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INTRODUCTION

B Background: Many types of analyses make use of 2- dimensional
Images ....

— Photographs
— Satellite images

— X-rays and other medical images

B Many concepts from 1-D DSP are directly extensible to two
dimensions, but some are not
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INTRODUCTION

B Goals of this lecture:
— To summarize basic 2-D relationships
— To identify which concepts do or do not extend to 2-D

— To discuss briefly 2-D filter design approaches

B For further reading:
— Two-Dimensional Signal and Image Processing by Jae Lim

— Chapter Two-Dimensional Signal Processing by Lim in the edited book
by Lim and Oppenheim on Advanced DSP (pseudo-text for ADSP)

— Many many other texts and resources
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Some examples of original and processed
Images

M Peppers ...

50 100 150 200 250 300 350 400 450 500
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Effects of lowpass filtering

® Original image: W After lowpass filter:

50 100 150 200 250 300 350 400 450 500 50 100 150 200 250 300 350 400 450 500
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Effects of highpass filtering

B Original image: B After highpass filter:

50 100 150 200 250 300 350 400 450 500 50 100 150 200 250 300 350 400 450 500
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An example of nonlinear processing

M Original: Enhancement via homomorphic
homomorphic filtering:
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Some examples of 2-D signals

B The unit sample function:

5[7?, n]_ 1, nlz’ng:O
L72I70 0, otherwise

B The unit step function:

I, n1 >20,n2 >0
ulng, nol =

0, otherwise
B The exponential function:

x|ni,no| = ™t pn?
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B Note: A sequence is separable if

x|ny, ng| = x1|ni]re|nso]
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2-D LSl systems

z[n1,na] y[ni,ne)
_— T —

B A systemis linear if

ari|ni,ns| + bxra|ng.ng| = ayy|ny, na| + bys|nq.no|

B A system is shift invariant if for all k, |

rny —k,ng — 1] = ylng — k,ng — [

B If a2-Dsystemis LSI, then
d|n1,ns] = h|ni,ns] (this is called the point-spread function)
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The convolution sum

B Asin 1-D, we can represent an input as a linear combination of
shifted and scaled delta functions producing ...

B 1-D convolution:
©,@)

yln] = ) @[klhln — K

k=—o0

B 2-D convolution:

y[n1, na Z Z x|k1, k2)hiny — k1, ng — ko

kl——OO kg——OO
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Convolving separable functions

B If both x[n{,n,] and h[nl, ,] are separable, then

[711, ’I’LQ] — Z Z kl, kg]h[nl kl, no — kg]

kl——OO kg——OO
Z Z x1|k1|xo|ka)hi|n1 — k1lha|ng — ks
klz—oo ng—OO
or
y|ni, na| = Z z1|ki]hing — ki Z T ka)ha|ne — ko
klz—OO kQI—OO

B In other words, if x and h are separable, the 2-D convolution
becomes the product of two 1-D convolutions. For finite sequences
of length N, this reduces the number of multiplys from N4 to 2N?
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Some system properties

M A systemis causal if
h[nlv n2]7 — h[nla nZ]U[nla n2]

(This is not usually a big deal in 2-D)

H A system Is stable if

Z Z hini, na|| < oo

N1=——00 Ng=——00
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Difference equations for causal systems

B |n1dimension:

Z aryln — k| = Z bix|n —

B |n 2dimensions:

N1 N> Nz No
> Y ap, gyl — ki, —ke] =Y Y by ,z(ng — I, ng — lo]
k1=0 ko=0 1= Olg O
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The 2-D discrete-time Fourier transform

® In 1-D we have e/“"
_

B In 2-D we have

H(ejw)ej“”

>

6]‘«01 ni €]w2n2

>

H(ejwl : 6]w2 )63w1 n1 69w2n2
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The 2-D discrete-time Fourier transform

ejwlnl €Jw2n2 H(63w1,63w2)69w1n169w2n2

— > T >

B From the convolution sum definition we can obtain

H (ejwl jw2 - § E h nl, n2 ]Wlnle—]w2n2

Nn1=—00 Ng=——00

and

1 | | | |
w w win wamn
hlny,no| = e H(e*t, e?%?)el¥1™ 79212 d iy dws

— 17T — T

Carnegie Mellon Slide 16 ECE Department



The 2-D discrete-time Fourier transform

B Comments:

— H(ej‘*’1 : ej“’2) IS periodic with period 21T in w; and w,

—If h[ny,ng]is separable, H(e’“*,e’“?) is as well, and
computing the 2-D DTFT becomes just a matter of computing the
product of two 1-D DTFTs

— Convolution in time < multiplication in frequency
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]-7 |w1| < a, |w2| < b7
0, otherwise

H(e%t, e?92) = {

M The DTFT is separable and
sin(any) sin(bns)

h[nl,nz] - N1 T
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A second example of a frequency response

1, w?+wi<R?

H(eI¥1 pdw2) — .
(e, €72) {O, otherwise

B This DTFT is not separable! It can be shown that

We Jq (wc\/n% + n%)

2/ N3 + n3

B Note: While this DTFT is not separable, it IS rotation invariant
In both time and frequency

h[nl, TLQ] —
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2-dimensional z-transforms

® In asimilar fashion to the 1-D case, we build up z-transforms
by modeling functions in space as linear combinations of the

function
3 mn1 5 no
2tzgt = (re?t) T (r2e*?)

B |In particular,

— N1 ,— N9
H(z1,22) E E hing, nolzy "t 25

Nni1=—00 Ng=——00

1 _ny—1
H(z1,29)21" 252 "dz1dzo
C1 JCsy

h[nl, n2
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An example 2-D z-transform

B Consider the simple space function

K™, ny=ngsandny >0
x|ni, Nl =

0, otherwise
B The corresponding z-transform is

X (21, 22) Z Z K" §[ny — nalzy "tz Pulng, nal

'n,l——OO’rLQ——OO

1
E K™ 2122

—1_-—1
0 1 Kz{ "z

<1

which converges for |Kz] ' 2,
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The fundamental curse of 2D-DSP

1

—1_-—1

X(Zl, ZQ) =

B Comments: no poles and zeros (1), so
— No easy tests for stability
— No parallel or cascade implementations
— No Parks-McClellan algorithm

— etc. etc.
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The 2-dimensional discrete Fourier transform

B The 2D-DFT is derived in a fashion similar to how it had been in
1-D. Specifically:

Ni1—1 No—1
Hlki, kol = Y Y hlng, na] W wiz"
n1=0 no=0
and Ni—1 No—1
h[nth ~ N S‘ y‘ H kla kZ nglk'lnl W]§2k2n2
122 b =0 ky=0

B Comments:

— Multiplying coefficients in frequency corresponds to a 2-D circular
(“toroidal”) convolution in space

— Overlap-add, overlap-save algorithms are still valid
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Computing the 2-D DFT

B Again, the 2D-DF is N1 No1
1— 2
Hlki, ko) = ) Y hlng,no] W™ Wiz

nq =0 9o =0

B This can be rewritten as

N1—1 No—1
H[kl,kz] = Z Wﬁfllnl Z h[nth]WﬁénQ
n1:0 n2=0
No—1
B Let Z h[nl,ng]W]]fé"Q = g[nl,kg]
TLQZO
N;i—1
then  Hlki, ko] = > glna, ko] W™
’I’L1:O
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Computing the 2-D DFT

B To compute the 2-D DFT:

— Compute the 1-D DFT of each column and replace in the column

— Compute the row-wise DFTs of the resulting coefficients

B Comments:
— This always works... X[n;,n,] need not be separable or anything else

— Huge computational savings
For example: let N;=N,=1024=1000

M

M

Direct computation of 2D-DFT = 1012 complex mults!
» Using the row/column shortcut we have = 2 10° complex mults

» Using the shortcut and FFT algorithms leaves only 107 complex mults
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Some summary observations about 2D-DSP

B Many things are obvious extensions of 1-D DSP
— Linearity and shift invariance
— Convolution sum, difference equations
— 2-D DTFTs
— 2-D DFTs

B Some things are fundamentally different:

— 2-D z-transforms

» No poles and zeros as we know them
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Some summary observations about 2D-DSP

B Some other things to keep in mind:
— Tradeoff between separability and rotation invariance
— Physical significance of 2-D complex exponentials
— Efficiencies provided by separability

— Efficient computation of the 2-D DFT

B Next topic of discussion:

— 2-D discrete-space filter design
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Designing digital filters in two dimensions

B We will focus on FIR designs for now because of stability
Issues with IIR filters (despite computational efficiencies)

B Major FIR techniques:
— Window designs
— Frequency-sampled design

— Parks-McClellan algorithm

B Forthe most part, 2-D FIR filters are designed by using
successful 1-D techniques and extending to 2-D

B Zero-phase filtering is much more important in 2D than 1D
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2-dimensional FIR design using windows

B Let h[ni,ns] = hg[ni, na]wng, ns

B Separable window approach:
w(ny,ng] = wlny|wlns]

B Rotation-invariant window approach:

wlny, ng] = w [ ns —I—n%]

where w[n] is a successful 1-D window, usually a Kaiser window
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A lowpass example using a separable window

B Separable 9x9 Kaiser window, w, = 0.41r

(=, ~%)
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i i i N
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LPF example with a rotation-invariant window

B Rotation-invariant 9x9 Kaiser window, w, = 0.41r

(=x, =x)
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j 11111;;'000:0:0:0:&\‘:\ %
A OO
T N OOCAX AT
iy I"':'O"O’OW AT
'I"""':O. \

‘ “ “ \\&‘3
i, 'I;' ) ”’0’0’ :‘\\:\““ 5
'g.fo,‘.‘oto.o.o.c X
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The frequency-sampling approach

B 15 x 15-point design using frequency sampling
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Optimum 2-D FIR filters

B General approach:
— Design optimal 1-D filter using Parks-McClellan algorithm

— Transform from 1-D to 2-D using method also developed in McClellan
thesis (1)

H(wi,w2) = H(w) |

w=G(w1,w2)
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The McClellan transformation

B As you will recall, for a zero-phase Type | FIR filter we have

H(w) = Z h[n]e 7™ = h[0] + Z 2h|n]cos(wn)

’n,:—N n=1
N

— Z a|n|cos(wn) = Z bn|(cos(w))"”

n=0

B The 2-D response is obtained by

H(wi,ws) = H(W)‘Cos(w):T(wl,wQ) — Z bn|T w1, w2)]"

n=0
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The 2-D to 2-D transform

B From before,

N
H (w1, wa) = H(W)lcos(w):T(wl,wg) — Z b[n|T w1, w2)]"
n=0

B This can be expressed as

w17w2 E :E :t[nl,ng —Jjwini —kw2n2
— C n1 ng COS wlnl COS\WaT9
)
1 no
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| tlny, ng) : clay, ny)
o(3) $l3) ol3) b ot
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Implementation based on 1-D to 2-D transforms

B The transfer function:

H(w1,ws) Zb T(wy,w2)]"”

B Efficient implementation:

x(n;, n.‘,)o—I—»‘ T(w,y, w,) T w,, w,) oo o Tlw,, w,)
MO)‘—QE b(1) b(2) BIN)
> > .. P

B Comment: overlap-add, FFTs, etc. can be used here as well
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Summary: filter design

B We reviewed FIR filter design using the three methods
discussed in 18-491.:

— Window design with separable or rotation-invariant Kaiser windows
— Frequency-sampling design, varying symmetric points together
— Parks-McClellan design, using the McClellan 1-D to 2-D transformation

— The McClellan transformation implies its own efficient implementation
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