specified, the default face model of the decoder is used.

The url field specifies the data source to be used (see � REF _Ref403473406 \w \h ��7.2.2.7.1�).

7.2.5.3.2.3.3	Detailed Semantics

fit	Specifies the FIT node. When this field is non-null, the decoder should use the FIT compute the maximal set of FAPs before using the FAPs to compute the mesh.

fdp	contains an FDP node

fap	contains an FAP node

objectDescriptorID	ID of the object descriptor linking to the stream carrying facial parameters

renderedFace	Scenegraph of the face after it is rendered (all FAP’s applied)

7.2.5.3.2.3.3.1	Interpolating FAPs

By including an FIT node in the FIT field, the encoder can specify an FAP interpolation graph and a set of functions that can be usedto interpolate FAP values from one set of FAPs to another set of FAPs.

The FAP interpolation graph (FIG) is a graph with directed links. Each node contains a set of FAPs. Each link from a parent node to a child node indicates that the FAPs in child node can be interpolated from parent node provided that all FAPs in the parent node are available. A FAP may appear in several nodes, and a node may have multiple parents.

For a node which has multiple parent nodes, the parent nodes are ordered as 1st parent node, 2nd parent node, etc. During the interpolation process, if this child node needs to be interpolated, it is first interpolated from 1st parent node if all FAPs in that parent node are available. Otherwise, it is interpolated from 2nd parent node, and so on.

An example of FIG is shown in Figure 1. Each node has an ID. The numerical label on each incoming link indicates the order of these links.

�EMBED PowerPoint.Show.8���

Figure � STYLEREF 1 \n �7�-� SEQ Figure * ARABIC �12�: An example FIG

The interpolation process based on the FAP interpolation graph is described using pseudo C code as follows:

Do {�� interpolation_count = 0;�� for (all Node_i) { // from Node_0 to Node_N-1�� for (ordered Node_i’s parent Node_k) { �� if (FAPs in Node_k have been interpolated or are available) {�� interpolate Node_i from Node_k; //using interpolation function table here�� interpolation_count ++;�� goto Point_1; �� }�� }�� Point_1: ;�� }�� } while (interpolation_count != 0);��

 Both the encoder and the decoder shall use the above interpolation process.

7.2.5.3.2.4	FIT

7.2.5.3.2.4.1	Semantic Table

FIT {

�exposedField�MFInt32�FAPs�NULL�� �exposedField�MFInt32�Graph�NULL�� �exposedField�MFInt32�numeratorExp�NULL�� �exposedField�MFInt32�denominatorExp�NULL�� �exposedField�MFInt32�numeratorTerms�NULL�� �exposedField�MFInt32�denominatorTerms�NULL�� �exposedField�MFFloat�numeratorCoefs�NULL�� �exposedField�MFFloat�denominatorCoefs�NULL��}

7.2.5.3.2.4.2	Main Functionality

Defines the rational functions that determine the interpolation of FIG-child FAP tables from their parents’ FAPs. The graph structure is determined using the graph field.

Each directed link in an FIG is a set of interpolation functions. Suppose F1, F2, …, Fn are the FAPs in a parent set and f1, f2, …, fm are the FAPs in a child set. These sets are defined by the FAPs field.

Then, there are m interpolation functions denoted as:

f1 = I1(F1, F2, …, Fn);

f2 = I2(F1, F2, …, Fn);

…

fm = Im(F1, F2, …, Fn);

Each interpolation function I() is in a rational polynomial form

 �EMBED Equation.3���,

where �EMBED Equation.3���and �EMBED Equation.3���are the numbers of polynomial products, �EMBED Equation.3���and �EMBED Equation.3���are the coefficient of the ith product. �EMBED Equation.3���and �EMBED Equation.3��� are the power of�EMBED Equation.3���in the ith product. Since rational polynomials form a complete functional space, any possible finite interpolation function can be represented in this form to any given precision.

Encoder should send an interpolation function table which contains all �EMBED Equation.3���,�EMBED Equation.3���,�EMBED Equation.3���,�EMBED Equation.3���,�EMBED Equation.3���,�EMBED Equation.3��� to decoder for a predictable interpolation between FAPs.

The interpolation function described here can also be applied to define FAP-to-mesh interpolation for a face animation definition table (FAT). The FAT currently specified in W1825 represents each interpolation function as

 �EMBED Equation.3���,

where each �EMBED Equation.3��� is approximated by a piece-wise linear curve. This representation is a special case of the method described above.

7.2.5.3.2.4.3	Detailed Semantics

FAPs�a list of indices specifying which animation parameters form sets of FAPs. Each set of

FAP indeces is terminated by a -1.��Graph�A list of pairs of intergers, specifying a directed arc between sets of FAPs. The intergers refer to sets specified in the graph field. When more than one arc terminates at the same set, that is, when the second value in the pair is repeated, the arcs have precedence determined by their order in this field. ��numeratorTerms�The number of terms in the polynomials in the numerators of the rational functions controlling the parameter value. This field corresponds to K. Each parameter in FAPs must have one degree specified.��denomenatorTerms�The number of terms in the polynomials in the denominator of the rational functions controlling the parameter value. This field corresponds to P. Each parameter in FAPs must have one degree specified.��numeratorExp�The exponents of the polynomial terms in the numerator of the rational function controlling the parameter value. This list corresponds to �EMBED Equation.3���. The list should have n*K terms in row order for each parameter specified in the FAPs field.��denomenatorExp�The exponents of the polynomial terms in the denominator of the rational function controlling the parameter value. This list corresponds to �EMBED Equation.3���. The list should have n*P terms in row order order for each parameter specified in the FAPs field.��numeratorCoefs�The coefficients of the polynomial terms in the numerator of the rational function controlling the parameter value. This list corresponds to �EMBED Equation.3���. The list should have K terms for each parameter specified in the FAPs field.��DenomenatorCoefs�The coefficients of the polynomial terms in the numerator of the rational function controlling the parameter value. This list corresponds to�EMBED Equation.3���. The list should have P terms order for each parameter specified in the FAPs field.��7.2.5.3.2.4.4	Example

FIT {

	FAPs [4 -1 5]

	numeratorPower 2

denominatorPower 2

numeratorExp [0 0 0 0 1 2 3 4]

denominatorExp [0 0 0 0 1 0 0 1]

numeratorCoefs [5 6]

denominatorCoefs[7 8]

}

This FIT defines how the lowering of the top midlip (a set of one FAP, the 4th), is modified in terms of the 5th FAP.

I(f1,f2,f3,f4)= (5 +6* f1*f2^2*f3^3*f4^4) / (7 + 8 * f1* f4)

7.2.5.3.2.5	FAP

7.2.5.3.2.5.1	Semantic Table

FAP {

�exposedField�SFInt32�visemeSelect�0 �� �exposedField�SFInt32�expressionSelect�0 �� �exposedField�SFInt32�viseme�0 �� �exposedField�SFInt32�expression�0 �� �exposedField�SFInt32�open_jaw�0 �� �exposedField�SFInt32�lower_t_midlip�0 �� �exposedField�SFInt32�raise_b_midlip�0 �� �exposedField�SFInt32�stretch_l_corner�0 �� �exposedField�SFInt32�stretch_r_corner�0 �� �exposedField�SFInt32�lower_t_lip_lm�0 �� �exposedField�SFInt32�lower_t_lip_rm�0 �� �exposedField�SFInt32�lower_b_lip_lm�0 �� �exposedField�SFInt32�lower_t_lip_rm�0 �� �exposedField�SFInt32�raise_l_cornerlip�0 �� �exposedField�SFInt32�raise_r_cornerlip�0 �� �exposedField�SFInt32�thrust_jaw�0 �� �exposedField�SFInt32�shift_jaw�0 �� �exposedField�SFInt32�push_b_lip�0 �� �exposedField�SFInt32�push_t_lip�0 �� �exposedField�SFInt32�depress_chin�0 �� �exposedField�SFInt32�close_t_l_eyelid�0 �� �exposedField�SFInt32�close_t_r_eyelid�0 �� �exposedField�SFInt32�close_b_l_eyelid�0 �� �exposedField�SFInt32�close_b_r_eyelid�0 �� �exposedField�SFInt32�yaw_l_eyeball�0 �� �exposedField�SFInt32�yaw_r_eyeball�0 �� �exposedField�SFInt32�pitch_l_eyeball�0 �� �exposedField�SFInt32�pitch_r_eyeball�0 �� �exposedField�SFInt32�thrust_l_eyeball�0 �� �exposedField�SFInt32�thrust_r_eyeball�0 �� �exposedField�SFInt32�dilate_l_pupil�0 �� �exposedField�SFInt32�dilate_r_pupil�0 �� �exposedField�SFInt32�raise_l_i_eyebrow�0 �� �exposedField�SFInt32�raise_r_i_eyebrow�0 �� �exposedField�SFInt32�raise_l_m_eyebrow�0 �� �exposedField�SFInt32�raise_r_m_eyebrow�0 �� �exposedField�SFInt32�raise_l_o_eyebrow�0 �� �exposedField�SFInt32�raise_r_o_eyebrow�0 �� �exposedField�SFInt32�squeeze_l_eyebrow�0 �� �exposedField�SFInt32�squeeze_r_eyebrow�0 �� �exposedField�SFInt32�puff_l_cheek�0 �� �exposedField�SFInt32�puff_r_cheek�0 �� �exposedField�SFInt32�lift_l_cheek�0 �� �exposedField�SFInt32�lift_r_cheek�0 �� �exposedField�SFInt32�shift_tongue_tip�0 �� �exposedField�SFInt32�raise_tongue_tip�0 �� �exposedField�SFInt32�thrust_tongue_tip�0 �� �exposedField�SFInt32�raise_tongue�0 �� �exposedField�SFInt32�tongue_roll�0 �� �exposedField�SFInt32�head_pitch�0 �� �exposedField�SFInt32�head_yaw�0 �� �exposedField�SFInt32�head_roll�0 �� �exposedField�SFInt32�lower_t_midlip�0 �� �exposedField�SFInt32�raise_b_midlip_o�0 �� �exposedField�SFInt32�stretch_l_cornerlip�0 �� �exposedField�SFInt32�stretch_r_cornerlip_o�0 �� �exposedField�SFInt32�lower_t_lip_lm_o�0 �� �exposedField�SFInt32�lower_t_lip_rm_o�0 �� �exposedField�SFInt32�raise_b_lip_lm_o�0 �� �exposedField�SFInt32�raise_b_lip_rm_o�0 �� �exposedField�SFInt32�raise_l_cornerlip_o�0 �� �exposedField�SFInt32�raise_r_cornerlip_o�0 �� �exposedField�SFInt32�stretch_l_nose�0 �� �exposedField�SFInt32�stretch_r_nose�0 �� �exposedField�SFInt32�raise_nose�0 �� �exposedField�SFInt32�bend_nose�0 �� �exposedField�SFInt32�raise_l_ear�0 �� �exposedField�SFInt32�raise_r_ear�0 �� �exposedField�SFInt32�pupil_l_ear�0 �� �exposedField�SFInt32�pupil_r_ear�0 ��}

7.2.5.3.2.5.2	Main Functionality

Defines the current look of the face by means of expressions and FAPs and gives a hint to TTS controlled systems on which viseme to use. For a definition of the parameters see MPEG-4 Visual (ISO/IEC 14496-2).

7.2.5.3.2.5.3	Detailed Semantics

visemeSelect�selects a viseme��expressionSelect�selects an expression��FAP1Value�specifies the intensity for the viseme defined by visemeSelect.��FAP2Value�specifies the intensity for the expression defined by expressionSelect.��FAP3Value, FAP4Value, …, FAP68Value�values for FAP 3, FAP 4, …,FAP 68.��A FAP of value +I is assumed to be uninitialized.

7.2.5.3.2.6	FDP

7.2.5.3.2.6.1	Semantic Table

FDP {

 �exposedField�SFNode�featurePointsCoord�NULL�� �exposedField�SFNode�textureCoord4FeaturePoints�NULL�� �exposedField�SFNode�calibrationMesh�NULL�� �exposedField�SFNode�faceTexture�NULL�� �exposedField�MFNode�FBADefTables�NULL�� �exposedField�MFNode�faceSceneGraph�NULL��}

7.2.5.3.2.6.2	Main Functionality

The FDP node defines the face model to be used at the receiver. Two options are supported:

calibration information is downloaded, so that the proprietary face of the receiver can be configured using facial feature points and optionally a 3D mesh or texture. In this case, the field featurePointsCoord has to be set. The field calibrationMesh is optional. If set, the calibrationMesh has to show a face in neutral position and the featurePointsCoord define the position of the feature points in the calibrationMesh. The calibrationMesh can be used by the decoder to calibrate the shape of its own face model.If the face model has a texture map, the fields faceTexture and textureCoord4FeaturePoints have to be set.

a face model is downloaded with the animation definition of the Facial Animation Parameters hence the fields FBADefTables and faceSceneGraph have to be set. This face model replaces the proprietary face model in the receiver. The faceSceneGraph has to have the face in its neutral position (all FAPs 0). Therefore, a decoder may decide to use the faceSceneGraph as a calibration mesh. If desired, the faceSceneGraph contains the texture map of the face. Fields other than FBADefTables and faceSceneGraph will not be evaluated if the coder uses this downloaded model. However, the encoder is also required to send information according to option 1 (at least featurePointsCoord) in order to allow a low-complexity decoder to adapt their own face model.

7.2.5.3.2.6.3	Detailed Semantics

featurePointsCoord�contains a Coordinate node. Specifies feature points for the calibration of the proprietary face. The coordinates are listed in the ‘point’ field in the Coordinate node in the prescribed order, that a feature point with a lower label is listed before a feature point with a higher label (e.g. feature point 3.14 before feature point 4.1).��textureCoord4FeaturePoints�contains a TextureCoordinate node. Specifies the texture coordinates for the feature points.��calibrationMesh�contains an IndexedFaceSet node. Specifies a 3D mesh for the calibration of the proprietary face model. All fields in the IndexedFaceSet node can be used as calibration information.��faceTexture�contains an ImageTexture or PixelTexture node. Specifies texture to be applied on the proprietary face model.�� FBADefTables�contains FBADefTable nodes. If a face model is downloaded, the behavior of FAPs is defined in this field.��faceSceneGraph�contains a Group node. Grouping node for face model rendered in the compositor. It has to contain the face model. The effect of Facial Animation Parameters is defined in the ‘FBADefTables’field.��

7.2.5.3.2.7	FBADefTable

7.2.5.3.2.7.1	Semantic Table

FBADefTable {

 �field�SFInt32�fapID�1 �� �field�SFInt32�highLevelSelect�1 �� �exposedField�MFNode�tables�NULL��}

7.2.5.3.2.7.2	Main Functionality

Defines the behavior of an animation parameter on a downloaded face model by specifying displacement vectors for moved vertices inside IndexedFaceSet objects and/or specifying the field of Transform nodes to be updated.

7.2.5.3.2.7.3	Detailed Semantics

fapID�specifies the FAP, for which the animation behavior is defined in the ‘tables’ field.��highLevelSelect�specifies the type of viseme or expression, if fapID is 1 or 2. In other cases this field has got no meaning.��Tables�contains an FBADefTransform or FBADefMesh node.��7.2.5.3.2.8	FBADefTransform

7.2.5.3.2.8.1	Semantic Table

FBADefTransform {

�field�SFNode�faceSceneGraphNode�NULL�� �field�SFInt32�fieldId�1 �� �field�SFRotation�fieldValue�0, 0, 1, 0 ��}

7.2.5.3.2.8.2	Main Functionality

Defines, which field of an FBADefTransform is updated by an Facial Animation Parameter.

7.2.5.3.2.8.3	Detailed Semantics

faceSceneGraphNode�ID of the Transform node for which the animation is defined. The node must be part of faceScenegraph as defined in the FDP node.��FieldId�specifies, which field in the Transform node is updated by the FAP during animation. Possible fields are translation, rotation, scale.��FieldValue�is of type SFVec3f (if fieldId references the translation or scale field) or SFRotation (if fieldRef references the rotation field). The new node value of the Transform is in the case of :

fieldId==(translation or scale): NodeValue:= FAPValue+fieldValue

fieldId==(rotation): NodeValue Thetanew:= FAPValue+Thetaold��7.2.5.3.2.9	FBADefMesh

7.2.5.3.2.9.1	Semantic Table

FBADefMesh {

 �field�SFNode�faceSceneGraphNode�NULL�� �field�MFInt32�intervalBorders�NULL�� �field�MFInt32�coordIndex�NULL�� �field�MFVec3f�displacements�NULL��}

7.2.5.3.2.9.2	Main Functionality

Defines the piece-wine linear motion trajectories for vertices of the IndexedFaceSet objects of the faceSceneGraph of the FDP node, which is deformed by an Facial Animation Parameter.

7.2.5.3.2.9.3	Detailed Semantics

faceSceneGraphNode�ID of the IndexedFaceSet node for which the animation is defined. The node must be part of faceSceneGraph as defined in the FDP node.��IntervalBorders�interval borders for the piece-wise linear approximation in increasing order. Exactly one interval border must have the value 0.��coordIndex�a list of indices into the Coordinate node of the IndexedFaceSet node specified by nodeId.��displacements�for each vertex indexed in the coordIndex field, displacement vectors are given for the intervals defined in the intervalBorders field. There must be exactly (num(IntervalBorders)-1)*num(coordIndex) values in this field.��Example:

FBADefMesh {

	objectDescriptorID UpperLip

	intervalBorders [-1000, 0, 500, 1000]

	coordIndex [50, 51]

	displacements [1 0 0, 0.9 0 0, 1.5 0 4, 0.8 0 0, 0.7 0 0, 2 0 0]

}

This FBADefMesh defines the animation of the Mesh “UpperLip”. For the piecewise-linear motion function three intervals are defined: [-1000, 0], [0, 500] and [500, 1000]. Displacements are given for the vertices with the indices 50 and 51. The displacements for the vertex 50 are: (1 0 0), (0.9 0 0) and (1.5 0 4), the displacements for vertex 51 are (0.8 0 0), (0.7 0 0) and (2 0 0). Given a FAPValue of 600, the resulting displacement for vertex 50 would be 500*(1 0 0)T+100*(1.5 0 4)T=(650 0 400)T. If the FAPValue is outside the given intervals, the boundary intervals are extended to +I or -I, as appropriate.

7.2.5.3.3	3D VRML Nodes

Some nodes have their semantic specified in ISO/IEC DIS 14772-1:1997 with further restrictions and extensions defined herein.

7.2.5.3.3.1	Background

7.2.5.3.3.1.1	Semantic Table

Background {

�eventIn�SFBool�set_bind�NULL�� �exposedField�MFFloat�groundAngle�NULL�� �exposedField�MFColor�groundColor�NULL�� �exposedField�MFString�backURL�NULL�� �exposedField�MFString�frontURL�NULL�� �exposedField�MFString�leftURL�NULL�� �exposedField�MFString�rightURL�NULL�� �exposedField�MFString�topURL�NULL�� �exposedField�MFFloat�skyAngle�NULL�� �exposedField�MFColor�skyColor�0, 0, 0 �� �eventOut�SFBool�isBound�NULL��}

7.2.5.3.3.1.2	Detailed Semantics

The backUrl, frontUrl, leftUrl, rightUrl, topUrl fields specify the data sources to be used (see � REF _Ref403473406 \w \h ��7.2.2.7.1�).

7.2.5.3.3.2	Billboard

7.2.5.3.3.2.1	Semantic Table

Billboard {

 �eventIn�MFNode�addChildren�NULL�� �eventIn�MFNode�removeChildren�NULL�� �exposedField�SFVec3f�axisOfRotation�0, 1, 0 �� �exposedField�MFNode�children�NULL�� �field�SFVec3f�bboxCenter�0, 0, 0 �� �field�SFVec3f�bboxSize�-1, -1, -1 ��}

7.2.5.3.3.3	Box

7.2.5.3.3.3.1	Semantic Table

Box {

 �field�SFVec3f�size�2, 2, 2 ��}

7.2.5.3.3.4	Collision

7.2.5.3.3.4.1	Semantic Table

Collision {

�eventIn�MFNode�addChildren�NULL�� �eventIn�MFNode�removeChildren�NULL�� �exposedField�MFNode�children�NULL�� �exposedField�SFBool�collide�TRUE �� �field�SFVec3f�bboxCenter�0, 0, 0 �� �field�SFVec3f�bboxSize�-1, -1, -1 �� �field�SFNode�proxy�NULL�� �eventOut�SFTime�collideTime�NULL��}

7.2.5.3.3.5	Cone

7.2.5.3.3.5.1	Semantic Table

Cone {

�field�SFFloat�bottomRadius�1 �� �field�SFFloat�height�2 �� �field�SFBool�side�TRUE �� �field�SFBool�bottom�TRUE ��}

7.2.5.3.3.6	Coordinate

7.2.5.3.3.6.1	Semantic Table

Coordinate {

�exposedField�MFVec3f�point�NULL��}

7.2.5.3.3.7	CoordinateInterpolator

7.2.5.3.3.7.1	Semantic Table

CoordinateInterpolator {

�eventIn�SFFloat�set_fraction�NULL�� �exposedField�MFFloat�key�NULL�� �exposedField�MFVec3f�keyValue�NULL�� �eventOut�MFVec3f�value_changed�NULL��}

7.2.5.3.3.8	Cylinder

7.2.5.3.3.8.1	Semantic Table

Cylinder {

�field�SFBool�bottom�TRUE �� �field�SFFloat�height�2 �� �field�SFFloat�radius�1 �� �field�SFBool�side�TRUE �� �field�SFBool�top�TRUE ��}

7.2.5.3.3.9	DirectionalLight

7.2.5.3.3.9.1	Semantic Table

DirectionalLight {

�exposedField�SFFloat�ambientIntensity�0 �� �exposedField�SFColor�color�1, 1, 1 �� �exposedField�SFVec3f�direction�0, 0, -1 �� �exposedField�SFFloat�intensity�1 �� �exposedField�SFBool�on�TRUE ��}

7.2.5.3.3.10	ElevationGrid

7.2.5.3.3.10.1	Semantic Table

ElevationGrid {

�eventIn�MFFloat�set_height�NULL�� �exposedField�SFNode�color�NULL�� �exposedField�SFNode�normal�NULL�� �exposedField�SFNode�texCoord�NULL�� �field�MFFloat�height�NULL�� �field�SFBool�ccw�TRUE �� �field�SFBool�colorPerVertex�TRUE �� �field�SFFloat�creaseAngle�0 �� �field�SFBool�normalPerVertex�TRUE �� �field�SFBool�solid�TRUE �� �field�SFInt32�xDimension�0 �� �field�SFFloat�xSpacing�1 �� �field�SFInt32�zDimension�0 �� �field�SFFloat�zSpacing�1 ��}

7.2.5.3.3.11	Extrusion

7.2.5.3.3.11.1	Semantic Table

Extrusion {

 �eventIn�MFVec2f�set_crossSection�NULL�� �eventIn�MFRotation�set_orientation�NULL�� �eventIn�MFVec2f�set_scale�NULL�� �eventIn�MFVec3f�set_spine�NULL�� �field�SFBool�beginCap�TRUE �� �field�SFBool�ccw�TRUE �� �field�SFBool�convex�TRUE �� �field�SFFloat�creaseAngle�0 �� �field�MFVec2f�crossSection�1, 1, 1, -1, -1, -1, -1, 1, 1, 1 �� �field�SFBool�endCap�TRUE �� �field�MFRotation�orientation�0, 0, 1, 0 �� �field�MFVec2f�scale�1, 1 �� �field�SFBool�solid�TRUE �� �field�MFVec3f�spine�0, 0, 0, 0, 1, 0 ��}

7.2.5.3.3.12	Group

7.2.5.3.3.12.1	Semantic Table

Group {

�EventIn�MFNode�addChildren�NULL�� �EventIn�MFNode�removeChildren�NULL�� �ExposedField�MFNode�children�NULL�� �Field�SFVec3f�bboxCenter�0, 0, 0 �� �Field�SFVec3f�bboxSize�-1, -1, -1 ��}

7.2.5.3.3.12.2	Detailed Semantics

If multiple subgraphs containing audio content (ie, Sound nodes) are children of a Group node, the sounds are combined as follows:

If all of the children have equal numbers of channels, or are each a spatially-presented Sound, the Sound outputs of the children sum to create the audio output of this node.

If the children do not have equal numbers of audio channels, or some children, but not all, are spatially presented sounds, the semantics are TBD.

7.2.5.3.3.13	IndexedFaceSet

7.2.5.3.3.13.1	Semantic Table

IndexedFaceSet {

 �eventIn�MFInt32�set_colorIndex�NULL�� �eventIn�MFInt32�set_coordIndex�NULL�� �eventIn�MFInt32�set_normalIndex�NULL�� �eventIn�MFInt32�set_texCoordIndex�NULL�� �exposedField�SFNode�color�NULL�� �exposedField�SFNode�coord�NULL�� �exposedField�SFNode�normal�NULL�� �exposedField�SFNode�texCoord�NULL�� �field�SFBool�ccw�TRUE �� �field�MFInt32�colorIndex�NULL�� �field�SFBool�colorPerVertex�TRUE �� �field�SFBool�convex�TRUE �� �field�MFInt32�coordIndex�NULL�� �field�SFFloat�creaseAngle�0 �� �field�MFInt32�normalIndex�NULL�� �field�SFBool�normalPerVertex�TRUE �� �field�SFBool�solid�TRUE �� �field�MFInt32�texCoordIndex�NULL��}

7.2.5.3.3.13.2	Main Functionality

The IndexedFaceSet node represents a 3D polygon mesh formed by constructing faces (polygons) from points specified in the coord field. If the coordIndex field is not NULL, IndexedFaceSet uses the indices in its coordIndex field to specify the polygonal faces by connecting together points from the coord field. An index of -1 shall indicate that the current face has ended and the next one begins. The last face may be followed by a -1. IndexedFaceSet shall be specified in the local coordinate system and shall be affected by parent transformations.

7.2.5.3.3.13.3	Detailed Semantics

The coord field specifies the vertices of the face set and is specified by Coordinate node.

If the coordIndex field is not NULL, the indices of the coordIndex field shall be used to specify the faces by connecting together points from the coord field. An index of -1 shall indicate that the current face has ended and the next one begins. The last face may followed by a -1.

If the coordIndex field is NULL, the vertices of the coord field are laid out in their respective order to specify one face.

If the color field is NULL and there is a Material defined for the Appearance affecting this IndexedFaceSet, then the emissiveColor of the Material shall be used to draw the faces.

7.2.5.3.3.14	IndexedLineSet

7.2.5.3.3.14.1	Semantic Table

IndexedLineSet {

 �eventIn�MFInt32�set_colorIndex�NULL�� �eventIn�MFInt32�set_coordIndex�NULL�� �exposedField�SFNode�color�NULL�� �exposedField�SFNode�coord�NULL�� �field�MFInt32�colorIndex�NULL�� �field�SFBool�colorPerVertex�TRUE �� �field�MFInt32�coordIndex�NULL��}

7.2.5.3.3.15	Inline

7.2.5.3.3.15.1	Semantic Table

Inline {

 �exposedField�MFString�url�NULL�� �field�SFVec3f�bboxCenter�0, 0, 0 �� �field�SFVec3f�bboxSize�-1, -1, -1 ��}

7.2.5.3.3.15.2	Detailed Semantics

The url field specifies the data source to be used (see � REF _Ref403473406 \w \h ��7.2.2.7.1�). The external source must contain a valid BIFS scene, and may include BIFS-Updates and BIFS-Anim frames

7.2.5.3.3.16	LOD

7.2.5.3.3.16.1	Semantic Table

LOD {

�exposedField�MFNode�level�NULL�� �field�SFVec3f�center�0, 0, 0 �� �field�MFFloat�range�NULL�� �field�MFFloat�fpsRange�NULL��}

7.2.5.3.3.17	Material

7.2.5.3.3.17.1	Semantic Table

Material {

�exposedField�SFFloat�ambientIntensity�0.2 �� �exposedField�SFColor�diffuseColor�0.8, 0.8, 0.8 �� �exposedField�SFColor�emissiveColor�0, 0, 0 �� �exposedField�SFFloat�shininess�0.2 �� �exposedField�SFColor�specularColor�0, 0, 0 �� �exposedField�SFFloat�transparency�0 ��}

7.2.5.3.3.18	Normal

7.2.5.3.3.18.1	Semantic Table

Normal {

�exposedField�MFVec3f�vector�NULL��}

7.2.5.3.3.19	NormalInterpolator

7.2.5.3.3.19.1	Semantic Table

NormalInterpolator {

�eventIn�SFFloat�set_fraction�NULL�� �exposedField�MFFloat�key�NULL�� �exposedField�MFVec3f�keyValue�NULL�� �eventOut�MFVec3f�value_changed�NULL��}

7.2.5.3.3.20	OrientationInterpolator

7.2.5.3.3.20.1	Semantic Table

OrientationInterpolator {

�eventIn�SFFloat�set_fraction�NULL�� �exposedField�MFFloat�key�NULL�� �exposedField�MFRotation�keyValue�NULL�� �eventOut�SFRotation�value_changed�NULL��}

7.2.5.3.3.21	PointLight

7.2.5.3.3.21.1	Semantic Table

PointLight {

�exposedField�SFFloat�ambientIntensity�0 �� �exposedField�SFVec3f�attenuation�1, 0, 0 �� �exposedField�SFColor�color�1, 1, 1 �� �exposedField�SFFloat�intensity�1 �� �exposedField�SFVec3f�location�0, 0, 0 �� �exposedField�SFBool�on�TRUE �� �exposedField�SFFloat�radius�100 ��}

7.2.5.3.3.22	PointSet

7.2.5.3.3.22.1	Semantic Table

PointSet {

 �exposedField�SFNode�color�NULL�� �exposedField�SFNode�coord�NULL��}

7.2.5.3.3.23	PositionInterpolator

7.2.5.3.3.23.1	Semantic Table

PositionInterpolator {

 �eventIn�SFFloat�set_fraction�NULL�� �exposedField�MFFloat�key�NULL�� �exposedField�MFVec3f�keyValue�NULL�� �eventOut�SFVec3f�value_changed�NULL��}

7.2.5.3.3.24	ProximitySensor

7.2.5.3.3.24.1	Semantic Table

ProximitySensor {

�exposedField�SFVec3f�center�0, 0, 0 �� �exposedField�SFVec3f�size�0, 0, 0 �� �exposedField�SFBool�enabled�TRUE �� �eventOut�SFBool�isActive�NULL�� �eventOut�SFVec3f�position_changed�NULL�� �eventOut�SFRotation�orientation_changed�NULL�� �eventOut�SFTime�enterTime�NULL�� �eventOut�SFTime�exitTime�NULL��}

7.2.5.3.3.25	Sphere

7.2.5.3.3.25.1	Semantic Table

Sphere {

�field�SFFloat�radius�1 ��}

7.2.5.3.3.26	SpotLight

7.2.5.3.3.27	Semantic Table

SpotLight {

 �exposedField�SFFloat�ambientIntensity�0 �� �exposedField�SFVec3f�attenuation�1, 0, 0 �� �exposedField�SFFloat�beamWidth�1.5708 �� �exposedField�SFColor�color�1, 1, 1 �� �exposedField�SFFloat�cutOffAngle�0.785398 �� �exposedField�SFVec3f�direction�0, 0, -1 �� �exposedField�SFFloat�intensity�1 �� �exposedField�SFVec3f�location�0, 0, 0 �� �exposedField�SFBool�on�TRUE �� �exposedField�SFFloat�radius�100 ��}

7.2.5.3.3.28	Transform

7.2.5.3.3.28.1	Semantic Table

Transform {

�eventIn�MFNode�addChildren�NULL�� �eventIn�MFNode�removeChildren�NULL�� �exposedField�SFVec3f�center�0, 0, 0 �� �exposedField�MFNode�children�NULL�� �exposedField�SFRotation�rotation�0, 0, 1, 0 �� �exposedField�SFVec3f�scale�1, 1, 1 �� �exposedField�SFRotation�scaleOrientation�0, 0, 1, 0 �� �exposedField�SFVec3f�translation�0, 0, 0 �� �field�SFVec3f�bboxCenter�0, 0, 0 �� �field�SFVec3f�bboxSize�-1, -1, -1 ��}

7.2.5.3.3.28.2	Detailed Semantics

If some of the child subgraphs contain audio content (ie, the subgraphs contain Sound nodes), the child sounds are transformed and mixed as follows:

If each of the child sounds is a spatially-presented Sound, the Transform node applies to the local coordinate system of the Sound nodes to alter the apparent spatial location and direction. The spatialized outputs of the children nodes sum equally to produce the output at this node.

If the children are not spatially-presented, but have equal numbers of channels, the Transform node has no effect on the childrens’ sounds. The child sounds are summed equally to produce the audio output at this node.

If some children are spatially-presented and some not, or all children do not have equal numbers of channels, the semantics are not defined.

7.2.5.3.3.29	Viewpoint

7.2.5.3.3.29.1	Semantic Table

Viewpoint {

�eventIn�SFBool�set_bind�NULL�� �exposedField�SFFloat�fieldOfView�0.785398 �� �exposedField�SFBool�jump�TRUE �� �exposedField�SFRotation�orientation�0, 0, 1, 0 �� �exposedField�SFVec3f�position�0, 0, 10 �� �field�SFString�description�"" �� �eventOut�SFTime�bindTime�NULL�� �eventOut�SFBool�isBound�NULL��}

7.2.5.3.3.29.2	Detailed Semantics

Currently, scenes may contain only one Viewpoint node. This Viewpoint may not be a child node.

7.2.5.4	Mixed 2D/3D Nodes

7.2.5.4.1	Mixed 2D/3D Nodes Overview

Mixed 2D and 3D nodes enable to build scenes made up of 2D and 3D primitives together. In particular, it is possible to view simultaneously several rendered 2D and 3D scenes, to use a rendered 2D or 3D scene as a texture map, or to render a 2D scene in a 3D local coordinate plane.

7.2.5.4.2	2D/3D MPEG-4 Nodes

7.2.5.4.2.1	Layer2D

7.2.5.4.2.1.1	Semantic Table

Layer2D {

�exposedField�MFNode�children�NULL�� �exposedField�MFNode�childrenLayer�NULL�� �exposedField�SFVec2f�size�-1, -1 �� �exposedField�SFVec2f�translation�0, 0 �� �exposedField�SFInt32�depth�0 ��}

7.2.5.4.2.1.2	Main Functionality

The Layer2D node is a transparent rendering rectangle region on the screen where a 2D scene is shown. The Layer2D is part of the layers hierarchy, and can be composited in a 2D environment with depth.

7.2.5.4.2.1.3	Detailed Semantics

Layer 2D and Layer3D nodes enable to compose in a 2D space with depth multiple 2D and 3D scenes. This enables, for instance; to have 2D interfaces to a 2D scene; or 3D interfaces to a 2D scene, or to view a 3D scene from different view points in the same scene.

Interaction with objects drawn inside a Layer node is enabled only on the top most layer of the scene at a given position of the rendering area. This means that it is impossible to interact with an object behind another layer.

The children field can have as value any 2D children nodes that defines a 2D scene. As for any 2D grouping node, the order of children is the order of drawing for 2D primitives.

The childrenLayer field can take either a 2D or 3D layer node as value.

The layering of the 2D and 3D layers is specified by the translation and depth fields. The units of 2D scenes are used for the translation parameter. The size parameter is given in floating point number which expresses a fraction of the width and height of the parent Layer. In case of a layer at the root of the hierarchy, the fraction is a fraction of the screen rendering area. A size of -1 in one direction, means that the Layer node is not specified in size in that direction, and that the size is adjusted to the size of the parent layer, or the global rendering area dimension if the layer is on the top of the hierarchy.

In the case where a 2D scene or object is shared between several Layer2D, the behaviours are defined exactly as for objects which are multiply referenced using the DEF/USE mechanism. A sensor triggers an event whenever the sensor is triggered in any of the Layer2D in which it is contained. The behaviours triggered by the shared sensors as well as other behaviours that apply on objects shared between several layers apply on all layers containing these objects.

All the 2D objects under a same Layer2D node form a single composed object. This composed object is viewed by other objects as a single object. In other words, if a Layer2D node A is the parent of two objects B and C layered one on top of the other, it will not be possible to insert a new object D between B and C unless D is added as a children of A.

7.2.5.4.2.2	Layer3D

7.2.5.4.2.2.1	Semantic Table

Layer3D {

 �exposedField�MFNode�children�NULL�� �exposedField�MFNode�childrenLayer�NULL�� �exposedField�SFVec2f�translation�0, 0 �� �exposedField�SFInt32�depth�0 �� �exposedField�SFVec2f�size�-1, -1 �� �eventIn�SFNode�background�NULL�� �eventIn�SFNode�fog�NULL�� �eventIn�SFNode�navigationInfo�NULL�� �eventIn�SFNode�viewpoint�NULL��}

7.2.5.4.2.2.2	Main Functionality

The Layer3D node is a transparent rendering rectangle region on the screen where a 3D scene is shown. The Layer3D is part of the layers hierarchy, and can be composited in a 2D environment with depth

7.2.5.4.2.2.3	Detailed Semantics

Layer2D and 3D are composed as described in the Layer2D specification. For navigation in a Layer3D, the same principle as for interaction applies. It is possible to navigate any Layer3D node that appears as the front layer at a given position on the rendering area. A terminal must provide a way to select an active layer among all the displayed Layer3D. Once this layer is selected, the navigation acts on this layer. For instance; if a mouse pointing device is used, the active layer for navigation may be the front layer under the starting position of the mouse dragging action for navigating the 3D scene.

The children field can have as value any 3D children nodes that define a 3D scene.

The childrenLayer field can have either a 2D or 3D layer as values. The layering of the 2D and 3D layers is specified by the translation and depth fields. The translation field is expressed, as in the case of the Layer2D in terms of 2D units.

The size parameter has the same semantic and units as in the Layer2D.

A Layer3D stores the stack of bindable leaf nodes of the children scene of the layer. All bindable leaf nodes are eventIn fields of the Layer3D node. At run-time, these fields take the value of the currently bound bindable leaf nodes for the 3D scene that is a child of the Layer3D node. This will allow, for instance, to set a current viewpoint to a Layer3D, in response to some event. Note that this cannot be achieved by a direct use of the set_bind eventIn of the Viewpoint nodes since scenes or nodes can be shared between different layers. If a set_bind TRUE event is sent to the set_bind eventIn of any of the bindable leaf nodes, then all Layer3D nodes having this node as a children node will set this node as the current bindable leaf node.

In the case where a 3D scene or object is shared between several Layer3D, the behaviours are defined exactly as for objects which are multiply referenced using the DEF/USE mechanism. . A sensor triggers an event whenever the sensor is triggered in any of the Layer3D in which it is contained. The behaviours triggered by the shared sensors as well as other behaviours that apply on objects shared between several layers apply on all layers containing these objects.

All the 3D objects under a same Layer3D node form a single composed object. This composed object is viewed by other objects as a single object.

�EMBED Word.Picture.8���

Figure � STYLEREF 1 \n �7�-� SEQ Figure * ARABIC �13�: Three Layer2D and Layer3D examples. Layer2D are signaled by a plain line, Layer3D with a dashed line. Image (a) shows a Layer3D containing a 3D view of the earth on top of a Layer2D composed of a video, a logo and a text. Image (b) shows a Layer3D of the earth with a Layer2D containing various icons on top. Image (c) shows 3 views of a 3D scene with 3 non overlaping Layer3D.

7.2.5.4.2.3	Composite2DTexture

7.2.5.4.2.3.1	Semantic Table

Composite2DTexture {

�exposedField�MFNode�children�NULL�� �exposedField�SFVec2f�size�-1, -1 ��}

7.2.5.4.2.3.2	Main Functionality

The composite 2D texture node represents a texture mapped onto a 3D object which is composed of a 2D scene.

7.2.5.4.2.3.3	Detailed Semantics

All the behaviors and user interaction are enabled when using a Composite2DTexture. However, no sensor can be then attached on the object on which the texture is projected.

The children2D field of type MF2DNode is the list of 2D children nodes that defines the 2D scene to be mapped onto the 3D object. As for any 2D grouping node, the order of children is the order of drawing for 2D primitives.

The size field specifies the size in pixels of this map. If left as default value, an undefined size will be used. This is a clue for the content creator to define the quality of the texture mapping.

�EMBED Word.Picture.8���

Figure � STYLEREF 1 \n �7�-� SEQ Figure * ARABIC �14�: A Composite2DTexture example. The 2D scene is projected on the 3D cube

7.2.5.4.2.4	Composite3DTexture

7.2.5.4.2.4.1	Semantic Table

Composite3DTexture {

 �exposedField�MFNode�children�NULL�� �exposedField�SFVec2f�size�-1, -1 �� �eventIn�SFNode�background�NULL�� �eventIn�SFNode�fog�NULL�� �eventIn�SFNode�navigationInfo�NULL�� �eventIn�SFNode�Viewpoint�NULL��}

7.2.5.4.2.4.2	Main Functionality

The composite 3D texture node represents a texture mapped onto a 3D object which is composed of a 3D scene.

7.2.5.4.2.4.3	Detailed Semantics

Behaviors and user interaction are enabled when using a Composite3DTexture. However, no user, navigation is possible on the textured scene. Moreover, no sensor can be attached to the object on which the texture is mapped.

The children field of type MF3DNode is the list of 3D root and children nodes that define the 3D scene to be mapped onto the 3D object.

The size field specifies the size in pixels of this map. If left as default value, an undefined size will be used. This is a clue for the content creator to define the quality of the texture mapping.

The 4 following fields represent the current values of the bindable leaf nodes used in the 3D scene. The semantic is the same as in the case of the Layer3D node. This node can only be used as a texture field of an Appearence node.

�EMBED Word.Picture.8���

Figure � STYLEREF 1 \n �7�-� SEQ Figure * ARABIC �15�: A Composite3Dtexture example: The 3D view of the earth is projected onto the 3D cube

7.2.5.4.2.5	CompositeMap

7.2.5.4.2.5.1	Semantic Table

CompositeMap {

�exposedField�MFNode�children2D�NULL�� �exposedField�SFVec2f�sceneSize�-1, -1 ��}

7.2.5.4.2.5.2	Main Functionality

7.2.5.4.2.5.3	The CompositeMap node is used for a 2D scene appearing on a plane in a 3D scene. A similar functionnality can be achieved with the CompositeTexture2D, but when using the CompsiteMap, you do not have to use texture projection to draw the 2D scene in the local XY planeDetailed Semantics

When using a composite Map, all the behaviors of 2D objects are similar to those of the 2D scene as drawn in a 2D layer.

The children field of type MF2DNode is the list of 2D root and children nodes that define the 2D scene to be rendered in the local XY coordinate plane. As for any 2D grouping node, the order of children is the order of drawing for 2D primitives.

The sceneSize field specifies the size in the local 3D coordinate system of the rendering area where the 2D composited scene needs to be rendered. If left as default value, the scene rendering area is defined as the rectangle which diagonal is delimited by the origin of the local coordinate system and point (1,1,0) in the local coordinate system.

�EMBED Word.Picture.8���

Figure � STYLEREF 1 \n �7�-� SEQ Figure * ARABIC �16�: A CompositeMap example: The 2D scene as defined in Fig. yyy composed of an image, a logo, and a text, is drawn in the local X,Y plane of the back wall.

7.2.6	Node Coding Parameters

7.2.6.1	Table Semantic

The Node Data Type tables contain the following parameters:

Name of NDT

Number of nodes in NDT

Number of nbits to address a node in NDT

NodeID for each Node

Number of DEF, IN, OUT and DYN fields as well as the number of bits to encode them.

The Node Coding Tables contain the following information:

Name of the node

List of NDT to which the node belongs.

List of corresponding NodeIDs.

For each field:

The Def, In, Out and/or Dyn IDs

The min and max values of the field are specified (used for quantization)

The quantization scheme to apply

The animation scheme to apply, for dynamic fields

7.2.6.2	Node Data Type tables

7.2.6.2.1	SF2DNode

�PRIVATE�� SF2DNode��24 nodes����5 bits�����Node name �nodeID �# DEF ��# IN ��# OUT ��# DYN ���AnimationStream�00000�5�3b�5�3b�6�3b�0�0b��MediaTimeSensor�00001�2�1b�1�0b�1�0b�0�0b��QuantizationParameter�00010�35�6b�0�0b�0�0b�0�0b��Valuator�00011�16�4b�32�5b�16�4b�0�0b��ColorInterpolator�00100�2�1b�3�2b�3�2b�0�0b��ScalarInterpolator�00101�2�1b�3�2b�3�2b�0�0b��Shape�00110�2�1b�2�1b�2�1b�0�0b��TimeSensor�00111�5�3b�5�3b�9�4b�0�0b��TouchSensor�01000�1�0b�1�0b�7�3b�0�0b��Background2D�01001�1�0b�2�1b�2�1b�0�0b��DiscSensor�01010�6�3b�6�3b�9�4b�0�0b��Form�01011�4�2b�1�0b�1�0b�0�0b��Group2D�01100�3�2b�3�2b�1�0b�0�0b��Image2D�01101�1�0b�1�0b�1�0b�0�0b��Inline2D�01110�3�2b�1�0b�1�0b�0�0b��Layout�01111�12�4b�14�4b�12�4b�0�0b��PlaneSensor2D�10000�5�3b�5�3b�6�3b�0�0b��Position2DInterpolator�10001�2�1b�3�2b�3�2b�0�0b��Proximity2DSensor�10010�3�2b�3�2b�8�3b�0�0b��unused�10011����������Switch2D�10100�2�1b�2�1b�2�1b�0�0b��Transform2D�10101�9�4b�9�4b�7�3b�4�2b��VideoObject2D�10110�5�3b�5�3b�7�3b�0�0b��Conditional�10111�1�0b�3�2b�2�1b�0�0b��

7.2.6.2.2	SF3DNode

�PRIVATE�� SF3DNode��31 nodes����5 bits�����Node name �nodeID �# DEF ��# IN ��# OUT ��# DYN ���AnimationStream�00000�5�3b�5�3b�6�3b�0�0b��MediaTimeSensor�00001�2�1b�1�0b�1�0b�0�0b��QuantizationParameter�00010�35�6b�0�0b�0�0b�0�0b��Valuator�00011�16�4b�32�5b�16�4b�0�0b��ColorInterpolator�00100�2�1b�3�2b�3�2b�0�0b��ScalarInterpolator�00101�2�1b�3�2b�3�2b�0�0b��Shape�00110�2�1b�2�1b�2�1b�0�0b��Sound�00111�10�4b�9�4b�9�4b�5�3b��Switch�01000�2�1b�2�1b�2�1b�0�0b��TimeSensor�01001�5�3b�5�3b�9�4b�0�0b��TouchSensor�01010�1�0b�1�0b�7�3b�0�0b��ListeningPoint�01011�4�2b�4�2b�5�3b�2�1b��FBA�01100�2�1b�2�1b�2�1b�0�0b��Background�01101�9�4b�10�4b�10�4b�4�2b��Billboard�01110�4�2b�4�2b�2�1b�0�0b��Collision�01111�5�3b�4�2b�3�2b�0�0b��CoordinateInterpolator�10000�2�1b�3�2b�3�2b�0�0b��DirectionalLight�10001�5�3b�5�3b�5�3b�4�2b��Group�10010�3�2b�3�2b�1�0b�0�0b��Inline�10011�3�2b�1�0b�1�0b�0�0b��LOD�10100�4�2b�1�0b�1�0b�0�0b��NormalInterpolator�10101�2�1b�3�2b�3�2b�0�0b��OrientationInterpolator�10110�2�1b�3�2b�3�2b�0�0b��PointLight�10111�7�3b�7�3b�7�3b�5�3b��PositionInterpolator�11000�2�1b�3�2b�3�2b�0�0b��ProximitySensor�11001�3�2b�3�2b�8�3b�0�0b��SpotLight�11010�10�4b�10�4b�10�4b�4�2b��Transform�11011�8�3b�8�3b�6�3b�5�3b��Viewpoint�11100�5�3b�5�3b�6�3b�3�2b��CompositeMap�11101�2�1b�2�1b�2�1b�0�0b��Conditional�11110�1�0b�3�2b�2�1b�0�0b��

7.2.6.2.3	SFAppearanceNode

�PRIVATE�� SFAppearanceNode��1 node����0 bit�����Node name �nodeID �# DEF ��# IN ��# OUT ��# DYN ���Appearance�0�3�2b�3�2b�3�2b�0�0b��

7.2.6.2.4	SFAudioNode

�PRIVATE�� SFAudioNode��6 nodes����3 bits�����Node name �nodeID �# DEF ��# IN ��# OUT ��# DYN ���AudioDelay�000�4�2b�2�1b�2�1b�0�0b��AudioMix�001�5�3b�3�2b�3�2b�1�0b��AudioSource�010�6�3b�4�2b�4�2b�0�0b��AudioFX�011�6�3b�4�2b�4�2b�0�0b��AudioSwitch�100�4�2b�2�1b�2�1b�0�0b��AudioClip�101�5�3b�5�3b�7�3b�0�0b��

7.2.6.2.5	SFColorNode

�PRIVATE�� SFColorNode��1 node����0 bit�����Node name �nodeID �# DEF ��# IN ��# OUT ��# DYN ���Color�0�1�0b�1�0b�1�0b�1�0b��

7.2.6.2.6	SFCoordinate2DNode

�PRIVATE�� SFCoordinate2DNode��1 node����0 bit�����Node name �nodeID �# DEF ��# IN ��# OUT ��# DYN ���Coordinate2D�0�1�0b�1�0b�1�0b�1�0b��

7.2.6.2.7	SFCoordinateNode

�PRIVATE�� SFCoordinateNode��1 node����0 bit�����Node name �nodeID �# DEF ��# IN ��# OUT ��# DYN ���Coordinate�0�1�0b�1�0b�1�0b�1�0b��

7.2.6.2.8	SFFAPNode

�PRIVATE�� SFFAPNode��1 node����0 bit�����Node name �nodeID �# DEF ��# IN ��# OUT ��# DYN ���FAP�0�70�7b�70�7b�70�7b�0�0b��

7.2.6.2.9	SFFBADefNode

�PRIVATE�� SFFBADefNode��2 nodes����1 bit�����Node name �nodeID �# DEF ��# IN ��# OUT ��# DYN ���FBADefMesh�0�4�2b�0�0b�0�0b�0�0b��FBADefTransform�1�3�2b�0�0b�0�0b�0�0b��

7.2.6.2.10	SFFBADefTableNode

�PRIVATE�� SFFBADefTableNode��1 node����0 bit�����Node name �nodeID �# DEF ��# IN ��# OUT ��# DYN ���FBADefTable�0�3�2b�1�0b�1�0b�0�0b��

7.2.6.2.11	SFFDPNode

�PRIVATE�� SFFDPNode��1 node����0 bit�����Node name �nodeID �# DEF ��# IN ��# OUT ��# DYN ���FDP�0�6�3b�6�3b�6�3b�0�0b��

7.2.6.2.12	SFFaceNode

�PRIVATE�� SFFaceNode��1 node����0 bit�����Node name �nodeID �# DEF ��# IN ��# OUT ��# DYN ���Face�0�3�2b�3�2b�4�2b�0�0b��

7.2.6.2.13	SFFitNode

�PRIVATE�� SFFitNode��1 node����0 bit�����Node name �nodeID �# DEF ��# IN ��# OUT ��# DYN ���FIT�0�8�3b�8�3b�8�3b�0�0b��

7.2.6.2.14	SFFontStyleNode

�PRIVATE�� SFFontStyleNode��1 node����0 bit�����Node name �nodeID �# DEF ��# IN ��# OUT ��# DYN ���FontStyle�0�9�4b�0�0b�0�0b�1�0b��

7.2.6.2.15	SFGeometryNode

�PRIVATE�� SFGeometryNode��17 nodes����5 bits�����Node name �nodeID �# DEF ��# IN ��# OUT ��# DYN ���StreamingText�00000�3�2b�3�2b�3�2b�0�0b��Text�00001�4�2b�4�2b�4�2b�1�0b��Circle�00010�1�0b�1�0b�1�0b�1�0b��Curve2D�00011�2�1b�2�1b�2�1b�0�0b��IndexedFaceSet2D�00100�8�3b�6�3b�3�2b�0�0b��IndexedLineSet2D�00101�5�3b�4�2b�2�1b�0�0b��PointSet2D�00110�2�1b�2�1b�2�1b�0�0b��Rectangle�00111�1�0b�1�0b�1�0b�1�0b��Box�01000�1�0b�0�0b�0�0b�1�0b��Cone�01001�4�2b�0�0b�0�0b�2�1b��Cylinder�01010�5�3b�0�0b�0�0b�2�1b��ElevationGrid�01011�13�4b�4�2b�3�2b�1�0b��Extrusion�01100�10�4b�4�2b�0�0b�0�0b��IndexedFaceSet�01101�14�4b�8�3b�4�2b�0�0b��IndexedLineSet�01110�5�3b�4�2b�2�1b�0�0b��PointSet�01111�2�1b�2�1b�2�1b�0�0b��Sphere�10000�1�0b�0�0b�0�0b�1�0b��

7.2.6.2.16	SFLayerNode

�PRIVATE�� SFLayerNode��2 nodes����1 bit�����Node name �nodeID �# DEF ��# IN ��# OUT ��# DYN ���Layer2D�0�5�3b�5�3b�5�3b�0�0b��Layer3D�1�5�3b�9�4b�5�3b�0�0b��

7.2.6.2.17	SFLinePropertiesNode

�PRIVATE�� SFLinePropertiesNode��1 node����0 bit�����Node name �nodeID �# DEF ��# IN ��# OUT ��# DYN ���LineProperties�0�3�2b�3�2b�3�2b�2�1b��

7.2.6.2.18	SFMaterialNode

�PRIVATE�� SFMaterialNode��2 nodes����1 bit�����Node name �nodeID �# DEF ��# IN ��# OUT ��# DYN ���Material2D�0�5�3b�5�3b�5�3b�2�1b��Material�1�6�3b�6�3b�6�3b�6�3b��

7.2.6.2.19	SFNormalNode

�PRIVATE�� SFNormalNode��1 node����0 bit�����Node name �nodeID �# DEF ��# IN ��# OUT ��# DYN ���Normal�0�1�0b�1�0b�1�0b�1�0b��

7.2.6.2.20	SFShadowPropertiesNode

�PRIVATE�� SFShadowPropertiesNode��1 node����0 bit�����Node name �nodeID �# DEF ��# IN ��# OUT ��# DYN ���ShadowProperties�0�2�1b�2�1b�2�1b�1�0b��

7.2.6.2.21	SFStreamingNode

�PRIVATE�� SFStreamingNode��7 nodes����3 bits�����Node name �nodeID �# DEF ��# IN ��# OUT ��# DYN ���AnimationStream�000�5�3b�5�3b�6�3b�0�0b��AudioSource�001�6�3b�4�2b�4�2b�0�0b��AudioClip�010�5�3b�5�3b�7�3b�0�0b��MovieTexture�011�7�3b�5�3b�7�3b�0�0b��Inline2D�100�3�2b�1�0b�1�0b�0�0b��VideoObject2D�101�5�3b�5�3b�7�3b�0�0b��Inline�110�3�2b�1�0b�1�0b�0�0b��

7.2.6.2.22	SFTextureCoordinateNode

�PRIVATE�� SFTextureCoordinateNode��1 node����0 bit�����Node name �nodeID �# DEF ��# IN ��# OUT ��# DYN ���TextureCoordinate�0�1�0b�1�0b�1�0b�0�0b��

7.2.6.2.23	SFTextureNode

�PRIVATE�� SFTextureNode��4 nodes����2 bits�����Node name �nodeID �# DEF ��# IN ��# OUT ��# DYN ���ImageTexture�00�3�2b�1�0b�1�0b�0�0b��MovieTexture�01�7�3b�5�3b�7�3b�0�0b��Composite2DTexture�10�2�1b�2�1b�2�1b�0�0b��Composite3DTexture�11�2�1b�6�3b�2�1b�0�0b��

7.2.6.2.24	SFTextureTransformNode

�PRIVATE�� SFTextureTransformNode��1 node����0 bit�����Node name �nodeID �# DEF ��# IN ��# OUT ��# DYN ���TextureTransform�0�4�2b�4�2b�4�2b�0�0b��

7.2.6.2.25	SFTimerNode

�PRIVATE�� SFTimerNode��1 node����0 bit�����Node name �nodeID �# DEF ��# IN ��# OUT ��# DYN ���TimeSensor�0�5�3b�5�3b�9�4b�0�0b��

7.2.6.2.26	SFTopNode

�PRIVATE�� SFTopNode��4 nodes����2 bits�����Node name �nodeID �# DEF ��# IN ��# OUT ��# DYN ���Group2D�00�3�2b�3�2b�1�0b�0�0b��Group�01�3�2b�3�2b�1�0b�0�0b��Layer2D�10�5�3b�5�3b�5�3b�0�0b��Layer3D�11�5�3b�9�4b�5�3b�0�0b��

7.2.6.2.27	SFWorldInfoNode

�PRIVATE�� SFWorldInfoNode��1 node����0 bit�����Node name �nodeID �# DEF ��# IN ��# OUT ��# DYN ���WorldInfo�0�2�1b�0�0b�0�0b�0�0b��

7.2.6.2.28	SFWorldNode

�PRIVATE�� SFWorldNode��94 nodes����7 bits�����Node name �nodeID �# DEF ��# IN ��# OUT ��# DYN ���AnimationStream�0000000�5�3b�5�3b�6�3b�0�0b��AudioDelay�0000001�4�2b�2�1b�2�1b�0�0b��AudioMix�0000010�5�3b�3�2b�3�2b�1�0b��AudioSource�0000011�6�3b�4�2b�4�2b�0�0b��AudioFX�0000100�6�3b�4�2b�4�2b�0�0b��AudioSwitch�0000101�4�2b�2�1b�2�1b�0�0b��MediaTimeSensor�0000110�2�1b�1�0b�1�0b�0�0b��QuantizationParameter�0000111�35�6b�0�0b�0�0b�0�0b��StreamingText�0001000�3�2b�3�2b�3�2b�0�0b��Valuator�0001001�16�4b�32�5b�16�4b�0�0b��Appearance�0001010�3�2b�3�2b�3�2b�0�0b��AudioClip�0001011�5�3b�5�3b�7�3b�0�0b��Color�0001100�1�0b�1�0b�1�0b�1�0b��ColorInterpolator�0001101�2�1b�3�2b�3�2b�0�0b��FontStyle�0001110�9�4b�0�0b�0�0b�1�0b��ImageTexture�0001111�3�2b�1�0b�1�0b�0�0b��MovieTexture�0010000�7�3b�5�3b�7�3b�0�0b��ScalarInterpolator�0010001�2�1b�3�2b�3�2b�0�0b��Shape�0010010�2�1b�2�1b�2�1b�0�0b��Sound�0010011�10�4b�9�4b�9�4b�5�3b��Switch�0010100�2�1b�2�1b�2�1b�0�0b��Text�0010101�4�2b�4�2b�4�2b�1�0b��TextureCoordinate�0010110�1�0b�1�0b�1�0b�0�0b��TextureTransform�0010111�4�2b�4�2b�4�2b�0�0b��TimeSensor�0011000�5�3b�5�3b�9�4b�0�0b��TouchSensor�0011001�1�0b�1�0b�7�3b�0�0b��WorldInfo�0011010�2�1b�0�0b�0�0b�0�0b��Background2D�0011011�1�0b�2�1b�2�1b�0�0b��Circle�0011100�1�0b�1�0b�1�0b�1�0b��Coordinate2D�0011101�1�0b�1�0b�1�0b�1�0b��Curve2D�0011110�2�1b�2�1b�2�1b�0�0b��DiscSensor�0011111�6�3b�6�3b�9�4b�0�0b��Form�0100000�4�2b�1�0b�1�0b�0�0b��Group2D�0100001�3�2b�3�2b�1�0b�0�0b��Image2D�0100010�1�0b�1�0b�1�0b�0�0b��IndexedFaceSet2D�0100011�8�3b�6�3b�3�2b�0�0b��IndexedLineSet2D�0100100�5�3b�4�2b�2�1b�0�0b��Inline2D�0100101�3�2b�1�0b�1�0b�0�0b��Layout�0100110�12�4b�14�4b�12�4b�0�0b��LineProperties�0100111�3�2b�3�2b�3�2b�2�1b��Material2D�0101000�5�3b�5�3b�5�3b�2�1b��PlaneSensor2D�0101001�5�3b�5�3b�6�3b�0�0b��PointSet2D�0101010�2�1b�2�1b�2�1b�0�0b��Position2DInterpolator�0101011�2�1b�3�2b�3�2b�0�0b��Proximity2DSensor�0101100�3�2b�3�2b�8�3b�0�0b��Rectangle�0101101�1�0b�1�0b�1�0b�1�0b��ShadowProperties�0101110�2�1b�2�1b�2�1b�1�0b��Sound2D�0101111�4�2b�4�2b�4�2b�1�0b��Switch2D�0110000�2�1b�2�1b�2�1b�0�0b��Transform2D�0110001�9�4b�9�4b�7�3b�4�2b��VideoObject2D�0110010�5�3b�5�3b�7�3b�0�0b��ListeningPoint�0110011�4�2b�4�2b�5�3b�2�1b��FBA�0110100�2�1b�2�1b�2�1b�0�0b��Face�0110101�3�2b�3�2b�4�2b�0�0b��FIT�0110110�8�3b�8�3b�8�3b�0�0b��FAP�0110111�70�7b�70�7b�70�7b�0�0b��FDP�0111000�6�3b�6�3b�6�3b�0�0b��FBADefMesh�0111001�4�2b�0�0b�0�0b�0�0b��FBADefTable�0111010�3�2b�1�0b�1�0b�0�0b��FBADefTransform�0111011�3�2b�0�0b�0�0b�0�0b��Background�0111100�9�4b�10�4b�10�4b�4�2b��Billboard�0111101�4�2b�4�2b�2�1b�0�0b��Box�0111110�1�0b�0�0b�0�0b�1�0b��Collision�0111111�5�3b�4�2b�3�2b�0�0b��Cone�1000000�4�2b�0�0b�0�0b�2�1b��Coordinate�1000001�1�0b�1�0b�1�0b�1�0b��CoordinateInterpolator�1000010�2�1b�3�2b�3�2b�0�0b��Cylinder�1000011�5�3b�0�0b�0�0b�2�1b��DirectionalLight�1000100�5�3b�5�3b�5�3b�4�2b��ElevationGrid�1000101�13�4b�4�2b�3�2b�1�0b��Extrusion�1000110�10�4b�4�2b�0�0b�0�0b��Group�1000111�3�2b�3�2b�1�0b�0�0b��IndexedFaceSet�1001000�14�4b�8�3b�4�2b�0�0b��IndexedLineSet�1001001�5�3b�4�2b�2�1b�0�0b��Inline�1001010�3�2b�1�0b�1�0b�0�0b��LOD�1001011�4�2b�1�0b�1�0b�0�0b��Material�1001100�6�3b�6�3b�6�3b�6�3b��Normal�1001101�1�0b�1�0b�1�0b�1�0b��NormalInterpolator�1001110�2�1b�3�2b�3�2b�0�0b��OrientationInterpolator�1001111�2�1b�3�2b�3�2b�0�0b��PointLight�1010000�7�3b�7�3b�7�3b�5�3b��PointSet�1010001�2�1b�2�1b�2�1b�0�0b��PositionInterpolator�1010010�2�1b�3�2b�3�2b�0�0b��ProximitySensor�1010011�3�2b�3�2b�8�3b�0�0b��Sphere�1010100�1�0b�0�0b�0�0b�1�0b��SpotLight�1010101�10�4b�10�4b�10�4b�4�2b��Transform�1010110�8�3b�8�3b�6�3b�5�3b��Viewpoint�1010111�5�3b�5�3b�6�3b�3�2b��Layer2D�1011000�5�3b�5�3b�5�3b�0�0b��Layer3D�1011001�5�3b�9�4b�5�3b�0�0b��Composite2DTexture�1011010�2�1b�2�1b�2�1b�0�0b��Composite3DTexture�1011011�2�1b�6�3b�2�1b�0�0b��CompositeMap�1011100�2�1b�2�1b�2�1b�0�0b��Conditional�1011101�1�0b�3�2b�2�1b�0�0b��7.2.6.3	Node Coding Tables

7.2.6.3.1	Key for Node Coding Tables

�PRIVATE��Node Name �Node Data Type (NDT) list ����nodeType for each NDT ����Field name �DEF id �IN id �OUT id �DYN id �[min, max] �Quantizer id �Animation method ��7.2.6.3.2	AnimationStream

�PRIVATE��AnimationStream �SFWorldNode

SF3DNode

SF2DNode

SFStreamingNode ����0000000

00000

00000

000 ����Field name �DEF id �IN id �OUT id �DYN id �[m, M] �Q �A ��loop �000 �000 �000 � � � � ��speed �001 �001 �001 � �]-¥, +¥[� � ��startTime �010 �010 �010 � �]-¥, +¥[� � ��stopTime �011 �011 �011 � �]-¥, +¥[� � ��url �100 �100 �100 � � � � ��isActive � � �101 � � � � ��

7.2.6.3.3	AudioDelay

�PRIVATE�� AudioDelay �SFWorldNode

SFAudioNode ����0000001

000 ����Field name �DEF id �IN id �OUT id �DYN id �[m, M] �Q �A ��children �00 �0 �0 � � � � ��delay �01 �1 �1 � �[0, +¥[� � ��numChan �10 � � � �[1, 255] �13 8 � ��phaseGroup �11 � � � �[1, 255] �13 8 � ��

7.2.6.3.4	AudioMix

�PRIVATE�� AudioMix �SFWorldNode

SFAudioNode ����0000010

001 ����Field name �DEF id �IN id �OUT id �DYN id �[m, M] �Q �A ��children �000 �00 �00 � � � � ��numInputs �001 �01 �01 � �[1, 255] �13 8 � ��matrix �010 �10 �10 �0 �[0, 1] �0 �7 ��numChan �011 � � � �[1, 255] �13 8 � ��phaseGroup �100 � � � �[1, 255] �13 8 � ��

7.2.6.3.5	AudioSource

�PRIVATE�� AudioSource �SFWorldNode

SFAudioNode

SFStreamingNode ����0000011

010

001 ����Field name �DEF id �IN id �OUT id �DYN id �[m, M] �Q �A ��url �000 �00 �00 � � � � ��pitch �001 �01 �01 � �[0, +¥[�13 16 � ��startTime �010 �10 �10 � � � � ��stopTime �011 �11 �11 � � � � ��numChan �100 � � � �[1, 255] �13 8 � ��phaseGroup �101 � � � �[1, 255] �13 8 � ��

7.2.6.3.6	AudioFX

�PRIVATE�� AudioFX �SFWorldNode

SFAudioNode ����0000100

011 ����Field name �DEF id �IN id �OUT id �DYN id �[m, M] �Q �A ��children �000 �00 �00 � � � � ��orch �001 �01 �01 � � � � ��score �010 �10 �10 � � � � ��params �011 �11 �11 � �]-¥, +¥[�0 � ��numChan �100 � � � �[1, 255] �13 8 � ��phaseGroup �101 � � � �[1, 255] �13 8 � ��

7.2.6.3.7	AudioSwitch

�PRIVATE�� AudioSwitch �SFWorldNode

SFAudioNode ����0000101

100 ����Field name �DEF id �IN id �OUT id �DYN id �[m, M] �Q �A ��children �00 �0 �0 � � � � ��whichChoice �01 �1 �1 � � � � ��numChan �10 � � � �[1, 255] �13 8 � ��phaseGroup �11 � � � �[1, 255] �13 8 � ��

7.2.6.3.8	Conditional

�PRIVATE�� Conditional �SFWorldNode

SF3DNode

SF2DNode ����1011101

11110

10111����Field name �DEF id �IN id �OUT id �DYN id �[m, M] �Q �A ��activate � � 00�� � � � ��reverseActivate � � 01� � � � � ��buffer � 0� 10�0� � � � ��isActive � � �1� � � � ��

7.2.6.3.9	MediaTimeSensor

�PRIVATE�� MediaTimeSensor �SFWorldNode

SF3DNode

SF2DNode ����0000110

00001

00001 ����Field name �DEF id �IN id �OUT id �DYN id �[m, M] �Q �A ��media �0 �0 �0 � � � � ��timer �1 � � � � � � ��

7.2.6.3.10	QuantizationParameter

�PRIVATE�� QuantizationParameter �SFWorldNode

SF2DNode

SF3DNode ����0000111

00010

00010 ����Field name �DEF id �IN id �OUT id �DYN id �[m, M] �Q �A ��isLocal �000000 � � � � � � ��position3DQuant �000001 � � � � � � ��position3DMin �000010 � � � �]-¥, +¥[�0 � ��position3DMax �000011 � � � �]-¥, +¥[�0 � ��position3DNbBits �000100 � � � �[1, 32] �13 5 � ��position2DQuant �000101 � � � � � � ��position2DMin �000110 � � � �]-¥, +¥[�0 � ��position2DMax �000111 � � � �]-¥, +¥[�0 � ��position2DNbBits �001000 � � � �]-¥, +¥[�13 5 � ��drawOrderQuant �001001 � � � � � � ��drawOrderMin �001010 � � � �]-¥, +¥[�0 � ��drawOrderMax �001011 � � � �]-¥, +¥[�0 � ��drawOrderNbBits �001100 � � � �[1, 32] �13 4 � ��colorQuant �001101 � � � � � � ��colorMin �001110 � � � �[0, 1] �0 � ��colorMax �001111 � � � �[0, 1] �0 � ��colorNbBits �010000 � � � �[1, 32] �13 5 � ��textureCoordinateQuant �010001 � � � � � � ��textureCoordinateMin �010010 � � � �[0, 1] �0 � ��textureCoordinateMax �010011 � � � �[0, 1] �0 � ��textureCoordinateNbBits �010100 � � � �[1, 32] �13 5 � ��angleQuant �010101 � � � � � � ��angleMin �010110 � � � �[0, 2.p] �0 � ��angleMax �010111 � � � �[0, 2.p] �0 � ��angleNbBits �011000 � � � �[1, 32] �13 5 � ��scaleQuant �011001 � � � � � � ��scaleMin �011010 � � � �[0, +¥[�0 � ��scaleMax �011011 � � � �[0, +¥[�0 � ��scaleNbBits �011100 � � � �[1, 32] �13 5 � ��keyQuant �011101 � � � � � � ��keyMin �011110 � � � �]-¥, +¥[�0 � ��keyMax �011111 � � � �]-¥, +¥[�1 � ��keyNbBits �100000 � � � �]-¥, +¥[�13 5 � ��normalQuant �100001 � � � � � � ��normalNbBits �100010 � � � �[1, 32] �13 5 � ��

7.2.6.3.11	StreamingText

�PRIVATE�� StreamingText �SFWorldNode

SFGeometryNode ����0001000

00000 ����Field name �DEF id �IN id �OUT id �DYN id �[m, M] �Q �A ��url �00 �00 �00 � � � � ��fontStyle �01 �01 �01 � � � � ��ucs_2 �10 �10 �10 � � � � ��

7.2.6.3.12	Valuator

�PRIVATE�� Valuator �SFWorldNode

SF3DNode

SF2DNode ����0001001

00011

00011 ����Field name �DEF id �IN id �OUT id �DYN id �[m, M] �Q �A ��inSFBool � �00000 � � � � � ��inSFColor � �00001 � � � � � ��inMFColor � �00010 � � � � � ��inSFFloat � �00011 � � � � � ��inMFFloat � �00100 � � � � � ��inSFInt32 � �00101 � � � � � ��inMFInt32 � �00110 � � � � � ��inSFRotation � �00111 � � � � � ��inMFRotation � �01000 � � � � � ��inSFString � �01001 � � � � � ��inMFString � �01010 � � � � � ��inSFTime � �01011 � � � � � ��inSFVec2f � �01100 � � � � � ��inMFVec2f � �01101 � � � � � ��inSFVec3f � �01110 � � � � � ��inMFVec3f � �01111 � � � � � ��outSFBool �0000 �10000 �0000 � � � � ��outSFColor �0001 �10001 �0001 � �[0, 1] �4 � ��outMFColor �0010 �10010 �0010 � � � � ��outSFFloat �0011 �10011 �0011 � �]-¥, +¥[� � ��outMFFloat �0100 �10100 �0100 � � � � ��outSFInt32 �0101 �10101 �0101 � �]-¥, +¥[� � ��outMFInt32 �0110 �10110 �0110 � � � � ��outSFRotation �0111 �10111 �0111 � � �10 � ��outMFRotation �1000 �11000 �1000 � � � � ��outSFString �1001 �11001 �1001 � � � � ��outMFString �1010 �11010 �1010 � � � � ��outSFTime �1011 �11011 �1011 � �[0, +¥[� � ��outSFVec2f �1100 �11100 �1100 � �]-¥, +¥[�2 � ��outMFVec2f �1101 �11101 �1101 � � � � ��outSFVec3f �1110 �11110 �1110 � �]-¥, +¥[�1 � ��outMFVec3f �1111 �11111 �1111 � � � � ��

7.2.6.3.13	Appearance

�PRIVATE�� Appearance �SFWorldNode

SFAppearanceNode ����0001010

- ����Field name �DEF id �IN id �OUT id �DYN id �[m, M] �Q �A ��material �00 �00 �00 � � � � ��texture �01 �01 �01 � � � � ��textureTransform �10 �10 �10 � � � � ��

7.2.6.3.14	AudioClip

�PRIVATE�� AudioClip �SFWorldNode

SFAudioNode

SFStreamingNode ����0001011

101

010 ����Field name �DEF id �IN id �OUT id �DYN id �[m, M] �Q �A ��loop �000 �000 �000 � � � � ��pitch �001 �001 �001 � �[0, +¥[�11 � ��startTime �010 �010 �010 � �]-¥, +¥[� � ��stopTime �011 �011 �011 � �]-¥, +¥[� � ��url �100 �100 �100 � � � � ��duration_changed � � �101 � � � � ��isActive � � �110 � � � � ��

7.2.6.3.15	Color

�PRIVATE�� Color �SFWorldNode

SFColorNode ����0001100

- ����Field name �DEF id �IN id �OUT id �DYN id �[m, M] �Q �A ��color �0 �0 �0 �0 �[0, 1] �4 �2 ��

7.2.6.3.16	ColorInterpolator

�PRIVATE�� ColorInterpolator �SFWorldNode

SF3DNode

SF2DNode ����0001101

00100

00100 ����Field name �DEF id �IN id �OUT id �DYN id �[m, M] �Q �A ��set_fraction � �00 � � �]-¥, +¥[� � ��key �0 �01 �00 � �[0, 1] �8 � ��keyValue �1 �10 �01 � �[0, 1] �4 � ��value_changed � � �10 � � � � ��

7.2.6.3.17	FontStyle

�PRIVATE�� FontStyle �SFWorldNode

SFFontStyleNode ����0001110

- ����Field name �DEF id �IN id �OUT id �DYN id �[m, M] �Q �A ��family �0000 � � � � � � ��horizontal �0001 � � � � � � ��justify �0010 � � � � � � ��language �0011 � � � � � � ��leftToRight �0100 � � � � � � ��size �0101 � � �0 �[0, +¥[�11 �7 ��spacing �0110 � � � �[0, +¥[�11 � ��style �0111 � � � � � � ��topToBottom �1000 � � � � � � ��

7.2.6.3.18	ImageTexture

�PRIVATE�� ImageTexture �SFWorldNode

SFTextureNode ����0001111

00 ����Field name �DEF id �IN id �OUT id �DYN id �[m, M] �Q �A ��url �00 �0 �0 � � � � ��repeatS �01 � � � � � � ��repeatT �10 � � � � � � ��

7.2.6.3.19	MovieTexture

�PRIVATE�� MovieTexture �SFWorldNode

SFTextureNode

SFStreamingNode ����0010000

01

011 ����Field name �DEF id �IN id �OUT id �DYN id �[m, M] �Q �A ��loop �000 �000 �000 � � � � ��speed �001 �001 �001 � �]-¥, +¥[� � ��startTime �010 �010 �010 � �]-¥, +¥[� � ��stopTime �011 �011 �011 � �]-¥, +¥[� � ��url �100 �100 �100 � � � � ��repeatS �101 � � � � � � ��repeatT �110 � � � � � � ��duration_changed � � �101 � � � � ��isActive � � �110 � � � � ��

7.2.6.3.20	ScalarInterpolator

�PRIVATE�� ScalarInterpolator �SFWorldNode

SF3DNode

SF2DNode ����0010001

00101

00101 ����Field name �DEF id �IN id �OUT id �DYN id �[m, M] �Q �A ��set_fraction � �00 � � �]-¥, +¥[� � ��key �0 �01 �00 � �[0, 1] �8 � ��keyValue �1 �10 �01 � �]-¥, +¥[�0 � ��value_changed � � �10 � � � � ��

7.2.6.3.21	Shape

�PRIVATE�� Shape �SFWorldNode

SF3DNode

SF2DNode ����0010010

00110

00110 ����Field name �DEF id �IN id �OUT id �DYN id �[m, M] �Q �A ��appearance �0 �0 �0 � � � � ��geometry �1 �1 �1 � � � � ��

7.2.6.3.22	Sound

�PRIVATE�� Sound �SFWorldNode

SF3DNode ����0010011

00111 ����Field name �DEF id �IN id �OUT id �DYN id �[m, M] �Q �A ��direction �0000 �0000 �0000 � �]-¥, +¥[�9 � ��intensity �0001 �0001 �0001 � �[0, 1] �13 16 � ��location �0010 �0010 �0010 �000 �]-¥, +¥[�1 �0 ��maxBack �0011 �0011 �0011 �001 �[0, +¥[�11 �7 ��maxFront �0100 �0100 �0100 �010 �[0, +¥[�11 �7 ��minBack �0101 �0101 �0101 �011 �[0, +¥[�11 �7 ��minFront �0110 �0110 �0110 �100 �[0, +¥[�11 �7 ��priority �0111 �0111 �0111 � �[0, 1] �13 16 � ��source �1000 �1000 �1000 � � � � ��spatialize �1001 � � � � � � ��

7.2.6.3.23	Switch

�PRIVATE�� Switch �SFWorldNode

SF3DNode ����0010100

01000 ����Field name �DEF id �IN id �OUT id �DYN id �[m, M] �Q �A ��choice �0 �0 �0 � � � � ��whichChoice �1 �1 �1 � �[0, 1023] �13 10 � ��

7.2.6.3.24	Text

�PRIVATE�� Text �SFWorldNode

SFGeometryNode ����0010101

00001 ����Field name �DEF id �IN id �OUT id �DYN id �[m, M] �Q �A ��string �00 �00 �00 � � � � ��length �01 �01 �01 � �[0, +¥[�11 � ��fontStyle �10 �10 �10 � � � � ��maxExtent �11 �11 �11 �0 �[0, +¥[�11 �7 ��

7.2.6.3.25	TextureCoordinate

�PRIVATE�� TextureCoordinate �SFWorldNode

SFTextureCoordinateNode ����0010110

- ����Field name �DEF id �IN id �OUT id �DYN id �[m, M] �Q �A ��point �0 �0 �0 � �]-¥, +¥[�5 � ��

7.2.6.3.26	TextureTransform

�PRIVATE�� TextureTransform �SFWorldNode

SFTextureTransformNode ����0010111

- ����Field name �DEF id �IN id �OUT id �DYN id �[m, M] �Q �A ��center �00 �00 �00 � �]-¥, +¥[�2 � ��rotation �01 �01 �01 � �[0, 2.p] �6 � ��scale �10 �10 �10 � �]-¥, +¥[�7 � ��translation �11 �11 �11 � �]-¥, +¥[�2 � ��

7.2.6.3.27	TimeSensor

�PRIVATE�� TimeSensor �SFWorldNode

SFTimerNode

SF3DNode

SF2DNode ����0011000

-

01001

00111 ����Field name �DEF id �IN id �OUT id �DYN id �[m, M] �Q �A ��cycleInterval �000 �000 �0000 � �[0, +¥[� � ��enabled �001 �001 �0001 � � � � ��loop �010 �010 �0010 � � � � ��startTime �011 �011 �0011 � �]-¥, +¥[� � ��stopTime �100 �100 �0100 � �]-¥, +¥[� � ��cycleTime � � �0101 � � � � ��fraction_changed � � �0110 � � � � ��isActive � � �0111 � � � � ��time � � �1000 � � � � ��

7.2.6.3.28	TouchSensor

�PRIVATE�� TouchSensor �SFWorldNode

SF2DNode

SF3DNode ����0011001

01000

01010 ����Field name �DEF id �IN id �OUT id �DYN id �[m, M] �Q �A ��enabled �0 �0 �000 � � � � ��hitNormal_changed � � �001 � � � � ��hitPoint_changed � � �010 � � � � ��hitTexCoord_changed � � �011 � � � � ��isActive � � �100 � � � � ��isOver � � �101 � � � � ��touchTime � � �110 � � � � ��

7.2.6.3.29	WorldInfo

�PRIVATE�� WorldInfo �SFWorldNode

SFWorldInfoNode ����0011010

- ����Field name �DEF id �IN id �OUT id �DYN id �[m, M] �Q �A ��info �0 � � � � � � ��title �1 � � � � � � ��

7.2.6.3.30	Background2D

�PRIVATE�� Background2D �SFWorldNode

SF2DNode ����0011011

01001 ����Field name �DEF id �IN id �OUT id �DYN id �[m, M] �Q �A ��set_bind � �0 � � � � � ��url �0 �1 �0 � � � � ��isBound � � �1 � � � � ��

7.2.6.3.31	Circle

�PRIVATE�� Circle �SFWorldNode

SFGeometryNode ����0011100

00010 ����Field name �DEF id �IN id �OUT id �DYN id �[m, M] �Q �A ��radius �0 �0 �0 �0 �[0, +¥[�11 �7 ��

7.2.6.3.32	Coordinate2D

�PRIVATE�� Coordinate2D �SFWorldNode

SFCoordinate2DNode ����0011101

- ����Field name �DEF id �IN id �OUT id �DYN id �[m, M] �Q �A ��point �0 �0 �0 �0 �]-¥, +¥[�2 �1 ��

7.2.6.3.33	Curve2D

�PRIVATE�� Curve2D �SFWorldNode

SFGeometryNode ����0011110

00011 ����Field name �DEF id �IN id �OUT id �DYN id �[m, M] �Q �A ��points �0 �0 �0 � � � � ��fineness �1 �1 �1 � �]-¥, +¥[� � ��

7.2.6.3.34	DiscSensor

�PRIVATE�� DiscSensor �SFWorldNode

SF2DNode ����0011111

01010 ����Field name �DEF id �IN id �OUT id �DYN id �[m, M] �Q �A ��autoOffset �000 �000 �0000 � � � � ��center �001 �001 �0001 � �]-¥, +¥[�1 � ��enabled �010 �010 �0010 � � � � ��maxAngle �011 �011 �0011 � �[-2.p, 2.p] �6 � ��minAngle �100 �100 �0100 � �[-2.p, 2.p] �6 � ��offset �101 �101 �0101 � �]-¥, +¥[�6 � ��isActive � � �0110 � � � � ��rotation_changed � � �0111 � � � � ��trackPoint_changed � � �1000 � � � � ��

7.2.6.3.35	Form

�PRIVATE�� Form �SFWorldNode

SF2DNode ����0100000

01011 ����Field name �DEF id �IN id �OUT id �DYN id �[m, M] �Q �A ��children �00 � � � � � � ��size �01 �0 �0 � �[0, +¥[�12 � ��groups �10 � � � �[0, 1023] �13 10 � ��constraint �11 � � � �[0, 255] �13 8 � ��

7.2.6.3.36	Group2D

�PRIVATE�� Group2D �SFWorldNode

SFTopNode

SF2DNode ����0100001

00

01100 ����Field name �DEF id �IN id �OUT id �DYN id �[m, M] �Q �A ��addChildren � �00 � � � � � ��removeChildren � �01 � � � � � ��children �00 �10 �0 � � � � ��bboxCenter �01 � � � �]-¥, +¥[�2 � ��bboxSize �10 � � � �]-¥, +¥[�12 � ��

7.2.6.3.37	Image2D

�PRIVATE�� Image2D �SFWorldNode

SF2DNode ����0100010

01101 ����Field name �DEF id �IN id �OUT id �DYN id �[m, M] �Q �A ��url �0 �0 �0 � � � � ��

7.2.6.3.38	IndexedFaceSet2D

�PRIVATE�� IndexedFaceSet2D �SFWorldNode

SFGeometryNode ����0100011

00100 ����Field name �DEF id �IN id �OUT id �DYN id �[m, M] �Q �A ��set_colorIndex � �000 � � � � � ��set_coordIndex � �001 � � � � � ��set_texCoordIndex � �010 � � � � � ��color �000 �011 �00 � � � � ��coord �001 �100 �01 � � � � ��texCoord �010 �101 �10 � � � � ��colorIndex �011 � � � �[-1, +¥[�0 � ��colorPerVertex �100 � � � � � � ��convex �101 � � � � � � ��coordIndex �110 � � � �[-1, +¥[�0 � ��texCoordIndex �111 � � � �[-1, +¥[�0 � ��

7.2.6.3.39	IndexedLineSet2D

�PRIVATE�� IndexedLineSet2D �SFWorldNode

SFGeometryNode ����0100100

00101 ����Field name �DEF id �IN id �OUT id �DYN id �[m, M] �Q �A ��set_colorIndex � �00 � � � � � ��set_coordIndex � �01 � � � � � ��color �000 �10 �0 � � � � ��coord �001 �11 �1 � � � � ��colorIndex �010 � � � �[-1, +¥[�0 � ��colorPerVertex �011 � � � � � � ��coordIndex �100 � � � �[-1, +¥[�0 � ��

7.2.6.3.40	Inline2D

�PRIVATE�� Inline2D �SFWorldNode

SF2DNode

SFStreamingNode ����0100101

01110

100 ����Field name �DEF id �IN id �OUT id �DYN id �[m, M] �Q �A ��url �00 �0 �0 � � � � ��bboxCenter �01 � � � �]-¥, +¥[�2 � ��bboxSize �10 � � � �]-¥, +¥[�12 � ��

7.2.6.3.41	Layout

�PRIVATE�� Layout �SFWorldNode

SF2DNode ����0100110

01111 ����Field name �DEF id �IN id �OUT id �DYN id �[m, M] �Q �A ��children �0000 �0000 �0000 � � � � ��wrap �0001 �0001 �0001 � � � � ��size �0010 �0010 �0010 � �[0, +¥[�12 � ��horizontal �0011 �0011 �0011 � � � � ��justify �0100 �0100 �0100 � � � � ��leftToRight �0101 �0101 �0101 � � � � ��topToBottom �0110 �0110 �0110 � � � � ��spacing �0111 �0111 �0111 � �[0, +¥[�0 � ��smoothScroll �1000 �1000 �1000 � � � � ��loop �1001 �1001 �1001 � � � � ��scrollVertical �1010 �1010 �1010 � � � � ��scrollRate �1011 �1011 �1011 � �]-¥, +¥[�0 � ��addChildren � �1100 � � � � � ��removeChildren � �1101 � � � � � ��

7.2.6.3.42	LineProperties

�PRIVATE�� LineProperties �SFWorldNode

SFLinePropertiesNode ����0100111

- ����Field name �DEF id �IN id �OUT id �DYN id �[m, M] �Q �A ��lineColor �00 �00 �00 �0 �[0, 1] �4 �2 ��lineStyle �01 �01 �01 � �[0, 5] �13 5 � ��width �10 �10 �10 �1 �[0, +¥[�12 �7 ��

7.2.6.3.43	Material2D

�PRIVATE�� Material2D �SFWorldNode

SFMaterialNode ����0101000

0 ����Field name �DEF id �IN id �OUT id �DYN id �[m, M] �Q �A ��diffuseColor �000 �000 �000 �0 �[0, 1] �4 �2 ��filled �001 �001 �001 � � � � ��lineProps �010 �010 �010 � � � � ��shadowsProps �011 �011 �011 � � � � ��transparency �100 �100 �100 �1 �[0, 1] �4 �2 ��

7.2.6.3.44	PlaneSensor2D

�PRIVATE�� PlaneSensor2D �SFWorldNode

SF2DNode ����0101001

10000 ����Field name �DEF id �IN id �OUT id �DYN id �[m, M] �Q �A ��autoOffset �000 �000 �000 � � � � ��enabled �001 �001 �001 � � � � ��maxPosition �010 �010 �010 � �]-¥, +¥[�2 � ��minPosition �011 �011 �011 � �]-¥, +¥[�2 � ��offset �100 �100 �100 � �]-¥, +¥[�2 � ��trackPoint_changed � � �101 � � � � ��

7.2.6.3.45	PointSet2D

�PRIVATE�� PointSet2D �SFWorldNode

SFGeometryNode ����0101010

00110 ����Field name �DEF id �IN id �OUT id �DYN id �[m, M] �Q �A ��color �0 �0 �0 � � � � ��coord �1 �1 �1 � � � � ��

7.2.6.3.46	Position2DInterpolator

�PRIVATE�� Position2DInterpolator �SFWorldNode

SF2DNode ����0101011

10001 ����Field name �DEF id �IN id �OUT id �DYN id �[m, M] �Q �A ��set_fraction � �00 � � � � � ��key �0 �01 �00 � �[0, 1] �8 � ��keyValue �1 �10 �01 � �]-¥, +¥[�2 � ��value_changed � � �10 � � � � ��

7.2.6.3.47	Proximity2DSensor

�PRIVATE�� Proximity2DSensor �SFWorldNode

SF2DNode ����0101100

10010 ����Field name �DEF id �IN id �OUT id �DYN id �[m, M] �Q �A ��center �00 �00 �000 � �[-1, +¥[�2 � ��size �01 �01 �001 � �[0, +¥[�11 � ��enabled �10 �10 �010 � � � � ��isActive � � �011 � � � � ��position_changed � � �100 � � � � ��orientation_changed � � �101 � � � � ��enterTime � � �110 � � � � ��exitTime � � �111 � � � � ��

7.2.6.3.48	Rectangle

�PRIVATE�� Rectangle �SFWorldNode

SFGeometryNode ����0101101

00111 ����Field name �DEF id �IN id �OUT id �DYN id �[m, M] �Q �A ��size �0 �0 �0 �0 �[0, +¥[�12 �7 ��

7.2.6.3.49	ShadowProperties

�PRIVATE�� ShadowProperties �SFWorldNode

SFShadowPropertiesNode ����0101110

- ����Field name �DEF id �IN id �OUT id �DYN id �[m, M] �Q �A ��shadowPos �0 �0 �0 � �[-15, 16] �13 5 � ��shadowColor �1 �1 �1 �0 �[0, 1] �4 �2 ��

7.2.6.3.50	Switch2D

�PRIVATE�� Switch2D �SFWorldNode

SF2DNode ����0110000

10100 ����Field name �DEF id �IN id �OUT id �DYN id �[m, M] �Q �A ��choice �0 �0 �0 � � � � ��whichChoice �1 �1 �1 � �[0, 1023] �13 10 � ��

7.2.6.3.51	Transform2D

�PRIVATE�� Transform2D �SFWorldNode

SF2DNode ����0110001

10101 ����Field name �DEF id �IN id �OUT id �DYN id �[m, M] �Q �A ��addChildren � �0000 � � � � � ��removeChildren � �0001 � � � � � ��center �0000 �0010 �000 � �]-¥, +¥[�2 � ��children �0001 �0011 �001 � � � � ��rotationAngle �0010 �0100 �010 �00 �[0, 2.p] �6 �3 ��scale �0011 �0101 �011 �01 �[0, +¥[�7 �5 ��scaleOrientation �0100 �0110 �100 �10 �[0, 2.p] �6 �3 ��drawingOrder �0101 �0111 �101 � �[0, +¥[�3 � ��translation �0110 �1000 �110 �11 �]-¥, +¥[�2 �1 ��bboxCenter �0111 � � � �]-¥, +¥[�2 � ��bboxSize �1000 � � � �]-¥, +¥[�12 � ��

7.2.6.3.52	VideoObject2D

�PRIVATE�� VideoObject2D �SFWorldNode

SF2DNode

SFStreamingNode ����0110010

10110

101 ����Field name �DEF id �IN id �OUT id �DYN id �[m, M] �Q �A ��loop �000 �000 �000 � � � � ��speed �001 �001 �001 � �[0, +¥[�0 � ��startTime �010 �010 �010 � � � � ��stopTime �011 �011 �011 � � � � ��url �100 �100 �100 � � � � ��duration_changed � � �101 � � � � ��isActive � � �110 � � � � ��

7.2.6.3.53	ListeningPoint

�PRIVATE�� ListeningPoint �SFWorldNode

SF3DNode ����0110011

01011 ����Field name �DEF id �IN id �OUT id �DYN id �[m, M] �Q �A ��set_bind � �00 � � � � � ��jump �00 �01 �000 � � � � ��orientation �01 �10 �001 �0 � �10 �6 ��position �10 �11 �010 �1 �]-¥, +¥[�1 �0 ��description �11 � � � � � � ��bindTime � � �011 � � � � ��isBound � � �100 � � � � ��

7.2.6.3.54	FBA

�PRIVATE�� FBA �SFWorldNode

SF3DNode ����0110100

01100 ����Field name �DEF id �IN id �OUT id �DYN id �[m, M] �Q �A ��face �0 �0 �0 � � � � ��body �1 �1 �1 � � � � ��

7.2.6.3.55	Face

�PRIVATE�� Face �SFWorldNode

SFFaceNode ����0110101

- ����Field name �DEF id �IN id �OUT id �DYN id �[m, M] �Q �A ��fit �00 �00 �00 � � � � ��fdp �01 �01 �01 � � � � ��fap �10 �10 �10 � � � � ��renderedFace � � �11 � � � � ��

7.2.6.3.56	FIT

�PRIVATE�� FIT �SFWorldNode

SFFitNode ����0110110

- ����Field name �DEF id �IN id �OUT id �DYN id �[m, M] �Q �A ��FAPs �000 �000 �000 � �[-1, 68] � � ��Graph �001 �001 �001 � �[0, 68] � � ��numeratorExp �010 �010 �010 � � � � ��denominatorExp �011 �011 �011 � � � � ��numeratorTerms �100 �100 �100 � �[0, 10] � � ��denominatorTerms �101 �101 �101 � �[0, 10] � � ��numeratorCoefs �110 �110 �110 � �]-¥, +¥[� � ��denominatorCoefs �111 �111 �111 � �]-¥, +¥[� � ��

7.2.6.3.57	FAP

�PRIVATE�� FAP �SFWorldNode

SFFAPNode ����0110111

- ����Field name �DEF id �IN id �OUT id �DYN id �[m, M] �Q �A ��visemeSelect �0000000 �0000000 �0000000 � �[0, 15] �13 4 � ��expressionSelect �0000001 �0000001 �0000001 � �[0, 5] �13 3 � ��viseme �0000010 �0000010 �0000010 � � �0 � ��expression �0000011 �0000011 �0000011 � �[0, 5] �0 � ��open_jaw �0000100 �0000100 �0000100 � �[0, +¥[�0 � ��lower_t_midlip �0000101 �0000101 �0000101 � �]-¥, +¥[�0 � ��raise_b_midlip �0000110 �0000110 �0000110 � �]-¥, +¥[�0 � ��stretch_l_corner �0000111 �0000111 �0000111 � �]-¥, +¥[�0 � ��stretch_r_corner �0001000 �0001000 �0001000 � �]-¥, +¥[�0 � ��lower_t_lip_lm �0001001 �0001001 �0001001 � �]-¥, +¥[�0 � ��lower_t_lip_rm �0001010 �0001010 �0001010 � �]-¥, +¥[�0 � ��lower_b_lip_lm �0001011 �0001011 �0001011 � �]-¥, +¥[�0 � ��lower_t_lip_rm �0001100 �0001100 �0001100 � �]-¥, +¥[�0 � ��raise_l_cornerlip �0001101 �0001101 �0001101 � �]-¥, +¥[�0 � ��raise_r_cornerlip �0001110 �0001110 �0001110 � �]-¥, +¥[�0 � ��thrust_jaw �0001111 �0001111 �0001111 � �[0, +¥[�0 � ��shift_jaw �0010000 �0010000 �0010000 � �]-¥, +¥[�0 � ��push_b_lip �0010001 �0010001 �0010001 � �]-¥, +¥[�0 � ��push_t_lip �0010010 �0010010 �0010010 � �]-¥, +¥[�0 � ��depress_chin �0010011 �0010011 �0010011 � �[0, +¥[�0 � ��close_t_l_eyelid �0010100 �0010100 �0010100 � �]-¥, +¥[�0 � ��close_t_r_eyelid �0010101 �0010101 �0010101 � �]-¥, +¥[�0 � ��close_b_l_eyelid �0010110 �0010110 �0010110 � �]-¥, +¥[�0 � ��close_b_r_eyelid �0010111 �0010111 �0010111 � �]-¥, +¥[�0 � ��yaw_l_eyeball �0011000 �0011000 �0011000 � �]-¥, +¥[�0 � ��yaw_r_eyeball �0011001 �0011001 �0011001 � �]-¥, +¥[�0 � ��pitch_l_eyeball �0011010 �0011010 �0011010 � �]-¥, +¥[�0 � ��pitch_r_eyeball �0011011 �0011011 �0011011 � �]-¥, +¥[�0 � ��thrust_l_eyeball �0011100 �0011100 �0011100 � �]-¥, +¥[�0 � ��thrust_r_eyeball �0011101 �0011101 �0011101 � �]-¥, +¥[�0 � ��dilate_l_pupil �0011110 �0011110 �0011110 � �[0, +¥[�0 � ��dilate_r_pupil �0011111 �0011111 �0011111 � �[0, +¥[�0 � ��raise_l_i_eyebrow �0100000 �0100000 �0100000 � �]-¥, +¥[�0 � ��raise_r_i_eyebrow �0100001 �0100001 �0100001 � �]-¥, +¥[�0 � ��raise_l_m_eyebrow �0100010 �0100010 �0100010 � �]-¥, +¥[�0 � ��raise_r_m_eyebrow �0100011 �0100011 �0100011 � �]-¥, +¥[�0 � ��raise_l_o_eyebrow �0100100 �0100100 �0100100 � �]-¥, +¥[�0 � ��raise_r_o_eyebrow �0100101 �0100101 �0100101 � �]-¥, +¥[�0 � ��squeeze_l_eyebrow �0100110 �0100110 �0100110 � �]-¥, +¥[�0 � ��squeeze_r_eyebrow �0100111 �0100111 �0100111 � �]-¥, +¥[�0 � ��puff_l_cheek �0101000 �0101000 �0101000 � �]-¥, +¥[�0 � ��puff_r_cheek �0101001 �0101001 �0101001 � �]-¥, +¥[�0 � ��lift_l_cheek �0101010 �0101010 �0101010 � �[0, +¥[�0 � ��lift_r_cheek �0101011 �0101011 �0101011 � �[0, +¥[�0 � ��shift_tongue_tip �0101100 �0101100 �0101100 � �]-¥, +¥[�0 � ��raise_tongue_tip �0101101 �0101101 �0101101 � �]-¥, +¥[�0 � ��thrust_tongue_tip �0101110 �0101110 �0101110 � �]-¥, +¥[�0 � ��raise_tongue �0101111 �0101111 �0101111 � �]-¥, +¥[�0 � ��tongue_roll �0110000 �0110000 �0110000 � �[0, +¥[�0 � ��head_pitch �0110001 �0110001 �0110001 � �]-¥, +¥[�0 � ��head_yaw �0110010 �0110010 �0110010 � �]-¥, +¥[�0 � ��head_roll �0110011 �0110011 �0110011 � �]-¥, +¥[�0 � ��lower_t_midlip �0110100 �0110100 �0110100 � �]-¥, +¥[�0 � ��raise_b_midlip_o �0110101 �0110101 �0110101 � �]-¥, +¥[�0 � ��stretch_l_cornerlip �0110110 �0110110 �0110110 � �]-¥, +¥[�0 � ��stretch_r_cornerlip_o �0110111 �0110111 �0110111 � �]-¥, +¥[�0 � ��lower_t_lip_lm_o �0111000 �0111000 �0111000 � �]-¥, +¥[�0 � ��lower_t_lip_rm_o �0111001 �0111001 �0111001 � �]-¥, +¥[�0 � ��raise_b_lip_lm_o �0111010 �0111010 �0111010 � �]-¥, +¥[�0 � ��raise_b_lip_rm_o �0111011 �0111011 �0111011 � �]-¥, +¥[�0 � ��raise_l_cornerlip_o �0111100 �0111100 �0111100 � �]-¥, +¥[�0 � ��raise_r_cornerlip_o �0111101 �0111101 �0111101 � �]-¥, +¥[�0 � ��stretch_l_nose �0111110 �0111110 �0111110 � �]-¥, +¥[�0 � ��stretch_r_nose �0111111 �0111111 �0111111 � �]-¥, +¥[�0 � ��raise_nose �1000000 �1000000 �1000000 � �]-¥, +¥[�0 � ��bend_nose �1000001 �1000001 �1000001 � �]-¥, +¥[�0 � ��raise_l_ear �1000010 �1000010 �1000010 � �]-¥, +¥[�0 � ��raise_r_ear �1000011 �1000011 �1000011 � �]-¥, +¥[�0 � ��pull_l_ear �1000100 �1000100 �1000100 � �]-¥, +¥[�0 � ��pull_r_ear �1000101 �1000101 �1000101 � �]-¥, +¥[�0 � ��

7.2.6.3.58	FDP

�PRIVATE�� FDP �SFWorldNode

SFFDPNode ����0111000

- ����Field name �DEF id �IN id �OUT id �DYN id �[m, M] �Q �A ��featurePointsCoord �000 �000 �000 � � � � ��textureCoord4FeaturePoints �001 �001 �001 � � � � ��calibrationMesh �010 �010 �010 � � � � ��faceTexture �011 �011 �011 � � � � ��FBADefTables �100 �100 �100 � � � � ��faceSceneGraph �101 �101 �101 � � � � ��

7.2.6.3.59	FBADefMesh

�PRIVATE�� FBADefMesh �SFWorldNode

SFFBADefNode ����0111001

0 ����Field name �DEF id �IN id �OUT id �DYN id �[m, M] �Q �A ��faceSceneGraphNode �00 � � � � � � ��intervalBorders �01 � � � � �0 � ��coordIndex �10 � � � � �0 � ��displacements �11 � � � � �0 � ��

7.2.6.3.60	FBADefTable

�PRIVATE�� FBADefTable �SFWorldNode

SFFBADefTableNode ����0111010

- ����Field name �DEF id �IN id �OUT id �DYN id �[m, M] �Q �A ��fapID �00 � � � �[1, 68] �13 7 � ��highLevelSelect �01 � � � �[1, 64] �13 6 � ��tables �10 �0 �0 � � � � ��

7.2.6.3.61	FBADefTransform

�PRIVATE�� FBADefTransform �SFWorldNode

SFFBADefNode ����0111011

1 ����Field name �DEF id �IN id �OUT id �DYN id �[m, M] �Q �A ��faceSceneGraphNode �00 � � � � � � ��fieldId �01 � � � � � � ��fieldValue �10 � � � � � � ��

7.2.6.3.62	Background

�PRIVATE�� Background �SFWorldNode

SF3DNode ����0111100

01101 ����Field name �DEF id �IN id �OUT id �DYN id �[m, M] �Q �A ��set_bind � �0000 � � � � � ��groundAngle �0000 �0001 �0000 �00 �[0, p/2] �6 �3 ��groundColor �0001 �0010 �0001 �01 �[0, 1] �4 �2 ��backURL �0010 �0011 �0010 � � � � ��frontURL �0011 �0100 �0011 � � � � ��leftURL �0100 �0101 �0100 � � � � ��rightURL �0101 �0110 �0101 � � � � ��topURL �0110 �0111 �0110 � � � � ��skyAngle �0111 �1000 �0111 �10 �[0, 2.p] �6 �3 ��skyColor �1000 �1001 �1000 �11 �[0, 1] �4 �2 ��isBound � � �1001 � � � � ��

7.2.6.3.63	Billboard

�PRIVATE�� Billboard �SFWorldNode

SF3DNode ����0111101

01110 ����Field name �DEF id �IN id �OUT id �DYN id �[m, M] �Q �A ��addChildren � �00 � � � � � ��removeChildren � �01 � � � � � ��axisOfRotation �00 �10 �0 � � �9 � ��children �01 �11 �1 � � � � ��bboxCenter �10 � � � �]-¥, +¥[�1 � ��bboxSize �11 � � � �[0, +¥[�11 � ��

7.2.6.3.64	Box

�PRIVATE�� Box �SFWorldNode

SFGeometryNode ����0111110

01000 ����Field name �DEF id �IN id �OUT id �DYN id �[m, M] �Q �A ��size �0 � � �0 �[0, +¥[�11 �7 ��

7.2.6.3.65	Collision

�PRIVATE�� Collision �SFWorldNode

SF3DNode ����0111111

01111 ����Field name �DEF id �IN id �OUT id �DYN id �[m, M] �Q �A ��addChildren � �00 � � � � � ��removeChildren � �01 � � � � � ��children �000 �10 �00 � � � � ��collide �001 �11 �01 � � � � ��bboxCenter �010 � � � �]-¥, +¥[�1 � ��bboxSize �011 � � � �[0, +¥[�11 � ��proxy �100 � � � � � � ��collideTime � � �10 � � � � ��

7.2.6.3.66	Cone

�PRIVATE�� Cone �SFWorldNode

SFGeometryNode ����1000000

01001 ����Field name �DEF id �IN id �OUT id �DYN id �[m, M] �Q �A ��bottomRadius �00 � � �0 �[0, +¥[�11 �7 ��height �01 � � �1 �[0, +¥[�11 �7 ��side �10 � � � � � � ��bottom �11 � � � � � � ��

7.2.6.3.67	Coordinate

�PRIVATE�� Coordinate �SFWorldNode

SFCoordinateNode ����1000001

- ����Field name �DEF id �IN id �OUT id �DYN id �[m, M] �Q �A ��point �0 �0 �0 �0 �]-¥, +¥[�1 �0 ��

7.2.6.3.68	CoordinateInterpolator

�PRIVATE�� CoordinateInterpolator �SFWorldNode

SF3DNode ����1000010

10000 ����Field name �DEF id �IN id �OUT id �DYN id �[m, M] �Q �A ��set_fraction � �00 � � � � � ��key �0 �01 �00 � �[0, 1] �8 � ��keyValue �1 �10 �01 � �]-¥, +¥[�1 � ��value_changed � � �10 � � � � ��

7.2.6.3.69	Cylinder

�PRIVATE�� Cylinder �SFWorldNode

SFGeometryNode ����1000011

01010 ����Field name �DEF id �IN id �OUT id �DYN id �[m, M] �Q �A ��bottom �000 � � � � � � ��height �001 � � �0 �[0, +¥[�11 �7 ��radius �010 � � �1 �[0, +¥[�11 �7 ��side �011 � � � � � � ��top �100 � � � � � � ��

7.2.6.3.70	DirectionalLight

�PRIVATE�� DirectionalLight �SFWorldNode

SF3DNode ����1000100

10001 ����Field name �DEF id �IN id �OUT id �DYN id �[m, M] �Q �A ��ambientIntensity �000 �000 �000 �00 �[0, 1] �4 �2 ��color �001 �001 �001 �01 �[0, 1] �4 �2 ��direction �010 �010 �010 �10 � �9 �6 ��intensity �011 �011 �011 �11 �[0, 1] �4 �2 ��on �100 �100 �100 � � � � ��

7.2.6.3.71	ElevationGrid

�PRIVATE�� ElevationGrid �SFWorldNode

SFGeometryNode ����1000101

01011 ����Field name �DEF id �IN id �OUT id �DYN id �[m, M] �Q �A ��set_height � �00 � � � � � ��color �0000 �01 �00 � � � � ��normal �0001 �10 �01 � � � � ��texCoord �0010 �11 �10 � � � � ��height �0011 � � �0 �]-¥, +¥[�11 �11 ��ccw �0100 � � � � � � ��colorPerVertex �0101 � � � � � � ��creaseAngle �0110 � � � �[0, 2.p] �6 � ��normalPerVertex �0111 � � � � � � ��solid �1000 � � � � � � ��xDimension �1001 � � � �[0, +¥[�13 16 � ��xSpacing �1010 � � � �[0, +¥[�0 � ��zDimension �1011 � � � �[0, +¥[�13 16 � ��zSpacing �1100 � � � �[0, +¥[�0 � ��

7.2.6.3.72	Extrusion

�PRIVATE�� Extrusion �SFWorldNode

SFGeometryNode ����1000110

01100 ����Field name �DEF id �IN id �OUT id �DYN id �[m, M] �Q �A ��set_crossSection � �00 � � � � � ��set_orientation � �01 � � � � � ��set_scale � �10 � � � � � ��set_spine � �11 � � � � � ��beginCap �0000 � � � � � � ��ccw �0001 � � � � � � ��convex �0010 � � � � � � ��creaseAngle �0011 � � � �[0, 2.p] �6 � ��crossSection �0100 � � � �]-¥, +¥[� � ��endCap �0101 � � � � � � ��orientation �0110 � � � �]-¥, +¥[�10 � ��scale �0111 � � � �[0, +¥[�7 � ��solid �1000 � � � � � � ��spine �1001 � � � �]-¥, +¥[�13 8 � ��

7.2.6.3.73	Group

�PRIVATE�� Group �SFWorldNode

SFTopNode

SF3DNode ����1000111

01

10010 ����Field name �DEF id �IN id �OUT id �DYN id �[m, M] �Q �A ��addChildren � �00 � � � � � ��removeChildren � �01 � � � � � ��children �00 �10 �0 � � � � ��bboxCenter �01 � � � �]-¥, +¥[�1 � ��bboxSize �10 � � � �[0, +¥[�11 � ��

7.2.6.3.74	IndexedFaceSet

�PRIVATE�� IndexedFaceSet �SFWorldNode

SFGeometryNode ����1001000

01101 ����Field name �DEF id �IN id �OUT id �DYN id �[m, M] �Q �A ��set_colorIndex � �000 � � � � � ��set_coordIndex � �001 � � � � � ��set_normalIndex � �010 � � � � � ��set_texCoordIndex � �011 � � � � � ��color �0000 �100 �00 � � � � ��coord �0001 �101 �01 � � � � ��normal �0010 �110 �10 � � � � ��texCoord �0011 �111 �11 � � � � ��ccw �0100 � � � � � � ��colorIndex �0101 � � � �[-1, +¥[� � ��colorPerVertex �0110 � � � � � � ��convex �0111 � � � � � � ��coordIndex �1000 � � � �[-1, +¥[�0 � ��creaseAngle �1001 � � � �[0, 2.p] �6 � ��normalIndex �1010 � � � �[-1, +¥[�0 � ��normalPerVertex �1011 � � � � � � ��solid �1100 � � � � � � ��texCoordIndex �1101 � � � �[-1, +¥[�0 � ��

7.2.6.3.75	IndexedLineSet

�PRIVATE�� IndexedLineSet �SFWorldNode

SFGeometryNode ����1001001

01110 ����Field name �DEF id �IN id �OUT id �DYN id �[m, M] �Q �A ��set_colorIndex � �00 � � � � � ��set_coordIndex � �01 � � � � � ��color �000 �10 �0 � � � � ��coord �001 �11 �1 � � � � ��colorIndex �010 � � � �[-1, +¥[�0 � ��colorPerVertex �011 � � � � � � ��coordIndex �100 � � � �[-1, +¥[�0 � ��

7.2.6.3.76	Inline

�PRIVATE�� Inline �SFWorldNode

SF3DNode

SFStreamingNode ����1001010

10011

110 ����Field name �DEF id �IN id �OUT id �DYN id �[m, M] �Q �A ��url �00 �0 �0 � � � � ��bboxCenter �01 � � � �]-¥, +¥[�1 � ��bboxSize �10 � � � �[0, +¥[�11 � ��

7.2.6.3.77	LOD

�PRIVATE�� LOD �SFWorldNode

SF3DNode ����1001011

10100 ����Field name �DEF id �IN id �OUT id �DYN id �[m, M] �Q �A ��level �00 �0 �0 � � � � ��center �01 � � � �]-¥, +¥[�1 � ��range �10 � � � �[0, +¥[�11 � ��fpsRange �11 � � � �[0, 127] �13 32 � ��

7.2.6.3.78	Material

�PRIVATE�� Material �SFWorldNode

SFMaterialNode ����1001100

1 ����Field name �DEF id �IN id �OUT id �DYN id �[m, M] �Q �A ��ambientIntensity �000 �000 �000 �000 �[0, 1] �4 �2 ��diffuseColor �001 �001 �001 �001 �[0, 1] �4 �2 ��emissiveColor �010 �010 �010 �010 �[0, 1] �4 �2 ��shininess �011 �011 �011 �011 �[0, 1] �4 �2 ��specularColor �100 �100 �100 �100 �[0, 1] �4 �2 ��transparency �101 �101 �101 �101 �[0, 1] �4 �2 ��

7.2.6.3.79	Normal

�PRIVATE�� Normal �SFWorldNode

SFNormalNode ����1001101

- ����Field name �DEF id �IN id �OUT id �DYN id �[m, M] �Q �A ��vector �0 �0 �0 �0 � �4 �9 ��

7.2.6.3.80	NormalInterpolator

�PRIVATE�� NormalInterpolator �SFWorldNode

SF3DNode ����1001110

10101 ����Field name �DEF id �IN id �OUT id �DYN id �[m, M] �Q �A ��set_fraction � �00 � � � � � ��key �0 �01 �00 � �[0, 1] �8 � ��keyValue �1 �10 �01 � �]-¥, +¥[�9 � ��value_changed � � �10 � � � � ��

7.2.6.3.81	OrientationInterpolator

�PRIVATE�� OrientationInterpolator �SFWorldNode

SF3DNode ����1001111

10110 ����Field name �DEF id �IN id �OUT id �DYN id �[m, M] �Q �A ��set_fraction � �00 � � � � � ��key �0 �01 �00 � �[0, 1] �8 � ��keyValue �1 �10 �01 � �]-¥, +¥[�10 � ��value_changed � � �10 � � � � ��

7.2.6.3.82	PointLight

�PRIVATE�� PointLight �SFWorldNode

SF3DNode ����1010000

10111 ����Field name �DEF id �IN id �OUT id �DYN id �[m, M] �Q �A ��ambientIntensity �000 �000 �000 �000 �[0, 1] �4 �2 ��attenuation �001 �001 �001 � �[0, +¥[�13 16 � ��color �010 �010 �010 �001 �[0, 1] �4 �2 ��intensity �011 �011 �011 �010 �[0, 1] �4 �2 ��location �100 �100 �100 �011 �]-¥, +¥[�1 �0 ��on �101 �101 �101 � � � � ��radius �110 �110 �110 �100 �[0, +¥[�11 �7 ��

7.2.6.3.83	PointSet

�PRIVATE�� PointSet �SFWorldNode

SFGeometryNode ����1010001

01111 ����Field name �DEF id �IN id �OUT id �DYN id �[m, M] �Q �A ��color �0 �0 �0 � � � � ��coord �1 �1 �1 � � � � ��

7.2.6.3.84	PositionInterpolator

�PRIVATE�� PositionInterpolator �SFWorldNode

SF3DNode ����1010010

11000 ����Field name �DEF id �IN id �OUT id �DYN id �[m, M] �Q �A ��set_fraction � �00 � � � � � ��key �0 �01 �00 � �[0, 1] �8 � ��keyValue �1 �10 �01 � �]-¥, +¥[�1 � ��value_changed � � �10 � � � � ��

7.2.6.3.85	ProximitySensor

�PRIVATE�� ProximitySensor �SFWorldNode

SF3DNode ����1010011

11001 ����Field name �DEF id �IN id �OUT id �DYN id �[m, M] �Q �A ��center �00 �00 �000 � �]-¥, +¥[�1 � ��size �01 �01 �001 � �[0, +¥[�11 � ��enabled �10 �10 �010 � � � � ��isActive � � �011 � � � � ��position_changed � � �100 � � � � ��orientation_changed � � �101 � � � � ��enterTime � � �110 � � � � ��exitTime � � �111 � � � � ��

7.2.6.3.86	Sphere

�PRIVATE�� Sphere �SFWorldNode

SFGeometryNode ����1010100

10000 ����Field name �DEF id �IN id �OUT id �DYN id �[m, M] �Q �A ��radius �0 � � �0 �[0, +¥[�11 �7 ��

7.2.6.3.87	SpotLight

�PRIVATE�� SpotLight �SFWorldNode

SF3DNode ����1010101

11010 ����Field name �DEF id �IN id �OUT id �DYN id �[m, M] �Q �A ��ambientIntensity �0000 �0000 �0000 �00 �[0, 1] �4 �2 ��attenuation �0001 �0001 �0001 �01 �[0, +¥[�11 �2 ��beamWidth �0010 �0010 �0010 � �[0, p/2] �6 � ��color �0011 �0011 �0011 �10 �[0, 1] �4 �2 ��cutOffAngle �0100 �0100 �0100 � �[0, p/2] �6 � ��direction �0101 �0101 �0101 � �]-¥, +¥[�9 � ��intensity �0110 �0110 �0110 � �[0, 1] �4 � ��location �0111 �0111 �0111 �11 �]-¥, +¥[�1 �0 ��on �1000 �1000 �1000 � � � � ��radius �1001 �1001 �1001 � �[0, +¥[�11 � ��

7.2.6.3.88	Transform

�PRIVATE�� Transform �SFWorldNode

SF3DNode ����1010110

11011 ����Field name �DEF id �IN id �OUT id �DYN id �[m, M] �Q �A ��addChildren � �000 � � � � � ��removeChildren � �001 � � � � � ��center �000 �010 �000 �000 �]-¥, +¥[�1 �0 ��children �001 �011 �001 � � � � ��rotation �010 �100 �010 �001 � �10 �6 ��scale �011 �101 �011 �010 �[0, +¥[�7 �5 ��scaleOrientation �100 �110 �100 �011 � �10 �6 ��translation �101 �111 �101 �100 �]-¥, +¥[�1 �0 ��bboxCenter �110 � � � �]-¥, +¥[�1 � ��bboxSize �111 � � � �[0, +¥[�11 � ��

7.2.6.3.89	Viewpoint

�PRIVATE�� Viewpoint �SFWorldNode

SF3DNode ����1010111

11100 ����Field name �DEF id �IN id �OUT id �DYN id �[m, M] �Q �A ��set_bind � �000 � � � � � ��fieldOfView �000 �001 �000 �00 �[0, 3.14159] �6 �3 ��jump �001 �010 �001 � � � � ��orientation �010 �011 �010 �01 � �10 �6 ��position �011 �100 �011 �10 �]-¥, +¥[�1 �0 ��description �100 � � � � � � ��bindTime � � �100 � � � � ��isBound � � �101 � � � � ��

7.2.6.3.90	Layer2D

�PRIVATE�� Layer2D �SFWorldNode

SFTopNode

SFLayerNode ����1011000

10

0 ����Field name �DEF id �IN id �OUT id �DYN id �[m, M] �Q �A ��children �000 �000 �000 � � � � ��childrenLayer �001 �001 �001 � � � � ��size �010 �010 �010 � �]-¥, +¥[�2 � ��translation �011 �011 �011 � �]-¥, +¥[�2 � ��depth �100 �100 �100 � �]-¥, +¥[�3 � ��

7.2.6.3.91	Layer3D

�PRIVATE�� Layer3D �SFWorldNode

SFTopNode

SFLayerNode ����1011001

11

1 ����Field name �DEF id �IN id �OUT id �DYN id �[m, M] �Q �A ��children �000 �0000 �000 � � � � ��childrenLayer �001 �0001 �001 � � � � ��translation �010 �0010 �010 � �]-¥, +¥[�2 � ��depth �011 �0011 �011 � �]-¥, +¥[�3 � ��size �100 �0100 �100 � �]-¥, +¥[�2 � ��background � �0101 � � � � � ��fog � �0110 � � � � � ��navigationInfo � �0111 � � � � � ��viewpoint � �1000 � � � � � ��

7.2.6.3.92	Composite2DTexture

�PRIVATE�� Composite2DTexture �SFWorldNode

SFTextureNode ����1011010

10 ����Field name �DEF id �IN id �OUT id �DYN id �[m, M] �Q �A ��children �0 �0 �0 � � � � ��size �1 �1 �1 � �]-¥, +¥[�2 � ��

7.2.6.3.93	Composite3DTexture

�PRIVATE�� Composite3DTexture �SFWorldNode

SFTextureNode ����1011011

11 ����Field name �DEF id �IN id �OUT id �DYN id �[m, M] �Q �A ��children �0 �000 �0 � � � � ��size �1 �001 �1 � �]-¥, +¥[�2 � ��background � �010 � � � � � ��fog � �011 � � � � � ��navigationInfo � �100 � � � � � ��Viewpoint � �101 � � � � � ��

7.2.6.3.94	CompositeMap

�PRIVATE�� CompositeMap �SFWorldNode

SF3DNode ����1011100

11101 ����Field name �DEF id �IN id �OUT id �DYN id �[m, M] �Q �A ��children2D �0 �0 �0 � � � � ��sceneSize �1 �1 �1 � �]-¥, +¥[�2 � ��

�7.3	Identification and Association of Elementary Streams

7.3.1	Introduction

Elementary Streams are one major conceptual element of the MPEG�4 architecture. The Scene Description as well as any media data stream is conveyed within one or more Elementary Streams. In order to access the content of Elementary Streams, they must be properly identified and associated to each other.

The semantic association of different Elementary Streams is accomplished by the Scene Description that declares the spatio-temporal relation of various media objects. Those media objects that necessitate streaming media data then point to Elementary Streams by means of a numeric identifier, an objectDescriptorID.

Identification of Elementary Streams includes information about the source of the conveyed media data, in form of an URL or a numeric identifier, as well as the encoding format, the configuration for the Access Unit Layer packetization of the Elementary Stream (see Subclause � REF _Ref403916893 \n �7.4.2�) and intellectual property information. Optionally more information can be associated to a media object, most notably Object Content Information.

This identification of Elementary Streams is provided by means of Object Descriptors that are labeled by the said objectDescriptorIDs. This allows one to resolve the association conveyed by the scene description to the actual Elementary Streams. The syntax and semantics of Object Descriptors, the method to convey them, as well as their usage are specified in this subclause as detailed below:

Subclause � REF _Ref403958724 \n �7.3.2� specifies how Object Descriptors are conveyed between peer MPEG�4 terminals in the form of Object Descriptor Streams.

Subclause � REF _Ref403958748 \n �7.3.3� specifies the syntax and semantics of the Object Descriptor and its sub-descriptors.

Subclause � REF _Ref403958770 \n �7.3.4� specifies how Object Descriptors are used in an MPEG�4 session. This includes the scoping of objectDescriptorIDs in MPEG�4 sessions and the usage of URLs. A walk through a session set up is provided as well.

7.3.2	Object Descriptor Elementary Stream

Object Descriptors are transported in a dedicated Elementary Stream with streamType = ObjectDescriptorStream. An Object Descriptor Stream shall always be associated to another stream with streamType = SceneDescriptionStream within the same Object Descriptor that declares the scene description stream. The method to associate the two streams is specified in Subclause � REF _Ref403958770 \n �7.3.4�.

The Object Descriptor stream serves to convey and update Object Descriptors. Complete Object Descriptors and their primary element, the ES_descriptors, may be conveyed or updated anytime during the course of an MPEG-4 session, given the semantic restrictions detailed below. The update mechanism is specified to be able to advertise new Elementary Streams for a Media Object as they become available or to remove the reference to streams that are no longer available. These updates are time stamped to indicate the instant in time they take effect.

Note: 	Updates need not be co-located in time with the addition or removal of media objects in the scene description that refer to such an Object Descriptor.

This subclause specifies the structure of the Object Descriptor Elementary Stream as well as the syntax and semantics of the Object Descriptor Updates.

7.3.2.1	Structure of the Object Descriptor Elementary Stream

Object Descriptors are always conveyed by Object Descriptor Updates (OD-Update) as specified in the subsequent subclauses. Each OD-Update groups information for one or more Object Descriptors or ES_descriptors.

OD-Updates are packaged in Access Units. An Access Unit groups one or more OD-Updates that shall become valid at a specific instant in time. More than one subsequent Access Unit may refer to the same instant in time.

Access Units in Object Descriptor Elementary Streams shall be labeled and time stamped by suitable means. In the context of this Committee Draft of International Standard, this shall be done by means of the related flags and the decoding time stamp, respectively, in the AL_PDU Header (see Subclause � REF _Ref403916893 \n �7.4.2�).

7.3.2.2	OD-Update Syntax and Semantics

The syntax to convey, update and remove ObjectDescriptor and ES_descriptor items is specified in this subclause.

7.3.2.2.1	ObjectDescriptorUpdate

The ObjectDescriptorUpdate class is used to transmit a list of ObjectDescriptors. If the content of an existing ObjectDescriptor is changed by an ObjectDescriptorUpdate, this implies the invalidation of the Elementary Stream(s) and the decoders that had been described by the old ObjectDescriptor and the immediate set up of new decoder(s) and attachment to the Elementary Stream(s) as described in the updated ObjectDescriptor.

7.3.2.2.1.1	Syntax

aligned(8) class ObjectDescriptorUpdate : uint(8) ObjectDescriptorUpdateTag {

	int j;

	uint(8) objectCount;

	for(j=0;j<objectCount; j++) {

		ObjectDescriptor OD[j];

	}

}

7.3.2.2.1.2	Semantics

objectCount - indicates the number of ObjectDescriptors to follow

OD[j] - an ObjectDescriptor as defined in Subclause � REF _Ref403958848 \n �7.3.3.1�.

7.3.2.2.2	ObjectDescriptorRemove

The ObjectDescriptorRemove class is used to invalidate an ObjectDescriptor. This implies that the reference to all Elementary Streams that have been listed in this ObjectDescriptor is removed.

7.3.2.2.2.1	Syntax

aligned(8) class ObjectDescriptorRemove : uint(8) ObjectDescriptorRemoveTag {

	int j;

	uint(6) OD_Count;

	for(j=0;j<OD_Count; j++) {

		uint(10) objectDescriptorId[j];

	}

}

7.3.2.2.2.2	Semantics

OD_Count - indicates the number of ObjectDescriptors that are removed.

objectDescriptorId - indicates the ID of an ObjectDescriptor that is to be removed.

7.3.2.2.3	ES_DescriptorUpdate

The ES_DescriptorUpdate class is used to add references to new Elementary Streams in an ObjectDescriptor. If the content of an existing ES_Descriptor is changed by an ES_DescriptorUpdate, this implies the invalidation of the Elementary Stream and the decoder that had been described by the old ES_Descriptor and the immediate set up of a new decoder and attachment to the Elementary Stream as described in the updated ES_Descriptor.

7.3.2.2.3.1	Syntax

aligned(8) class ES_DescriptorUpdate : uint(8) ES_DescriptorUpdateTag {

	int j;

	uint(10) objectDescriptorId;

	uint(5) streamCount;

	uint(1) reserved;

	for(j=0;j<streamCount; j++) {

		ES_Descriptor ESD[j];

	}

}

7.3.2.2.3.2	Semantics

objectDescriptorID - identifies the ObjectDescriptor for which ES_Descriptors are updated.

streamCount - indicates how many ES_Descriptors will follow.

ESD[j] - an ES_descriptor as defined in Subclause � REF _Ref404735830 \r \h ��7.3.3.2�.

7.3.2.2.4	ES_DescriptorRemove

The ES_descriptorRemove class is used to remove the reference to an Elementary Stream from an ObjectDescriptor.

7.3.2.2.4.1	Syntax

aligned(8) class ES_DescriptorRemove : uint(8) ES_DescriptorRemoveTag

{

	int j;

	uint(10) objectDescriptorId;

	uint(5) streamCount;

	uint(1) reserved;

	for(j=0;j<streamCount; j++) {

		uint(5) ES_Number[j];

		uint(3) reserved;

	}

}

7.3.2.2.4.2	Semantics

objectDescriptorID - identifies the ObjectDescriptor from which ES_Descriptors are removed.

streamCount - indicates the number of ES_Descriptors to be removed.

ES_number[j] - indicates the label of an ES_Descriptor to be removed from objectDescriptorID.

7.3.2.3	Descriptor tags

Tags are defined to identify the descriptor update and remove messages defined in the previous subclause. They are shown in � REF _Ref404734539 \h ��Table 7-3�.

Table � STYLEREF 1 \n �7�-� SEQ Table * ARABIC �3�: List of Descriptor Tags

0�reserved��1�ObjectDescriptorUpdateTag��2�ObjectDescriptorRemoveTag��3�ES_DescriptorUpdateTag��4�ES_DescriptorRemoveTag��0x05-0xFF�reserved for ISO use��7.3.3	Object Descriptor Syntax and Semantics

The Object Descriptor structure complements the information contained in the scene description for such media objects in the scene hierarchy that are associated to streaming content in the form of Elementary Streams. In other words, Elementary Streams are only accessible in a session if they are described by an Object Descriptor.

In this context it may be noted that the scene description itself is also conveyed as an Elementary Stream and therefore has an Object Descriptor that describes this stream.

Each media object that refers to streaming data is associated to at most one Object Descriptor. The Object Descriptor constitutes a grouping mechanism that includes one or more ES_Descriptors, each providing details on one Elementary Stream that is associated to this media object. This grouping mechanism allows to specify an ordered list of interdependent streams as they are needed e. g. for a scaleable coded content representation. Furthermore, multiple alternative streams that convey the same content, e. g., in multiple qualities, can be grouped together. Finally, streams with additional information, such as Object Content Information, may be associated to the media object.

The ES_Descriptor provides an unambiguous identifier of the Elementary Stream and contains those parameters that are needed at the time the decoding of an Elementary Stream is initiated. These parameters include the decoder configuration, the configuration of the AL-PDU Header, Intellectual Property Information (IPI) and Quality of Service (QoS) requirements .

The syntax and semantics of the ObjectDescriptor class and of all its components are specified in the subsequent subclauses.

7.3.3.1	ObjectDescriptor

The ObjectDescriptor consists of three different parts:

The first part is an objectDescriptorId which uniquely identifies a media object within a session. The objectDescriptorId is used for example in the scene description to associate media objects in the scene hierarchy with their respective ObjectDescriptor carrying the details of one or more Elementary Streams that are associated to those media objects.

The second part consists of a list of ES_Descriptors, each providing parameters for a single Elementary Stream.

The third part is an optional extension mechanism, whose semantic supports the inclusion of future extensions in a backward compatible way, as well as the transport of private data.

7.3.3.1.1	Syntax

class ObjectDescriptor () {

	uint(10) ObjectDescriptorID;

	uint(5) streamCount;

	uint(1) extensionFlag;

	for(j=0; j<streamCount; j++) {

		ES_Descriptor ();

	}

	if (extensionFlag) {

		uint(8) descriptorLength;

		for (j=0;j<descriptorLength;) {

			extensionDescriptor ();

			j = j + lengthof(extensionDescriptor)

		}

	}

}

7.3.3.1.2	Semantics

objectDescriptorId – This syntax element identifies the ObjectDescriptor. The value objectDescriptorId=0 is forbidden and the value objectDescriptorId=1023 is reserved. objectDescriptorIds are unique within an MPEG�4 session.

streamCount – This syntax element indicates the number of ES_Descriptor structures included in the ObjectDescriptor. A streamCount of zero indicates an empty ObjectDescriptor for which no Elementary Streams are available yet. The streamCount of 31 is reserved for future extensions.

extensionFlag – This syntax element if set to 1 indicates that the ObjectDescriptor includes a sequence of additional descriptors.

descriptorLength – This syntax element indicates the length in byte of the subsequent list of extensionDescriptors.

7.3.3.2	ES_descriptor

The ES_Descriptor conveys all information related to a particular Elementary Stream and consists of three major parts:

The first part consists of the ES_number which is a unique reference to the Elementary Stream within this ObjectDescriptor, a mechanism to group Elementary Streams within this ObjectDescriptor and an optional URL string. Grouping of Elementary Streams and usage of URLs are specified in Subclause � REF _Ref403958770 \n �7.3.4�.

The second part consists of the DecoderConfigDescriptor, ALConfigDescriptor, IPI_Descriptor and QoS_Descriptor structures which convey the exact characteristics and requirements of the Elementary Stream.

The third part is an optional extension mechanism, whose semantic supports the inclusion of future extensions in a backward compatible way, as well as the transport of private data.

An ES_descriptor may be used as a pointer to a remote ObjectDescriptor by means of an URL, as specified in detail in Subclause � REF _Ref403959177 \n �7.3.4.3�. In that case the second and third part of the ES_descriptor are not present, with the exception of DecoderConfigDescriptor.

7.3.3.2.1	Syntax

class ES_Descriptor () {

	uint(5) ES_Number;

	uint(1) streamDependence;

	uint(1) URLflag;

	uint(1) extensionFlag;

	if (URLflag) {

		uint(8) URLlength;

		uint(URLlength*8) URLstring;

		uint(1) remoteODflag;

	}

	if (streamDependence) {

		uint(5) dependsOn_ES_number;

	}

	aligned(8)	DecoderConfigDescriptor decConfigDescr;

	if (decConfigDescr.streamType!=initialObjectDescriptor) {

		ALConfigDescriptor alConfigDescr;

		IPI_Descriptor ipiDescr;

		QoS_Descriptor qosDescr;

		if (extensionFlag==1) {

			uint(8) descriptorLength;

			for (i=0,j=0;j<descriptorLength;i++) {

				extensionDescriptor extDescr[i];

				j = j + lengthof(extDescr[i]);

			}

		}

	}

}

7.3.3.2.2	Semantics

ES_Number – This syntax element provides a unique label for each Elementary Stream associated to this ObjectDescriptor. Values of zero and 31 for ES_number are reserved and shall not be assigned.

The combination of the objectDescriptorID and the ES_number forms the ES_Id which uniquely identifies each Elementary Stream within one MPEG�4 session. The ES_Id is a 16 bit value that is obtained by the following formula:

	ES_Id = objectDescriptorID << 5 & ES_number

streamDependence - If set to one indicates that a dependsOn_ES_number will follow.

URL_Flag - if set to 1 indicates that a URLstring will follow.

extensionFlag - if set to 1 indicates that the ES_Descriptor includes a list of extensionDescriptors.

URLlength - specifies the length of URLstring in byte.

URLstring - contains a URL.

remoteODflag - if set to zero indicates that the data retrieved from the URL consists of an AL-packetized Elementary Stream. The parameters of this Elementary Stream are fully specified in this ES_descriptor.

If set to one remoteODflag indicates that the first data retrieved from the URL is a new ObjectDescriptor.

For a streamType of this Elementary Stream equal to initialObjectDescriptor the semantics of this new Object Descriptors are specified in � REF _Ref403964959 \n �7.3.4.4.2�.

Else this new Object Descriptor shall contain only one ES_descriptor that replaces the content of the current ES_Descriptor. The streamType of this new ES_descriptor shall have the same value as in the original ES_descriptor. If this is not the case, the remote content shall be considered unusable. The parameters of the AL-packetized Elementary Stream that is subsequently retrieved from the URL are specified in this new ES_descriptor.

dependsOn_ES_number - gives the ES_number of another Elementary Stream that is associated to this ObjectDescriptor on which this Elementary Stream depends. The semantics of this syntax element is linked with that of streamType as specified in Subclause � REF _Ref403959099 \n �7.3.4.2�.

decConfigDescr - is a DecoderConfigDescriptor as specified in Subclause � REF _Ref403959199 \n �7.3.3.3�.

alConfigDescr - is a ALConfigDescriptor as specified in Subclause � REF _Ref403959217 \n �7.3.3.4�.

ipiDescr - is a IPI_Descriptor as specified in Subclause � REF _Ref403959230 \n �7.3.3.5�.

qosDescr - is a QoS_Descriptor as specified in Subclause � REF _Ref403959244 \n �7.3.3.6�.

descriptorLength - is the length in byte of the list of extensionDescriptors included in the ES_Descriptor.

extDescr[i] - is an extensionDescriptor as specified in Subclause � REF _Ref403959264 \n �7.3.3.7�.

7.3.3.3	DecoderConfigDescriptor

The DecoderConfigDescriptor provides information about the decoder type and the required decoder resources needed for the associated Elementary Stream. This is needed at the receiver to determine whether it is able to decode the Elementary Stream.

The streamType identifies the category of the stream while an optional number of specificInfoBytes contain stream specific information for the set up of the decoder in a stream specific format opaque to this layer.

7.3.3.3.1	Syntax

class DecoderConfigDescriptor () {

	uint specificInfoLength; // not read from bitstream here

	uint(8) profileAndLevelIndication;

	uint(6) streamType;

	uint(1) upStream;

	uint(1) specificInfoFlag;	

	uint(24) bufferSizeDB;

	uint(32) maxBitrate;

	uint(32) avgBitrate;

	if (specificInfoFlag) {

		uint(8) length8;

		if (length8==0) {

			uint(32) length32;

			specificInfoLength = length32;

		} else {

			specificInfoLength = length8;

		}

		for (i=0; i<specificInfoLength; i++) {

			uint(8) specificInfoByte[i];

		}

	}

}

7.3.3.3.2	Semantics

profileAndLevelIndication - an indication of the profile and level that needs to be supported by the decoder for this Elementary Stream as per this table.

Table � STYLEREF 1 \n * MERGEFORMAT �7�-� SEQ Table * ARABIC �4�: profileAndLevelIndication Values

Value�profileAndLevelIndication Description��0x00�reserved for ISO use��0x01�Visual 14496-2 simple profile��0x02�Visual 14496-2 core profile��0x03�Visual 14496-2 simple facial anim profile��0x04�Visual 14496-2 scalable image texture profile��0x05�Audio 14496-3 main natural��0x06�Audio 14496-3 simple scalable��0x07�Audio 14496-3 simple parametric��0x08�Audio 14496-3 main synthetic��0x09�Audio 14496-3 algorithmic synthesis��0x0A�Audio 14496-3 wavetable synthesis��0x0B�Audio 14496-3 general MIDI��0x0C�Audio 14496-3 TTS��0x0D�Visual 13818-2 SP@ML��0x0E�Visual 13818-2 MP@LL��0x0F�Visual 13818-2 MP@ML��0x10�Visual 13818-2 MP@H-1440��0x11�Visual 13818-2 MP@HL��0x12�Visual 13818-2 SNR@LL��0x13�Visual 13818-2 SNR@ML��0x14�Visual 13818-2 Spatial@H-1440��0x15�Visual 13818-2 HP@ML��0x16�Visual 13818-2 HP@H-1440��0x17�Visual 13818-2 HP@HL��0x18�Visual 13818-2 422@ML��0x19�Audio 13818-7��0x1A�Audio 13818-3��0x1B�Visual 11172-2��0x1C�Audio 11172-3��0x1D - 0x7F�MPEG reserved��0x80 - 0xFF�user private��

streamType - conveys the type of this Elementary Stream as per this table.

Table � STYLEREF 1 \n * MERGEFORMAT �7�-� SEQ Table * ARABIC �5�: streamType Values

streamType value�stream type description��0x00�reserved for ISO use��0x01�initialObjectDescriptor (see Subclause � REF _Ref403964992 \n �7.3.4.4.1�)��0x02�ObjectDescriptorStream (see Subclause � REF _Ref403976863 \n �7.3.2�)��0x03�ClockReferenceStream (see Subclause � REF _Ref403980990 \n �7.4.2.4�)��0x04�SceneDescriptionStream��0x05�VisualStream��0x06�AudioStream��0x07�MPEG7Stream��0x08-0x09�MPEG reserved��0x0A�ObjectContentInfoStream (see Subclause � REF _Ref403976957 \n �7.7�)��0x0B - 0x1F�MPEG reserved��0x20 - 0x3F�user private��

upStream - indicates that this stream is used for upstream information.

specificInfoFlag - if set to one indicates presence of optional specificInfoBytes.

bufferSizeDB - is the size of the decoding buffer for this Elementary Stream in bytes.

maxBitrate - is the maximum instantaneous bitrate of this Elementary Stream in any time window of one second duration.

avgBitrate - is the average bitrate of this Elementary Stream in any time window of one minute duration. A value of zero indicates that this Elementary Stream does not have a constant average bitrate.

specificInfoLength - count of the optional specificInfoBytes.

specificInfoByte[i] - one byte of stream specific information

7.3.3.4	ALConfigDescriptor

This descriptor configures the Access Unit Layer parser for this Elementary Stream. The specification of this descriptor is defered to Subclause � REF _Ref403964583 \n �7.4.2.2� of the specification of the Access Unit Layer for better readability.

7.3.3.5	IPI_Descriptor

The IPI_Descriptor includes a mechanism to identify content. This is done by means of one or more IP_IdentificationDataSet included in this IPI_Descriptor.

Alternatively a pointer to the Elementary Stream that includes the data sets that are valid for this stream is provided. This pointer mechanism allows to transmit an IP_IdentificationDataSet only in one ES_Descriptor while making reference to it from all other ES_Descriptors that share the same IP_IdentificationDataSet.

7.3.3.5.1	Syntax

class IPI_Descriptor() {

	uint(1) IPI_Pointer;

	if (IPI_Pointer) {

		uint(16) IPI_ES_Id;

	} else {

		uint(8)	IPI_Length;

		for (i=0, j=0; i<IPI_Length;j++) {

			IP_InformationDataSet IP_IDS[j];

			i = i + lengthof(IP_IDS[j]);

		}

	}

}

7.3.3.5.2	Semantics

IPI_Pointer - if set to one indicates that an IPI_ES_Id will follow.

IPI_ES_Id - is the ES_Id of the Elementary Stream that contains the IP Information valid for this Elementary Stream. This ES_Id is unique within the MPEG�4 session.

IPI_Length - is the length of the subsequent list of IP_InformationDataSet in byte.

IP_IDS[j] - is an IP_InformationDataSet as specified in Subclause � REF _Ref403964645 \n �7.3.3.5.3�.

7.3.3.5.3	IP Identification Data Set

The »Intellectual Property Identification Data Set« is used to identify content. All types of Elementary Streams carrying content can be identified using this meachanism. The content types include audio, visual and scene description data.

7.3.3.5.3.1	Syntax

class IP_InformationDataSet () {

	uint(2)		compatibility;

	uint(1)		type_of_content_present;

	if (type_of_content_present)

		uint(8)	type_of_content;

	uint(1)		content_identifier_present;

	if (content_identifier_present == 1) {

		uint(8)	type_of_content_identifier;

		uint(8)	lenght_of_content_identifier;

		uint(lenght_of_content_identifier*8)

				content_identifier;

	}

	uint(8)		number_of_supplementary_content_identifiers;

	if (number_of_supplementary_content_identifiers>0) {

		uint(24)	language_code;

		for (i=0; i < number_of_supplementary_content_identifiers; I++) {

			uint(8)	length_of_supplementary_content_identifier_title;

			uint(length_of_supplementary_content_identifier_title*8)

				supplementary_content_identifier_title;

			uint(8)	length_of_supplementary_content_identifier_value;

			uint(length_of_supplementary_content_identifier_value*8)

				supplementary_content_identifier_value;

		}

	}

}

7.3.3.5.3.2	Semantics

compatibility - has to be set to 00. If an MPEG-4 version 1 player reads a value different from 00, the attached AVO need not be played.

type_of_content_present - flag to indicate if a definition of the type of content is available.

type_of_content - defining a type of content with a value of the following table

Table � STYLEREF 1 \n * MERGEFORMAT �7�-� SEQ Table * ARABIC �6�: type_of_content Values

0�Audio-visual��1�Book��2�Serial��3�Text��4�Item or Contribution (e.g. article in book or serial)��5�Sheet music��6�Sound recording or music video��7�Still Picture��8-254�Reserved for future use��255�Others��

content_identifier_present - flag to indicate presence of creation ID.

type_of_content_identifier - defining a type of content identifier with a value of the fol�lowing table.

Table � STYLEREF 1 \n * MERGEFORMAT �7�-� SEQ Table * ARABIC �7�: type_of_content_identifier Values

0�ISAN�International Standard Audio-Visual Number��1�ISBN�International Standard Book Number��2�ISSN�International Standard Serial Number��3�SICI�Serial Item and Contribution Identifier��4�BICI�Book Item and Component Identifier��5�ISMN�International Standard Music Number��6�ISRC�International Standard Recording Code��7�ISWC-T�International Standard Work Code (Tunes)��8�ISWC-L �International Standard Work Code (Literature)��9�SPIFF�Still Picture ID��10�DOI�Digital Object Identifier��11-255�Reserved for future use��

length_of_content_identifier - since the length of each of these identifiers can vary a length indicator is needed to give the length in byte.

content_identifier - international code identifying the content according to the preceding type_of_content_identifier.

number_of_supplementary_content_identifiers - since not all works are having a numbered identification scheme (yet), non-standard schemes can be used (which can be alpha�numeri�cal or binary). The number_of_supplementary_content_identifiers indicates, how many of these data »supplementary« data fields are following

language code - This 24 bits field contains the ISO 639 three character language code of the lan�guage of the following text fields. Remember that for languages that only use Latin characters, just one byte per character is needed in Unicode. Otherwise two byte are needed.

supplementary_content_identifier_title and supplemen�tary_content_identifier_value - Each of these two entries give a title-and-value pair such as (»Title«,»Hey Jude«) whenever a numeric content definition is not available. However, the sup�plementary_content_identifier_value can contain »binary« information as well. The length of the title (in byte) is being indicated by length_of_supplementary_content_identifier_title (0 byte to 255 byte) and the length of the supplementary_content_identifier_value is indicated by the length_of_supplementary_content_identifier_value (0 byte to255).

7.3.3.6	QoS_Descriptor

The QoS_descriptor conveys the requirements that the ES has on the transport channel and a description of the traffic that this ES will cause. A set of predefined values is to be determined; customized values can be used by setting the predefined field to 0.

7.3.3.6.1	Syntax

class QoS_Descriptor () {

	uint(5) streamPriority;

	uint(3) predefined;

	if (predefined==0) {

		uint(8) QoS_QualifierCount;

		for (i=0; i<QoS_QualifierCount; i++) {

			uint(8) QoS_QualifierLength;

			uint(8*QoS_QualifierLength) QoS_Qualifier[i];

		}

	}

}

7.3.3.6.2	Semantics

streamPriority - indicates a relative measure for the priority of this Elementary Stream. An Elementary Stream with a higher streamPriority is more important than one with a lower streamPriority. The absolute values of streamPriority are not normatively defined.

predefined - a value unequal zero indicates a predefined QoS profile according to the table below.

Table � STYLEREF 1 \n * MERGEFORMAT �7�-� SEQ Table * ARABIC �8�: Predefined QoS_Descriptor Values

predefined�����0x00 custom�Custom����0x01 - 0xff reserved�����7.3.3.7	extensionDescriptor

Additional descriptors may be defined by ISO using the following syntax.

7.3.3.7.1	Syntax

class extensionDescriptor () {

	uint(8) descriptorTag;

	uint(8) descriptorDataLength;

	for (j=0;j<descriptorDataLength;j++) {

		uint(8) descriptorDataByte[j];

	}

}

7.3.3.7.2	Semantics

descriptorTag - is one of the registered tags from this table.

Table � STYLEREF 1 \n * MERGEFORMAT �7�-� SEQ Table * ARABIC �9�: descriptorTag Values

0x00�reserved��0x01-0x7F�reserved for ISO use��0x80-0xFF�user private��

descriptorDataLength - is the number of descriptorDataBytes.

descriptorDataByte[j] - is a data byte.

7.3.4	Usage of Object Descriptors

7.3.4.1	Association of Object Descriptors to Media Objects

Object Descriptors are associated to specific Media Objects within a Scene Description by means of the objectDescriptorID. Each Media Object has a specific type (Audio, Visual, sub-sceneDescription, etc.) and shall therefore only be related to an Object Descriptor that advertises Elementary Streams that are compatible to the type of the Media Object.

The behavior of the MPEG�4 terminal is undefined if an Object Descriptor advertises Elementary Streams with stream types that are incompatible to the associated Media Object.

7.3.4.2	Rules for Grouping Elementary Streams within one ObjectDescriptor

A grouping mechanism is established by allowing a list of Elementary Streams to be present within one Object Descriptor. The syntax elements (see Subclause � REF _Ref403958748 \n �7.3.3�) streamDependence together with dependsOn_ES_number, as well as streamType constitute a tool to qualify this grouping further.

Since Object Descriptors are refered to from specific Media Objects within a Scene Description (Video and Audio objects as well as inlined sub-scenes), the grouping of Elementary Streams (ES) within one ObjectDescriptor (OD) has to follow a number of semantical rules, as detailed below.

An OD shall only group ESs with compatible streamType. This means that the ESs within one OD shall all have either a visualStream, audioStream or SceneDescriptionStream type. The following exceptions exist:

An OD may contain zero or one additional ES of streamType = ObjectContentInfoStream. This ObjectContentInfoStream is valid for the content conveyed through the other ESs advertised in this OD.

An OD may contain any number of additional ESs of streamType = ClockReferenceStream. A ClockReferenceStream is valid for those ES within the MPEG�4 session that refer to the ES_Id of this ClockReferenceStream in their ES_descriptor.

An OD that contains ESs of streamType = SceneDescriptionStream may contain any number of additional ESs with streamType = ObjectDescriptorStream.

An ES may depend on another ES in the same OD, indicated by a dependsOn_ES_number. This dependance is governed by the following rules:

For dependant ES of streamType equal to either audioStream, visualStream or SceneDescriptionStream the dependent ES shall have the same streamType as the independent ES. This implies that the dependent stream contains enhancement information to the one it depends on. The semantic meaning of enhancement depends on the decoder that is associated to these streams and is opaque at this layer.

An ES that flows upstream, as indicated by DecoderConfigDescriptor.upStream = 1 shall always depend upon another ES of the same streamType that has the upStream flag set to zero. This implies that this upstream is associated to the downstream it depends on.

An ES with streamType = SceneDescriptionStream may depend on a stream with streamType = ObjectDescriptorStream. This implies that the ObjectDescriptorStream contains the Object Descriptors that are associated to this SceneDescriptionStream.

This further implies that if this OD contains another ES with streamType = SceneDescriptionStream that depends on the first SceneDescriptionStream the Object Descriptors in the ObjectDescriptorStream are valid for this additional SceneDescriptionStream as well.

Multiple ES which do not depend on other ESs and have the same streamType convey alternative representations of the same content. ESs are ordered according to preference. The ES with the lower ES_number is prefered over an ES with a higher ES_number.

An OD which contains one ES with streamType = initialObjectDescriptor shall not contain any other ES. The sole purpose of this OD is to provide a pointer to remote content. All descriptive information about this remote content shall be retrieved from the remote Object Descriptor that is being pointed to by this OD.

In case of stream dependency, the availability of the dependent stream is undefined if an ES_Descriptor for the stream it depends upon is not yet available.

Note:	The receiving terminal is expected to evaluate the ES_descriptors of all available Elementary Streams and choose by some non-standardized way for which subset it has sufficient resources to decode them while observing the constraints specified in this subclause. This subset may be determined by some profile indication.

7.3.4.3	Usage of URLs in Object Descriptors

URLs may be conveyed in ES_descriptors to locate an Elementary Stream. This is an alternative method to the content location by means of the numerical ES_Id (the concatentation of objectDescriptorID and ES_number). The usage of ES_Id constrains content references to the current MPEG�4 session (see Subclause � REF _Ref403964718 \n �7.3.4.4�), while the URL allows to reference content from remote locations.

Subclause � REF _Ref403964782 \n �7.3.4.5� specifies the necessary steps to retrieve the Elementary Stream identified either by a URL or an ES_Id. This subclause specifies the rules for the usage of URLs in ES_descriptors.

A URL may be present in an ES_descriptor with any streamType.

For all streamTypes except initialObjectDescriptor, the URL shall point to remote content consisting of one single Elementary Stream. Depending on the value of remoteODflag, the parameters of this Elementary Stream are either known a priori by means of the local Object Descriptor or only after a connection to the remote content has been made and a remote Object Descriptor has been retrieved. This remote Object Descriptor shall only contain one single ES_descriptor that shows the same streamType as the local ES_descriptor.

For streamType equal to initialObjectDescriptor, the URL shall point to remote content consisting of one Object Descriptor only. This Object Descriptor shall contain all necessary information to set up a new MPEG�4 session as specified in Subclause � REF _Ref403964782 \n �7.3.4.5�.

7.3.4.4	Object Descriptors and the MPEG�4 Session

Unique labels for an Object Descriptor and an Elementary Stream declared within an OD are given by objectDescriptorID and ES_Id, respectively. In order to facilitate the merging of content produced at different sources, these labels need to have a suitable scope. This scope is defined by the MPEG�4 session.

The term MPEG�4 session as well as the initial data to be retrieved at session set up are specified in this subclause. This allows to subsequently specify how the scope for objectDescriptorID and ES_Id is determined.

7.3.4.4.1	MPEG�4 session

An MPEG�4 session is defined as a peer-to-peer relation between one MPEG�4 content source and the receiving MPEG�4 terminal. An MPEG�4 session consists of an arbitrary number of Elementary Streams that are exchanged between the peer MPEG�4 terminals.

No assumptions are made at this point how this session is created and how its components are identified or managed.

By definition, the start up of the connection between two peer MPEG�4 terminals creates a new MPEG�4 session. Furthermore a new MPEG�4 session is created each time a connection is made to a URL conveyed in an Object Descriptor with a streamType of initialObjectDescriptor.

As an exception, a connection made to a URL that just refers to a single Elementary Stream does not create a new MPEG�4 session.

An Inline node in the Scene Description incorporates one or more new streams of type SceneDescriptionStream in the scene graph. The relation between an Inline node and the MPEG�4 session is as follows:

An Inline node that points to an Object Descriptor which identifies the new Scene Description streams by means of ES_ID does not open a new MPEG�4 session.

An Inline node that uses a URL or points to an Object Descriptor that uses a URL to point to a stream of type initialObjectDescriptor implies the set up of a new MPEG�4 session.

7.3.4.4.2	The initial Object Descriptor

At the set up of an MPEG�4 session it is necessary to communicate which content streams are to be conveyed as part of this session. This task is accomplished by the first Object Descriptor that is retrieved at set up of the session.

This initial Object Descriptor shall be delivered to the MPEG�4 terminal in the format specified in Subclause � REF _Ref403958748 \n �7.3.3�, without any packetization or protocol overhead through a reliable channel. This means that it is assumed that the initial Object Descriptor is always delivered without error.

The initial Object Descriptor shall contain ESs of type SceneDescriptionStream and optionally ObjectDescriptorStream as required by the content to be conveyed in this session and according to the constraints specified in Subclause � REF _Ref403959099 \n �7.3.4.2�.

Note:	As specified in the previous subclause, retrieval of an individual ES through a URL does not open a new MPEG�4 session. Therefore the Object Descriptor that optionally is retrieved in that case is not constrained in the above way.

7.3.4.4.3	Scope of objectDescriptorID and ES_ID labels

Each time a new MPEG�4 session is opened a new name scope for objectDescriptorID and, hence, ES_ID labels is created. This allows to hierarchically structure the name space for these labels. The Object Descriptors needed within this new MPEG�4 session, if any, are conveyed in the ObjectDescriptorStreams declared in the initial Object Descriptor of that session.

7.3.4.5	Session set up

This subclause gives the pre-conditions and a walk through the procedure by which the MPEG�4 receiver acquires the first bitstream at the start of a new MPEG-4 session in accordance with the specifications of the previous subclauses. In Subclause � REF _Ref404063440 \n �7.3.4.5.3� the slightly different walk through the procedure for aquiring a single Elementary Stream from a remote location is summarized.

7.3.4.5.1	Pre-conditions

A mechanism exists to open a session that takes a URL as input and provides some returned data as output. This may be embodied by the DA_ServiceAdd primitive of the DMIF Application Interface (DAI).

A mechanism exists to open a channel that takes user data as input and provides some returned data as output. This may be embodied by the DA_ChannelAdd primitive of the DMIF Application Interface.

A parser for Object Descriptors has been instantiated.

7.3.4.5.2	Session set up procedure

A connection to a URL is made, using a service set up call, e.g. DA_ServiceAdd.

The service set up call shall return data consisting of a single Object Descriptor.

This initial Object Descriptor contains ES_Descriptors as needed and as constrained by the specification in Subclause � REF _Ref403964959 \n �7.3.4.4.2�.

The ES_ID for the streams that are to be opened are determined.

Requests for delivery of the selected ESs are made, using a channel set up call, e.g. DA_ChannelAdd with the ES_ID as the uuData parameter.

The channel set up call shall return handles to the streams that correspond to the list of ES_IDs

The stream handles are passed to the appropriately configured AU Layer parsers for each ES_ID.

A confirmation that the terminal is ready to receive data is delivered to the sender, e.g., via DA_ChannelReady.

Delivery of streams starts

Scene Description and ObjectDescriptor stream are read

Further streams are opened as needed with the same procedure, starting at step 4.

7.3.4.5.2.1	Example

The set up example in the drawing conveys an initial Object Descriptor that points to one SceneDescriptionStream, an optional ObjectDescriptorStream and additional optional SceneDescriptionStreams or ObjectDescriptorStreams.

�EMBED Word.Picture.8���

Figure � STYLEREF 1 \n * MERGEFORMAT �7�-� SEQ Figure * ARABIC �17�: Session setup example

7.3.4.5.3	Set up for retrieval of a single Elementary Stream from a remote location

Individual Elementary Streams may be retrieved from a remote location using either URLs in suitable Media Object declarations (e.g. VideoObject2D node, see Subclause � REF _Ref404771294 \r \h ��7.2.5.2.2.15�) or URLs within an ES_descriptor. Reference to such a stream does not open a new MPEG�4 session, as specified in Subclause � REF _Ref403964992 \n �7.3.4.4.1�. However, the set up procedure is still required to open a connection to the remote location with the following steps:

A connection to a URL is made, using a service set up call, e.g. DA_ServiceAdd.

The service set up call shall optionally return data consisting of a single Object Descriptor, depending on the setting of the remoteODflag in the local ES_descriptor

This optional Object Descriptor contains a single ES_Descriptor specifying the configuration of the stream.

If not present, the local ES_descriptor specifies the configuration of the stream.

Request for delivery of the stream is made, using a channel set up call, e.g. DA_ChannelAdd with no parameter.

The channel set up call shall return a handle to the stream

The stream handle is passed to the appropriately configured AU Layer parser.

A confirmation that the terminal is ready to receive data is delivered to the sender, e.g., via DA_ChannelReady.

Delivery of stream starts

�7.4	Synchronization of Elementary Streams

7.4.1	Introduction

This subclause of the specification defines the tools to maintain temporal synchronization between Elementary Streams. The conceptual elements, most notably time stamps and clock reference information, that are required for this purpose have already been introduced in Subclause � REF _Ref404061985 \n �7.1.3�. The syntax and semantics to convey these elements end-to-end is embodied in the Access Unit Layer, specified in Subclause � REF _Ref403916893 \n �7.4.2�. This syntax is configurable to adapt to the needs of different types of Elementary Streams. The required configuration information is specified in Subclause � REF _Ref404062049 \n �7.4.2.2�.

On the Access Unit Layer an Elementary Stream is mapped into a sequence of packets, called an AL-packetized Stream (APS). For this packetization information has to be exchanged between the entity that generates an Elementary Stream and the Access Unit Layer. This relation is best described by a conceptual interface between both layers, termed the Elementary Stream Interface (ESI). The ESI is a Reference Point that need not be accessible in an implementation. It is described in Subclause � REF _Ref404062066 \n �7.4.3�.

AL-packetized Streams are made available to a delivery mechanism outside the scope of this specification. This delivery mechanism is only described in terms of a conceptual Stream Multiplex Interface (SMI) that specifies the information that need to be exchanged between the Access Unit Layer and the delivery mechanism. The SMI is a Reference Point that need not be accessible in an implementation. The SMI may be embodied by the DMIF Application Interface specified in CD 14496-6. The required properties of the SMI are described in Subclause � REF _Ref404062079 \n �7.4.4�.

Note: 	The delivery mechanism described by the SMI serves to abstract any transmission as well as storage media. The basic data transport property that this delivery mechanism shall provide is the framing of the data packets generated by the AU Layer. The FlexMux tool (see � REF _Ref404062104 \n �7.5.2�) is an example for such a tool that may be used in the delivery protocol stack as required.

The items specified in this subclause are depicted in � REF _Ref404735478 \h ��Figure 7-18� below.

�EMBED Word.Picture.8���

Figure � STYLEREF 1 \n �7�-� SEQ Figure * ARABIC �18� Systems Layers

7.4.2	Access Unit Layer

The Access Unit Layer (AU Layer or AL) specifies a syntax for the fragmentation of Elementary Streams into Access Units or parts thereof. These fragments are called AL-PDUs (AU Layer Protocol Data Unit). The sequence of AL-PDUs resulting from one Elementary Stream is called AL-packetized Stream (APS). Access Units are the only semantic entities at this layer and their content is opaque. They are used as the basic unit for synchronization.

An AL-PDU consists of an AL-PDU Header and an AL-PDU Payload. The AL-PDU Header supplies means for continuity checking in case of data loss and carries the coded representation of the time stamps and associated information. The detailed semantics of the time stamps are specified in Subclause � REF _Ref404061985 \n �7.1.3� on Systems Decoder Model. The AL-PDU Header is configurable as specified in Subclause � REF _Ref404062231 \n �7.4.2.2�. The AL-PDU Header itself is specified in Subclause � REF _Ref404736029 \r \h ��7.4.2.3�.

Note: 	An AL-PDU does not contain an indication of its length. Therefore AL-PDUs must be framed by a suitable lower layer protocol using, e.g., the FlexMux Tool, specified in Subclause � REF _Ref404062104 \n �7.5.2�. Consequently an AL-packetized Stream is not a self-contained data stream that can be stored or decoded without such framing.

7.4.2.1	AL-PDU Specification

Syntax and semantics of an AL_PDU are specified here. A pre-condition for an AL_PDU to be parsed is that the ALConfigDescriptor for the Elementary Stream to which the AL_PDU belongs is known since the ALConfigDescriptor conveys the configuration of the syntax of the AL-PDU Header.

7.4.2.1.1	Syntax

class AL_PDU (ALConfigDescriptor AL) {

	aligned (8) AL_PDU_Header alPduHeader(AL);

	aligned (8) AL_PDU_Payload alPduPayload;

}

7.4.2.1.2	Semantics

alPduHeader - an AL_PDU_Header element as specified in Subclause � REF _Ref404736029 \r \h ��7.4.2.3�.

alPduPayload - an AL_PDU_Payload that contains an opaque payload.

7.4.2.2	AL-PDU Header Configuration

The AL-PDU Header may be configured according to the needs of each individual Elementary Stream. The presence, resolution and accuracy of time stamps, clock references and other parameters, as detailed below, can be selected. With this flexibility, for example, a low bitrate Elementary Stream can choose to spend less overhead on AL-PDU Headers than a higher bitrate stream.

For each Elementary Stream the configuration is conveyed in an ALConfigDescriptor as part of the associated ES_descriptor within an Object Descriptor.

The configurable parameters in the AL-PDU Header can be divided in two classes: Those that apply to each AL-PDU (e.g. OCR, sequenceNumber) and those that are strictly related to Access Units (e.g. time stamps, accessUnitLength, instantBitrate, degradationPriority).

7.4.2.2.1	Syntax

class ALConfigDescriptor {

	uint (8) predefined;

	if (predefined==0) {

		bit(1) useAccessUnitStartFlag;

		bit(1) useAccessUnitEndFlag;

		bit(1) useRandomAccessPointFlag;

		bit(1) usePaddingFlag;

		bit(1) useTimeStampsFlag;

		uint(32) timeStampResolution;

		uint(32) OCRResolution;

		uint(6) timeStampLength;

		uint(6) OCRLength;

		uint(1) useWallClockTimeStampFlag;

		if (!useTimeStampsFlag) {

			uint(16) accessUnitRate;

			uint(16) compositionUnitRate;

			uint(timeStampLength) startDecodingTimeStamp;

			uint(timeStampLength) startCompositionTimeStamp;

			float(64) wallClockTimeStamp;

		}

		uint(5) AU_Length;

		uint(8) instantBitrateLength;

		uint(4) degradationPriorityLength;

		uint(4) seqNumLength;

	}

	bit(1) OCRstreamFlag;

	if (OCRstreamFlag) {

		uint(16) OCR_ES_Id;

	}

}

7.4.2.2.2	Semantics

predefined - allows to default the values from a set of predefined parameter sets as detailed below.

Table � STYLEREF 1 \n �7�-� SEQ Table * ARABIC �10�: Overview of predefined ALConfigDescriptor values

predefined field value �Description��0x00�custom��0x01�null AL-PDU Header��0x02 - 0xFF �Reserved��Table � STYLEREF 1 \n �7�-� SEQ Table * ARABIC �11�: Detailed predefined ALConfigDescriptor values

predefined field value

�0x01��useAccessUnitStartFlag�0��useAccessUnitEndFlag�0��useRandomAccessPointFlag�0��usePaddingFlag�0��useTimeStampsFlag�0�����timeStampResolution�-��OCRResolution�-��timeStampLength�-��OCRlength�-��useWallClockTimeStampFlag�0��if (!useTimeStampsFlag)���{���	accessUnitRate�-��	compositionUnitRate�-��	startDecodingTimeStamp�-��	startCompositionTimeStamp�-��	wallClockTimeStamp�-��}���AUlength�-��instantBitrateLength�-��degradationPriorityLength�-��seqNumLength�-��

useAccessUnitStartFlag - indicates that the accessUnitStartFlag is present in each AL-PDU Header of this Elementary Stream.

useAccessUnitEndFlag - indicates that the accessUnitEndFlag is present in each AL-PDU Header of this Elementary Stream.

If neither useAccessUnitStartFlag nor useAccessUnitEndFlag are set this implies that each AL-PDU corresponds to a single Access Unit.

It is illegal to set useAccessUnitStartFlag=0 and useAccessUnitEndFlag=1.

useRandomAccessPointFlag - indicates that the RandomAccessPointFlag is present in each AL-PDU Header of this Elementary Stream.

usePaddingFlag - indicates that the paddingFlag is present in each AL-PDU Header of this Elementary Stream.

useTimeStampsFlag - indicates that time stamps are used for synchronization of this Elementary Stream. They are conveyed in the AL-PDU Headers. Else accessUnitRate, compositionUnitRate, startDecodingTimeStamp and startCompositionTimeStamp conveyed in this AL-PDU Header Configuration shall be used for synchronization.

timeStampResolution - is the resolution of the time stamps in clock ticks per second.

OCRresolution - is the resolution of the Object Time Base in cycles per second.

timeStampLength - is the length of the time stamp fields in AL-PDU Headers.

OCRlength - is the length of the objectClockReference field in AL-PDU Headers. A length of zero indicates that no objectClockReferences are present in this Elementary Stream. If OCRstreamFlag is set, OCRLength shall be zero.

useWallClockTimeStampFlag - indicates that wallClockTimeStamps are present in this Elementary Stream. If useTimeStampsFlag equals to zero, only one such time stamp is present in this ALConfigDescriptor.

accessUnitRate - is the rate at which Access Units are decoded in Hertz.

compositionUnitRate - is the rate at which the resulting Composition Units are presented in Hertz.

startDecodingTimeStamp - conveys the time at which the first Access Unit of this Elementary Stream shall be decoded. It is conveyed in the resolution specified by timeStampResolution.

startCompositionTimeStamp - conveys the time at which the Composition Unit corresponding to the first Access Unit of this Elementary Stream shall be decoded. It is conveyed in the resolution specified by timeStampResolution.

wallClockTimeStamp - is a wall clock time stamp in SFTime format (see Subclause � REF _Ref404691309 \w \h ��7.2.2.8.1.7�) that indicates the current wall clock time corresponding to the time indicated by startCompositionTimeStamp.

AU_Length - is the length of the accessUnitLength fields in AL-PDU Headers for this Elementary Stream.

instantBitrateLength - is the length of the instantBitrate field in AL-PDU Headers for this Elementary Stream.

degradationPriorityLength - is the length of the degradationPriority field in AL-PDU Headers for this Elementary Stream.

seqNumLength - is the length of the sequenceNumber field in AL-PDU Headers for this Elementary Stream.

OCRstreamFlag - indicates that an OCR_ES_ID syntax element will follow.

OCR_ES_ID - indicates the Elementary Stream from which the time base for this Elementary Stream is derived . This OCR_ES_Id is unique within the MPEG�4 session.

If the AL-PDU Header is configured such that it does not have a length of an integer number of bytes, zero bit stuffing shall be applied for byte alignment.

7.4.2.3	AL-PDU Header Specification

The AL-PDU Header, as configured per the ALConfigDescriptor has the following structure.

7.4.2.3.1	Syntax

class AL_PDU_Header (ALConfigDescriptor AL) {

	default uint	accessUnitStartFlag = 1;

	default uint	randomAccessPointFlag = 0;

	default uint	accessUnitEndFlag = 1; // should read: (subsequent

					// AL-PDU has accessUnitStartFlag==1) ? 1 : 0

	default uint	OCRflag = 0;

	default uint	paddingFlag = 0;

	default uint	paddingBits = 0;

	default uint	decodingTimeStampFlag = 0;

	default uint	compositionTimeStampFlag = 0;

	default uint	wallClockTimeStampFlag = 0;

	default uint	instantBitrateFlag = 0;

	default uint	accessUnitLength = 0;

	if (AL.useAccessUnitStartFlag) {

		uint(1)		accessUnitStartFlag;

	}

	if (AL.useRandomAccessPointFlag) {

		uint(1)		randomAccessPointFlag;

	}

	if (AL.useAccessUnitStartFlag && AL.useAccessUnitEndFlag) {

		uint(1)		accessUnitEndFlag;

	}

	if (AL.OCRLength>0) {

		uint(1)		OCRflag;

	}

	if (AL.usePadding) {

		uint(1)		paddingFlag;

	}

	if (paddingFlag) {

		uint(3)		paddingBits;

	}

	if (!paddingFlag || paddingBits!=0) {

		if (AL.seqNumLength>0) {

			uint(AL.seqNumLength) 	sequenceNumber;

		}

		if (OCRflag) {

			uint(AL.OCRlength) 	objectClockReference;

		}

		if (AL.useAccessUnitStartFlag && accessUnitStartFlag) {

			if (AL.useTimeStampsFlag) {

				uint(1)	decodingTimeStampFlag;

				uint(1)	compositionTimeStampFlag;

				if (AL.useWallClockTimeStampFlag)

					uint(1) wallClockTimeStampFlag;

			}

			if (AL.instantBitrateLength>0) {

				uint(1)	instantBitrateFlag;

			}

			if (decodingTimeStampFlag) {

				uint(AL.timeStampLength) 	decodingTimeStamp;

			}

			if (compositionTimeStampFlag) {

				uint(AL.timeStampLength) 	compositionTimeStamp;

			}

			if (wallClockTimeStampFlag) {

				float(64)			 	wallClockTimeStamp;

			}

			if (AL.AUlength > 0) {

				uint(AL.AUlength) 		accessUnitLength;

			}

			if (instantBitrateFlag) {

				uint(AL.instantBitrateLength) instantBitrate;

			}

		if (AL.degradationPriorityLength>0) {

			uint(AL.degradationPriorityLength) degradationPriority;

		}

		}

	}

}

7.4.2.3.2	Semantics

accessUnitStartFlag - when set to one indicates that an Access Unit starts in this AL-PDU. If this syntax element is omitted from the AL-PDU Header configuration its default value is one, i. e., each AL-PDU starts a new Access Unit.

accessUnitEndFlag - when set to one indicates that an Access Unit ends in this AL-PDU. If this syntax element is omitted from the AL-PDU Header configuration its default value is only known after reception of the subsequent AL-PDU with the following rule:

	accessUnitEndFlag = (subsequent-AL-PDU has accessUnitStartFlag==1) ? 1 : 0.

If neither AccessUnitStartFlag nor AccessUnitEndFlag are configured into the AL-PDU Header this implies that each AL-PDU corresponds to a single Access Unit, hence both accessUnitStartFlag = accessUnitEndFlag = 1.

randomAccessPointFlag - when set to one indicates that random access to the content of this Elementary Stream is possible here. randomAccessPointFlag shall only be set if accessUnitStartFlag is set. If this syntax element is omitted from the AL-PDU Header configuration its default value is zero, i. e., no random access points are indicated.

OCRflag - when set to one indicates that an objectClockReference will follow. The default value for OCRflag is zero.

paddingFlag - indicates the presence of padding in this AL-PDU. The default value for paddingFlag is zero.

paddingBits - indicate the mode of padding to be used in this AL-PDU. The default value for paddingBits is zero.

If paddingFlag is set and paddingBits is zero, this indicates that the subsequent payload of this AL-PDU consists of padding bytes only. accessUnitStartFlag, randomAccessPointFlag and OCRflag shall not be set if paddingFlag is set and paddingBits is zero.

If paddingFlag is set and paddingBits is greater than zero, this indicates that the payload of this AL-PDU is followed by paddingBits of zero stuffing bits for byte alignment of the payload.

sequenceNumber - if present, shall be continuously incremented for each AL-PDU as a modulo counter. A discontinuity at the decoder corresponds to one or more missing AL-PDU. In that case an error shall be signaled to the Access Unit Layer user. If this syntax element is omitted from the AL-PDU Header configuration, a continuity checking by the AU Layer cannot be performed for this Elementary Stream.

Duplication of AL-PDUs: Elementary Streams that have a sequenceNumber field in their AL-PDU headers may use duplication of AL-PDUs for error resilience. This is restricted to only one duplication. The sequenceNumber of both AL-PDUs shall have the same value and each byte of the original AL-PDU shall be duplicated, with the exception of an objectClockReference field, if present, which shall encode a valid value for the duplicated AL-PDU.

objectClockReference - contains an Object Clock Reference time stamp as specified in Subclause � REF _Ref404062604 \n �7.1.3.3�. objectClockReference is only present in the AL-PDU Header if OCRflag is set.

Note: 	It is possible to convey just an OCR value and no payload within an AL-PDU.

The following is the semantics of the syntax elements that are only present at the start of an Access Unit when explicitly signaled by accessUnitStartFlag in the bitstream:

decodingTimeStampFlag - indicates that a Decoding Timestamp is present for this Access Unit.

compositionTimeStampFlag - indicates that a Composition Timestamp is present for this Access Unit.

wallClockTimeStampFlag - indicates that a wallClockTimeStamp is present for this Access Unit.

accessUnitLengthFlag - indicates that the length of this Access Unit is signaled.

instantBitrateFlag - indicates that an instantBitrate is signaled.

decodingTimeStamp - is a Decoding Timestamp as configured in ALConfigDescriptor.

compositionTimeStamp - is a Composition Timestamp as configured in ALConfigDescriptor.

wallClockTimeStamp - is a wall clock Timestamp in SFTime format.

accessUnitLength - is the length of the Access Unit in byte. If this syntax element is not present or has the value zero, the length of the Access Unit is unknown.

instantBitrate - is the instantaneous bitrate of this Elementary Stream until the next instantBitrate field is found.

degradationPriority - indicates the importance of the payload of this Access Unit. The streamPriority defines the base priority of an ES. degradationPriority defines a decrease in priority for this Access Unit relative to the base priority. The priority for this Access Unit is given by

	AccessUnitPriority = streamPriority - degradationPriority

degradationPriority remains at this value until its next occurrence. This indication is used for graceful degradation by the decoder of this Elementary Stream. The relative amount of complexity degradation among Access Units of differenet Elementary Streams becomes more as AccessUnitPriority decreases.

7.4.2.4	Clock Reference Stream

An Elementary Stream of streamType = ClockReferenceStream may be declared by means of the Object Descriptor syntax. It is used for the sole purpose to convey Object Clock Reference time stamps. Multiple Elementary Streams in an MPEG�4 session may make reference to such a ClockReferenceStream by means of the OCR_ES_ID syntax element in the ALConfigDescriptor to avoid redundant transmission of Clock Reference information.

On the Access Unit Layer a ClockReferenceStream is realized by configuring the AL-PDU Header syntax for this AL-packetized Stream such that only OCR values of the required OCRresolution and OCRlength are present in the AL-PDU Header.

There shall not be any AL-PDU Payload present in an AL-packetized Stream of streamType = ClockReferenceStream.

The following ALConfigDescriptor elements have recommended values for a Clock Reference Stream:

useAccessUnitStartFlag=0;

useAccessUnitEndFlag=0;

useRandomAccessPointFlag=0;

usePaddingFlag=0;

useTimeStampsFlag=0;

timeStampResolution=0;

timeStampLength=0;

useWallClockTimeStampFlag=0;

7.4.3	Elementary Stream Interface

The Elementary Stream Interface (ESI) specifies which data need to be exchanged between the entity that generates an Elementary Stream and the Access Unit Layer. It is described here to clarify that in case that both layers are implemented as separate entities the communication between the two layers occurs not only in terms of a compressed media data stream but as well in terms of additional information to convey time codes, length of Access Units, etc.

An implementation of MPEG�4 does not have to implement the Elementary Stream Interface. Instead it is possible to integrate parsing of the AL-packetized Stream and media data decompression in one decoder entity. Note that even in this case the decoder receives a sequence of packets at its input through the Stream Multiplex Interface (see Subclause � REF _Ref404062079 \n �7.4.4�) rather than a data stream.

The interface to receive Elementary Stream data from the AU Layer has a number of parameters that reflect the side information that has been retrieved while parsing the incoming AL-packetized stream:

ESI.receiveData (ESdata, dataLength, decodingTimeStamp, compositionTimeStamp, accessUnitStartFlag, randomAccessFlag, accessUnitEndFlag, degradationPriority, errorStatus)

ESdata - a number of dataLength data bytes for this Elementary Stream

dataLength - the length in bytes of ESdata

decodingTimeStamp - the decoding time for the Access Unit to which this ESdata belongs

compositionTimeStamp - the composition time for the Access Unit to which this ESdata belongs

accessUnitStartFlag - indicates that the first byte of ESdata is the start of an Access Unit

randomAccessFlag - indicates that the first byte of ESdata is the start of an Access Unit allowing for random access

accessUnitEndFlag - indicates that the last byte of ESdata is the end of an Access Unit

degradationPriority - indicates the degradation priority for this Access Unit

errorStatus - indicates whether ESdata is error free, possibly erroneous or whether data has been lost preceding the current ESdata bytes

A similar interface to send Elementary Stream data to the AU Layer requires the following parameters that will subsequently be encoded on the AU Layer:

ESI.sendData (ESdata, dataLength, decodingTimeStamp, compositionTimeStamp, accessUnitStartFlag, randomAccessFlag, accessUnitEndFlag, degradationPriority)

ESdata - a number of dataLength data bytes for this Elementary Stream

dataLength - the length in bytes of ESdata

decodingTimeStamp - the decoding time for the Access Unit to which this ESdata belongs

compositionTimeStamp - the composition time for the Access Unit to which this ESdata belongs

accessUnitStartFlag - indicates that the first byte of ESdata is the start of an Access Unit

randomAccessFlag - indicates that the first byte of ESdata is the start of an Access Unit allowing for random access

accessUnitEndFlag - indicates that the last byte of ESdata is the end of an Access Unit

degradationPriority - indicates the degradation priority for this Access Unit

7.4.4	Stream Multiplex Interface

The Stream Multiplex Interface (SMI) specifies which data needs to be exchanged between the Access Unit Layer and the delivery mechanism below. It is described here to clarify that in case that both layers are implemented as separate entities the communication between the two layers occurs not only in terms of an AL-packetized Stream but as well in terms of additional information to convey the length of each AL-PDU.

An implementation of MPEG�4 does not have to expose the Stream Multiplex Interface. However, each MPEG�4 terminal shall have the functionality described by the SMI to be able to receive the AL-PDUs that constitute an AL-packetized Stream. Specifically the delivery mechanism below the AU Layer shall supply a method to frame or otherwise encode the length of the AL-PDUs transported through it.

A superset of the required SMI functionality is embodied by the DMIF Application Interface specified in CD 14496�6. The DAI has DA_data primitives to receive and send data which conveys a number of data bytes. This interface has to be constrained in the following way: Each invocation of a DA_data.Request or a DA_Data.Indication shall transfer one AL-PDU between the AU Layer and the delivery mechanism below.

�7.5	Multiplexing of Elementary Streams

7.5.1	Introduction

Elementary Stream data encapsulated in AL-packetized Streams are sent/received through the Stream Multiplex Interface, as specified in � REF _Ref404062079 \n �7.4.4�. Multiplexing procedures and the architecture of the delivery protocol layers themselves are not in the scope of this specification. However, care has been taken to define the Access Unit Layer syntax and semantics such that AL-packetized Streams can be easily embedded in various transport protocol stacks. The abstract name “TransMux” is used to refer generically to any such protocol stack. Some examples for the embedding of AL-packetized Streams in various TransMux protocol stacks are given in informative Annex C.

The analysis of existing TransMux protocol stacks has shown that in case of stacks with fixed length packets (e.g. MPEG�2 Transport Stream) or with rather high multiplexing overhead (Internet protocol stack, i.e. (RTP/)UDP/IP) it may be advantageous to have a generic, low complexity, multiplexing tool that allows to interleave data from multiple AL-packetized Streams with low overhead, enabling low delay, low bitrate applications. Such a multiplex tool that may optionally be used by applications is specified in this subclause.

7.5.2	FlexMux Tool

The FlexMux tool is a flexible multiplex specification to accommodate interleaving of AL-packetized Streams with largely varying instantaneous bit rate. The basic data entity of the FlexMux is a FlexMux�PDU that has a variable length. One or more AL�PDUs are embedded in a FlexMux�PDU as specified in detail in the remainder of this subclause. The FlexMux tool provides identification of AL-PDUs originating from different Elementary Streams by means of FlexMux Channel numbers. Each AL-packetized Stream is mapped into one FlexMux Channel. FlexMux�PDUs with data from different AL�packetized Streams can therefore be arbitrarily interleaved. The sequence of FlexMux-PDUs that are interleaved into one stream are called FlexMux Stream.

A FlexMux Stream retrieved from a storage or transmission media can be parsed as a single data stream without the need for any side information. However, the FlexMux requires framing of FlexMux-PDUs by the underlying layer for random access or error recovery. There is no requirement to frame each individual FlexMux-PDU. The FlexMux also requires reliable error detection by the underlying layer. This design has been chosen acknowledging the fact that framing and error detection mechanisms are in many cases provided by the transport protocol stack below the FlexMux.

Two different modes of operation of the FlexMux providing different features and complexity exist. They are called Simple Mode and MuxCode Mode. A FlexMux Stream may contain an arbitrary mixture of FlexMux�PDUs using either Simple Mode or MuxCode Mode. The syntax and semantics of both modes are specified hereafter.

7.5.2.1	Simple Mode

In the simple mode one AL-PDU is encapsulated in one FlexMux-PDU and tagged by an index which is equal to the FlexMux Channel number as indicated in � REF _Ref404736339 \h ��Figure 7-19�. This mode does not require any configuration or maintenance of state by the receiving terminal.

�EMBED Word.Picture.8���

Figure � STYLEREF 1 \n �7�-� SEQ Figure * ARABIC �19� : Structure of FlexMux-PDU in simple mode

7.5.2.2	MuxCode mode

In the MuxCode mode one or more AL-PDUs are encapsulated in one FlexMux-PDU as indicated in � REF _Ref404736357 \h ��Figure 7-20�. This mode needs configuration and maintenance of state by the receiving terminal. The configuration describes how FlexMux-PDUs are shared between multiple AL-PDUs. In that mode the index value needs dereferencing to know to which FlexMux Channels the payload of a FlexMux-PDU belongs.

�EMBED Word.Picture.8���

Figure � STYLEREF 1 \n �7�-� SEQ Figure * ARABIC �20�: Structure of FlexMux-PDU in MuxCode mode

7.5.2.3	FlexMux-PDU specification

The two modes of the FlexMux, Simple Mode and MuxCode Mode are distinguished by the value of index as specified by the following syntax and semantics.

7.5.2.3.1	Syntax

class FlexMux_PDU () {

	uint(8) index;

	uint(8) length;

	if (index>239) {

		uint(4) version;

		uint(4) reserved;

		multiple_AL_PDU payload;

	} else {

		AL_PDU payload;

	}

}

7.5.2.3.2	Semantics

index - if index is smaller than 240 then

	FlexMux Channel = index

of the payload of this FlexMux-PDU. This range of values corresponds to the Simple Mode.

If index ranges from 240 to 255 this indicates that MuxCode Mode is used and a MuxCode is referenced as

	MuxCode = index - 240

MuxCode is used to associate the payload to FlexMux Channels as described in Subclause � REF _Ref404069059 \n �7.5.2.3.3�.

Note 	Although the number of FlexMux Channels is limited to 256, through the use of multiple TransMux Channels virtually any number of Elementary Streams may be transmitted.

length is the length of the FlexMux-PDU payload in bytes. This is equal to the length of the single encapsulated AL-PDU in Simple Mode and to the total length of the multiple encapsulated AL-PDUs in MuxCode Mode.

version indicates the current version of the MuxCodeTableEntry referenced by MuxCode. Version is used for error resilience. If this version does not match the version of the referenced MuxCodeTableEntry that has been received most recently, the FlexMux-PDU cannot be parsed. The implementation is free to either wait until the required version of MuxCodeTableEntry becomes available or to discard the FlexMux�PDU.

payload is either a single AL-PDU (Simpe Mode) or a number of one or more AL-PDUs (MuxCode Mode)

7.5.2.3.3	Configuration for MuxCode Mode

The configuration for MuxCode Mode is signaled by MuxCodeTableEntry messages. The syntax and semantics of MuxCodeTableEntry is specified here. The transport of the MuxCodeTableEntry shall be defined during the design of the transport protocol stack that makes use of the FlexMux tool. Committee Draft of International Standard 14496-6 proposes one method to convey this information using the DN_TransmuxConfig primitive.

The basic requirement for the transport of the configuration information is that data arrives reliably in a timely manner. However, no tight real-time performance is required for this control channel since version numbers allow to detect FlexMux�PDUs that cannot currently be decoded and, hence, trigger suitable action in the receiving terminal.

7.5.2.3.3.1	Syntax

aligned(8) class MuxCodeTableEntry () {

	uint(8) length;

	uint(4) MuxCode;

	uint(4) version;

	uint(8) substructureCount;

	for (i=0; i<substructureCount; i++) {

		uint(5) slotCount;

		uint(3) repetitionCount;

		for (k=0; k<slotCount; k++){

			uint(8) flexMuxChannel[i][k];

			uint(8) numberOfBytes[i][k];

		}

	}

}

7.5.2.3.3.2	Semantics

length is the length in bytes of the remainder of the MuxCodeTableEntry following the length element.

MuxCode is the number by which this MuxCode table entry is referenced.

version indicates the version of the MuxCodeTableEntry. Only the latest received version of a MuxCodeTableEntry is valid.

substructureCount is the number of substructures of this MuxCodeTableEntry

slotCount is the number of slots with data from different FlexMux Channels that are described by this substructure.

repetitionCount indicates how often this substructure is to be repeated. A repetitionCount zero indicates that this substructure is to be repeated infinitely. repetitionCount zero is only permitted in the last substructure of a MuxCodeTableEntry.

flexMuxChannel[i][k] is the FlexMux Channel to which the data in this slot belongs.

numberOfBytes[i][k] is the number of data bytes in this slot associated to flexMuxChannel[i][k]. This number of bytes corresponds to one AL-PDU.

7.5.2.4	Usage of MuxCode Mode

The MuxCodeTableEntry describes how a FlexMux-PDU is partitioned into slots that carry data from different FlexMux Channels. This is to be used as a template for parsing FlexMux-PDUs. If a FlexMux-PDU is longer than the template, parsing shall resume from the beginning of the template. If a FlexMux-PDU is shorter than the template, the remainder of the template is ignored.

7.5.2.4.1	Example

SubstructureCount = 3

slotCount[i] = 2, 3, 2 (for the corresponding substructure)

RepetitionCount[i] = 3, 2, 1 (for the corresponding substructure)

with Bytes[i][k] of data for FlexMuxChannels FMC[i][k] in slot [i][k] would give a splitting of the FlexMux-PDU to:

[FMC1 (Bytes1), FMC2 (Bytes2)] repeated 3 times, then

[FMC3 (Bytes3), FMC4 (Bytes4) , FMC5 (Bytes5)] repeated 2 times, then

[FMC6 (Bytes6), FMC7 (Bytes7)] repeated once

yielding a FlexMux-PDU with the following content:

�EMBED Word.Picture.8���

Figure � STYLEREF 1 \n �7�-� SEQ Figure * ARABIC �21� Example for a FlexMux-PDU in MuxCode mode

�7.6	Syntactic Description Language

7.6.1	Introduction

This section describes the mechanism with which bitstream syntax is documented in this Working Draft of International Standard. This mechanism is based on a syntactic description language, documented here in the form of formal rules. It directly extends the C-like syntax used in International Standards ISO/IEC 11172 and 13818 into a well-defined framework that lends itself to object-oriented data representations. In particular, SDL assumes an object-oriented underlying framework in which bitstream units consist of “classes.” It then proceeds to extend the typing system by providing facilities for defining bitstream-level quantities, and how they should be parsed.

We first describe elementary constructs, then composite syntactic constructs, arithmetic and logical expressions, and finally address syntactic control flow and built-in functions. Syntactic flow control is needed to take into account context-sensitive data. Several examples are used to clarify the structure.

7.6.2	Elementary Data Types

SDL uses the following elementary syntactic elements:

Constant-length direct representation bit fields or Fixed Length Codes — FLCs. These describe the encoded value exactly as it is to be used by the decoder.

Variable length direct representation bit fields, or parametric FLCs. These are FLCs for which the actual length is determined by the context of the bitstream (e.g., the value of another parameter).

Constant-length indirect representation bit fields. These require an extra lookup into an appropriate table or variable to obtain the desired value or set of values.

Variable-length indirect representation bit fields (e.g., Huffman codes).

These are described in more detail below. Note that all quantities are represented with the most significant byte first, and also with the most significant bit first.

7.6.2.1	Constant-Length Direct Representation Bit Fields

Constant-length direct representation bit fields are represented as:

Rule E.1: Elementary Data Types

[aligned] type[(length)] element_name [= value]; // C++-style comments allowed

The type can be any of the following: ‘int’ for signed integer, ‘unsigned int’ for unsigned integer, ‘double’ for floating point, and ‘bit’ for raw binary data. ‘length’ indicates the length of the element in bits, as it is stored in the bitstream. Note that ‘double’ can only use 32 or 64 bit lengths. The value attribute is only present when the value is fixed (e.g., start codes or object IDs), and it may also indicate a range of values (i.e., ‘0x01..0xAF’). The type and the optional length are always present, except if the data is non-parsable, i.e., it is not included in the bitstream. The attribute ‘aligned’ means that the data is aligned on a byte boundary. As an example, a start code would be represented as:

aligned bit(32) picture_start_code=0x00000100;

An optional numeric modifier, as in aligned(32), can be used to signify alignment on other than byte boundary. Allowed values are 8, 16, 32, 64, and 128. An entity such as temporal reference would be represented as:

unsigned int(5) temporal_reference;

where ‘unsigned int(5)’ indicates that the element should be interpreted as a 5-bit unsigned integer. By default, data is represented with the most significant bit first, and the most significant byte first.

Note that constants are defined using the ‘const’ attribute:

const int SOME_VALUE=255;	// non-parsable constant

const bit(3) BIT_PATTERN=1; // this is equivalent to the bit string “001”

To designate binary values, the ‘0b’ prefix is used, similar to the ‘0x’ prefix for hexadecimal numbers, and a period (‘.’) can be optionally placed every four digits for readability. Hence 0x0F is equivalent to 0b0000.11111.

In several instances it is desirable to examine the immediately following bits in the bitstream, without actually removing the bits. To support this behavior, a ‘*’ character can be placed after the parse size parentheses to modify the parse size semantics.

Rule E.2: Look-ahead parsing

[aligned] type (length)* element_name;

For example, we can check the value of next 32 bits in the bitstream as an unsigned integer without advancing the current position in the bitstream using the following representation:

aligned unsinged int (32)* next_code;

7.6.2.2	Variable Length Direct Representation Bit Fields

This case is covered by Rule E.1, by allowing the ‘length’ field to be a variable included in the bitstream, a non-parsable variable, or an expression involving such variables. For example:

unsigned int(3) precision;

int(precision) DC;

7.6.2.3	Constant-Length Indirect Representation Bit Fields

Indirect representation indicates that the actual value of the element at hand is indirectly specified by the bitstream through the use of a table or map. In other words, the value extracted from the bitstream is an index to a table from which one can extract the final desired value. This indirection can be expressed by defining the map itself:

Rule E.3: Maps

map MapName (output_type) {

index, {value_1, … value_M},

 …

}

These tables are used to translate or map bits from the bitstream into a set of one or more values. The input type of a map (the index specified in the first column) is always ‘bit’. The output_type entry is either a predefined type or a defined class (classes are defined in Subclause � REF _Ref373123000 \n �7.6.3.1�). The map is defined as a set of pairs of such indices and values. Keys are binary string constants while values are output_type constants. Values are specified as aggregates surrounded by curly braces, similar to C or C++ structures.

As an example, we have:

class YUVblocks {// classes are fully defined later on

uint Yblocks;

uint Ublocks;

uint Vblocks;

}

// a table that relates the chroma format with the

// number of blocks per signal component

map blocks_per_component (YUVblocks) {

0b00,	{4,	1,	1},	// 4:2:0

0b01,	{4,	2,	2},	// 4:2:2

0b10,	{4,	4,	4}	// 4:4:4

}

The next rule describes the use of such a map.

Rule E.4: Mapped Data Types

type (MapName) name;

The type of the variable has to be identical to the type returned from the map. Example:

YUVblocks(blocks_per_component) chroma_format;

Using the above declaration, we can access a particular value of the map using the construct: chroma_format.Ublocks.

7.6.2.4	Variable Length Indirect Representation Bit Fields

For a variable length element utilizing a Huffman or variable length code table, an identical specification to the fixed length case is used:

class val {

unsigned int foo;

int bar;

}

map sample_vlc_map (val) {

0b0000.001,	{0,	5},

0b0000.0001,	{1,	-14}

}

The only difference is that the indices of the map are now of variable length. The variable-length codewords are (as before) binary strings, expressed by default in ‘0b’ or ‘0x’ format, optionally using the period (‘.’) every four digits for readability.

Very often, variable length code tables are partially defined: due to the large number of possible entries, it is inefficient to keep using variable length codewords for all possible values. This necessitates the use of escape codes, that signal the subsequent use of a fixed-length (or even variable length) representation. To allow for such exceptions, parsable type declarations are allowed for map values.

This is illustrated in the following example (the class type ‘val’ is used, as defined above):

map sample_map_with_esc (val) {

0b0000.001,	{0,	5},

0b0000.0001,	{1,	-14},

0b0000.0000.1,	{5, int(32)},

0b0000.0000.0,	{0,	-20}

}

When the codeword 0b0000.0000.1 is encountered in the bitstream, then the value ‘5’ is asigned to the value of the first element (val.foo), while the following 32 bits will parsed and assigned as the value of the second element (val.bar). Note that, in case more than one element utilizes a parsable type declaration, the order is significant and is the order in which elements are parsed. In addition, the type within the map declaration must match the type used in the class declaration associated with the map’s return type.

7.6.3	Composite Data Types

7.6.3.1	Classes

Classes are the mechanism with which definition of composite types or objects is performed. Their definition is as follows.

Rule C.1: Classes

[aligned] class object_name [extends parent_class] [: bit(length) [id_name]= object_id | id_range] {

[element; …] // zero or more elements

}

The different elements within the curly braces are definitions of elementary bitstream components as we saw in Subclause � REF _Ref404771051 \r \h ��7.6.2�, or control flow that is discussed later on.

The optional ‘extends parent_class’ specifies that the class is “derived” from another class. Derivation means that all information present in the base class is also present in the derived class, and that all such information precedes in the bitstream any additional bitstream syntax declarations that are specified in the new class.

The object_id is optional, and if present is the key demultiplexing entity which allows differentiation between base and derived objects. It is also possible to have a range of possible values: the id_range is specified as start_id .. end_id, inclusive of both bounds.

A derived class can appear at any point where its base class is specified in the bitstream. In order to be able to determine if the base class or one of its derived classes is present in the bitstream, the object_id (or range) is used. This identifier is given a particular value (or range of values) at the base class; all derived classes then have to specify their own unique values (or ranges of values) as well. If a class declaration does not provide an object_id then class derivation is still allowed, but any derived classes cannot substitute their base class in the bitstream. This mechanism expresses the concept of “polymorphism” [5] in the context of bitstream syntax.

Examples:

class slice: aligned bit(32) slice_start_code=0x00000101 .. 0x000001AF {

// here we get vertical_size_extension, if present

if (scalable_mode==DATA_PARTITIONING) {

unsigned int(7) priority_breakpoint;

}

…

}

class foo {

int(3) a;

...

}

class bar extends foo {

 int(5) b;	// this b is preceded by the 3 bits of a

 int(10) c;

 ...

}

The order of declaration of bitstream components is important: it is the same order in which the elements appear in the bitstream. In the above examples, foo::b immediately precedes foo::c in the bitstream.

We can also encapsulate objects within other objects. In this case, the element mentioned at the beginning of this section is an object itself.

7.6.3.2	Parameter types

A parameter type defines a class with parameters. This is to address cases where the data structure of the class depends on variables of one or more other objects. Because SDL follows a declarative approach, references to other objects cannot be performed directly (none is instantiated). Parameter types provide placeholders for such references, in the same way as the arguments in a C function declaration. The syntax of a class definition with parameters is as follows.

Rule C.2: Class Parameter Types

[aligned] class object_name [(parameter list)] [extends parent_class]

 [: bit(length) [id_name]= object_id | id_range] {

[element; …] // zero or more elements

}

The parameter list is a list of type name and variable name pairs separated by commas. Any element of the bitstream, or value derived from the bitstream with a vlc, or a constant can be passed as a parameter.

A class that uses parameter types is dependent on the objects in its parameter list, whether class objects or simple variables. When instantiating such a class into an object, the parameters have to be instantiated objects of their corresponding classes or types.

Example:

class A {

// class body

...

unsigned int(4) format;

}

class B(A a, int i) {		// B uses parameter types

unsigned int(i) bar;

...

if(a.format == SOME_FORMAT) {

...

}

...

}

class C {

int(2) I;

A a;

B foo(a, I); // instantiated parameters are required

}

7.6.3.3	Arrays

Arrays are defined in a similar way as in C/C++, i.e., using square brackets. Their length, however, can depend on run-time parameters such as other bitstream values or expressions that involve such values. The array declaration is applicable to both elementary as well as composite objects.

Rule A.1: Arrays

typespec name [length];

typespec is a type specification (including bitstream representation information, e.g. ‘int(2)’), name is the name of the array, and length is its length. For example, we can have:

unsigned int(4) a[5];

int(10) b;

int(2) c[b];

Here ‘a’ is an array of 5 elements, each of which is represented using 4 bits in the bitstream and interpreted as an unsigned integer. In the case of ‘c’, its length depends on the actual value of ‘b’. Multi-dimensional arrays are allowed as well. The parsing order from the bitstream corresponds to scanning the array by incrementing first the right-most index of the array, then the second, and so on .

In several situations, it is desirable to load the values of an array one by one, in order to check for example a terminating or other condition. For this purpose, an extended array declaration is allowed in which individual elements of the array may be accessed.

Rule A.2: Partial Arrays

typespec name[[index]];

Here index is the element of the array that is defined. Several such partial definitions can be given, but they must all agree on the type specification. This notation is also valid for multidimensional arrays. For example:

int(4) a[[3]][[5]];

indicates the element a(5, 3) of the array, while

int(4) a[3][[5]];

indicates the entire sixth column of the array, and

 int(4) a[[3]][5];

indicates the entire fourth row of the array, with a length of 5 elements.

Note that ‘a[5]’ means that the array has five elements, whereas ‘a[[5]]’ implies that there are at least six.

7.6.4	Arithmetic and Logical Expressions

All standard arithmetic and logical operators of C++ are allowed, including their precedence rules.

7.6.5	Non-Parsable Variables

In order to accommodate complex syntactic constructs in which context information cannot be directly obtained from the bitstream but is the result of a non-trivial computation, non-parsable variables are allowed. These are strictly of local scope to the class they are defined in. They can be used in expressions and conditions in the same way as bitstream-level variables. In the following example, the number of non-zero elements of an array is computed.

unsigned int(6) size;

int(4) array[size];

…

int i; // this is a temporary, non-parsable variable

for (i=0, n=0; i<size; i++) {

if (array[[i]]!=0) n++;

}

int(3) coefficients[n];

// read as many coefficients as there are non-zero elements in array

7.6.6	Syntactic Flow Control

The syntactic flow control provides constructs that allow conditional parsing, depending on context, as well as repetitive parsing. The familiar C/C++ if-then-else construct is used for testing conditions. Similarly to C/C++, zero corresponds to false, and non-zero corresponds to true.

Rule FC.1: Flow Control Using If-Then-Else

if (condition) {

…

} [else if (condition) {

…

}] [else {

…

}]

The following example illustrates the procedure.

class conditional_object {

unsigned int(3) foo;

bit(1) bar_flag;

if (bar_flag) {

unsigned int(8) bar;

}

unsigned int(32) more_foo;

}

Here the presence of the entity ‘bar’ is determined by the ‘bar_flag’. Another example is:

class conditional_object {

unsigned int(3) foo;

bit(1) bar_flag;

if (bar_flag) {

unsigned int(8) bar;

} else {

unsigned int(some_vlc_table) bar;

}

unsigned int(32) more_foo;

}

Here we allow two different representations for ‘bar’, depending on the value of ‘bar_flag’. We could equally well have another entity instead of the second version (the variable length one) of ‘bar’ (another object, or another variable). Note that the use of a flag necessitates its declaration before the conditional is encountered. Also, if a variable appears twice (as in the example above), the types should be identical.

In order to facilitate cascades of if-then-else constructs, the ‘switch’ statement is also allowed.

Rule FC.2: Flow Control Using Switch

switch (condition) {

	[case label1: …]

	[default:]

}

The same category of context-sensitive objects also includes iterative definitions of objects. These simply imply the repetitive use of the same syntax to parse the bitstream, until some condition is met (it is the conditional repetition that implies context, but fixed repetitions are obviously treated the same way). The familiar structures of ‘for’, ‘while’, and ‘do’ loops can be used for this purpose.

Rule FC.3: Flow Control Using For

for (expression1; expression2; expression3) {

	…

}

expression1 is executed prior to starting the repetitions. Then expression2 is evaluated, and if it is non-zero (true) the declarations within the braces are executed, followed by the execution of expression3. The process repeats until expression2 evaluates to zero (false).

Rule FC.4: Flow Control Using Do

do {

	 …

} while (condition);

Here the block of statements is executed until condition evaluates to false. Note that the block will be executed at least once.

Rule FC.5: Flow Control Using While

while (condition) {

	 …

}

The block is executed zero or more times, as long as condition evalutes to non-zero (true).

To reduce the need for temporary variables (counters etc.), a ‘repeat’ statement is also defined.

Rule FC.6: Flow Control Using Repeat

repeat (parameter) {

	 …

}

The block within the braces will be repeated as many times as indicated by parameter. Note that parameter is only examined once, at the beginning of the iterations.

7.6.7	Bult-In Operators

The following built-in operators are defined.

Rule O.1: lengthof() Operator

lengthof(variable)

This operator returns the length, in bits, of the quantity contained in parentheses. The length is the number of bits that was most recently used to parse the quantity at hand. A return value of 0 means that no bits were parsed for this variable.

7.6.8	Scoping Rules

All parsable variables have class scope, i.e., they are available as class member variables. For non-parsable variables, the usual C++/Java scoping rules are followed (a new scope is introduced by curly braces). In particular, only variables declared in class scope are considered class member variables, and are thus available in objects of that particular type.

�7.7	Object Content Information

7.7.1	Introduction

This subclause describes the syntax and semantics of Object Content Information (OCI) as well as the method by which this data is conveyed within an MPEG�4 session.

7.7.2	Object Content Information (OCI) Data Stream

Object Content Information shall be conveyed in an Elementary Stream. Each media object that contains streaming data, i.e. that has an associated Object Descriptor, may have a separate OCI stream attached to it.

The Object Descriptor for such a media object shall contain at most one ES_descriptor pointing to an OCI stream, identified by the value 0x0A of the streamType field of this ES_descriptor. This solution allows the OCI stream to be optional.

Note:	Since the Scene Description is itself conveyed in an Elementary Stream described by an Object Descriptor, it is especially possible to associate OCI to the scene as such.

OCI data is partitioned in Access Units as any media stream. Each OCI Access Unit corresponds to one OCI_Event, as described in the next subclause, and has an associated decoding time stamp (DTS) that identifies the point in time at which the OCI Access Unit becomes valid.

A pre-defined ALHeader configuration may be established for specific profiles in order to fit the OCI requirements in terms of synchronization.

7.7.3	Object Content Information (OCI) Syntax and Semantics

This subclause specifies the syntax and semantics of MPEG-4 Object Content Information stream.

7.7.3.1	OCI Decoder Configuration

The OCI Stream decoder needs to be configured to ensure proper decoding of the subsequent OCI data. The configuration data is specified in this subclause.

In the context of this Committee Draft of Internation Standard this configuration data shall be conveyed in the ES_descriptor declaring the OCI stream. It shall be put in the container for stream specific information (decoderConfigDescriptor.specificInfoByte[i]) as specified in Subclause � REF _Ref404062721 \n �7.3.3.3�.

7.7.3.1.1	Syntax

class OCI_Stream_Configuration {

	uint(8) version_label;

}

7.7.3.1.2	Semantics

version_label - This 8 bits field indicates the version of OCI specification used on the corresponding OCI data stream. For MPEG-4 version 1 only the value 0x01 is allowed; all the other values are reserved.

7.7.3.2	OCI_Events

The MPEG-4 Object Content Information stream is based on the concept of Events. Each OCI_Event is conveyed as an OCI Access Unit that has an associated Decoding Time Stamp identifying the point in time at which this OCI_Event becomes valid.

7.7.3.2.1	Syntax

aligned(8) Class OCI_Event : bit(16) event_id {

	uint(16) length;

	uint(32) starting_time;

	uint(32) duration;

	uint(8) number_of_descriptors;

	for(i=0;i< number_of_descriptors;i++){

		OCI_Descriptor oci_descriptor;

	}

}

7.7.3.2.2	Semantics

event_id - This 16 bits field contains the identification number of the described event.

length - This 16 bits field gives the total length in bytes of the following descriptors.

starting_time - This 32 bits field contains the starting time referred to the starting time of the corresponding object in hours, minutes, seconds and hundredth of seconds. The format is 8 digits, the first 6 digits expressing hours, minutes and seconds with 4 bits each in binary coded decimal and the last two expressing hundredth of seconds in hexadecimal using 8 bits.

Example: 02: 36:45:89 is coded as “0x023645” concatenated and “01011001”

duration - This 32 bits field contains the starting time referred to the starting time of the corresponding object in hours, minutes, seconds and hundredth of seconds. The format is 8 digits, the first 6 digits expressing hours, minutes and seconds with 4 bits each in binary coded decimal and the last two expressing hundredth of seconds in hexadecimal using 8 bits.

Example: 02: 36:45:89 is coded as “0x023645” concatenated and “01011001”

number_of_descriptors - This 8 bits field gives the number of descriptors for the corresponding event.

7.7.3.3	Descriptors

7.7.3.3.1	OCI_Descriptor Class

7.7.3.3.1.1	Syntax

Class OCI_Descriptor {

	uint label(8);

	uint length(8);

	switch (label) {

		case 0x01 : Content_Classification_Descriptor

			content_classification_descriptor ;

		case 0x02 : Key_Wording_Descriptor key_wording_descriptor ;

		case 0x03 : Rating_Descriptor rating_descriptor ;

		case 0x04 : Language_Descriptor language_descriptor ;

		case 0x05 : Short_Textual_Descriptor short_textual_descriptor ;

		case 0x06 : Expanded_Textual_Descriptor

			expanded_textual_descriptor ;

		case 0x07 : Name_Content_Creators_Descriptor

			name_creators_descriptor ;

		case 0x08 : Date_Content_Creation_Descriptor

			date_creation_descriptor ;

		case 0x09 : Name_OCI_Creators_Descriptor

			name_OCI_creators_descriptor ;

		case 0x10 : Date_OCI_Creation_Descriptor

			date_OCI_creation_descriptor ;

	}

}

7.7.3.3.1.2	Semantics

label - This 8 bits field identifies each descriptor. The values 0x00 and 0x11 to 0xFF are reserved.

length - This 8 bits field specifies the total number of bytes of the data portion of the descriptor following the byte defining the value of this field.

7.7.3.3.2	Content classification descriptor

7.7.3.3.2.1	Syntax

Class Content_Classification_Descriptor{

	uint(8) number_of_classifications;

	for (i=0;i< number_of_classifications;i++){

		uint(16) classification_entity;

		uint(8) classification_table;

		for(i=0; i<N; i++){

			uint(8) content_classifier_byte;

		}

	}

}

7.7.3.3.2.2	Semantics

The content classification descriptor provides one or more classifications of the event information. The classification_entity field indicates the organization that classifies the content. The possible values have to be registered with a registration authority to be identified.

number_of_classifications - This 8 bits field indicates the number of content classification data sets to be provided for the corresponding event.

classification_entity - A 16 bits field indicating which is the content classification entity. The values of this field are to be attributed by a registration authority to be identified.

classification_table - This 8 bits field indicates which classification table is being used for the corresponding classification. The classification is defined by the corresponding classification entity. 0x00 is a reserved value.

content_classifier_byte - This 8 bits field contains 1 byte of information using a non-default classification table.

7.7.3.3.3	Key wording descriptor

7.7.3.3.3.1	Syntax

Class Key_Wording_Descriptor {

	uint(24) language_code;

	uint(8) number_key_words;

	for (i=0;i< number_key_words ;i++){

		uint(8) key_word_length;

		if (language_code == latin) then {

			for (j=0;j< key_word_length;j++){

				bit(8) key_word_char;

			}

		} else {

			for (j=0;j< key_word_length/2;j++){

				bit(16) key_word_char ;

			}

		}

	}

}

7.7.3.3.3.2	Semantics

The key-wording descriptor allows the OCI creator/provider to indicate a set of key-words, characterizing the content. The choice of the key-words is completely free but each time the key-wording descriptor appears, all the key-words given are for the language indicated in language_code. This means that the key-wording class descriptor will appear, for a certain event, a number of times equal to the number of languages for which key-words are to be provided. This solution results from a compromise between efficiency and parsing complexity.

The content classification descriptor and the key-wording descriptor together provide a complete and useful solution to the problem of content characterization/description both for composited objects (scenes) as well as elementary objects.

language_code - This 24 bits field contains the ISO 639 [3] three character language code of the language of the following text fields. Remember that for languages that only use Latin characters, just one byte per character is needed in Unicode (5(.

number_key-words - A 8 bits field indicating the number of key-words to be provided.

key-word_length - A 8 bits field specifying the length in bytes of each key-word.

key-word_char - 8 or 16 bits field; a string of 'key-word_char' fields specifies the key-word. Text information is coded using the Unicode character sets and methods (5(.

7.7.3.3.4	Rating descriptor

7.7.3.3.4.1	Syntax

Class Rating_Descriptor{

	uint(8) number_of_ratings;

	for (i=0;i< number_of_ratings;i++){

		uint(16) rating_entity;

		uint(16) rating_criteria;

		for(i=0; i<N; i++){

			uint(8) rating_byte;

		}

	}

}

7.7.3.3.4.2	Semantics

This descriptor gives one or more ratings, originated from corresponding rating entities, valid for a specified country. The rating_entity field indicates the organization which is rating the content. The possible values have to be registered with a registration authority to be identified.

number_of_ratings - This 8 bits field indicates the number of ratings of content provided for the corresponding event.

rating_entity - A 16 bits field indicating which is the rating entity. The values of this field are to be attributed by a registration authority to be identified.

rating_criteria - This 16 bits field indicates which rating criteria is being used for the corresponding rating entity. The value 0x00 is reserved.

rating_byte - This 8 bits field contains 1 byte of rating information.

7.7.3.3.5	Language descriptor

7.7.3.3.5.1	Syntax

Class Language_Descriptor {

	uint(24) language_code;

}

7.7.3.3.5.2	Semantics

This descriptor identifies the language of the corresponding audio/speech or text object that is being described.

language_code - This 24 bits field contains the ISO 639 [3] three character language code of the language of the following text fields. Remember that for languages that only use Latin characters, just one byte per character is needed in Unicode (5(.

7.7.3.3.6	Short textual descriptor

7.7.3.3.6.1	Syntax

Class Short_Textual_Descriptor {

	uint(24) language_code;

	uint(8) name_length;

	if (language_code == latin) then {

		for (i=0;i<name_length;i++){

			bit(8) name_char;

		}

		uint(8) text_length;

		for (i=0;i<text_length;i++){

			bit(8) text_char;

		}

	} else {

		for (i=0;i<name_length/2;i++){

			bit(16) name_char;

		}

		uint(8) text_length;

		for (i=0;i<text_length/2;i++){

			bit(16) text_char;

		}

	}

}

7.7.3.3.6.2	Semantics

The short textual descriptor provides the name of the event and a short description of the event in text form.

language_code - This 24 bits field contains the ISO 639 [3] three character language code of the language of the following text fields. Remember that for languages that only use Latin characters, just one byte per character is needed in Unicode (5(.

name_length - This 8 bits field specifies the length in bytes of the event name.

name_char - 8 or 16 bits field; a string of 'name_char' fields specifies the event name. Text information is coded using the Unicode character sets and methods (3(.

text_length - This 8 bits field specifies the length in bytes of the following text describing the event.

text_char - 8 or 16 bits field; a string of 'text_char' fields specifies the text description for the event. Text information is coded using the Unicode character sets and methods (3(.

7.7.3.3.7	Expanded textual descriptor

7.7.3.3.7.1	Syntax

Class Expanded_Textual_Descriptor{

	uint(24) language_code;

	uint(8) length_of_items

	for (i=0;i< length_of_items;i++){

		uint(8) item_description_length;

		if (language_code == latin) then {

			for (i=0;i< item_description_length;i++){

				bit(8) item_description_char;

			}

		} else {

			for (i=0;i< item_description_length /2;i++){

				bit(16) item_description_char;

	 		}

		}

		uint(8) item_length;

		if (language_code == latin) then {

			for (i=0;i< item_length;i++){

				bit(8) item_char;

			}

		} else{

			for (i=0;i< item_length /2;i++){

				bit(16) item_char;

			}

		}

	}

	uint(8) text_length;

	length_multiplier=0

	while(text_length == 255) {

		length_multiplier++;

		uint(8) text_length;

	}

	if (language_code == latin) then {

		for (i=0;i< length_multiplier*255+text_length;i++){

			bit(8) text_char;

		}

	} else {

		for (i=0;i< (length_multiplier*255+text_length) /2;i++){

			bit(16) text_char;

		}

	}

}

7.7.3.3.7.2	Semantics

The expanded textual descriptor provides a detailed text description of an event, which may be used in addition to the short event descriptor. Beside non itemised expanded text also text information structured into two columns, one giving an item description field and the other the item text, may be provided. A typical application for this structure is to give a cast list, where for example the item description field might be "Producer" and the item field would give the name of the producer.

language_code - This 24 bits field contains the ISO 639 [3] three character language code of the language of the following text fields. Remember that for languages that only use Latin characters, just one byte per character is needed in Unicode.

length_of_items - This 8 bits field specifies the length in bytes of the following items (itemised text).

item_description_length - This 8 bits field specifies the length in bytes of the item description.

item_description_char - 8 or 16 bits field; a string of 'item_description_char' fields specifies the item description. Text information is coded using the Unicode character sets and methods described in (5(.

item_length - This 8 bits field specifies the length in bytes of the item text.

item_char - 8 or 16 bits field; a string of 'item_char' fields specifies the item text. Text information is coded using the Unicode character sets and methods described in (3(.

text_length - This 8 bits field specifies the length in bytes of the non itemised expanded text. The value 255 works as an escape code, and it is followed by another 8 bits field which contains the length in bytes above 255. For lengths greater than 511 a third field is used, and so on.

text_char - 8 or 16 bits field; a string of 'text_char' fields specifies the non itemised expanded text. Text information is coded using the Unicode character sets and methods described in (5(.

7.7.3.3.8	Name of content creators descriptor

7.7.3.3.8.1	Syntax

Class Name_Content_Creators_Descriptor {

	uint(8) number_content_creators;

	for (i=0;i< number_content_creators ;i++){

		uint(24) language_code;

		uint(8) content_creator_length;

		if (language_code == latin) then {

			for (j=0;j< content_creator_length;j++){

				bit(8) content_creator_char;

			}

		} else {

			for (j=0;j< content_creator_length/2;j++){

				bit(16) content_creator_char;

			}

		}

	}

}

7.7.3.3.8.2	Semantics

The name of content creators descriptor indicates the name(s) of the content creator(s). Each content creator name may be in a different language.

number_content_creators - A 8 bits field indicating the number of content creators to be provided.

language_code - This 24 bits field contains the ISO 639 [3] three character language code of the language of the following text fields. Remember that for languages that only use Latin characters, just one byte per character is needed in Unicode.

content_creator_length - A 8 bits field specifying the length in bytes of each content creator name.

content_creator_char - 8 or 16 bits field; a string of 'content_creator_char' fields specifies the content creator name. Text information is coded using the Unicode character sets and methods (3(.

7.7.3.3.9	Date of content creation descriptor

7.7.3.3.9.1	Syntax

Class Date_Content_Creation_Descriptor {

	uint(40) date_content_creation;

}

7.7.3.3.9.2	Semantics

This descriptor identifies the date of the content creation.

date_content_creation - This 40 bits field contains the content creation date of the data corresponding to the event in question, in Universal Time, Co-ordinated (UTC) and Modified Julian Date (MJD) (see annex A). This field is coded as 16 bits giving the 16 LSBs of MJD followed by 24 bits coded as 6 digits in 4 bits Binary Coded Decimal (BCD). If the start time is undefined (e.g. for an event in a NVOD reference service) all bits of the field are set to "1".

7.7.3.3.10	Name of OCI creators descriptor

7.7.3.3.10.1	Syntax

Class Name_OCI_Creators_Descriptor {

	uint(8) number_OCI_creators;

	for (i=0;i< number_OCI_creators ;i++){

		uint(24) language_code;

		uint(8) OCI_creator_length;

		if (language_code == latin) then {

			for (j=0;j< OCI_creator_length;j++){

				bit(8) OCI_creator_char;

			}

		 } else {

			for (j=0;j< OCI_creator_length/2;j++){

				bit(16) OCI_creator_char;

			}

		}

	}

}

7.7.3.3.10.2	Semantics

The name of OCI creators descriptor indicates the name(s) of the OCI description creator(s). Each OCI creator name may be in a different language.

number_OCI_creators - A 8 bits field indicating the number of OCI creators.

language_code - This 24 bits field contains the ISO 639 [3] three character language code of the language of the following text fields. Remember that for languages that only use Latin characters, just one byte per character is needed in Unicode.

OCI_creator_length - A 8 bits field specifying the length in bytes of each OCI creator name.

OCI_creator_char - 8 or 16 bits field; a string of 'OCI_creator_char' fields specifies the OCI creator name. Text information is coded using the Unicode character sets and methods (5(.

7.7.3.3.11	Date of OCI creation descriptor

7.7.3.3.11.1	Syntax

Class Date_OCI_Creation_Descriptor {

	uint(40) date_OCI_creation;

}

7.7.3.3.11.2	Semantics

This descriptor identifies the date of the OCI description creation.

date_OCI_creation - This 40 bits field contains the OCI creation date for the OCI data corresponding to the event in question, in Universal Time, Co-ordinated (UTC) and Modified Julian Date (MJD) (see annex A). This field is coded as 16 bits giving the 16 LSBs of MJD followed by 24 bits coded as 6 digits in 4 bits Binary Coded Decimal (BCD). If the start time is undefined (e.g. for an event in a NVOD reference service) all bits of the field are set to "1".

7.7.4	�Annex: Conversion between time and date conventions

The types of conversion which may be required are summarized in the diagram below.

�EMBED Unknown * MERGEFORMAT \s���

Figure � STYLEREF 1 \n �7�-� SEQ Figure * ARABIC�22�: Conversion routes between Modified Julian Date (MJD) and Coordinated Universal Time (UTC)

The conversion between MJD + UTC and the "local" MJD + local time is simply a matter of adding or subtracting the local offset. This process may, of course, involve a "carry" or "borrow" from the UTC affecting the MJD. The other five conversion routes shown on the diagram are detailed in the formulas below.

Symbols used:

MJD:	Modified Julian Day

UTC:	Co-ordinated Universal Time

Y:	Year from 1900 (e.g. for 2003, Y = 103)

M:	Month from January (= 1) to December (= 12)

D:	Day of month from 1 to 31

WY:	"Week number" Year from 1900

MN:	Week number according to ISO 2015

WD:	Day of week from Monday (= 1) to Sunday (= 7)

K, L ,M' , W, Y':	Intermediate variables

x:	Multiplication

int:	Integer part, ignoring remainder

mod 7:	Remainder (0-6) after dividing integer by 7

a)	To find Y, M, D from MJD

	

	Y' = int [(MJD - 15 078,2) / 365,25]

	M' = int { [MJD - 14 956,1 - int (Y' x 365,25)] / 30,6001 }

	D = MJD - 14 956 - int (Y' x 365,25) - int (M' x 30,6001)

	If M' = 14 or M' = 15, then K = 1; else K = 0

	Y = Y' + K

	M = M' - 1 - K x 12

b)	To find MJD from Y, M, D

	If M = 1 or M = 2, then L = 1; else L = 0

	MJD = 14 956 + D + int [(Y - L) x 365,25] + int [(M + 1 + L x 12) x 30,6001]

c)	To find WD from WJD

	WD = [(MJD + 2) mod 7] + 1

d)	To find MJD from WY, WN, WD

	WJD = 15 012 + WD + 7 x { WN + int [(WY x 1 461 / 28) + 0,41] }

e)	To find WY, WN from MJD

	W = int [(MJD / 7) - 2 144,64]

	WY = int [(W x 28 / 1 461) - 0,0079]

	WN = W - int [(WY x 1 461 / 28) + 0,41]

Example:	MJD	=	45 218				W	=	4 315

	Y	=	(19)82				WY	=	(19)82

	M	=	9 (September)			WN	=	36

	D	=	6				WD	=	1 (Monday)

Note:	These formulas are applicable between the inclusive dates 1 900 March 1 to 2 100 February 28.

�7.8	Profiles

7.8.1	Scene Description Profiles.

This Subclause defines profiles of usage of Scene Description as specified in Subclause � REF _Ref404738100 \n �7.2�. Scene Description profiles are intended to allow the implementation of systems conforming to this specification, which implement a precisely specified subset of the specification.

Nodes are organized into Shared, 2D, 3D, Mixed. The profiles are defined in terms of these sets of nodes, when possible.

7.8.1.1	2D profile

Applications supporting only 2D graphics capabilities have to conform to the “2D profile” as specified in this Subclause. This is intended for systems that implement low complexity graphics with 2D transformations and alpha blending.

The “2D profile” is defined by the nodes in Subclause � REF _Ref404767389 \r \h ��7.2.5.1� (Shared) plus nodes in Subclause � REF _Ref404767414 \r \h ��7.2.5.2� (2D) and nodes � REF _Ref404767441 \r \h ��7.2.5.4.2.1� (Layer2D) and � REF _Ref404767460 \r \h ��7.2.5.4.2.3� (Composite2DTexture).

7.8.1.2	3D profile

Applications supporting the complete set of 3D capabilities have to conform to the “3D profile” as specified in this Subclause. This profile addresses systems that implement a full 3D graphics system, which requires much higher implementation complexity than the “2D profile”.

The “3D profile” is defined by the nodes in Subclause � REF _Ref404767389 \r \h ��7.2.5.1� (Shared) plus nodes in Subclause � REF _Ref404767743 \r \h ��7.2.5.3� (3D) and nodes � REF _Ref404767757 \r \h ��7.2.5.4.2.2� (Layer3D), � REF _Ref404767763 \r \h ��7.2.5.4.2.4� (Composite3DTexture) and � REF _Ref404767771 \r \h ��7.2.5.4.2.5� (CompositeMap).

Note that the “3D profile” is a 3D only profile; the 2D nodes which are not Shared nodes are not included in the 3D profile.

7.8.1.3	VRML profile

Applications claiming conformance with the “VRML profile” of this Committee Draft have to implement all and only the nodes specified by this International Standard, that are common to the specification of Draft International Standard 14472-1 (VRML) [2].

Nodes that are common to MPEG-4 Systems and VRML are clearly identified in the description of nodes of Subclause � REF _Ref404738100 \n �7.2�.

7.8.1.4	Complete profile

Applications supporting the complete set of capabilities specified by this Part 1 of Committee Draft conform to the “Complete Profile”.

7.8.1.5	Audio profile

Applications supporting all and only the audio related nodes as defined by this Subclause conform to the “Audio Profile”.

The “Audio profile” is defined by nodes 3.2.3 to 3.2.7 (Audio nodes), plus node 3.4.17 (Sound node).

�7.9	Elementary Streams for Upstream Control Information

Media Objects may require upstream control information to allow for interactivity.

The content creator needs to advertise the availability of an upstream control stream by means of an ES_descriptor for this stream with the upstream flag set to one. This ES_descriptor shall be part of the same Object Descriptor that declares the downstream Elementary Stream for this Media Object. See Subclause � REF _Ref403958748 \n �7.3.3� for the specification of the Object Descriptor syntax.

An Elementary Stream flowing from receiver to transmitter is treated the same way as any downstream Elementary Stream. The ES data will be conveyed through the Elementary Stream Interface to the Access Unit Layer where the Access Unit data is packaged in AL-PDUs. The parameters for the AU Layer shall be selected as requested in the ES_descriptor that has advertised the availablility of the upstream control stream.

The AL-packetized Stream (APS) with the upstream control data is subsequently passed through the Stream Multiplex Interface to a delivery mechanism similar to the downstream APS’s. The interface to this delivery mechanism may be embodied by the DMIF Application Interface as specified in Part 6 of this Committee Draft of International Standard.

Note:	The content of upstream control streams is specified in the same part of this specification that defines the content of the downstream data for this Media Object. E.g., control streams for video compression algorithms are defined in 14496-2.

�Annex A:	Bibliography

�Annex B:	Time Base Reconstruction (Informative)

B.1	Time base reconstruction

In an MPEG�4 receiving terminal, the various timestamps are the means to synchronize events related to decoding, composition and the associated buffer management. However, these timestamps can only be used if the time base(s) of the transmitting terminal(s) are correctly reconstructed at the receiver. A normative method to do so is not specified. How this may conceptually be done is described below.

B.1.1	Adjusting the receivers OTB

Each media object may be encoded by a media encoder with a different object time base (OTB). For each stream that conveys OCR, it is possible for the receiver to adjust a local OTB to the encoders’ OTB. This is done by well-known PLL techniques. The notion of time for each object can therefore be recovered at the receiver side.

B.1.2	Mapping Time Stamps to the STB

All OTBs in a MPEG�4 session may run at a different speed than the STB. Therefore a method is needed to map the value of time stamps expressed in any OTB to the STB of the receiving terminal. This step may be done jointly with the recovery of individual OTB’s as described in the previous subclause. If time stamps are not mapped to the STB they are not useful to control the receiving terminals operation. Especially, over- or underflow of buffers may occur.

Note however, that the receiver terminals’ System Time Base need not be locked to any of the Object Time Bases in an MPEG�4 session.

The composition time tSPT in terms of STB of a Composition Unit can be calculated from the composition time stamp value tOPT in terms of the relevant OTB, being transmitted by a linear transformation :

�EMBED Equation.3���

with:

�EMBED Equation.3���		composition time of a Composition Unit measured in units of �EMBED Equation.3���

�EMBED Equation.3���		current time in the receiving terminals System Time Base

�EMBED Equation.3���		composition time of a Composition Unit measured in units of �EMBED Equation.3���

�EMBED Equation.3���		current time in the media object encoder’s time base, conveyed by an OCR

�EMBED Equation.3���	value of receiving terminals STB when the first OCR time stamp of the media object is encountered.

�EMBED Equation.3���	value of the first OCR time stamp of the media object

�EMBED Equation.3���

�EMBED Equation.3���

The quotient �EMBED Equation.3���is the scaling factor between the two time bases. In cases, where the clock speed and resolution of the media encoder and of the receiving terminal are nominally identical, this quotient is very near to 1. For avoiding long term rounding errors, the quotient �EMBED Equation.3��� should always be recalculated whenever the formula is applied to a newly received composition time stamp. The quotient can be updated each time an OCR time stamp is encountered.

A similar formula can be derived for decoding times by replacing composition with decoding time stamps. If time stamps for some Access Units or Composition Units are only known implicitly, e. g., given by known update rates, these have also to be mapped with the same mechanism.

With this mechanism it is possible to synchronize to several OTB so that a correct decoding and composition of composition units from several media objects becomes possible.

B.1.3	Adjusting the STB to an OTB

In the special case that all media objects in a session are encoded by encoders using the same OTB, it is possible to lock the STB to this OTB by well known PLL techniques. In that case the mapping described in the previous subclause is not necessary.

B.1.4	System Operation without Object Time Base

If a time base for an encoded media object is neither conveyed by OCR stamps nor derived from another Elementary Stream, time stamps can only be interpreted by the decoder in a flow controlled application (e.g. reading from file). Otherwise the decoder may only operate under the assumption that each Access Unit is to be decoded and presented as soon as it is received. In that case the Systems Decoder Model does not hold and cannot be used by the transmitting terminal to model the receivers' behavior.

In the case that a universal clock is available that can be shared between peer terminals, this may be used as a common time base and it may be possible to still use the Systems Decoder Model without explicit OCR transmission. This is currently not further specified in this document.

B.2	Temporal aliasing and audio resampling

The MPEG-4 receiver system is not required to synchronize decoding of AUs and composition of CUs. In other words, the STB does not have to be identical to the OTB of any media object. The number of decoded and actually presented (displayed) units per second may therefore differ. Hence, temporal aliasing may occur, resulting from composition units being presented multiple times or being skipped.

If audio signals are encoded on a system with an OTB different from the STB of the decoder, even nominally identical sampling rates of the audio samples will not match, so that audio samples may be dropped or repeated.

Proper re-sampling techniques may of course in both cases be applied at the receiving terminal.

B.3	Reconstruction of a synchronised audiovisual scene: a walkthrough

The different steps to reconstruct a synchronized scene are as follows:

The time base for each object is recovered either from the OCR conveyed with this object or from another object present in the scene graph.

Object time stamps are mapped to the STB according to a suitable algorithm (e.g. the one detailed above),

Received Access Units are put in the Decoding Buffer

Each Access Unit is instantaneously decoded by the media object decoder at its implicit or explicit DTS and the resulting one or more Composition Units are put in the Composition Memory,

The compositor may access each CU between its CTS and the CTS of the subsequent CU.

�Annex C:	Embedding of MPEG-4 Streams in TransMux Instances (Informative)

The specification of this Committee Draft of International Standard terminates at the Stream Multiplex Interface, which is an interface at which packets of Elementary Stream data are conveyed. This assumes that a multitude of transport protocol stacks exists that is able to finally convey the packetized Elementary Stream data end-to-end.

The generic term TransMux is used to abstract all these potential protocol stacks, as shown in the following figure.

�EMBED Word.Picture.8���

This informative annex presents a number of examples on how content complying to this Committee Draft of International Standard can be embedded in some instances of such a TransMux.

C.1	ISO/IEC 14496 content embedded in ISO/IEC 13818-1 Transport Stream

C.1.1	Introduction

This informative annex describes an encapsulation method for a stream complying to this Committee Draft of International Standard by an ISO/IEC 13818-1 Transport Stream [1]. This informative annex provides how to transmit the Object Descriptor, Stream Map Table, FM-PDU and AL-PDU that contains the BIFS, Audio and Visual Elementary Streams, in the 13818-1 Transport Stream. This informative annex also provides the method on how to specify the 14496 indication in the 13818-1 Program Specific Information.

C.1.2	IS 14496 Stream Indication in Program Map Table

In a 13818-1 Transport Stream, the Elementary Streams are transmitted in the TS packets. The Packet ID (PID) is used to identify which data is transmitted in the payload of the TS packet. Some specific PID values are defined in Table 2-3 of ISO/IEC 13818-1. The value ‘0’ of the PID is used for the Program Association Table (PAT) specified in Subclause 2.4.4.3 of ISO/IEC 13818-1. The PAT specifies the PID of the TS packet that conveys the Program Map Table (PMT) specified in Subclause 2.4.4.8 of ISO/IEC 13818-1. The PMT contains the information such as the stream_type and Elementary_PID of Elementary Streams within a program. The PMT consists of the TS_program_map_section specified in Table 2-28 of ISO/IEC 13818-1. The stream_type specified in Table 2-29 of ISO/IEC 13818-1 identifies the data type of the stream. The Elementary_PID identifies the PID of the TS packet that conveys the Elementary Stream in the program.

In this Committee Draft of International Standard, an Elementary Stream has an associated Object Descriptor. The Object Descriptor contains the information of the Elementary Stream such as the identifier ES_ID, streamType, etc. The Stream Map Table connects an ES_ID with a FlexMux channel. The Object Descriptor and Stream Map Table are transmitted in the payload of the TS packet. The PID of the TS packet that conveys the Object Descriptor and Stream Map Table shall be specified in the PMT. Therefore, it is proposed to assign an specific value of the stream_type for the stream that contains Object Descriptor and Stream Map Table. Proposed stream_type assignment is shown in Table � REF _Ref404753129 \h ��Table C-2�. The TS packet payload of the stream_type value 0x10 is the OD_SMT_section described in Subclause � REF _Ref404753489 \r \h ��C.3�.

Table C-� SEQ Table * ARABIC \r 1 �1� : Transport Stream Program Map Section of ISO/IEC 13818-1

Syntax�No. of bits�Mnemonic��TS_program_map_section () {���� table_id�8�Uimsbf�� section_syntax_indicator�1�Bslbf�� ‘0’�1�bslbf�� Reserved�2�bslbf�� section_length�12�uimsbf�� program_number�16�uimsbf�� Reserved�2�bslbf�� version_number�5�uimsbf�� current_next_indicator�1�bslbf�� section_number�8�uimsbf�� last_section_number�8�uimsbf�� Reserved�3�bslbf�� PCR_PID�13�uimsbf�� Reserved�4�bslbf�� program_info_length�12�uimsbf�� for (I=0; i<N; i++) {���� descriptor ()���� }���� for (I=0; i<N1; I++) {���� stream_type�8�uimsbf�� Reserved�3�bslbf�� Elemenatry_PID�13�uimsbf�� Reserved�4�bslbf�� ES_info_length�12�uimsbf�� for (i=0; i<N2; i++) {���� Descriptor ()���� }���� }���� CRC_32�32�Rpchof��}����

Table C-� SEQ Table * ARABIC �2� : ISO/IEC 13818-1 Stream Type Assignment

Value�Description��0x00 - 0x0F�Defined in table 2-29 of ISO/IEC 13818-1��0x10�ISO/IEC 14496-1 MPEG-4��0x11 - 0x7F�ISO/IEC 13818-1 reserved��0x80 - 0xFF�User private��

C.1.3	Object Descriptor and Stream Map Table Encapsulation

The Object Descriptor and Stream Map Table should be retransmitted periodically in the Transport Stream. The OD_SMT_section shown in � REF _Ref404753371 \h ��Table C-3� contains one Stream Map Table and one or more Object Descriptors of the Elementary Streams that multiplexed in a same PID. The OD_SMT_section has the same syntax and semantics as the private section specified in Subclause 2.4.4.10 of ISO/IEC 13818-1, excluding the section_syntax_indicator and table_id_extension. The section_syntax_indicator is fixed to ‘1’ to use the table_id_extension, version_number, current_next_indicator, section_number, last_section_number and CRC_32. The lower 13 bits of the table_id_extension is the PID that conveys Elementary Streams described in the Object Descriptors in this OD_SMT_section. The upper 3 bits of the table_id_extension are reserved. Neither AL-PDU nor FM-PDU format applies to the Object Descriptor and Stream Map Table.

Table C-� SEQ Table * ARABIC �3� : OD SMT Section

Syntax�No. of bits�Mnemonic��OD_SMT_section () {���� table_id�8�uimsbf�� section_syntax_indicator�1�bslbf�� private_indicator�1�bslbf�� Reserved�2�bslbf�� private_section_length�12�uimsbf�� table_id_extension (reserved, PID)�16(3, 13)�uimsbf�� Reserved�2�bslbf�� version_number�5�uimsbf�� current_next_indicator�1�bslbf�� section_number�8�uimsbf�� last_section_number�8�uimsbf�� Stream Map Table ()���� for (I=0; I<N; i++) {���� Object Descriptor ()���� }���� CRC_32�32�rpchof��}����

The Stream Map Table in the OD_SMT_section is shown in � REF _Ref404753954 \h ��Table C-4�. When the value of streamCount equals to zero, it specifies that the Stream Map Table contains one ES_ID and FlexMux does not apply to this Elementary Stream. When the value of the streamCount is larger than zero, it specifies that the Stream Map Table contains one or more ES_IDs, and the FlexMux applies to these Elementary Streams and their FlexMux channels are presented.

The ESinfoLength specifies the number of bytes of the descriptors associated Elementary Stream. The descriptor that immediately follows the ESinfoLength field may contain the association_tag field defined by DMIF when DMIF is used.

Table C-� SEQ Table * ARABIC �4� : Stream Map Table

Syntax�No. of bits�Mnemonic��Stream_Map_Table () {���� StreamCount�8�uimsbf�� if (streamCount == 0) {���� ES_ID�16�uimsbf�� ESinfoLength�8�uimsbf�� for (i=0; i<ESinfoLength; i++) {���� descriptor ()���� }���� }���� else {���� for (i=0; i<streamCount; i++) {���� ES_ID�16�uimsbf�� FMC�8�uimsbf�� ESinfoLength�8�uimsbf�� for (i=0; I<ESinfoLength; i++) {���� descriptor ()���� }���� }���� }����}����

C.1.4	Scene Description Stream Encapsulation

The BIFS stream may be retransmitted periodically in the Transport Stream. Therefore, it is appropriate to use the private section specified in section 2.4.4.10 of ISO/IEC 13818-1 to transmit the BIFS stream. The private section for the BIFS stream is shown in � REF _Ref404754032 \h ��Table C-5�. The section_syntax_indicator is fixed to ‘1’ to use the table_id_extension, version_number, current_next_indicator, section_number, last_section_number and CRC_32. The AL-PDU format may apply to the BIFS stream. The AL-PDU header is configured appropriately in the ALConfigDescriptor that resides in the Object Descriptor. The AL-PDU that contains the BIFS stream is copied to the private_data_byte. One private section contains a complete AL-PDU. The PID of the TS packet that conveys this private section stream is derived from the lower 13 bits of the table_id_extension in the OD_SMT_section.

Table C-� SEQ Table * ARABIC �5� : Private section for the BIFS stream

Syntax�No. of bits�Mnemonic��private_section () {���� table_id�8�uimsbf�� section_syntax_indicator�1�bslbf�� private_indicator�1�bslbf�� Reserved�2�bslbf�� private_section_length�12�uimsbf�� table_id_extension�16�uimsbf�� Reserved�2�bslbf�� version_number�5�uimsbf�� current_next_indicator�1�bslbf�� section_number�8�uimsbf�� last_section_number�8�uimsbf�� for (i=0; I<private_section_length - 9; i++) {���� private_data_byte�8�bslbf�� }���� CRC_32�32�rpchof��}����

C.1.5	Audio Visual Stream Encapsulation

The AL-PDU or FM-PDU format is used for Audio Visual Elementary Streams complying to this Committee Draft of International Standard. The AL-PDU or FM-PDU shall be aligned to the TS packet payload because neither PDU format provides sync-word to determine the first byte of the PDU. The AL-PDU or FM-PDU shall start from the first byte of the TS packet payload. The payload_unit_start_indicator specified in Subclause 2.4.3.2 of ISO/IEC 13818-1 is used to identify whether the AL or FM-PDU starts. The AL-PDU or FM-PDU starts from the TS packet when the payload_unit_start_indicator is set to ‘1’. While the AL-PDU or FM-PDU does not start from the TS packet when the payload_unit_start_indicator is set to ‘0’. A TS packet shall not contain more than one AL-PDUs when FM-PDU format is not used.

The PID of the TS packet that conveys Audio or Visual Elementary Stream complying to this Committee Draft of International Standard is derived from the lower 13 bits of the table_id_extension in the OD_SMT_section. The FlexMux channel is derived from the Stream Map Table in the OD_SMT_section when the FlexMux is used.

C.1.6	Framing of AL-PDU and FM-PDU into TS packets

There exists the case that the AL-PDU or FM-PDU does not fit the size of TS packet, because the size of the TS packet is fixed to 188 bytes. Two different methods can be used for stuffing. The first method uses the adaptation field specified in Subclause 2.4.3.4 of ISO/IEC 13818-1. The second method uses the paddingFlag and paddingBits in the AL-PDU header.

C.1.6.1	Use of MPEG-2 TS Adaptation Field

The adaptation field specified in Subclause 2.4.3.4 of ISO/IEC 13818-1 is used when the size of AL-PDU or FM-PDU does not fit the size of the TS packet payload. The size of the adaptation field is identified by the adaptation_field_length field. The adaptation_field_length is the 8 bits field and specifies the length of adaptation field immediately following the adaptation_field_length. The size of the adaptation field can be calculated as follows :

in case of FM-PDU :

the_size_of_adaptation_field = 188 - 4 - MIN [the_size_of_FM_PDU, 184]

in case of AL-PDU :

	the_size_of_adaptation_field = 188 - 4 - MIN [the_size_of_AL_PDU, 184]

C.1.6.2	Use of MPEG-4 PaddingFlag and PaddingBits

The paddingFlag and paddingBits are the fields that are used in the AL-PDU header to do the fitting of FM-PDUs into TS packets. These fields construct the FM-PDU that contains padding byte only. This type of FM-PDU can be used to adjust the size of TS packet to 188 bytes. An example is shown in � REF _Ref404754433 \h ��Figure C-1�. Note that this method cannot be used when the FlexMux does not applies to the Elementary Stream or when the size of the FM-PDU equals to 183 bytes. In that case, the method described in Subclause � REF _Ref404754571 \r \h ��C.1.6.1� can be applied.

The packets are built as follows :

TS_packet		= TS_packet_header (4 bytes) + TS_packet_payload

TS_packet_payload	= FM_PDU

FM_PDU		= FM_PDU_header + FM_PDU_payload

FM_PDU_payload	= AL_PDU

AL_PDU		= AL_PDU_header + AL_PDU_payload

AL_PDU_payload	= 1 SegmentOfAU

AU			= ((SegmentOfAU)

�EMBED Unknown���

Figure C-� SEQ Figure * ARABIC \r 1�1� : An example of stuffing for the MPEG-2 TS packet

C.2	MPEG-4 content embedded in MPEG-2 DSM-CC Data Carousel

C.2.1	Scope

The scope of this experiment is to evaluate the use of the module multiplexing capabilities of the MPEG-2 DSM-CC (ISO/IEC 13818-6) Data Carousel as a flexible multiplexer when the TransMux channel is an ISO/IEC 13818-1 Transport Stream. The DSM-CC data carousel is designed so as to be compatible with the DMIF/Application Interfaces specified by this Committee Draft of International Standard.

C.2.2	Introduction

The purpose of this informative annex is to describe a method based on the ISO/IEC 13818-1 DSM-CC Data Carousel to provide a FlexMux-like functionality in an ISO/IEC 13818-1 Transport Stream. The DSM-CC Data Carousel is designed to support the transmission of AL-PDUs in carousel modules. Each module is considered to be a Flexible Multiplexer channel. Advantages of the method are:

Compatibility with existing ISO/IEC 13818 Hardware. The new services provided using this Committee Draft of International Standard are transported in DSM-CC sections which do not interfere with the current delivery of ISO/IEC 13818-1 Transport of Video and Audio streams. Consequently, current receiver hardware will not be affected by the new design.

Use of current decoder hardware filtering capabilities to route Elementary Streams complying to this Committee Draft of International Standard to separate object buffers.

Easy management of FlexMux channels. New channels can be added or removed easily by simply updating and changing the version of the carousel directory message.

Support of several channels within one PID. As a result, maintaining the Stream Map Table becomes much easier as it does not depend on hard coded PID values.

C.2.3	DSM-CC Data Carousel

The DSM-CC Data Carousel framework is specified in ISO/IEC 13818-6. It is built on the DSM-CC download protocol. In particular, data and control messages are periodically re-transmitted following a pre-defined periodicity.

The download server sends periodic download control messages which allow a client application to discover the data modules being transmitted and determine which, if any, of these modules are appropriate for the client.

The client typically retrieves a subset of the modules described in the control messages. The data modules are transmitted in blocks by means of download data messages. Acquisition of a module does not necessarily have to start at the first block in the module as download data messages feature a block numbering field which allows a client application to assemble the blocks in order.

When the Data Carousel is encapsulated in an ISO/IEC 13818-1 Transport Stream, special encapsulation rules apply to facilitate acquisition of the modules. The DSM-CC Broadcast Data Carousel framework allows many data modules to be transported within a single PID. Therefore small and large data modules can be bundled together within the same PID.

C.2.4	General Concept

The DSM-CC Data Carousel protocol is extended to support unbounded modules. This is achieved by resetting the module size to 0. Each module is then regarded as a FlexMux-like channel as modules are transported in chunks by means of DownloadDataBlock() messages. It is proposed here to make each FlexMux AL-PDU coincide with the payload of a DownloadDataBlock() message. The FlexMux channel number is the identifier of the module and the length of each AL-PDU is the length of the DownloadDataBlock() message payload. The data channels are identified by DSM-CC sections for which table_id is equal to 0x3B (DSM-CC download data messages). The signaling channel conveys the download control messages which are transported in DSM-CC sections with table_id equal to 0x3C (DSM-CC download control messages).

The proposed design is fully compatible with Part 1 (Systems) and 5 (DMIF) of this Committee Draft of International Standard and in particular, is based on the concept of TransMuxAssociationTag which abstracts the location of an ISO/IEC 13818-1 Transport Stream and its associated FlexMux channels in the underlying broadcast network.

The location of the DSM-CC Data Carousel is announced in the Program Map Table by the inclusion of an association_tag_descriptor() structure defined by DSM-CC which binds the TransMux instance to a particular PID. The Stream Map Table is transmitted in the form of a directory service in DownloadInfoIndication() control messages. This table associates each Elementary Stream identifiers (ES_Id) with a module identifier (moduleId) and a channelHandle which is exposed at the DAI (DMIF/Application Interface).

The BIFS and Object Descriptors are transmitted in particular modules in the data carousel. The mechanism used for identifying the module conveying the First Object Descriptor is user private. The remaining modules are used to transmit the various Elementary Streams which provide the data necessary to compose the MPEG-4 scene.

The Figure below provides an overview of the system. The dotted lines represents the interface between the application employing this Committee Draft of International Standard and the underlying DMIF session. In the Figure below, the TransMuxAssociationTag abstracts the location of the ISO/IEC 13818-1 Transport Stream which is used to transport the DSM-CC Data Carousel. Each channel in the designated MPEG-2 Transport Stream is identified by moduleId. The module identifier for each module is published in the directory messages (DSM-CC downloadInfoIndication() messages) on the signaling channel and the various chunks of data modules are transported via DSM-CC downloadDataBlock() messages. Each of these messages is viewed as the payload of a FlexMux AL-PDU. The application requests to open a channel by means of a DA_ChannelAdd.Req() interface. The ES_id field is an input argument which identifies the desired Elementary Stream in the Object Descriptor. The underlying DMIF session replies by providing an handle to the multiplexed channel carrying the Elementary Stream. This handle is the channelHandle. Subsequently, the DMIF session informs the application of the arrival of new data by means of a Data.Indication() message. The client acknowledges receipt of the data through a Data.Response() interface.

�EMBED PowerPoint.Show.8���

C.2.5	Design of Broadcast Applications

The purpose of this section is to review the most important transmission elements required to support applications employing this Committee Draft of International Standard in a broadcast environment, and to show how they can be mapped to the ISO/IEC 13818-1 DSM-CC Data Carousel.

C.2.5.1	Program Map Table

The Program Map Table (see Table 2-28 in Subclause 2.4.4.8 of ISO/IEC 13818-1) is acquired from PSI sections with table_id value 0x02.

Table C-� SEQ Table * ARABIC �6�: Transport Stream Program Map Section

Syntax�No. of bits�Mnemonic��TS_program_map_section(){����	table_id�8�uimsbf��	section_syntax_indicator�1�bslbf��	‘0’�1�bslbf��	Reserved�2�bslbf��	section_length�12�uimsbf��	program_number�16�uimsbf��	Reserved�2�bslbf��	version_number�5�uimsbf��	current_next_indicator�1�bslbf��	section_number�8�uimsbf��	last_section_number�8�uimsbf��	Reserved�3�bslbf��	PCR_PID�13�uimsbf��	Reserved�4�bslbf��	program_info_length�12�uimsbf��	for(I=0I<N;I++){����		Descriptor()����	}����	for(I=0;I<N1;I++){����		stream_type�8�uimsbf��		Reserved�3�bslbf��		Elementary_PID�13�uimsbf��		Reserved�4�bslbf��		ES_info_length�12�uimsbf��		for(j=0;j<N2;j++){����			Descriptor()����		}����	}����	CRC_32�32�rpchof��}����

The data carousel resides in the stream identified by stream_type value 0x0B. Table 9-4 in Subclause 9.2.3 of the ISO/IEC 13818-6 DSM-CC standard specifies that stream_type value 0x0B indicates that DSM-CC section is present and conveys a DSM-CC User-to-Network message. The only permitted User-to-Network messages shall be the Download protocol messages defined in Subclause 7.3 of ISO/IEC 13818-6.

With the Broadcast Data Carousel are associated two descriptors in the descriptor loop following the ES_info_length field. The carousel identifier descriptor features a carousel identifier field carousel_id which can is used to identify the carousel at the service level. The descriptor_tag value for this descriptor is 0x13 (19). See Table 11-2 in Subclause 11.5.1 of ISO/IEC 13818-6 for a complete definition of this descriptor. The second descriptor is the association_tag_descriptor (see Table 11-3 in Subclause 11.5.2 of ISO/IEC 13818-6) which binds the associationTag with the TransMux channel which is in this case is the ISO/IEC 13818-1 Transport Stream channel identified by the field elementary_PID. More than one association_tag_descriptor can be included.

The value PCR_PID defines the PID of the Clock Reference common to all the multiplexed channels.

Table C-� SEQ Table * ARABIC �7�: Association Tag Descriptor

Syntax �No. of bits�Mnemonic��association_tag_descriptor(){����	descriptor_tag�8�uimsbf��	descriptor_length�8�uimsbf��	association_tag�16�uimsbf��	use �16�uimsbf ��	selector_byte_length�8�uimsbf��	for(n=0; n<selector_byte_length����	{����		selector_byte�8�uimsbf��	}����	for(I=0;I<N;I++){����		private_data_byte�8�uimsbf��	}����}����

The descriptor_tag value is 20 (0x14). Here the field association_tag conveys a copy of the TransMuxAssociationTag value.

C.2.5.2	FlexMux Descriptor

Multiplexed channels are aggregated into a TransMux channel by means of the MPEG2CarouselDescriptor specified by Part 5 (DMIF) of this Committee Draft of International Standard. This descriptor binds several multiplexed channels under a unique associationTag which here points to a TransMux channel. There a few possible solutions for transmitting this descriptor to the receiver. For example, it can be sent via a downloadServerInitiate() message or it can be transmitted at the bottom of a downloadInfoIndication() message. Both these messages are sent on the application signaling channel.

C.2.5.3	Application Signaling Channel and Data Channels

A PID with number elementary_PID and for which stream_type is equal to 0x0B carries a DSM-CC Data Carousel. In this case the ISO/IEC 13818-1 stream is made of DSMCC_section() structures which convey either download control or download data messages. In applications utilizing this Committee Draft of International Standard, download control messages make up the application signaling channel and download data messages form a bundle of multiplexed channels. The definition of the structure DSMCC_section can be found in Table 9-2 of Subclause 9.2.2. in ISO/IEC 13818-6 specifications and is repeated here for convenience.

Table C-� SEQ Table * ARABIC �8�: DSM-CC Section

Syntax�No. of bits�Mnemonic��DSMCC_section(){����	table_id�8�uimsbf��	section_syntax_indicator�1�bslbf��	private_indicator�1�bslbf��	Reserved�2�bslbf��	dsmcc_section_length�12�uimsbf��	table_id_extension�16�uimsbf��	Reserved�2�bslbf��	version_number�5�uimsbf��	current_next_indicator�1�bslbf��	section_number�8�uimsbf��	last_section_number�8�uimsbf��	if(table_id == 0x3A){����		LLCSNAP()����	}����	else if(table_id == 0x3B){����		userNetworkMessage()����	}����	else if(table_id == 0x3C){����		downloadDataMessage()����	}����	else if(table_id == 0x3D){����		DSMCC_descriptor_list()����	}����	else if(table_id == 0x3E){����	 for(I=0;I<dsmcc_section_length-9;I++){����			private_data_byte�8�bslbf��	 }����	}����	if(section_syntax_indicator == ‘0’){����		Checksum�32�uimsbf��	}����	else {����		CRC_32�32�rpchof��	}����

Table C-� SEQ Table * ARABIC �9�: DSM-CC table_id Assignment

table_id�DSMCC Section Type��0x00 - 0x37�ITU-T Rec. H.222.0 | ISO/IEC 13818-1 defined ��0x38 - 0x39�ISO/IEC 13818-6 reserved��0x3A�DSM-CC sections containing multiprotocol encapsulated data ��0x3B�DSM-CC sections containing U-N Messages, except Download Data Messages.��0x3C�DSM-CC sections containing Download Data Messages ��0x3D�DSM-CC sections containing Stream Descriptors��0x3E�DSM-CC sections containing private data��0x3F�ISO/IEC 13818-6 reserved��0x40 - 0xFE�User private��0xFF�forbidden��

The application signaling channel can be recognized by the fact that DSMCC_sections have a table_id value equal to 0x3B. DSMCC_section() structures with table_id equal to 0x3C belong to the multiplexed channel bundle.

C.2.5.4	Stream Map Table

The Stream Map Table links Elementary Stream Identifiers (ES_id) used by BIFS and the application to the channelHandle value that DMIF uses to refer to the stream.

In the case of the DSM-CC Data Carousel, the Stream Map Table is conveyed by means of the downloadInfoIndication() message in the application signaling channel.

In the PID identified by elementary_PID and for which stream_type is equal to 0x0B, the DSM-CC sections with table_id value equal to 0x3B convey DownloadInfoIndication() messages which provide a directory service announcing the data modules available in the carousel. The DownloadInfoIndication() message is classified as a download control message (see Subclause 7.3.2 of ISO/IEC 13818-6). Therefore, this message is preceded by a dsmccMessageHeader() message header (see Table 2-1 in Clause 2 of ISO/IEC-13818-6)

Table C-� SEQ Table * ARABIC �10�: DSM-CC Message Header

Syntax�Num. Of Bits��DsmccMessageHeader(){���	ProtocolDiscriminator�8��	DsmccType�8��	MessageId�16��	TransactionId�32��	Reserved�8��	AdaptationLength�8��	MessageLength�16��	if(adaptationLength > 0){���		DsmccAdaptationHeader()���	}���}���

protocolDiscriminator is set to 0x11 as specified in Clause 2 of ISO/IEC 13818-6

dsmccType is set to 0x03 to indicate that a download message follows (see Table 2-2 in chapter 2 of ISO/IEC 13818-6).

messageId is set to 0x1002 as specified in Table 7-4 in Subclause 7.3 of ISO/IEC 13818-6

the two most significant bits of transaction_id are set to 0x01 to indicate that this field is assigned by the server (see Table 2-3 in Clause 2 of ISO/IEC 13818-6).

Table C-� SEQ Table * ARABIC �11�: Adaptation Header

Syntax�Num of bits��dsmccAdaptationHeader(){���	AdaptationType�8��	for(I=0;I<adaptationLength-1;I++){���		AdaptationDataByte�8��	}���}���

Table C-� SEQ Table * ARABIC �12�: DSM-CC Adaptation Types

Adaptation Type�Description ��0x00�ISO/IEC 13818-6 reserved��0x01�DSM-CC Conditional Access adaptation format.��0x02�DSM-CC User ID adaptation format��0x03-0x7F�ISO/IEC 13818-6 Reserved.��0x80-0xFF�User defined adaptation type��

Table C-� SEQ Table * ARABIC �13�: DownloadInfoIndication Message

Syntax�Num. Of Bits��DownloadInfoIndication(){���	DsmccMessageHeader()���	DownloadId�32��	BlockSize�16��	WindowSize�8��	AckPeriod�8��	TCDownloadWindow�32��	TCDownloadScenario�32��	CompatibilityDescriptor()���	NumberOfModules�16��	for(I=0;I<numberOfModules;I++){���		ModuleId�16��		ModuleSize�32��		ModuleVersion�8��		ModuleInfoLength�8��		for(j=0;j<moduleInfoLength;j++){���			moduleInfoByte�8��		}���	}���	PrivateDataLength�16��	for(I=0;I<privateDataLength;I++){���		PrivateDataByte�8��	}���}���

downloadId conveys a copy of carousel_id

windowSize is set to 0x00 (as specified in Subclause 7.3.2 of ISO/IEC 13818-6)

ackPeriod is set to 0x00 (as specified in Subclause 7.3.2 of ISO/IEC 13818-6)

tcDownloadWindow is set to 0x00 (as specified in Subclause 7.3.2 of ISO/IEC 13818-6)

The field moduleId featured in the downloadInfoIndication() message above is the data channel number. The first 2 bytes of the moduleInfoByte field convey the ES_id field which is used by BIFS to make reference to the Elementary Stream. The next 2 bytes of the moduleInfoByte field convey a copy of channelHandle which is exposed at the DAI interface. The mechanism for identifying Object Descriptor and BIFS streams is private.

C.2.5.5	TransMux Channel

DSM-CC sections with table_id value equal to 0x3C convey downloadDataBlock() messages which include each a chunk of a data module. The data pipe ensuring the transport of these DSMCC_section() structures can therefore been seen as the TransMux channel. This channel is identified by the associationTag in the PMT. The protection layer provided by the TransMux is error detection (checksum is present). Consequently, the field section_syntax_indicator in these DSMCC sections shall always be set to 1.

C.2.5.6	FlexMux Channel

Any module can be acquired by filtering DSM-CC sections having table_id equal to 0x3C and table_id_extension equal to the module identifier, moduleId. These values correspond to DSM-CC sections conveying DownloadDataBlock() messages. These messages convey data blocks which are chunks of a target module identified by moduleId. A FlexMux channel is the set of DSM-CC sections conveying the DownloadDataBlock() messages corresponding to one moduleId. The FlexMux channel number is the module identifier, moduleId. The DownloadDataBlock() message is classified as a download data message. See Table 7-7 in Subclause 7.3 of ISO/IEC 13818-6. Therefore, it is preceded by a dsmccDownloadDataHeader() message header (see Table 7-3 in Subclause 7.2.2.1 of ISO/IEC 13818-6).

The FlexMux PDU can be considered to start in each DSMCC_section() from the field dsmcc_section_length field included up to last byte before the 4 last bytes used for error protection not included (CRC_32 or checksum field). The equivalent of the index and length field in the regular MPEG-4 FlexMux are the DSMCC_section fields table_id_extension and dsmcc_section_length, respectively. The field table_id provides a distinction between the signaling channel and the data channel. The remaining DSMCC_section fields can be viewed as part of the protection layer provided by the TransMux. According to the encapsulation rules specified in Clause 9 of ISO/IEC 13818-6, the field table_id_extension conveys a copy of moduleId, or in different terms, the FlexMux channel number. The MPEG-4 AL-PDU Header is placed in the dsmccDownloadDataHeader() of the DownloadDataHeader() and the AL-PDU payload is the payload of DownloadDataBlock() message.

Table C-� SEQ Table * ARABIC �14�: DSM-CC Download Data Header

Syntax�Num. Of Bits��DsmccDownloadDataHeader(){���	ProtocolDiscriminator�8��	DsmccType�8��	MessageId�16��	downloadId�32��	reserved�8��	adaptationLength�8��	messageLength�16��	if(adaptationLength > 0){���		dsmccAdaptationHeader()���	}���}���

where

protocolDiscriminator value is set to 0x11 as specified in Clause 2 of ISO/IEC 13818-6

dsmccType is set to 0x03 as specified in Table 2-2 in Clause 2 of ISO/IEC 13818-6

messageId is set to 0x1003 as specified in Table 7-4 in Subclause 7.3 of ISO/IEC 13818-6 if the message is a downloadDataBlock() message.

download_id conveys a copy of carousel_id

The dsmccAdaptationHeader() is defined in Table 2-4 in Subclause 2.1 of ISO/IEC 13818-6.It is proposed to reserve the adaptationType value 0x03 to signal the presence of the AL-PDU Header in the adaptation field. The following table shows the new adaptationType values.

Table C-� SEQ Table * ARABIC �15�: DSM-CC Adaptation Types

Adaptation Type�Description ��0x00�ISO/IEC 13818-6 reserved��0x01�DSM-CC Conditional Access adaptation format.��0x02�DSM-CC User ID adaptation format��0x03�MPEG-4 adaptation format��0x04-0x7F�ISO/IEC 13818-6 Reserved.��0x80-0xFF�User defined adaptation type��

The FlexMux AL-PDU payload is the payload of the downloadDataBlock() message which includes a chunk of the data module.

Table C-� SEQ Table * ARABIC �16�: DSM-CC DownloadDataBlock() Message

Syntax�Num of bits��DownloadDataBlock(){���	DsmccDownloadDataHeader()���	ModuleId�16��	ModuleVersion�8��	Reserved�8��	BlockNumber�16��	for(I=0;I<N;I++){���		BlockDataByte�8��	}���}���

C.2.5.7	Payload

A data module can be reconstructed by concatenating the received data blocks according to the blockNumber field received in each FlexMux AL-PDU payload. In streaming mode, the change in module content is captured by the moduleVersion value which is incremented by one each time the module is loaded with new data. The field moduleVersion is reset once it has reached its allowed maximum value. A one-to-one mapping between moduleVersion (8 bits) in the DownloadDataBlock() message and the version_number field in DSMCC_section (5 bits) shall be provided by always setting the 3 most significant bits of moduleVersion to 0. Consequently, the allowed maximum value for moduleVersion is 0x1F (31). Likewise, the 8 most significant bits of the blockNumber field (16 bits) in a DownloadDataBlock() message shall not be used to provide a one-to-one mapping with the section_number field (8 bits) in DSMCC_section().

C.3	MPEG-4 content embedded in a Single FlexMux Stream

This subclause gives an example of a minimal configuration of a system utilizing this Committee Draft of International Standard that is applicable if an application constrains a session to a single peer-to-peer interactive connection or to the access to a single stored data stream. This configuration is not intended for random access nor is it resilient to errors in the transmitted or stored data stream. Despite these limitation, this configuration has some applications, e.g., storage of data complying to this Committee Draft of International Standard on disk for interchange, non-real-time transmission and even real-time transmission and playback, as long as the missing random access is tolerable. For this minimal configuration, the tools defined within this specification already constitute a near complete Systems layer.

This minimal configuration consists of a FlexMux Stream. Any number of up to 256 Elementary Streams can be multiplexed into a Single FlexMux Stream (SFS), that offers 256 transport channels, termed FlexMux Channels.

In addition to the raw FlexMux Stream that constitutes a fully compliant FlexMux Stream according to this specification, it is necessary to specify conventions how to know what is the content of this Single FlexMux Stream. Such conventions are specified in this subclause.

C.3.1	Initial Object Descriptor

MPEG�4 content in a Single FlexMux Stream shall always start with the Initial Object Descriptor for the content carried in this SFS. The initial Object Descriptor is neither packaged in an OD_Update command nor in an AL-PDU but conveyed in its raw format.

The initial Object Descriptor follows the constraints specified in � REF _Ref403964959 \n �7.3.4.4.2� if the SFS contains more than one Elementary Stream. If the SFS contains only one Elementary Stream the Initial Object Descriptor shall contain only one ES_descriptor describing the properties of this Elementary Stream.

C.3.2	Stream Map Table

The initial Object Descriptor mechanism allows to store Elementary Streams with arbitrary ES_IDs in the Single FlexMux Stream. In order to associate ES_IDs to the FlexMux Channels that carry the corresponding Elementary Streams, a Stream Map Table (SMT) is required.

The Stream Map Table shall immediately follow the initial Object Descriptor in the SFS. The syntax and semantics of the SMT is specified here.

C.3.2.1	Syntax

class StreamMapTable {

	uint(8) streamCount;

	for (i=0; i<streamCount; i++) {

		uint(16) ES_Id;

		uint(8) FlexMuxChannel;

	}

}

C.3.2.2	Semantics

streamCount is the number of streams for which the stream association is conveyed in this table.

ES_Id is the concatenation of ObjectDescriptorID and ES_number as defined in Subclause � REF _Ref404735830 \r \h ��7.3.3.2�.

FlexMuxChannel is the FlexMux Channel number within the current FlexMux Stream.

C.3.3	Single FlexMux Stream Payload

The remainder of the Single FlexMux Stream, following the initial Object Descriptor and the Stream Map Table shall consist of FlexMux-PDUs that encapsulate the AL-PDUs of one or more AL-packetized Streams.

The configuration of the AL-PDU Headers of the individual AL-packetized Streams is known from their related ES_descriptors that are conveyed either in the initial Object Descriptor or in additional Object Descriptors that are conveyed in an ObjectDescriptorStream that has been established by means of the initial Object Descriptor.

�Annex D:	View Dependent Object Scalability (Normative)

D.1	Introduction

Coding of View-Dependent Scalability (VDS) parameters for texture can provide for efficient incremental decoding of 3D images (e.g. 2D texture mapped onto a gridded 3D mesh such as terrain). Corresponding tools from the Visual and Systems parts of this specification are used in conjunction with downstream and upstream channels of a decoding terminal. The combined capabilities provide the means for an encoder to react to a stream of viewpoint information received from a terminal. The encoder transmits a series of coded textures optimized for the viewing conditions which can be applied in the rendering of textured 3D meshes by the receiving terminal. Each encoded view-dependent texture (initial texture and incremental updates) typically corresponds to a specific 3D view in the user’s viewpoint that is first transmitted from the receiving terminal.

A Systems tool transmits 3D viewpoint parameters in the upstream channel back to the encoder. The encoder's response is a frequency-selective, view-dependent update of DCT coefficients for the 2D texture (based upon view-dependent projection of the 2D texture in 3D) back to the receiving terminal, along the downstream channel, for decoding by a Visual DCT tool at the receiving terminal. This bilateral communication supports interactive server-based refinement of texture for low-bandwidth transmissions to a decoding terminal that renders the texture in 3D for a user controlling the viewpoint movement. A gain in texture transmission efficiency is traded for longer closed-loop latency in the rendering of the textures in 3D. The terminal coordinates inbound texture updates with local 3D renderings, accounting for network delays so that texture cached in the terminal matches each rendered 3D view.

A method to obtain an optimal coding of 3D data is to take into account the viewing position in order to transmit only the most visible information. This approach reduces greatly the transmission delay, in comparison to transmitting all scene texture that might be viewable in 3D from the encoding database server to the decoder. At a given time, only the most important information is sent, depending on object geometry and viewpoint displacement. This technique allows the data to be streamed across a network, given that a upstream channel is available for sending the new viewing conditions to the remote database. This principle is applied to the texture data to be mapped on a 3D grid mesh. The mesh is first downloaded into the memory of the decoder using the appropriate BIFS node, and then the DCT coefficients of the texture image are updated by taking into account the viewing parameters, i.e. the field of view, the distance and the direction to the viewpoint.

D.2	Bitstream Syntax

This subclause details the bitstream syntax for the upstream data and details the rules that govern the way in which higher level syntactic elements may be combined together to generate a compliant bitstream that can be decoded correctly by the receiver.

 Subclause � REF _Ref404668764 \n �D.2.1� is concerned with the bitstream syntax for a View Dependent Object which initializes the session at the upstream data decoder. Subclause � REF _Ref404668838 \n �D.2.2� is concerned with the View Dependent Object Layer and contains the viewpoint information that is to be communicated back to the coder.

D.2.1	View Dependent Object

ViewDependentObject() {�No. of bits�Mnemonic��view_dep_object_start_code �32�bslbf��field_of_view �16�uimsbf��marker_bit �1�bslbf��xsize_of_rendering_window �16�uimsbf��marker_bit �1�bslbf��ysize_of_rendering_window �16�uimlbf��marker_bit �1�bslbf��do {���� ViewDependentObjectLayer()����} while(nextbits_bytealigned()== view_dep_object_layer_start_code)����next_start_code()����}����		

D.2.2	View Dependent Object Layer

ViewDependentObjectLayer() {�No. of bits�Mnemonic��view_dep_object_layer_start_code �32�bslbf��xpos1 �16�uimsbf��marker_bit �1�bslbf��xpos2 �16�uimsbf��marker_bit �1�bslbf��ypos1 �16�uimsbf��marker_bit �1�bslbf��ypos2 �16�uimsbf��marker_bit �1�bslbf��zpos1 �16�uimsbf��marker_bit �1�bslbf��zpos2 �16�uimsbf��marker_bit �1�bslbf��xaim1 �16�uimsbf��marker_bit �1�bslbf��xaim2 �16�uimsbf��marker_bit �1�bslbf��yaim1 �16�uimsbf��marker_bit �1�bslbf��yaim2 �16�uimsbf��marker_bit �1�bslbf��zaim1 �16�uimsbf��marker_bit �1�bslbf��zaim2 �16�uimsbf��}����D.3	Bitstream Semantics

This subclause details the semantic meaning of the various fields in the bitstream as specified previously in the Subclause � REF _Ref404681047 \n �D.2�.

D.3.1	View Dependent Object

view_dep_object_start_code -- The view_dep_object_start_code is the string ‘000001BF’ in hexadecimal. It initiates a view dependent object session.

field_of_view -- This is a 16-bit unsigned integer that specifies the field of view.

marker bit -- This is a one bit field, set to '1', to prevent illegal start code emulation within the bitstream.

xsize_of_rendering_window -- This is a 16-bit unsigned integer that specifies the horizontal size of the rendering window.

ysize_of_rendering_window --This is a 16 unsigned integer that specifies the vertical size of the rendering window.

D.3.2	View Dependent Object Layer

view_dep_object_layer_start_code -- The view_dep_object_layer_start_code is the bit string ‘000001BE’ in hexadecimal. It initiates a view dependent object layer.

xpos1 – This is a 16 bit codeword which forms the lower 16 bit of the 32 bit integer xpos. The integer xpos is to be computed as follows: xpos = xpos1 + (xpos2 << 16). The quantities xpos, ypos, zpos describe the 3D coordinates of the viewer's position.

xpos2 – This is a 16 bit codeword which forms the upper 16 bit word of the 32 bit integer xpos.

ypos1 – This is a 16 bit codeword which forms the lower 16 bit word of the 32 bit integer ypos. The integer ypos can be computed as follows: ypos = ypos1 + (ypos2 << 16).

ypos2 – This is a 16 bit codeword which forms the upper 16 bit word of the 32 bit integer xpos.

zpos1 – This is a 16 bit codeword which forms the lower 16 bit of the 32 bit integer xpos. The integer zpos can be computed as follows: zpos = zpos1 + (zpos2 << 16).

zpos2 – This is a 16 bit codeword which forms the upper 16 bit of the 32 bit integer xpos.

xaim1 – This is a 16 bit codeword which forms the lower 16 bit of the 32 bit integer xaim. The integer xaim can be computed as follows: xaim = xaim1 + (xaim2 << 16). The quantities xaim, yaim, zaim describe the 3D position of the aim point.

xaim2 – This is a 16 bit codeword which forms the upper 16 bit of the 32 bit integer xaim.

yaim1 – This is a 16 bit codeword which forms the lower 16 bit of the 32 bit integer yaim. The integer yaim can be computed as follows: yaim = yaim1 + (yaim2 << 16).

yaim2 – This is a 16 bit codeword which forms the upper 16 bit of the 32 bit integer yaim.

zaim1 – This is a 16 bit codeword which forms the lower 16 bit of the 32 bit integer zaim. The integer zaim can be computed as follows: zaim = zaim1 + (zaim2 << 16).

zaim2 – This is a 16 bit codeword which forms the upper 16 bit of the 32 bit integer zaim.

D.4	Decoding Process of a View-Dependent Object

D.4.1	Introduction

This subclause explains the process for decoding the texture data using the VDS parameters. In order to determine which of the DCT coefficients are to be updated, a “mask”, which is a simple binary image, shall be computed. The first step is to determine the viewing parameters obtained from the texture-mesh composition procedure that drives 3D rendering in the user's decoding terminal. These parameters are used to construct the DCT mask corresponding to the first viewpoint of the session (VD mask). This mask is then updated with differential masks, built with the new viewing parameters that allow the texture image to be streamed. The bitstream syntax for view parameters and incremental transmission of DCT coefficients is given elsewhere in the Visual and Systems parts of this standard.

D.4.2	General Decoding Scheme

The following subclauses outline the overall process for the decoder and encoder to accomplish the VDS functionalities.

D.4.2.1	View-dependent parameters computation

The VDS parameters ((and (angles, distance d for each cell) shall be computed using the geometrical parameters (Mesh, Viewpoint, Aimpoint, Rendering window). These parameters shall be computed for each cell of the grid mesh.

D.4.2.2	VD mask computation

For each 8x8 block of texture elements within a 3D mesh cell, the locations of the visible DCT coefficients inside the DCT block shall be computed using (and (angles, and the distance d defined for each cell relative to the viewpoint. The result shall be put in a binary mask image.

D.4.2.3	Differential mask computation

With the knowledge of which DCT coefficients have already been received (Binary mask buffered image) and which DCT coefficients are necessary for the current viewing conditions (Binary VD mask image), the new DCT coefficients shall be determined (Binary Differential mask image) as described in Subclause � REF _Ref404672525 \n �D.4.5� of this specification.

D.4.2.4	DCT coefficients decoding

The Video Intra bitstream, in the downstream channel, shall be decoded by the receiver terminal to obtain the DCT coefficients (DCT image). The decoding procedure is described in Subclause � REF _Ref404672602 \n �D.4.6� of this specification.

D.4.2.5	Texture update

The current DCT buffer in the receiver terminal shall be updated according to the Differential mask, using the received DCT image. The new received DCT coefficients shall be added to the buffered DCT image.

D.4.2.6	IDCT

The Inverse DCT of the updated DCT image shall computed, as specified in Subclause � REF _Ref404672839 \n �D.4.8� of this specification, to obtain the final texture.

D.4.2.7	Rendering

The texture is mapped onto the 3D mesh and the rendering of the scene is done, taking into account the mesh and the viewing conditions. This part of the procedure is outside the scope of this specification.

�

Figure D-� SEQ Figure * ARABIC \r 1�1�: General Decoding Scheme of a View-Dependent Object

D.4.3	Computation of the View-Dependent Scalability parameters

The VDS parameters shall be computed for each cell of the grid mesh. The mesh may either be a quadrilateral or a triangular mesh. The number of cells in each dimension shall be equal to the texture size divided by 8.

�

D.4.3.1	Distance criterion:

�

u is the distance between viewpoint and Cell center: �with �and �is the viewpoint vector.

D.4.3.2	Rendering criterion:

�

p is the distance between viewpoint and projection plane normalized to window width. p may be computed using:

�EMBED Word.Picture.8���

where FOV is the Field of View specified in radians, and q = <TextureWidth>/<WindowWidth> where the texture width is the width of the full texture (1024 for instance) and the WindowWidth is the width of the rendering window.

D.4.3.3	Orientation criteria:

�

The angle between the aiming direction and the normal of the current cell center shall be projected into two planes. These two planes are spans of normal vector � of the cell and the cell edges in x and y directions, respectively. Then the angles ((, () between projected vectors and the normal � shall be calculated, respectively.

The angle b is specified as the projection of the angle between �, the normal of the quad cell, and �, the aiming direction, onto the plane �that passes through � and is parallel to �. Similarly, the angle a is specified as the projection of the same angle onto the plane � that passes through �and its parallel to �.

This is illustrated in � REF _Ref404674047 * MERGEFORMAT �Figure D-2�

��

Figure D-� SEQ Figure * ARABIC �2�: Definition of (and (angles

D.4.3.4	Cropping criterion:

Cells that are out of the field of view shall not be transmitted/received: that is, at least one of the 4 vertices which define the cell should all be inside the horizontal and vertical Field Of View (FOV).

The horizontal FOV shall be deduced from the vertical FOV using the screen geometry. The vertical FOV is equal to the FOV. Then the following shall be calculated

� where w and h are the width and height, respectively, of the rendered image.

��

Figure D-� SEQ Figure * ARABIC �3�: Definition of Out of Field of View cells

D.4.4	VD mask computation

The VD mask is a binary image of the same size as the texture image. Each value in the mask shall indicate if the corresponding DCT coefficient is needed (1) or not (0), given the VDS parameters.

For each cell, the following rules shall be applied to fill the corresponding 8x8 block of the VD mask:

Use of cropping criterion: If all the vertices of the cell are out of the field of view, the corresponding 8x8 block of the mask image shall be set to 0.

Use of rendering, distance, tilting and rotation criteria: For each 8x8 block of the mask (corresponding to a quad cell), the 4 criteria mentioned above shall be computed. Two values of the rotation and tilting criteria shall be obtained for a quad cell, but only the higher value of each criterion shall be kept.

Two thresholds, TX and TY, shall be calculated as the product of the three VDS parameters Rr, Rd, Rb, and Rr, Rd, Ra, respectively, and the value 8. The results shall be bounded to 8. This procedure may be indicated symbolically as follows

�EMBED Equation.3���

The flag (i,j) of the 8x8 block corresponding to the current cell shall be set to 1 if i < TX and j < TY. The flag shall be set to 0 in all other cases, as illustrated in the figure below.

�EMBED Word.Picture.8���

Figure D-� SEQ Figure * ARABIC �4�: VD mask of an 8x8 block using VD parameters

D.4.5	Differential mask computation

Once the first image has been received using the previously described filter, less data is necessary to update the texture data for the following frames. (assuming there is a correlation between viewpoint positions). Since this computation is exactly the same for each flag of each cell, it shall be performed directly on the full mask images and not on a cell by cell basis.

If the coefficient has not been already transmitted (buffer mask set to 0) and is needed according to VDS visibility criteria (VD mask set to 1), then the corresponding pixel of the differential mask shall be set to 1. This implies that the texture shall be updated, according to the procedure described in the Subclause � REF _Ref404674635 \n �D.4.7� of this specification.

�

Figure D-� SEQ Figure * ARABIC �5�: Differential mask computation scheme

D.4.6	DCT coefficients decoding

The DCT coefficients shall be decoded using the Video Intra mode, Separated Texture/Motion mode as described in Subclause 7.3 of Part 2 of this Committee Draft of International Standard.

D.4.7	Texture update

The Differential mask image shall be used to select which DCT coefficients of the buffered texture should be updated using the decoded DCT coefficients.

Y component

If the Differential mask is set to 0, the corresponding DCT value of the buffer shall be left unchanged, otherwise the value shall be updated with the previously decoded DCT coefficient.

�

Figure D-� SEQ Figure * ARABIC �6�: Texture update scheme

U and V component

The texture is coded in 4:2:0 format, as specified in Subclause 6.1.1.6 of Part 2 of this Committee Draft of International Standard, which shall imply that for each chrominance DCT coefficient, 4 Differential mask flags shall be available. The chrominance coefficients shall be received/transmitted if at least 1 of these 4 flags is set to 1.

D.4.8	IDCT

The IDCT and de-quantization shall be performed using the same process as in the Video Intra mode as described in Subclause 7.3 of Part 2 of this Committee Draft of International Standard.

�PAGE �x�

© ISO/IEC	ISO/IEC 14496-1:1997 (CD 1.0)

ObjectDecsriptorID = 5

Group2D {

 …	

 {

 …

 }

 …

}

