


n recent years, there has been widespread interest 
in adaptive signal processing applications that re- I quire filters with very long impulse responses [ 11. It 

is not uncommon, for example, that thousands of FIR 
(finite impulse response) filter coefficients are needed to 
achieve the desired level of performance in channel 
equalization [2]-[4], adaptive noise cancellation [5], [6], 
acoustic echo cancellation [7]-[ 121, as well as numerous 
other applications (see, e.g., [13]-1161). One solution to 
this complexity problem has been to use adaptive IIR 
(infinite impulse response) filters, such that an  effec 
tively long impulse response can be achieved with rela- 
tively few filter coefficients. The complexity advantages 
of adaptive IIR filters are well known, but they are not 
yet widely used because of potential problems with 
algorithm instability, slow convergence, and local min- 
ima [17]-[19]. 

An alternative approach to reducing the computa- 
tional complexity of large adaptive FIR filters is to 
incorporate block updating strategies whereby FFT (fast 
Fourier transform) algorithms [20] efficiently perform 
the filter convolution and the gradient correlation [2 11- 
[28]. These techniques reduce the complexity because 
the filter output and the adaptive weights are computed 
only after a large block of data has been accumulated. 
In addition to block convolution methods. romputation- 
ally efficient adaptive algorithms based on subband 
techniques have recently been developed 171, 1291, 161, 
1301. Both of these types of adaptive filters can be viewed 
as multirate signal processors [31], and it is their 
capability to perform certain functions at  a lower sam- 
pling rate that allows for a reduction in the complexity. 
Depending on how the data is organized, these ap- 
proaches may introduce some degradation in perfor- 
mance, including an  end-to-end delay and possibly a 
reduction in the stable range of the algorithm step size 
1261. For nonstationary signals, the tracking perfor- 
mance of a block algorithm also generally becomes 
worse [32]. 

The basic operation underlying a frequency-domain 
adaptive filter is the transformation of the input signal 
into a more desirable form before the adaptive process- 
ing. This is accomplished by one or more discrete 
Fourier transforms (DFTs) or filter banks whereby the 
input signal is transformed to the frequency domain as  
shown in Fig. 1. The transformation is nonadaptive and 
corresponds to a simple preprocessing step that is 
independent of the data. Observe that two formulations 
are shown:' (a) the error e (n) is computed in the time 
domain which is then transformed, or (b) the desired 
response d(n) is first transformed and the error is 
computed directly in the frequency domain. For adap- 
tive algorithms where the error is a linear function of 
the data (e.g., the least-mean-square (LMS) algorithm 
[33]), these two approaches may yield similar results. 
However, for algorithms that have nonlinear error func- 
tions (e.g., the constant modulus algorithm (CMA) [34]), 
the two structures can lead to very different results and 
only one may provide acceptable performance. The 
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configuration that performs best will also depend on the 
type of filter banks (or transforms) and the proposed 
application. 

Frequency-domain adaptive filters have primarily 
two advantages compared to time-domain implementa- 
tions 1261, 1271. The first advantage is the potentially 
large savings in the computational complexity, as pre- 
viously mentioned. The FFT is an  efficient implementa- 
tion of the DFT which provides this savings. A second 
advantage is that the DFT and the filter bank structures 
generate signals that are approximately uncorrelated 
(orthogonal) 1351. As a result, a time-varying step size 
can be used for each adaptive weight, thereby allowing 
a more uniform convergence rate across the adaptive 
filter. It is well known that the eigenvalue disparity of 
the input signal correlation matrix generally determines 
the convergence rate of a gradient-descent algorithm 
1331. These eigenvalues correspond roughly to the power 
of the signal spectrum at equally-spaced frequency 
points around the unit circle [36]-[38]. It is therefore 
possible to compensate for this power variation by using 
step sizes that are inversely pro ortional to the power 
levels in the DFT frequency bins. As a result, the overall 
convergence rate of the algorithm may be improved, 
sometimes approaching that achievable with RLS 
(recursive-least-squares) algorithms 1391 without a 
similar increase in the computational complexity. 

The goal of this paper is to provide a common 
framework for several frequency-domain and subband 
adaptive filters that are available today. Two kinds of 
implementations are considered. The first one involves 
a straightforward efficient realization of block time- 
domain adaptive algorithms using FFT filtering techni- 
ques. This approach yields either a linear convolution 
or a circular convolution depending on how the data 
samples are organized. The second implementation is 
based on filter-bank techniques and subband filtering 
whereby the internal signals a re  downsampled 
(decimated") before the adaptive processing. If the filter 
banks are chosen appropriately, the distorting effects 
of aliasing can be sufficiently controlled. Both of these 
implementations will be referred to as frequency- 
domain adaptive filters (FDAFs) even though they may 
not always utilize the DFT. 

Although the focus of this overview is on FIR filters 
and the LMS algorithm, there is a brief discussion of 
frequency-domain adaptive IIR filtering for both the 
equation-error and output-error formulations [ 191. 
Nonlinear error functions are also considered, such as 
those encountered with CMA and decision-directed 
equalizers [40]. All of the configurations discussed here 
can be modified to handle a variety of adaptive algo- 
rithms, and their complexity can often be reduced 

B 

Frequency bin rn corresponds to the band of frequencies 
centered at  wn, = eiZn ' ' I  , mi = 0, .... N-  1 , (where j = 1-1, with 
a bandwidth of approximately 2rr/N. A "frequency bin" can be 
similarly defined for other types of filter banks. 

Decimation actually refers to downsampling by a factor of 
10°/u (i.e., every tenth sample is discarded), but it is generally 
used to denote downsampling by any factor [31]. 
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orjlter banks, and they can be divided into two basic classes depending on whetherthe error signal is computed in [a) the time 
domain or (bl thefiequency domain. The time-varying weight vector. W (k), usually corresponds to an FIRjlter, although there 
are some IIR implementations. The adaptive algorithm is a gradient-descent method, and a time-varying step size is often in- 
cluded to improve the convergence rate. 

further by simplifylng certain components, depending 
on the performance requirements of the application. 

Throughout the paper, the following notation will be 
used. Time-domain variables are denoted by lower- 
case letters whereas frequency-domain variables are 
assigned upper-case letters. Vectors and matrices will 
be given in bold font while scalars are written in italic 
font. 

BLOCK ADAPTIVE FILTERING 

The standard time-domain LMS algorithm has the 
following nonblock coefficient (weight) update [41], [33]: 

w(n+l)  = w(n) + 2yx(n)e(n) (1) 
where w (n) is the adjustable weight vector and x (n) is 
the input signal vector defined as 

(3) 

The number of coefficients is N and the superscript T 
denotes matrix/vector transpose. The positive scalar 
step size p controls the convergence rate and steady- 

state performance of the algorithm. The output error is 
given by e (n) = d(n) - y(n), the filter output is obtained 
as the inner product 

and d(n) is the desired response signal which depends 
on the application of the adaptive filter. The gradient 
estimate, 9 (n), is simply the derivative of e2 (n) with 
respect to w (n) and it is given by4 

$(n) = X(n)e(n) (5) 

The LMS algorithm attempts to minimize the mean- 
square error (MSE) performance function, defined as \ 
= E [ e2 (n) ] where E [ .] is the expectation operator. It 
is based on the method of steepest descent [42] and its 
convergence properties are well known for a variety of 
signal conditions. 

The recursion in (1) is done each time a new sample 
pair Ix (n), d (n)] is received. Alternatively, one could keep 
the weights J?ed  until N data pairs are received and 
then incorporate this information to update the weights 

The gradient is usually defined with a minus sign, but for 
convenience we will use the definition in (5). 
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only once during this period. Consider the following 
weight update: 

w(n+L) = w(n+L-1) + 2px(n+L-l)e(n+L-l) (6) 
which is similar to (1) except for the incremented time 
arguments where 1 5 L 5 N is an  integer. By substitut- 
ing the recursion for w(n + L - 1) in terms of w(n + L - 2) 
and continuing this substitution until we reach w(n), it 
is straightforward to show that5 

L- 1 

w ( ~ + L )  = ~ ( n )  + 2pC x(n+m)e(n+m) (7) 
-0 

This expression represents a single update of the 
weights from time n to time n+L based on the L data 
samples accumulated, and it is thus called a block 
recursion. It is important to note that the error terms 
in the summation all depend on the same weight vector 
w (n), i.e., e (n+m) = d (n+m) - y (n+rn), rn = 0 , ..., L-1, 
where 

y(n+rn) = xT(n+m)w(n) (8) 
Consequently, (7) differs from the standard nonblock 
LMS algorithm where each new error depends on the 
most recent update of the weights. In this paper, we are 
interested primarily in the case of L = N because this is 
the most efficient value for the FFT algorithms [24]. 
However, for the sliding DFT 1431 and frequency-sam- 
pling [44] structures briefly described later, L = 1, and 
the adaptive algorithm operates at  the incoming data 
rate corresponding to the nonblock update in (1). These 
adaptive filters do not have the computational ad- 
vantages of the multirate adaptive filters, but they do 
exploit the orthogonality properties of the DFT, and they 
suggest how to derive the more efficient subband im- 
plementations. 

Since (7) is a block update that operates at  a lower 
sampling rate than that of the incoming data, it will be 
convenient to define a new time index k where one 
increment corresponds to L increments of the original 
index n. Without loss of generality, we can substitute n 
= kL where n is an  integer multiple of k. By factoring the 
argument kLAL on the left-hand side of (7) as (k+ l)L and 
dropping the explicit dependence of the weight vector 
on L, we have the following equivalent block update: 

L 1  

w(k+l) = w(k) + 2 p c  x(kL+m)e(kL+rn) (9) 
m O  

Thus, k refers to block time and n denotes the original 
time index of the incoming data. The block gradient 
estimate is given by the following summation: 

L- 1 

e(k) = cx(kL+rn)e(kL+m) 
rn=O 

5The arguments of x (n+m) and e (n+m) indicate that “future” 
data samples are to be used in the block update. However, (7) 
should not be interpreted as being a noncausal operation. 

and it is derived b differentiating the block MSE, 
defined as G L =  E [ e (k) e (k) ] where e (k)  = [ e (kL) , ..., 
e (kLAL-1)lT. For wide-sense stationary signals, it can 
be shown that 5~ = y. 

The block LMS (BLMS) algorithm in (9) essentially 
minimizes the same MSE performance function as the 
nonblock LMS algorithm in (1). One can view the block 
gradient in (10) as a more accurate estimate of the true 
(ensemble) gradient because L terms are being averaged 
for each update (see Fig. 2). For wide-sense stationary 
signals, the steady-state weight vector (Wiener solu- 
tion), misadjustment, and time constants of the BLMS 
algorithm are identical to those of the standard LMS 
algorithm. The main difference is that the maximum 
value of the step size such that the algorithm is stable 
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d&es its weights-only once fo; each block &-amei of new 
data, where L 2 1 is the block s u e .  In effect, the gradient es- 
timate is computed as a n  average of the data, a n d  therefore it 
is a more accurate representation of the ensemble gradient 
vector. At each step of the algorithm, the descent direction is 
more closely aligned with the true gradient, and  smoother con- 
vergence is possible because the estimate is less “noisy.” The 
block update in (9) can be rewritten as 

m O  

where p ~ .  = pL is the effective step sue and  eL(k) is the 
averaged gradient estimate. It is clear from this form of the up- 
date  that the stability bound for p and the variance of eL(k) 
are  both inversely proportional to L. The averaged gradient es- 
timate thus becomes more accurate as the block sue in- 
creases. This improvement does not imply faster convergence, 
however, because the eigenvalue spread of the input signal 
correlation matrix remains unchanged for any value of L. In 
order to have a similar convergence time as the nonblock algo- 
rithm using the same value of p~., the block LMS algorithm re- 
quires more da ta  (by a factor of L] because of the gradient 
averaging. 
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is now scaled down by a factor of L [26], [27], [45]. If the 
input signal correlation matrix has a large eigenvalue 
spread, then the BLMS algorithm may converge more 
slowly than the LMS algorithm because of the tighter 
upper bound on p. This could be a problem in applica- 
tions which require fast convergence and need a large 
value for the step size. 

Observe that the block gradient in ( I O )  is a linear 
correlation between the error signal and the input signal 
vector, and that (8) is a linear convolution between the 
weights and the input signal vector. It is possible, 
therefore, to efficiently implement each of these sums 
by taking discrete Fourier transforms, computing their 
product, and then inverse transforming the result [46]. 
Thus, we see that there are tradeoffs with the block 
algorithm. It has smoother convergence properties and 
can be efficiently realized using FFTs, but the maximum 
achievable rate of convergence is reduced because the 
maximum value of the step size is necessarily smaller. 
The block updating can also impair the tracking perfor- 
mance of the algorithm, especially if the block size is 
large and the data are highly nonstationary. 

The frequency - d omain ad a p t  ive algorithms 
described in this paper all have a recursion that is 
similar to the block update in (9). Because DFT com- 
putations inherently perform a circular convolution 
[46], the adaptive filters generally require data con- 
straints in order to implement the desired linear con- 
volution. These constraints force certain elements of the 
signal vectors to be zero and only a subset of the 
components are retained for later use in the algorithm. 
Generally, by removing one or more of these constraints 
the FDAF will have a reduced computational com- 
plexity, but there may be a degradation in performance 
because of the wrap-around effects introduced by cir- 
cular convolutions [47], [26]. The algorithm may not 
converge to the desired Wiener solution. 

Analogous to (2)  and (3) ,  define the frequency- 
domain weight vector as 

W(k)  = [Wo(k), . . . . WM- 1 (k)l (1 1) 

and the input signal matrix as 

where diag(.) is an operator that forms a diagonal 
matrix. The number of elements, M ,  depends on the 
FDAF configuration (usually M = Nor M = 2 N); this will 
be discussed separately later for each case. Although 
we could represent X (k)  as a vector, it will be more 
convenient to use this matrix definition so that the 
frequency-domain output vector can be written as  the 
following matrix/vector product: 

Y(k)  = X(k)W(k) (13) 

The components of Y (k)  are defined in a manner similar 
to W ( k )  in (11). 

With these definitions, the general form of the FDAF 
algorithms can be expressed as 

where the superscript H denotes complex conjugate 
transpose. The frequency-domain weight vector is 
generally complex-valued so that (14) is a version of the 
complex LMS algorithm [48]. The time-varying matrix 
p (k)  is diagonal and it contains the step sizes pm(k), m 
= 0 , . . . , M- 1. Generally, each step size is vaned accord- 
ing to the signal power in that frequency bin. For 
example, we could have pm(k) = p / Pm(k) where p is a 
fixed scalar and Pm( k)  is an estimate of the signal power 
in the mth bin, which might be computed as (see, e.g., 
1491, [271, [381) 

Pm(k) = hPm(k-1) + aIXm(k)I2 (15) 

where h = 1 - a is a forgetting factor.6 If the data are 
statistically stationary, the step-size matrix may be 
fixed such that pm(k) = pm, or each step size may even 
be identical, i.e., p(k)  = pIwhere I is the identity matrix. 
The initial value, Pm (0). is chosen to be a positive 
number, 6m, which depends on some initial power 
estimate of X ,  (k) .  As another example, the step size could 
be computed simply as pm(k)=p/(a+ I Xm(k) I 2, where CI is 
a small positive constant that bounds pm( k) when Xm( k)  
is momentarily small. The corresponding algorithm is 
similar to the normalized LMS algorithm [501. 

The error vector, E (k ) ,  is defined analogous to W (k )  
and its components depend on the specific FDAF algo- 
rithm. In some cases, the error is computed in the time 
domain and E (k )  is simply its frequency-domain trans- 
formation. In other cases, the desired response is first 
transformed to D (k)  = [&I (k )  , ..., D M . ~  (k )  IT and the 
error is computed directly in the frequency domain as 
a function of Y (k )  and D (k) .  The matrix G represents a 
constraint on the gradient, XH (k)  E (k ) ,  which must be 
imposed in order to achieve a linear correlation. This 
constraint is usually defined as a restriction on the 
time-domain signals, and G is its frequency-domain 
transformation. Observe that G premultiplies p(k)  in 
(14), indicating that the constraint also applies to the 
step-size matrix. If p(k)  = pI, then p can be factored out 
to the left of G: for convenience, this simplified form will 
be used later for each of the FDAF algorithms, but it is 
clear that we can always incorporate a time-varying 
step-size matrix. 

In order to simplify the notation, it will be convenient 
to define F as  the M x M D I T  matrix with elements 
F~~ = e-j2" mi / M  . I ts inverse is given by F-' = e/ M such 
that fl F = M IM where the subscript M denotes the 
dimension of the identity matrix. Thus, premultiplying 
a vector by F will compute the DFT of its components, 
and the inverse DFT (IDFT) matrix F-' will similarly 

The forgetting factor (0 < h < 1 )  controls the effective 
memory, T = 1/( 1-h), of the power estimate. 
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compute the time-domain samples. A subscript will not 
be included on F since its size will be clear from the 
particular FDAF algorithm. 

Linear and Circular Convolution 

As mentioned before, the product of two DFT sequen- 
ces yields a circular convolution (or a circular correla- 
tion depending on how the sequence elements are 
ordered). A circular convolution can differ markedly 
from a linear convolution such that the resulting se- 
quence appears to be the output of a periodically time- 
varying filter [47]. Clearly, this is not acceptable if the 
desired result is a linear convolution, such as the 
output signal computed in (8). Fortunately, it can be 
shown that certain elements of the circular convolution 
correspond to a subset of the linear convolution 1461, 
the size of which depends on the relative lengths of the 
two sequences, as shown in Fig. 3. 

There are two well-known techniques for performing 
a linear convolution using FFT algorithms, and these 
are referred to as the overlap-save and overlap-add 
sectioning methods [5 11. By overlapping elements of the 
data sequences and retaining only a subset of the final 
DFT product, a linear convolution between a finite- 
length sequence and an infinite-length sequence is 
readily obtained. In our case, the frequency-domain 

weight vector corresponds to the finite-length "se- 
quence," and the input signal corresponds to the in- 
finite-length sequence. In order to generate N correct 
output samples, it will be necessary to use DFTs of 
length 2 2N- 1 .  It turns out that 2N-point DFTs (M = 2NJ 
are suitable for our purposes and that the optimal block 
size is L = N 1261. 

Overlap-Save Method 

Consider first the process of computing the filter 
output in (8). Let W (k) and X (k) be derived from the 
corresponding time-domain quantities as 

where w (k) is defined in (2) with n replaced by k.  
According to the overlap-save method, N output 
samples J (k) = [y (Idv), ..., y (kA+N-l)]T from a linear 
convolution can be computed as 

y(k) = last N components of F'Y(k) (18) 

where Y (k) is the frequency-domain output vector in 
(13). The input sequence in (17) contains N samples 
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hlg. 3. Convolution and Correlation. The output of a linearfilter is computed as a convolution, and the gradient estimate of an 
adaptive algorithm is a correlation. The convolution of two sequences requires that one sequence be reversed before the samples 
are shifted, multiplied, and added together. Correlation is similar to convolution. except that neither sequence is reversed. It can 
be shown that a subset of the samples from a circular conuolution [correlation) is identical to a spec@ set of samples of a linear 
convolution (correlation). Ifthe two sequences in (a] have lengths N I  and N2 where NI 2 N2. then the last Nl-Nzfl samples of a 
circular convolution correspond to a linear convolution, as shown in [b). On the other hand, the first Nl-N2+1 samples of a cir- 
cular correlation correspond to a linear correlation, as shown in [c). Thus, a linear convolution or correlation can be generated 
from the appropriate circular one byfirst sectioning and overlapping the data and then retaining a subset ofthesnal result. 
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R g .  4. Overlap-Save Sectioning. The overlap-save sectioning method performs a linear convolution between afinite-length se- 
quence and an infinite-length sequence by appropriately partitioning the data. Thefinite-length “sequence” w(n) (in our case, the 
adaptive weights) has N elements; after appending N zeros. a 2N-point FFT is computed. For the infinite-length input sequencex 
In), the most recent N data samples are concatenated with the previous block of N samples: a 2N-point DFT of this extended 
data vector is then computed. The product ofthe transformed sequences (i.e.. Y(k) = X (k) W (k)) is processed by a 2N-point in- 
verse FFT (lFF7), yielding a block of output samples. TheBrst Npoints oJthis output frame are discarded, while the last N points 
are the desired output samples of a linear convolution. 

from the current block of data and another N samples 
from the previous block: in effect, the data are being 
overlapped by N points so that only N new samples are 
introduced before the DFT is computed for each block 
update (since the DFT size is 2N, this is referred to as 
50% overlap). Only the last N points of the IDFT of Y ( k )  
= X (k) W (k )  are retained because the first N terms 
correspond to a circular convolution. Figure 4 il- 
lustrates how the data are partitioned and shows a 
block-diagram representing (1 3) and (16) - (1 8). These 
equations are entirely equivalent to computing the 
inner product in (8) N times, but it requires less com- 
plexity because of the efficiency of the FFT. This is a 
standard technique that is frequently used for non- 
adaptive filtering where the weight vector is time in- 
variant. 

A similar technique can be employed to implement 
the block adaptive algorithm because the gradient in 
(10) is a linear correlation and the weights are fixed for 
the entire block of N samples. The error terms are 
computed in the time domain according to e (kN+rn) = 
d (kN+rn) - y (kN+rn), rn = 0, .... N-1, and this block, 
grouped as e (k) = [e (m, ..., e (kN+N-1) I T  = d(k) - y(k) 
where d(k) = [ d (W, ..., d (kN+N-1) IT, is transformed 
to the frequency domain as follows: 

Qk)  = no, ..., 0 ,  eT(k)lT (19) 

The error vector is augmented with N zeros because N 
terms of the output are discarded to implement the 
linear convolution in (18). Alternatively, one may view 
e (k )  as having the same role in the correlation as w ( k )  
does in the convolution, except that the zeros precede 
e (k )  because a correlation is basically a “reversed” 
convolution (see Fig. 3).  Applying the same reasoning 

as was used to derive the block output, it is straightfor- 
ward to show that the block gradient estimate is 

e ( k )  = first N components of P ’ f l ( k ) E ( k )  (20) 

where the first N elements are retained (as opposed to 
the last N elements in (18) - again, because the 
gradient is a correlation). This expression contains N 
terms that correspond exactly to the time-domain block 
gradient defined in (10). 

The final step of the algorithm transforms this time- 
domain gradient into its frequency-domain counter- 
part, which is then added to W (k) in order to generate 
the updated weights W (k+ 1). Because w (k )  is followed 
by N zeros in (16), the gradient in (20) must be similarly 
augmented. The algorithm is thus given by 

W(k+l) = W(k) + 2pnflT(k),  O,...,OIT (2 1) 

which is equivalent to the update in (9) except that DFTs 
have been used to implement the output convolution 
and the gradient correlation. The complete FDAF struc- 
ture is shown in Fig. 5 where we see that a total of five 
DFTs are needed to realize the entire adaptive filter. It 
is important to note that (2 1) is not a n  exact realization 
of the sample-by-sample time-domain LMS algorithm 
in (1) because the weights here are kept fixed for every 
block of Nsamples while the data are accumulated. This 
implementation was independently derived by Clark et 
al. [22], [52] and Ferrara (231. 

The last two DFTs and the associated data sectioning 
are labeled in Fig. 5 as a gradient constraint. Because 
there are only N weights in the time domain, there 
should be an  “equivalent” number in the frequency 
domain; i.e., if we inverse transform the 2 N  frequency- 
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domain weights to the time domain via an IDFT, only 
the first N transformed weights should be nonzero. The 
frequency-domain weight vector in (16) is generated by 
appending N zeros to the actual weights, but the last N 
terms of F-' XH(k) E( k) are usually nonzero. The gradient 
constraint ensures that the correct weight update is 
performed. Note also that the initial weight vector, W 
(0), must be chosen such that the last N terms of its 
IDET are zero. 

Because the overlap-save FDAF is simply a n  efficient 
implementation of the BLMS algorithm, it has the same 
convergence properties in terms of misadjustment, con- 
vergence speed, and the stable range of the step size p. 
Furthermore, the adaptive weights converge to the same 
Wiener weight vector, yielding the same steady-state 
(minimum) MSE. If a different step size is used for each 
adaptive weight, the convergence rate of the algorithm 
can be improved without increasing this minimum MSE 
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lg. 5. Overlap-Save FDAF. This FDAF is based on the overlap-save sectioning procedure for implementing linear convolutions 
and linear correlations. The gradient constraint ensures that the IDFT of the 2Nfrequency-domain weights yields only N non- 
zero time-domain weights. Because the DFTs are computed only once for each block of data, there is an end-to-end delay of N 
samples. 
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[38], [53]. Thus, the overlap-save FDAF not only has a 
reduced computational complexity, but its convergence 
rate can also be improved by compensating for the 
signal power variation across the frequency bins. 

Algorithm Constraints 
and a Matrix Formulation 

It is convenient to rewrite the operations of the 
overlap-save FDAF using a matrix formulation so that 
the algorithm can be represented by the general form 
in (14). For the operation described by (20) where only 
the first N components of the IDFT are retained, we can 
define a time-domain constraint matrix g as  f o l l o ~ s : ~  

I N  O N  
= [ O N  O N ]  

where ON is a n  N x N matrix of zeros. Using this 2N x 
2Nconstraint matrix, the gradient in (20) can be rewrit- 
ten more compactly as 

[eT(k), 0,...,0IT = g F ' s ( k ) E ( k )  (23) 

so that the weight update in (21) becomes 
W(k+l) = W(k) + 2pFgF'f l (k)E(k)  (24) 

Comparing this expression with the general form in (1 4), 
we see that the gradient constraint is simply G = F g 
F-' ,  which is a full matrix (but with rank I 204. It is also 
possible to rewrite the output vector in (18) using a 
similar matrix representation: 

where k is the following N x 2N constraint matrix: 

TABLE I. 
FDAF ALGORITHM BASED ON 
OVERLAP-SAVE SECTIONING 

INITIALIZATION: 

W(0) = [O ,..., OlT 

Pm(0) = 6 m ,  m = 0 ,  ..., 2N-1 

MATRIX DEFINITIONS: 

g = [ 2 , k = [ ON 'NI : sectioning constraints 

F = 2N x 2N DFT matrix 

FOR EACH NEW BLOCK OF N INPUT SAICIIPLES: 

X(k) = diagJflxfldV-N) ,..., "-1). xfw ,..., xfW+N-1)lT] 
Y(k) = X(k)W(k) 

y(k) = W'Y(k) 

e(k) = d(k)-Y(k) 

E(k) = FkTe(k) 

Pm(k) = hPm(k-l)+aIXm(k)12, m = 0 ,  ..., 2N-1 

Mk) = 14 diag(P'(k) ,..., 9fv_l(k)J 

W(k+l) = W(k) + 2FgF' p (k)fl(k)E(k) 

[O, ..., 0,  yT(k)lT = GF'y(k) (29) 
Although g and k simplify the description of the algo- 
rithm and provide a convenient representation for its 
analysis, one would not directly compute G = F g F-' in 
an actual implementation: FFT algorithms should be 
used instead. For convenience, the complete algorithm 
employing this matrix notation is summarized in Table 
I. Observe that the error vector has also been rewritten 
using k as 

E(k) = FkTe(k) (27) 

All other quantities in the table have been previously 
defined. 

Consider the following time-domain constraint 
matrix which is similar to g in (22): 

Instead of using the constraint k to generate y(k), we 
can write (18) as 

~~ ~~ 

This matrix is also called a window function [38] .  

which is augmented with zeros and has a form similar to 
the gradient estimate in (23). Define the constrained fre- 
quency-domain output as Y' (k) = F[ 0,  ..., 0 , y (4 I T. 
From (29) we see that Y' (k) = F5F-l  Y(k) is the relationship 
between the constrained and unconstrained frequency- 
domain output signal vectors. The equivalent frequen- 
cy-domain constraint is G = F 5 F-'  (which is similar to 
G = F g F- '). Next, define the frequency-domain desired 
response vector as  D (k) = F [ 0 , .... 0 , dT (k) IT, which 
is analogous to the error vector in (19). Thus, it is clear 
that the frequency-domain error could also be com- 
puted according to E (k) = D (k) - Y' (k). Of course, this 
representation would not actually be used to implement 
the algorithm because a n  additional DIT is required, 
but it emphasizes the fact that E (k) is determined by 
the constrained output Y' (k) (i.e., E (k) cannot be 
derived simply as the difference D(k) - Y(k)). This result 
illustrates that either configuration in Fig. 1 can be used 
to implement the overlap-save FDAF, but it is more 
efficient to compute the error in the time domain. 

From the general form of the algorithm, it is obvious 
that other types of gradient constraints are possible and 
these may lead to improved performance in certain 
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applications. For these other constraints, the algorithm 
may not be an exact implementation of the block adap- 
tive filter in (9). For example, it has been shown in [38] 
that the convergence rate may be improved if g is 
replaced by a full-rank diagonal matrix where the mth 
diagonal component is given by (1/2)[l+cos(rc m/N)], m 
= 0 , ..., 2N -1. In this case, the FDAF can be reformu- 
lated so that only three DFTs are needed overall, thereby 
reducing its computational complexity. Its convergence 
properties are similar to those of the overlap-save algo- 
rithm, particularly if the FDAF is attempting to identify 
an unknown globally-decaying FIR system of order < N. 
Another type of gradient constraint, referred to as 
Rosen's gradient-projection method, has been used in 
the context of channel equalization [2]. It is based on a 
constrained optimization problem which is solved by a 
search technique. Although the performance of this 
approach is similar to that of the algorithm in Fig. 5, it 
has a greater complexity. This FDAF was probably the 
first one developed based on an efficient convolution 
implementation. 

Finally, it is possible to remove the gradient con- 
straint entirely such that G = I. This implementation is 
referred to as the unconstrained frequency-domain 
adaptive filter [25], and it has the same configuration 
as in Fig. 5 except the constraint is simply bypassed so 
that only three DFTs are needed overall. The cor- 
responding algorithm is 

W(k+l) = W(k) + 2 ~ f l ( k ) E ( k )  (30) 

The gradient here no longer corresponds to a linear 
correlation; it represents instead a circular correlation 
and is analogous to the circular convolution ofY(k) = X(k) 
W(k). Note, however, that the constraint on the output via 
(25) is still maintained by the algorithm in (30). 

In general, the unconstrained FDAF does not con- 
verge to the same Wiener weight vector as  that of the 
constrained algorithm in (24), and the corresponding 
steady-state MSE is greater [38], [53]. However, for the 
previously-mentioned FIR system identification ap- 
plication, the unconstrained FDAF will converge to this 
Wiener solution provided that the length of the un- 
known system is I N [25]. In effect, the gradient con- 
straint is being traded for a constraint on the data, as 
determined by the length of the unknown system [26]. 
Finally, although the convergence rate of the uncon- 
strained FDAF is increased with time-varying step sizes, 
the misadjustment becomes greater, thus offsetting this 
improvement. In fact, compared to the constrained 
algorithm, about twice as many iterations of the uncon- 
strained algorithm are required in order to reach the 
same level of misadjustment 1381. 

Overlap-Add Method 

The overlap-add sectioning method is an alternative 
way of partitioning the data and reassembling the 
results to obtain a linear convolution [26]. The resulting 
FDAF algorithm (541 is essentially the same as the 
overlap-save FDAF in (24). except the input signal 
matrix is computed according to 

X(k) = X(k)+JX'(k-1) (31) 

where 

X ( k )  = diag(I;lx(kN) ,..., x(IdV+N-l), 0 ,..., 0lT] (32) 

Whereas X (k) in (1 7) includes a block of the previous 
data samples, X' (k) is an intermediate signal matrix that 
contains only the current block of data augmented with 
N zeros. Note, however, that the sum in (31) contains 
the previous block of data, although it is modified by 
the diagonal matrix J which is independent of time and 
has elements Jmm = ( - 1 )m ,  rn = 0,  ..., 2 N  - 1. The same 
constraint matrix, g, is imposed on the gradient accord- 
ing to (23). but the overall output of the filter is com- 
puted as 

y(k) = &F'Y(k) (33) 

This expression is similar to (25) except that 

TABLE 11. 
FDAF ALGORITHM BASED 

ON OVERLAP-ADD SECTIONING 

INITIALIZATION: 

W(0) = [O ,..., 0IT 
Pm(0) = am, r n = O ,  ..., 2N-1 

MATRIX DEFINITIONS: 

g = [ $ $, k = [ ON 'NI : sectioning constraints 

J = diag{l, -1,  1 ,  ...,- 1 ,  1) : overlap-add input constraint 

F = 2Nx2NDFTmatrix 

FOR EACH NEW BLOCK OF N INPUT SAMPLES: 

X( k) = diag [I;l4kiV), . . . ,x(kiV+N- l),O,.  . . ,OIT] 

X(k) = X(k) + JX'(k-1) 

Y(k) = X(k)W(k) 

y(k) = kF'Y(k) 

e(k) = d(k) - Y(k) 

E(k) = FkTe(k) 

Pm(k) = hPm(k-1) + alXm(k)12, m= 0, ..., 2N-1 

p ( k )  = II diagl~ ' (k)  ,..., q~-v-l(k)J 

W(k+l) = W(k) + 2FgF'  (k) f l (k)qk)  

JANUARY 1 9 9 2  IEEESP MAGAZINE 23 



k = [ I N  O N ]  (34) 
is used instead of k. Both the output vector, Y(k),  and 
weight vector, W (k) .  are computed as before for the 
overlap-save FDAF. Finally, the frequency-domain error 
is derived by augmenting the time-domain error terms 
with N zeros as follows: 

E(k) = FkTe(k) (35) 

which is similar to (27) except that the zeros follow the 
time-domain error terms. The overall structure is sum- 
marized in Fig. 6 and the algorithm is outlined in Table 
11. Comparing this algorithm with the overlap-save 
FDAF, we see that the only difference is in the way X 
(k) ,  y(k), and E (k)  are formed. They have essentially the 
same computational complexity and their convergence 
properties are virtually identical. Although it seems that 

additional memory would be required here in order to 
store X ' (k-l ) ,  recall that the overlap-save FDAF must 
store a previous block of data directly in the time 
domain. Thus, 2N samples of the input signal are 
always needed for the linear convolution, and the pre- 
vious block of data can be stored either in the time 
domain (overlap-save) or in the frequency domain (over- 
lap-add). 

The original FDAF based on the overlap-add method 
contained a total of seven DFTs [26]. The addition 
described by (31) was previously done in the time 
domain whereby X' (k) and X' (k-1) were first trans- 
formed by IDFTs before they were added. This was 
required because the time-domain sequence associated 
with X' (k-  1) must be circularly shifted before it is added 
to the time-domain version of X' (k) .  It can be shown, 
however, that the matrix J is the frequency-domain 

Input 

X(k) 
Implements a 
circular shift 

OUtDUt 

U 
t 

discard 

Error 

I 

Desired 
Response 

Pig. 6. Overlap-Add FDAF. This adaptive$lter is similar to the overlap-save FDAF, except that ouerlap-add data sectioning is 
used to perform the linear convolution. The most recent N input samples are augmented with N zeros before the D I T  is com- 
puted, and the first N points of the output IDFT correspond to a linear convolution. Observe that the previous transformed input 
signal matrix, X (k-11, must be storedfor use with the current block of data, and that the sign of every other diagonal element is 
changed (via J) before it is combined with X (k) to generate X (k). The gradient constraint is identical to that of the ouerlap-saue 
FDAF. 
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equivalent of the circular-shift operation, thus  
eliminating the need for the two additional IDFTs [541. 

Circular-Convolution Method 

By removing the gradient constraint in Fig. 5, the 
2N-length frequency-domain weight vector no longer 
corresponds to N time-domain weights, thus intro- 
ducing wrap-around effects that may impair the 
steady-state performance of the adaptive algorithm. 
In this section, we describe another modification to the 
FDAF algorithm which reduces its complexity even 
further, but at  the expense of causing additional 
degradation. Recall that for the overlap-save and 
overlap-add FDAFs, 2N-length DFTs were used so 
that N samples of the 2N-point output vector would 
correspond to a linear convolution. Consider instead 
using only N-point DFTs which are computed once for 
every block of N samples (i.e., 0% overlap) as il- 
lustrated by the FDAF in Fig. 7 [2 l].  For this adaptive 
algorithm, the weight vector and the input signal 
matrix are given by 

W(k) = W k )  (36) 

and 

X(k) = diag {Flxl W,. . . ,x(kAJ+N-1 )IT] (37) 

and the overall output is 

where Y(k) = X (k) W ( k )  as before. Comparing this last 
expression with those of the linear-convolution FDAFs 
in (25) and (33). we see that the constraint matrices k 
and fi: have been dropped, and the rank of F is now M 
= N. Because of these changes, it is clear that some 
components of y(k)  are necessarily the result of a cir- 
cular convolution (see Fig. 3). 

Since the data samples are not overlapped and be- 
cause the error is a linear function of the output signal 
and the desired response, the error is easily computed 
directly in the frequency domain without additional 
DFTs (unlike the previous FDAFs). The circular-con- 
volution FDAF is an example of the second error con- 
figuration in Fig. 1. Taking the DFT of a block of N 
desired response samples, D ( k )  = F d ( k ) ,  the frequen- 
cy-domain error is simply 

E(k)  = D(k) - Y(k) (39) 
Because there are no constraints on the gradient (i.e., 
G = I), the algorithm weight update has the same form 
as  the unconstrained algorithm in (30). The complete 
algorithm, which was first derived by Dentino et al. [2 11, 
is summarized in Table 111. 

Although the circular-convolution FDAF does not 
require any constraints, it is still a block algorithm that 
has an update similar to (9). By substituting (13) into 
(38) and using the weight vector computed in (36), the 
output can be written as 

y(k) = FIX(k)ZW(k) = X(k)w(k) (40) 

~ 

TABLE 111. 
FDAF ALGORITHM BASED 

ON CIRCULAR CONVOLUTION 

INIT WIZATION: 

W(0) = [O ,..., 0lT 

Pm(0) = 6 m ,  m=O, ..., N-1 

MATRIX DEFINITION: 

F = NxNDFTmatrix 

FOR EACH NEW BLOCK OF N INPUT SAMPLES: 

X( k) = diag [ax(kN), . . . ,x( IdV+N- 1)IT] 

D(k) = Fd(k) 

Y(k) = X(k)W(k) 

E(k) = D(k) - Y(k) 

Pm(k) = hPm(k-1) + aIXm(k)I2, rn=  0, ..., N-1 

I* (k) = I* d i a g l P 1 ( k ) , . . . , ~ ~ l ( k ) ~  

W(k+l) = W(k) + 2 p (k)fl(k)E(k) 

Since X (k )  is a diagonal matrix, X(k)=F'X(k)F is a 
circulant matrix' 1361, [27] such that each row and 
column uniquely define the entire matrix. The first 
column of x(k)  contains N samples of the input block 
{x(ldv),  ..., x (W+N-l)}.  Taking the IDFT of this FDAF 
algorithm (i.e., (30)) and using the definition of x(k)  
yields 

w(k+l) = w(k) + 2yxT(k)e(k) (41) 
The block gradient associated with (41) is 

where x&(k) is the mfh row9 of X(k). Thus, (42) has a 
block update which is similar to the linear correlation 
in (9), except the error terms here are being correlated 
with a circularly-shifted version of the input vector. 
Similarly, the output vector in (40) is the result of a 
circular convolution between the time-domain weights 
and the input signal. 

~. 

8Acirculant matrix is a square matrixwith rows determined 
by successive right circular ("wrap-around") shifts of the first 
row. 

In this paper. the rows (and columns) of a matrix are 
numbered beginning with zero (e.g., row rn with rn = 0, . .. , N- 1) .  
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The obvious advantage of using only N-point DFTs is 
that they have less computational complexity. This 
result, coupled with the savings obtained by removing 
the gradient constraint, leads to a significant reduction 
in the overall complexity of the FDAF. The main disad- 
vantage is that this FDAF often has a degraded perfor- 
mance because it is only a n  approximate 
implementation of the block adaptive algorithm in (9). 
Its convergence properties I551, [56], I271 are generally 
quite different from those of the previous FDAFs because 
of the distorting effects of the circular convolution. 

The adaptive weights in (41) converge to the Wiener 
weight vector for this filter, which is quite different from 
the one that minimizes the block MSE. In effect, each 
weight in (30) is adjusted to minimize the MSE as- 
sociated with its own frequency bin rather than the 

global MSE corresponding to the overall output of the 
filter. If the bins were less correlated, then minimizing 
these two performance functions would lead to 
similar results.  However, there is considerable 
spectral overlap, so we cannot expect (41) to have a 
steady-state performance similar to that of the linear- 
convolution FDAFs. One possible exception may 
occur, for example, in an adaptive line enhancer (ALE) 
application if the sinusoids are widely separated such 
that they lie essentially in different frequency bins. 

Computational Complexity 

The computational complexities of the block con- 
volution-based FDAFs are now summarized for com- 

Input X(k) 
x(n) Accumulate 

- 
One Block 

One block 

Each FFT has 
N points 

~ Conjugate 

Desired 

Accumulate 
One Block 
Accumulate 
One Block 

output 

Save Entire 

ig. 7. Circular-Convolution FDAF. Because there is no overlap of the data before the DFTs are computed. nor is there a n y  sec- 
tioning of the results, this FDAFperfonns a circular convolution between the input signal und the weight vector. In contrast to 
the previous FDAFs, the error t e r n  here are computed directly in thefrequency domain, although it is straightforward to per- 
form the equivalent operation in the time domain. A gradient constraint is not used because there are only N frequency-domain 
weights, and these are related to the corresponding time-domain weights via an N-point IDFT. From an implementation point of 
view, the DFTs are computed only afer N data samples have been accumulated. I t  is useful, however, to imagine that the DFTs 
are computed for every new data sample, and that the output signals are instead downsampled by a factor of N (maximally 
decimated). In this way, the DFT operates as a bank of bandpassJ1ter.s. and this FDAF can be viewed as a special case of a 
subband adaptiue3lter. Although the circular-convolution FDAF was originally designed such that the DFTs are computed once 
for each block of data (0% overlap), they could instead be computed more frequently in order to reduce the aliasing distortion. 
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parison with the nonblock time-domain LMS algorithm. 
Although we examine only the total number of multi- 
plications for each implementation, these results pro- 
vide reasonably accurate comparative estimates of their 
overall complexity. In an  actual implementation, several 
other issues would have to be considered, such as the 
number of additions, storage requirements, system 
transport delays, hardware designs, etc. 

The nonblock time-domain LMS algorithm with N 
real weights requires N multiplications to compute its 
output and another N multiplications to update the 
weight vector, for a total of 2N real multiplications to 
produce each output sample. Thus, 2N2 real multiplica- 
tions are required for every N output samples. The 
complexity of each FDAF will be compared to this 
amount in the form of a ratio, as summarized in Table 
IV for several values of N [27]. 

Each M-point FFT (and IFFT) requires approximately 
M logz(M) real multiplications [57] (assuming real- 
valued input data and radix-2 FFT algorithms) where M 
is either Nor 2N depending on whether the convolution 
is circular or linear, respectively. The frequency-domain 
output vector requires 4M real multiplications as does 
the gradient correlation, so the total complexity is PM 
lo@ (M) + 8 M  real multiplications where Pis the number 
of DFTs. The complexity ratios were thus computed 
using 

Linear Convolution 
Unconstrained Gradient 
Circular Convolution 

Complexity ratio = (PMlogz(M) + 8M)/2N (43) 

32 64 - 
2.063- 1.188 0.672 - 0.375 0.207 0.062 0.033 
1.438 0.813 0.453 0.250 0.137 0.040 0.021 
0.625 0.359 0.203 0.113 0.062 0.019 0.010 

_ _ ~ ~  ___ 

For the linear-convolution overlap-save FDAF ( P  = 5 and 
M =  2N), the total number of real multiplications is 10N 
10@(2NJ + 16N. Since the unconstrained FDAF requires 
only three FFTs, its complexity is 6Nlog2(2N) + 16N real 
multiplications. Finally, for the circular-convolution 
FDAF where M = N and P = 3, its overall complexity is 
3N logz(N) + 8N real multiplications. 

By examining Table IV, we see that a substantial 
reduction in the computational complexity can be ex- 
pected when using any of the block frequency-domain 
implementations. As expected, the circular-convolution 
FDAF has the least complexity while the linear-convolu- 
tion FDAF with the gradient constraint has the greatest. 
Each of the block FDAFs has a savings when the filter 
length is relatively small (= 64). and they have consid- 
erable complexity advantages when N exceeds 1000. 
This dramatic reduction in the number of multiplica- 
tions is obtained because of the FFT algorithms and the 
block updating. 

1 FDAFALGORITHM I 

Sliding DFT and 
Frequency-Sampling Methods 

In addition to the block frequency-domain techni- 
ques, nonblock FDAFs have been developed that exploit 
the orthogonality properties of the DFT to improve the 
convergence rate of the LMS algorithm. Figure 8 shows 
a filter configuration where a single DFT is used to 
transform the input signal vector into an  equivalent 
frequency-domain representation. The weight vector 
and input signal matrix are the same as those defined 
in (36) and (37) for the circular-convolution FDAF. 
However, unlike the previous methods, the DFT here is 
computed for eachnew input sample, and the algorithm 
is updated at  the incoming data rate (i.e., k = n). When 
operated in this manner, the DFT is often referred to as 
a sliding DFT 1511. The output vector Y(n) is still com- 
puted according to (1 3). and its terms are simply added 

TABLE V. 
FDAF ALGORITHM BASED ON 

THE SLIDING DFT 

INITIALIZATION: 

W(0) = [O ,..., 0lT 

Pm(0) = 6 m ,  m=O, ..., N-1 

MATRIX DEFINITION: 

F = N x  N DFT matrix 

FOR EACH NEW INPUT SAMPLE: 

X( n) = diag {F[x( n), . . . ,q n-N+ 1 )] '1 

Y(n) = X(n)W(n) 

e(n) = d(n)  - 1'yCn) 

E(n) = le(n) 

Pm(n) = Wm(n-l)+aIXm(n)12, m = ~ ,  ..., N-1 

p (n) = 1 diag{PO'(n) ,..., ~ ~ i ( n ) l  

W(n+l) = w(n) + 2 p (n)xH(n)E(n) 

~ ~ ~~ ~ ~~ 

TABLE i. 
FDAF COMPUTATIONAL COMPLEXITY RATIOS 

FILTER s~~ 
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together to yield the time-domain output. As a result, 
the output error is 

e(n) = d(n) - lTY(n) (44) 

where 1 is a column vector of ones. Alternatively, if a 
sliding IDFT of Y (n) was computed, then only the first 
element of the resulting output vector would be needel 

Tapped Delay Line 1 
1 0 . 0  1- 

T' 

I g-t- 

because the first component of an  IDFT is the sum of 
the input vector elements. l o  

The adaptive algorithm is thus given by 

W(n+l) = W(n) + 2p(k)Xt'(n)le(n) (45) 

There is no gradient constraint (G = I) and the error 
vector is E (n) = 1 e (n). As shown in Fig. 8, each weight 
is updated with the same error term e (n) = d (n) - y (n). 
It is important that this algorithm employ a set of 
time-varying step sizes, which we emphasize by includ- 
ing p ( k )  in (45). It therefore becomes possible to obtain 
a more uniform convergence rate [58], [59] for some 
input signals because of the orthogonality properties of 
the DFT. This is essentially the only advantage of the 
sliding DFT FDAF; it does not have the computational 
efficiency of the previous block FDAFs. Other transfor- 
mations can also be used, such as the discrete cosine 
transform (DCT), and these might be more appropriate 
for certain types of signals (such as speech). This FDAF 
is often referred to as the transform-domain" LMS 
algorithm, first developed by Narayan et al. 1431. The 
complete algorithm is summarized in Table V. 

The Karhunen-beve transform (KLT) [39] would be 
the ideal transform because it takes into account the 
eigenvalues of the input signal correlation matrix. How- 
ever, since this matrix is assumed to be unknown or 
may even be time-varying (because of nonstationary 
signals), the KLT must be approximated by a time-in- 
variant transform such as the DCT. The FDAF in Fig. 8 
is an attempt to compensate for the eigenvalue disparity 
by using a fixed transform and individual adaptive step 
sizes for each of the weights, with a modest increase in 

l o  Actually, the first component of the IDFT would be 1'Y (n) 
divided by N because of the way we have defined F I .  ' Transform domain as applied only to the FDAF in Fig. 8 
is a somewhat misleading description because all of the adap- 
tive algorithms considered in this paper operate in the "trans- 
form domain." 

f 
I 
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Frequency-Sampling 
Filter Bank I 

T +  
Response 

_ _ _ _ _ ~ ~ ~  ~ _ _ _ _ _ _ _ _ ~ ~ ~ ~ ~ ~  . G.-8. Sliding DFT and Frequency-Sampling FDAFs. The sliding DFT FDAF in (a)-& not a block adaptiuejilter because the DFT 
is computed for each new input sample. This configuration is similar to a tapped-delay-line LMS adaptiuefilter, except that a 
nonadaptiue transformation (the DFT) is j rs t  performed on the input sequence. This allows each adaptive weight to have its 
own time-uaying step sue with a value that changes according io the signal power in that.prequc,ncy bin. Because the DFT.func- 
tions as a bank of narrow-band bandpassjiliers, it is possible to replace it by a frequericy~sampling~lter bank as shown in (b). 
which is a more efficient implementation. 
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ig. 9. Filter Bank Spectra. The frequency responses of two adjacent D l T  bins are shown in (a) for the case of N = 8. The im- 
pulse response of the mth DFT bin is given by 

, n = 0 ,..., N-1 , -j2n i n  n / N  hm(n)  = e 

which is the mLh row ofF. Clearly, there is a large degree of spectral ouerlap, indicating that the DFToutput signals are only ap- 
proximately uncorrelated. Obserue that theJrst sidelobe is only about 13 dB down from the main lobe. This suggests the pos- 
sibility of using otherJlter bank structures that have less spectral ouerlap. The frequency responses of two adjacent bins of a 
polyphasefilter bank with N = 8 bands are shown in (b). The impulse response of the prototypejlter has QN = 32 coeflcients, 
and these are given by (461 

where g In) is a Hamming window. Observe that the.first sidelobe is now about 50 dB down from the main lobe, indicating that 
the output signals ofthisfilter bank are much less correlated. 

the computational complexity. The RLS algorithm also 
partially compensates for this eigenvalue spread using, 
in effect, an  estimate of the input signal correlation 
matrix. The RLS algorithm has a greater complexity 
than the standard LMS algorithm, but it more closely 
approximates the advantages of the ideal KLT-based 
algorithm. 

The DFT in Fig. 8 can be realized more efficiently with 
a frequency-sampling (FS) structure12 1511. When the 
DFT is computed for each input sam le, the transfer 
function from the input x (n) to the rn' DFT output X m  
(n) is 

R 

(46) 

~ 
~~~~~ ~~ -~ 

l 2  This implementation of the DFT is also called a recursive 
DFT 1601. 

Consequently, the implied FIR filter bank of the D I T  
can be replaced with this more efficient IIR configura- 
tion. The numerator of (46) represents a set of zeros that 
are equally spaced around the unit circle,13 and the 
denominator contains a single pole that exactly cancels 
one of these zeros. The FDAF based on this frequency- 
sampling structure is also shown in Fig. 8 where we see 
that the DFT operates as a bank of narrow-band 
bandpass filters. The frequency responses for the filters 
associated with two adjacent D I T  bins are shown in Fig. 
9a, demonstrating that they have a large degree of 
spectral overlap. Alternative forms of this FS adaptive 
filter have been described in [44], 1601, (611. 

Because the pole for each of the FS filters lies exactly 
on the unit circle, this realization is actually marginally 
stable so that any round-off errors could result in filter 
instability [62]. As a result, the poles and zeros can be 

The zeros of (46) are referred to a s  the N roots of unity 
~~~ 

I ,3 

and they are given by z,,, = eJ2' , m = 0. ___ ,  N-1. 
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NOMENCLATURE 

ALE 
BLMS 
CMA 
DCT 
DFT 
FDAF 
FIR 
FFT 
FM 
FS 
IDFT 
IFFT 
IIR 
KLT 
LMS 
MSE 
QMF 

Adaptive line enhancer. 
Block least-mean square. 
Constant modulus algorithm. 
Discrete cosine transform. 
Discrete Fourier transform. 
Frequency-domain adaptive filter. 
Finite impulse response. 
Fast Fourier transform. 
Frequency modulation. 
Frequency sampling. 
Inverse discrete Fourier transform. 
Inverse fast Fourier transform. 
Infinite impulse response. 
Karhunen-Iheve transform. 
Least-mean square. 
Mean-square error. 
Quadrature mirror filter. 

Ius 
L 
M 
N 
NS 

F 
I 
0 
1 
P 
h 

QN 

w 
diag{.) 
a.1 

Recursive least squares. 
Decimation factor and block size (1 I L I N). 
Size of the DFT (Nor 2N). 
Number of time-domain filter coefficients. 
Number of data samples. 
Length of the filter bank prototype filter. 
DFT matrix (rank N or 2N). 
Identity matrix. 
Zero matrix. 
Vector with all elements = 1. 
Algorithm step size. 
Forgetting factor of the power 
estimate (h = 1 - a). 
Radian frequency. 
Operator that forms a diagonal matrix. 
Expectation operator. 

moved slightly inside the unit circle by replacing Y1 in 
(46) with 2-l p where 0 < p < 1 [63]. For example, with 
p = 0.99 the poles and zeros all lie on a circle with radius 
0.99 so that even without exact pole-zero cancellation, 
the FS filters will be stable. 

This filter bank representation suggests that it may 
be possible to use other filter designs which have less 
spectral overlap (see Fig. 9b), such that the filter bank 
output signals may be decimated. Because of the large 
spectral overlap of the FS implementation, any decima- 
tion will cause severe aliasing distortion. By minimizing 
this overlap, the effects of aliasing can be reduced and 
decimation will lead to a considerable reduction in 
complexity, while still taking advantage of the or- 
thogonality properties of the filter bank to improve the 
convergence rate. Of course, once the signals are 
decimated, it will be necessary to have a synthesis filter 
bank which reconstructs the output signal of the adap- 
tive filter. This approach is referred to as subband 
adaptive filtering [29]. 

SUBBAND IMPLEMENTATIONS 

Filter Banks 

As an alternative to the convolution-based frequen- 
cy-domain adaptive filters, subband techniques can 
also achieve computational efficiency by decimating the 
signals before the adaptive processing. One motivation 
for this approach is provided by the circular-convolu- 
tion FDAF where the DFT can be viewed as a filter bank 
whose output is maximally decimated by the factor N. 
As mentioned above in connection with the frequency- 
sampling structure, the DFT filter bank has a large 
degree of spectral overlap which can lead to severe 
aliasing distortion. Thus, it would be desirable to use 
alternative filter bank designs that have a reduced 
spectral overlap without a large additional complexity. 

The theory of multirate signal processing for non- 
adaptive filters is well established, and there are many 
techniques for designing the filter banks [31], [641-[661. 
The idea of subband filtering evolved primarily from 
work on speech and image processing where it has been 
found that by splitting signals into smaller frequency 
bands, a considerable reduction in the coding com- 
plexity is possible [67]. The same ideas have been 
extended to other signal processing applications, in- 
cluding adaptive filtering. The subband adaptive filters 
are shorter in length than the full-band adaptive filter, 
although the total number of coefficients is usually the 
same. The complexity advantage is thus achieved by the 
downsampling process. 

A subband filter is comprised of a n  analysis filter 
bank which “splits” the input signal into narrow fre- 
quency bins so that the subband signals can be 
decimated with minimal aliasing distortion. After trans- 
mission, for example, these subband signals can be 
upsampled (interpolated) and then processed by a syn- 
thesis filter bank to generate an estimate of the original 
signal. The synthesis bank has a form that is similar to 
the analysis bank, and it is possible to design them such 
that their combination results in “perfect” reconstruc- 
tion of the original signal. Perfect reconstruction [64] is 
a property of filter banks whereby the magnitude and 
phase of the original signal is completely restored, 
except for a possible end-to-end delay. 

The quadrature mirror filter (QMF) bank is probably 
the most well-known subband implementation [66]. It 
is comprised of simple filter components, and the perfect 
reconstruction property is achieved by designing them to 
satisfy a certain structural relationship. These filter com- 
ponents are usually a frequency-shifted version of a 
prototype low-pass filter which has the desired frequency 
cutoff (transition-band) specifications. The complexity of 
the QMF realization increases with the number of sub- 
bands as well as  the sharpness of the transition band. 
Several implementations are possible, including tree 
structures and polyphase realizations [3 11. 
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Subband Adaptive Filtering 

x(n) An a I y s i s y k )  
Bank 

When designing the analysis filter bank, it is 
desirable to have approximately nonoverlapping fre- 
quency bins so that the subband adaptive filters operate 
independently. However, practical filters have a finite 
transition band so that a filter design with nonoverlap- 
ping bins often has spectral “holes” that can adversely 
affect the steady-state performance of an  adaptive algo- 
rithm. For example, if the adaptive filter is configured 

Synthesis Y(n) 
Bank 

Y(k) Time-Varying 
Filter W(k) 

tive algorithm has the same form as the unconstrained 
recursion in (30) where X (k) and E (k) are derived as 
shown in Fig. 10. A recent subband adaptive filter 
design had nonoverlapping frequency bins [ lo], but the 
convergence properties of the algorithm were generally 
not acceptable for the reasons discussed above. An 
improved design with overlapping bins was then 
developed, but it was necessary to include adaptive 
c r o s s - t e r n  to reduce the aliasing distortion because 
the  filter bank  output  signals were maximally 

f 
Downsample by 

factor L 

Upsample by 
factor L 

Adaptive 

Desired D(k)l 

* 

Response 
0 Analysis 
d(n) Bank 

Algorithm 

Hg. 10. Subband Adaptive Filter. A subband adaptiveJlter may be derived from the circular-convolution FDAF by replacing the 
DFTs with a set ofjilter banks that have less spectral overlap. The circular-convolution FDAF is essentially maximally 
decimated (by NI, and this causes severe aliasing distortion. The transformed signals here are usually downsampled by a fac- 
tor L < N ,  thereby minimizing the effects of aliasing. Several types offllter banks can be used, such as those based on 
polyphase designs. 

as an  ALE, it is possible for the unknown sinusoids to decimated (“critically sampled”) (91, [29]. 
be located in these spectral gaps, and thus they may 
not be “observed” by the adaptive process. On the other 
hand, a large degree of spectral overlap causes aliasing 
distortion as well as a reduced convergence rate. Ob- 
viously, there is a trade-off when designing the filter 
banks, so the specific configuration will depend on the 
requirements of the application. One of the first sub- 
band adaptive filters was based on a t r ansm~l t ip l exe r~~  
design [ 141, (271 which included some spectral overlap. 
In order to reduce the aliasing, the filter bank output 
signals are often decimated by a factor less than the 
number of bands (e.g., L = N / 2). Additional examples 
of this are presented in (271, 1111, (121. 

The basic configuration of a subband adaptive filter 
is shown in Fig. 10, which is similar to the circular-con- 
volution FDAF except that the DETs are replaced with 
more general filter banks, and the downsampling is 
performed as part of the implementation. l 5  The adap- 

l 4  Transmultiplexer is a somewhat confusing name for a 
polyphase implementation since this term is used to describe 
a device in telecommunication systems that converts between 
time-division multiplexing and frequency-division multiplexing 
(681. 

Consider the two-band case (without cross-terms) 
shown in Fig. 1 1 that has analysis filters &(z) and Al(z). 
Usually, one chooses the analysis filters such that A1 
(z)  = A0 (-z) = A (z) where A ( z )  represents the prototype 
filter. The synthesis filters are then chosen as Bo (z) = 
A0 (z)  and B1 (z) = A1 (z) .  As a result, the intermediate 
“frequency-domain” output signals can be written as 

(47) 

where X (z) is the input and {Wm (k ,  z)) represent the 
adaptive subfilters (their time-varying nature is em- 
phasized by the block time argument k).  The super- 
scripts of z are a standard notation used to describe 
multirate systems (641. Equation (47) can be rewritten 
in the following compact form with the obvious cor- 
respondences between the terms: 

l5 Recall that the circular-convolution FDAF doesn’t ex- 
plicitly downsample the DFT output signals: instead the DFTs 
are computed only once for each block of data. 
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fg. 1 1.  Two-Band Subband Adaptive Filter. A two-band implementation illustrates the basic confguration of a subband adap- 
tivefilter, and it is easily generalized lo an arbitrary number of bands. I n  this case, the two./ilters of the QMF bank correspond 
to low-pass and high-pass designs such that their combined output contains the entire spectrum of the transformed signal. The 
filter bank signals are downsampled by a factor of 2, processed by independent adaptiuefilters, upsampled back to the original 
rate, and then recombined by the reconstruction (synthesis)./ilter bank. The adaptiueJlters usually have several coeficients, al- 
though the number is often decreased as the number of subbands increases so that the total number oj-coeflcienls matches 
that of the corresponding time-domain adaptiveJlter. 

(48) 
1 Y(z) = sW(k,  Z ) A ( Z ~ ’ ~ ) X ( Z ~ ’ ~ )  

Note that W ( k ,  z) is diagonal by design. However, if we 
consider an  application where the adaptive filter is 
configured to identify an unknown transfer function 
C(z) (e.g., in an echo-cancellation application), then it 
can be shown that when the subband filters are time- 
invariant [29], 

W(2) = czp ’ 

1 A’( z ’ ~ )  C(zIh)- A’(-zlh) C(-zIm) A ( Z ’ ~ ) A ( - ~ ’ ~ )  [ C(-zl”) - C( zlh)l 
A(zk)A(-zln) [ C(z‘)- C ( - Z ’ ~ ) ]  A2(z’h)C(-z’h) - A2(-zLd) C( z’&) 

(49) 

where c is a constant scalar and p is a positive integer. 
This expression is an  approximation to the Wiener 
solution and thus represents the “optimal” structure of 
the adaptive filter. Clearly, this is not a diagonal matrix 
so that the adaptive matrix in (48) should be replaced 
by the following more general form: 

(50) 

Although thik modified subbank adaptive filter has a 
reduced aliasing distortion, the convergence rate is 
somewhat degraded because the subbands are no 
longer uncoupled. The computational complexity is also 
slightly increased. For the general M-band case, it is not 
necessary that all adaptive subfilters be cross-coupled 
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because only adjacent bins are strongly overlapping, so 
the additional complexity due to the cross-terms in- 
creases only linearly with the number of subbands. 

There have been several other subband implementa- 
tions for adaptive filtering. One approach uses QMF 
banks with nonoverlapping subbands to avoid aliasing 
distortion, and it includes an auxiliary adaptive filter 
(possibly with a multi-band frequency response) that 
compensates for the spectral holes [69], 161. The length 
of this additional filter can usually be very short (com- 
pared to the main subbands), so the additional com- 
plexity is less than that introduced by the cross-terms 
above. The auxiliary filter can also be downsampled, 
resulting in even less additional complexity. Although 
there have been a few other designs (see, e.g., [5], [30]), 
subband adaptive filtering is still largely an open area 
of research. Their convergence properties have not been 
analyzed and it is difficult to predict their behavior in a 
general way. 

IIR ALGORITHMS AND 
NONLINEAR ERROR FUNCTIONS 

IIR Implementations 

Compared to FIR filter implementations, there has 
been relatively little work on frequency-domain realiza- 
tions for adaptive IIR filtering. An important advantage 
with IIR structures is that they can provide improved 
steady-state performance with fewer coefficients be- 
cause of the feedback, thereby further reducing the 
overall complexity [70], [17], [18]. One of the first at- 
tempts involved a frequency-domain model of a time- 
domain ALE that was used to study its convergence 
properties [7 11. This representation has a specific struc- 
ture that was designed as part of the model and, as  
such, it is not considered to be a practical implementa- 
tion. Recently, frequency-domain IIR realizations have 
been developed for general-purpose signal processing 
applications, including both equation-error and output- 
error formulations [ 191. 

The equation-error formulation is similar to adaptive 
FIR filtering because the mean-square-equation error is 
a quadratic function of the weights: in addition to the 
feedfonvard coefficients that weight the input signal, 
there are “feedback coefficients that similarly weight 
the delayed desired response. A frequency-domain im- 
plementation [72] of this formulation is shown in Fig. 
12, which is similar to the linear convolution FDAF in 
Fig. 5 based on the overlap-save data sectioning 
method. Note that the desired response is also 
processed by a DFT, weighted by a set of coefficients, 
and the result is then added to the output of the 
feedforward component of the filter. Because of the 
“feedback coefficients, a total of eight DFTs are now 
required because of the three DFTs which process the 
desired response. This adaptive filter has convergence 
properties similar to that of the overlap-save FIR FDAF, 
but the converged coefficients may be biased depending 
on the statistics of the input signal and the desired 
response [191. 

An output-error FDAF for adaptive IIR filtering can 
be derived from the nonblock sliding DFT adaptive filter 
in Fig. 8 by replacing the weights with a set of single- 
pole, single-zero adaptive filters [ 731. This configuration 
is actually a parallel-form implementation whereby the 
DFT preprocesses the input signal before adaptation. 
Other types of filter banks can be used and, depending 
on their spectral overlap, they are capable of improving 
the convergence properties of the adaptive filter. A 
frequency-sampling implementation of the DFT can 
also be employed here. Adaptive IIR filters based on the 
output-error formulation may converge to local minima 
[17], which is a potential drawback similar to the bias 
problem of the above equation-error formulation. 

Nonlinear Error Functions 

This paper has focused on the LMS algorithm which 
has a linear error function, i.e., e (n) = d (n) - y (n). As 
such, the two error formulations described in Fig. 1 are 
often equivalent and it is usually straightforward to 
develop FDAF algorithms where the error is computed 
in either the time or frequency domains. On the other 
hand, when the error is a nonlinear function of the data, 
it is not always clear how to derive the equivalent 
frequency-domain error. Even if this were possible, the 
complexity would very likely be increased or the fre- 
quency-domain error may only be an approximation. 

For example, consider the constant modulus algo- 
rithm (CMA) [74], [34] which has the following time- 
domain weight update: 

where ris a predetermined constant and the superscript 
* denotes complex conjugate. CMA is a “blind” adaptive 
algorithm 1751 since it does not require an  explicit 
desired response signal, and its goal is to force the 
modulus of the equalizer output, y (n). to be a constant 
value. This property is useful when a constant-modulus 
signal (e.g., FM) is transmitted across a noisy channel 
that has linear and nonlinear distortion: by restoring 
the modulus of the received signal, it may be possible 
to sufficiently reduce the bit error rate in order to switch 
the equalizer to a decision-directed mode. There are four 
versions16 of CMA: the algorithm in (51) is generally 
referred to as  CMA 2-2. 

Clearly, the “error” term of this algorithm, given by 
-2y(n)[ I y(n) I - 12 1, is a nonlinear function of the filter 
output. In this case, it is more appropriate to compute 
the error in the time domain. It is not immediately 
obvious what the corresponding frequency-domain 
error formulation is, and it is unlikely that any ap- 
proximations will produce satisfactory performance. 
Another example of a nonlinear error computation is the 
decision-directed equalization scheme whereby the 
demodulator decisions are used a s  the “desired 
response” signal 1401. 

~ ~~~~~ ~ ~~~~~ ~~~~~~~ ~ ~ 

’‘ T h e  per formance  func t ion  of C M A  p-q is 
tPy = E[ I I y(n)  I!’ - 91 “ 1  where p and y are intrgers rhosen to 
he either 1 or 2. 
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lg. 12. Equation-Error IIR FDAF. The equation-error formulation is related to adaptive FIRjltering because there is no output 
eedback in theJlter. A s  a result, the convergence properties of this adaptivejlter are well understood and readily predicted. 
'he main difference is that the desired response isJltered by a set of "Jeedback" coefficients, which is analogous to the set of 

feedfonuard coefficients that weight the input signal. All of the previous FDAF conJgurations can be modt$ed to accommodate 
the equation-error formulation, as demonstrated here for the overlap-save linear convolution method. 

Figure 13 shows a subband implementation of CMA 
using polyphase filter banks [76]. Because this filter 
bank has a n  inherent group delay (transport delay), the 
error signal E (k) is not a function of the current input 
X (k) [77]. As a result, it is necessary to delay the 
transformed input as X ( k  - A) before computing the 
gradient correlation, otherwise the performance of the 
algorithm will be severly deteriorated. The amount of 
delay depends on the type of filter banks used, and it is 
usually needed only when the error is computed in the 
time domain. In general, A = L ( Q N - ~ ) / L  where Q N  is the 
length of the prototype filter, Nis the number of adaptive 
weights, and Lis the block size (decimation factor) [76]. 

The operator Lu retains the greatest integer I U .  For 
the DFT filter bank in Fig. 9a (with maximum decima- 
tion), the delay is always A = 0 for any value of N, 
whereas for a polyphase filter bank based on the 
prototype filter in Fig. 9b with Q N  = 32 coefficients and 
L = N = 8, the delay is A = 3.  Thus, the input signal 
matrix, X (k) ,  of the linear-convolution FDAFs (overlap- 
save and overlap-add) does not require a block delay 
even though the error is computed in the time domain. 
The delay is required only when the length of the filter 
bank prototype filter relative to the block size exceeds 
the above threshold. 
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Ftg. 13. Block Delay. Filter bank implementations usually introduce an inherent block delay that can aduersely affect the conuer- 
gence properties of the adaptiueJlter unless the algorithm signals are properly matched in time. This potential problem often 
arises with nonlinear error formulations where the error signal must be computed in the time domain. A s  shown in the fgure, 
the transformed input signal must be delayed before it is cross-correlated with the transformed error vector. The amount of 
delay depends on the number of subbands and the decimation factor, as well as the type offilter banks. 
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CONCLUSION AND SUMMARY 

Analysis e(n) 
Bank 1 Adaptive 

Algorithm depends on the 

An overview of several frequency-domain adaptive 
filters (FDAFs) has been presented. Generally, these 
algorithms can be divided into two classes depending 
on the type of frequency-domain transformation. One 
class is based on the D I T  and its ability to generate 
either a circular convolution or linear convolution, as 
determined by the scheme used to partition the data. 
The other class is based on subband filtering techniques 
where the signals are processed by a set of filter banks. 
Both approaches are considered to be multirate adap- 
tive filters since the adaptive processing is performed at  
a lower sampling rate than that of the incoming data, 
thus reducing the computational complexity. These 
parallel configurations often result in faster conver- 
gence rates than their time-domain counterparts and 
they are more amenable to hardware implementations. 
On the other hand, they introduce an  end-to-end delay 
that could be a problem in applications such as telecom- 
munications. In addition, the weights are kept fixed 
while a block of data is accumulated, which is not 
desirable for tracking purposes when the data are high- 
ly nonstationary. Nevertheless, the computational and 
convergence rate advantages of frequency-domain 
adaptive filters can be considerable, and it is expected 
that they will become more widely used in many signal 
processing applications. 

Nonlinear 
Error 
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