AN INTROUCTION TO 2-DIMENSIONAL DSP

Richard M. Stern

18-792 lecture

December 2, 2024

Department of Electrical and Computer Engineering Carnegie Mellon University Pittsburgh, Pennsylvania 15213

INTRODUCTION

- Background: Many types of analyses make use of 2- dimensional images
 - Photographs
 - Satellite images
 - X-rays and other medical images
- Many concepts from 1-D DSP are directly extensible to two dimensions, but some are not

INTRODUCTION

Goals of this lecture:

- To summarize basic 2-D relationships
- To identify which concepts do or do not extend to 2-D
- To discuss briefly 2-D filter design approaches

For further reading:

- Two-Dimensional Signal and Image Processing by Jae Lim
- Chapter Two-Dimensional Signal Processing by Lim in the edited book by Lim and Oppenheim on Advanced DSP (pseudo-text for ADSP)
- Many many other texts and resources

Some examples of original and processed images

Peppers ...

Carnegie Mellon

Slide 4

Effects of lowpass filtering

Original image:

After lowpass filter:

Carnegie Mellon

Slide 5

Effects of highpass filtering

Original image:

After highpass filter:

Carnegie Mellon

Slide 6

An example of nonlinear processing

Original:

Enhancement via homomorphic homomorphic filtering:

Carnegie Mellon

Slide 7

Some examples of 2-D signals

The unit sample function:

$$\delta[n_1, n_2] = \begin{cases} 1, & n_1 = n_2 = 0\\ 0, & \text{otherwise} \end{cases}$$

The unit step function: $u[n_1, n_2] = \begin{cases} 1, & n_1 \ge 0, n_2 \ge 0\\ 0, & \text{otherwise} \end{cases}$

The exponential function:

$$x[n_1, n_2] = \alpha^{n_1} \beta^{n_2}$$

Carnegie Mellon

Some examples of 2-D signals

Cosine functions:

$$x[n_1, n_2] = \cos(\omega_1 n_1 + \phi_1) \cos(\omega_2 n_2 + \phi_2)$$

Note: A sequence is separable if

 $x[n_1, n_2] = x_1[n_1]x_2[n_2]$

2-D LSI systems

A system is linear if

 $ax_1[n_1, n_2] + bx_2[n_1.n_2] \Rightarrow ay_1[n_1, n_2] + by_2[n_1.n_2]$

A system is shift invariant if for all k, I

$$x[n_1 - k, n_2 - l] \Rightarrow y[n_1 - k, n_2 - l]$$

If a 2-D system is LSI, then

 $\delta[n_1, n_2] \Rightarrow h[n_1, n_2]$ (this is called the point-spread function)

Carnegie Mellon

Slide 10

The convolution sum

- As in 1-D, we can represent an input as a linear combination of shifted and scaled delta functions producing ...
- 1-D convolution:

$$y[n] = \sum_{k=-\infty}^{\infty} x[k]h[n-k]$$

2-D convolution:

$$y[n_1, n_2] = \sum_{k_1 = -\infty}^{\infty} \sum_{k_2 = -\infty}^{\infty} x[k_1, k_2]h[n_1 - k_1, n_2 - k_2]$$

Carnegie Mellon

Slide 11

Convolving separable functions

If both $x[n_1,n_2]$ and $h[n_1,n_2]$ are separable, then

$$y[n_1, n_2] = \sum_{\substack{k_1 = -\infty \\ \infty}}^{\infty} \sum_{\substack{k_2 = -\infty \\ \infty}}^{\infty} x[k_1, k_2]h[n_1 - k_1, n_2 - k_2]$$
$$= \sum_{\substack{k_1 = -\infty \\ k_2 = -\infty}}^{\infty} \sum_{\substack{k_2 = -\infty \\ k_2 = -\infty}}^{\infty} x_1[k_1]x_2[k_2]h_1[n_1 - k_1]h_2[n_2 - k_2]$$

or

$$y[n_1, n_2] = \sum_{k_1 = -\infty}^{\infty} x_1[k_1]h_1[n_1 - k_1] \sum_{k_2 = -\infty}^{\infty} x_2[k_2]h_2[n_2 - k_2]$$

In other words, if x and h are separable, the 2-D convolution becomes the product of two 1-D convolutions. For finite sequences of length *N*, this reduces the number of multiplys from N⁴ to 2N²

Carnegie Mellon

Slide 12

Some system properties

A system is causal if

$$h[n_1, n_2], = h[n_1, n_2]u[n_1, n_2]$$

(This is not usually a big deal in 2-D)

A system is stable if

$$\sum_{n_1=-\infty}^{\infty}\sum_{n_2=-\infty}^{\infty}|h[n_1,n_2]|<\infty$$

Carnegie Mellon

Slide 13

Difference equations for causal systems

In 1 dimension:

$$\sum_{k=0}^{N} a_k y[n-k] = \sum_{l=0}^{M} b_l x[n-l]$$

In 2 dimensions:

$$\sum_{k_1=0}^{N_1} \sum_{k_2=0}^{N_2} a_{k_1,k_2} y[n_1 - k_1, n_2 - k_2] = \sum_{l_1=0}^{N_2} \sum_{l_2=0}^{N_2} b_{l_1,l_2} x[n_1 - l_1, n_2 - l_2]$$

Carnegie Mellon

Slide 14

The 2-D discrete-time Fourier transform

In 2-D we have

Carnegie Mellon

Slide 15

The 2-D discrete-time Fourier transform

From the convolution sum definition we can obtain

$$H(e^{j\omega_1}, e^{j\omega_2}) = \sum_{n_1 = -\infty}^{\infty} \sum_{n_2 = -\infty}^{\infty} h[n_1, n_2] e^{-j\omega_1 n_1} e^{-j\omega_2 n_2}$$

and

$$h[n_1, n_2] = \frac{1}{(2\pi)^2} \int_{-\pi}^{\pi} \int_{-\pi}^{\pi} H(e^{j\omega_1}, e^{j\omega_2}) e^{j\omega_1 n_1} e^{j\omega_2 n_2} d\omega_1 d\omega_2$$

Carnegie Mellon

Slide 16

The 2-D discrete-time Fourier transform

Comments:

- $H(e^{j\omega_1}, e^{j\omega_2})$ is periodic with period 2π in ω_1 and ω_2
- If $h[n_1, n_2]$ is separable, $H(e^{j\omega_1}, e^{j\omega_2})$ is as well, and computing the 2-D DTFT becomes just a matter of computing the product of two 1-D DTFTs
- Convolution in time multiplication in frequency

An example of frequency response

$$H(e^{j\omega_1}, e^{j\omega_2}) = \begin{cases} 1, & |\omega_1| \le a, |\omega_2| \le b, \\ 0, & \text{otherwise} \end{cases}$$

The DTFT is separable and

$$h[n_1, n_2] = \frac{\sin(an_1)}{\pi n_1} \frac{\sin(bn_2)}{\pi n_2}$$

Carnegie Mellon

Slide 18

A second example of a frequency response

$$H(e^{j\omega_1}, e^{j\omega_2}) = \begin{cases} 1, & \omega_1^2 + \omega_2^2 \le R^2\\ 0, & \text{otherwise} \end{cases}$$

This DTFT is not separable! It can be shown that $h[n_1, n_2] = \frac{\omega_c}{2\pi\sqrt{n_1^2 + n_2^2}} J_1\left(\omega_c\sqrt{n_1^2 + n_2^2}\right)$

Note: While this DTFT is not separable, it IS rotation invariant in both time and frequency

Carnegie Mellon

Slide 19

2-dimensional z-transforms

In a similar fashion to the 1-D case, we build up z-transforms by modeling functions in space as linear combinations of the function

$$z_1^{n_1} z_2^{n_2} = \left(r_1 e^{j\omega_1} \right)^{n_1} \left(r_2 e^{j\omega_2} \right)^{n_2}$$

In particular,

$$H(z_1, z_2) = \sum_{n_1 = -\infty}^{\infty} \sum_{n_2 = -\infty}^{\infty} h[n_1, n_2] z_1^{-n_1} z_2^{-n_2}$$

and

$$h[n_1, n_2] = \frac{1}{(2\pi j)^2} \int_{C_1} \int_{C_2} H(z_1, z_2) z_1^{n_1 - 1} z_2^{n_2 - 1} dz_1 dz_2$$

Carnegie Mellon

An example 2-D z-transform

Consider the simple space function

$$x[n_1, n_2] = \begin{cases} K^{n_1}, & n_1 = n_2 \text{ and } n_1 \ge 0\\ 0, & \text{otherwise} \end{cases}$$

The corresponding *z*-transform is

$$X(z_1, z_2) = \sum_{n_1 = -\infty}^{\infty} \sum_{n_2 = -\infty}^{\infty} K^{n_1} \delta[n_1 - n_2] z_1^{-n_1} z_2^{-n_2} u[n_1, n_2]$$
$$= \sum_{n_1 = 0}^{\infty} K^{n_1} (z_1 z_2)^{-n_1} = \frac{1}{1 - K z_1^{-1} z_2^{-1}}$$

which converges for $|Kz_1^{-1}z_2^{-1}| < 1$

Carnegie Mellon

The fundamental curse of 2D-DSP

$$X(z_1, z_2) = \frac{1}{1 - K z_1^{-1} z_2^{-1}}$$

Comments: no poles and zeros (!), so

- No easy tests for stability
- No parallel or cascade implementations
- No Parks-McClellan algorithm
- etc. etc.

Carnegie Mellon

The 2-dimensional discrete Fourier transform

The 2D-DFT is derived in a fashion similar to how it had been in 1-D. Specifically:

$$H[k_1, k_2] = \sum_{n_1=0}^{N_1-1} \sum_{n_2=0}^{N_2-1} h[n_1, n_2] W_{N_1}^{k_1 n_1} W_{N_2}^{k_2 n_2}$$

and

$$h[n_1, n_2] = \frac{1}{N_1 N_2} \sum_{k_1=0}^{N_1-1} \sum_{k_2=0}^{N_2-1} H[k_1, k_2] W_{N_1}^{-k_1 n_1} W_{N_2}^{-k_2 n_2}$$

Comments:

- Multiplying coefficients in frequency corresponds to a 2-D circular ("toroidal") convolution in space
- Overlap-add, overlap-save algorithms are still valid

Carnegie Mellon

Slide 24

Computing the 2-D DFT

Again, the 2D-DF is
$$H[k_1, k_2] = \sum_{n_1=0}^{N_1-1} \sum_{n_2=0}^{N_2-1} h[n_1, n_2] W_{N_1}^{k_1 n_1} W_{N_2}^{k_2 n_2}$$
This can be rewritten as
$$H[k_1, k_2] = \sum_{n_1=0}^{N_1-1} W_{N_1}^{k_1 n_1} \sum_{n_2=0}^{N_2-1} h[n_1, n_2] W_{N_2}^{k_2 n_2}$$
Let
$$\sum_{n_2=0}^{N_2-1} h[n_1, n_2] W_{N_2}^{k_2 n_2} \equiv g[n_1, k_2]$$
then
$$H[k_1, k_2] = \sum_{n_1=0}^{N_1-1} g[n_1, k_2] W_{N_1}^{k_1 n_1}$$

Carnegie Mellon

Slide 25

Computing the 2-D DFT

To compute the 2-D DFT:

- Compute the 1-D DFT of each column and replace in the column
- Compute the row-wise DFTs of the resulting coefficients

Comments:

- This always works... $x[n_1, n_2]$ need not be separable or anything else
- Huge computational savings
 - » For example: let $N_1=N_2=1024\approx 1000$
 - » Direct computation of 2D-DFT ≈ 10^{12} complex mults!
 - » Using the row/column shortcut we have $\approx 2 \ 10^9$ complex mults
 - » Using the shortcut and FFT algorithms leaves only 10⁷ complex mults

Carnegie Mellon

Slide 26

Some summary observations about 2D-DSP

Many things are obvious extensions of 1-D DSP

- Linearity and shift invariance
- Convolution sum, difference equations
- 2-D DTFTs
- 2-D DFTs

Some things are fundamentally different:

- 2-D z-transforms
 - » No poles and zeros as we know them

Some summary observations about 2D-DSP

Some other things to keep in mind:

- Tradeoff between separability and rotation invariance
- Physical significance of 2-D complex exponentials
- Efficiencies provided by separability
- Efficient computation of the 2-D DFT

Next topic of discussion:

2-D discrete-space filter design

The general 2-D filter design problem

Carnegie Mellon

Slide 29

Designing digital filters in two dimensions

We will focus on FIR designs for now because of stability issues with IIR filters (despite computational efficiencies)

Major FIR techniques:

- Window designs
- Frequency-sampled design
- Parks-McClellan algorithm
- For the most part, 2-D FIR filters are designed by using successful 1-D techniques and extending to 2-D
 - Zero-phase filtering is much more important in 2D than 1D

Carnegie Mellon

Slide 30

2-dimensional FIR design using windows

Let
$$h[n_1, n_2] = h_d[n_1, n_2]w[n_1, n_2]$$

Separable window approach:
$$w[n_1, n_2] = w[n_1]w[n_2]$$

Rotation-invariant window approach:

$$w[n_1, n_2] = w\left[\sqrt{n_1^2 + n_2^2}\right]$$

where w[n] is a successful 1-D window, usually a Kaiser window

A lowpass example using a separable window

Separable 9x9 Kaiser window, $\omega_c = 0.4\pi$

Carnegie Mellon

Slide 32

LPF example with a rotation-invariant window

Rotation-invariant 9x9 Kaiser window, $\omega_c = 0.4\pi$

Carnegie Mellon

Slide 33

The frequency-sampling approach

15 x 15-point design using frequency sampling

Carnegie Mellon

Slide 34

Optimum 2-D FIR filters

General approach:

- Design optimal 1-D filter using Parks-McClellan algorithm
- Transform from 1-D to 2-D using method also developed in McClellan thesis (!)

$$H(\omega_1, \omega_2) = H(\omega) \mid_{\omega = G(\omega_1, \omega_2)}$$

The general approach

Carnegie Mellon

Slide 36

The McClellan transformation

As you will recall, for a zero-phase Type I FIR filter we have $H(\omega) = \sum_{n=-N}^{N} h[n]e^{-j\omega n} = h[0] + \sum_{n=1}^{N} 2h[n]cos(\omega n)$ $= \sum_{n=0}^{N} a[n]\cos(\omega n) = \sum_{n=0}^{N} b[n](\cos(\omega))^{n}$

The 2-D response is obtained by

$$H(\omega_1, \omega_2) = H(\omega)|_{\cos(\omega) = T(\omega_1, \omega_2)} = \sum_{n=0}^{N} b[n]T[\omega_1, \omega_2)]^n$$

Carnegie Mellon

Slide 37

The 2-D to 2-D transform

From before,

$$H(\omega_1, \omega_2) = H(\omega)|_{\cos(\omega) = T(\omega_1, \omega_2)} = \sum_{n=0}^{\infty} b[n]T[\omega_1, \omega_2)]^n$$

N

This can be expressed as

$$T(\omega_1, \omega_2) = \sum_{n_1} \sum_{n_2} t[n_1, n_2] e^{-j\omega_1 n_1} e^{-k\omega_2 n_2}$$

$$= \sum_{n_1} \sum_{n_2} c[n_1, n_2] \cos(\omega_1 n_1) \cos(\omega_2 n_2)$$

Carnegie Mellon

Slide 38

A particularly common special case

An example often used in practice:

$$T(\omega_1, \omega_2) = \frac{1}{2}\cos(\omega_1) + \frac{1}{2}\cos(\omega_2) + \frac{1}{2}\cos(\omega_1\omega_2) - \frac{1}{2}$$

The corresponding sequences $t[n_1, n_2]$ and $c[n_1, n_2]$:

Carnegie Mellon

Slide 39

Equivalent contours in 1-D and 2-D

Figure 7.44 The contours obtained by $\cos \omega = T(\omega_1, \omega_2)$ for $\omega = 0, \pi/10, \ldots, \pi$ for $T(\omega_1, \omega_2)$ given by Eq. (7.84).

Carnegie Mellon

Slide 40

An example frequency response

1-D filter:

Carnegie Mellon

Slide 41

Implementation based on 1-D to 2-D transforms

The transfer function: $H(\omega_1, \omega_2) = \sum_{n=0}^{N} b[n] \left[T(\omega_1, \omega_2) \right]^n$

Efficient implementation:

Comment: overlap-add, FFTs, etc. can be used here as well

Carnegie Mellon

Slide 42

Summary: filter design

We reviewed FIR filter design using the three methods discussed in 18-491:

- Window design with separable or rotation-invariant Kaiser windows
- Frequency-sampling design, varying symmetric points together
- Parks-McClellan design, using the McClellan 1-D to 2-D transformation
- The McClellan transformation implies its own efficient implementation