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Linear Predictive Coding
. of Speech

8.0 Introduction

One of the most powerful speech analysis techniques is the method of linear
predictive analysis. This method has become the predomiinant technique for
estimating the basic speech parameters, e.g., pitch, formants, spectra, vocal
tract area functions, and for representing speech for low bit rate transmission or
storage. The importance of this method lies both in its ability to provide
extremely accurate estimates of the speech parameters, and in its relative speed
of computation. In this chapter, we present a formulation of the, ideas behind
linear prediction, and discuss some of the issues which are involved in using it
in practical speech applications.

The basic idea behind linear predictive analysis is that a speech sample can
be approximated as a linear combination of past speech samples. By minimiz-
ing the sum of the squared differences (over a finite interval) between the
actual speech samples and the linearly predicted ones, a unique set of predictor
coefficients can be determined. (The predictor coefficients are the weighting
coefficients used in the linear combination.)

The philosophy of linear prediction is intimately related to the basic
speech synthesis model discussed in Chapter 3 in which it was shown that
speech can be modelled as the output of a linear, time-varying system excited
by either quasi-periodic pulses (during voiced speech), or random noise (during
unvoiced speech). The linear prediction method provides a robust, reliable,
and accurate method for estimating the parameters that characterize the linear,
time-varying system.

396




Linear predictive techniques have already been discussed in the context of
the waveform quantization methods of Chapter 5. There it was suggested that
a linear predictor could be applied in a differential quantization scheme to
reduce the bit rate of the digital representation of the speech waveform. In
fact, the mathematical basis for an adaptive high order predictor used for
DPCM waveform coding is identical to the analysis that we shall present in this
chapter. In adaptive DPCM coding the emphasis is on finding a predictor that
will reduce the variance of the difference signal so that quantization error can
also be reduced. In this chapter we take a more general viewpoint and show
how the basic linear prediction idea leads to a set of analysis techniques that can
be used to estimate parameters of a speech model.- This general set of linear

predictive analysis techniques is often referred to as linear predictive coding or
LPC. ’

The techniques and methods of linear prediction have been available in
the engineering literature for a long time. The ideas of linear prediction have
been in use in the areas of control, and information theory under the names of
system estimation and system identification. The term system identification is
particularly descriptive of LPC methods in that once the predictor coefficients
have been obtained, the system has been uniquely identified to the extent that
it can be modelled as an all-pole linear system.

As applied to speech processing, the term linear prediction refers to a
variety of essentially equivalent formulations of the problem of modelling the
speech waveform [1-18]. The differences among these formulations are often
those of philosophy or way of viewing the problem. In other cases the
differences concern the details of the computations used to obtain the predictor
coefficients. Thus as applied to speech, the various (often equivalent) formula-
tions of linear prediction analysis have been:

the covariance method [3]

the autocorrelation formulation [1,2,9]
the lattice method [11,12]

the inverse filter formulation [1]

the spectral estimation formulation [12]
the maximum likelihood formulation [4,6]
the inner product formulation [1]

TS D 9

In this chapter we will examine in detail the similarities and differences among
only the first three basic methods of analysis listed above, since all the other
formulations are equivalent to one of these three.

The importance of linear prediction lies in the accuracy with which the
basic model applies to speech. Thus a major part of this chapter is devoted to a
discussion of how a variety of speech parameters can be reliably estimated using
linear prediction methods. Furthermore some typical examples of speech appli-
cations which rely primarily on linear predictive analysis are discussed here, and
in Chapter 9, to show the wide range of problems to which LPC has been suc-
cessfully applied.
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Fig. 8.1 Block diagram of simplified model for speech production.

8.1 Basic Principles of Linear Predictive Analysis

Throughout this book we have repeatedly referred to the basic discrete-time
model for speech production that was developed in Chapter 3. The particular
form of this model that is appropriate for the discussion of linear predictive
analysis is depicted in Fig. 8.1. In this case, the composite spectrum effects of
radiation, vocal tract, and glottal excitation are represented by a time-varying

--digital filter whose steady-state system function is of the form

S(2) _ G
U(Z) l e i akz_k
k=1

This system is excited by an impulse train for voiced speech or a random noise
sequence for unvoiced speech. Thus, the parameters of this model are:
voiced/unvoiced classification, pitch period for voiced speech, gain parameter

G, and the coefficients {a,} of the digital filter. These parameters, of course, all
vary slowly with time.

H(z) =

(8.1)

The pitch period and voiced/unvoiced classification can be estimated using
one of the many methods already discussed in this book or by methods based
on linear predictive analysis to be discussed later in this chapter. As discussed
in Chapter 3, this simplified all-pole model is a natural representation of non-
nasal voiced sounds, but for nasals and fricative sounds, the detailed acoustic
theory calls for both poles and zeros in the vocal tract transfer function. We
shall see, however, that if the order p is high enough, the all-pole model pro-
vides a good representation for almost all the sounds of speech. The major
advantage of this model is that the gain parameter, G, and the filter coefficients
{a,} can be estimated in a very straightforward and computationally efficient
manner by the method of linear predictive analysis.

For the system of Fig. 8.1, the speech samples s(n) are related to the
excitation u(n) by the simple difference equation

s(n) = i a,s(n—k) + Gu(n) (8.2)

k=1
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A linear predictor with prediction coefficients, a is defined as a system whose
output is

5 = 3 ays(n—k) (8.3)
k=1
Such systems were used in Chapter 5 to reduce the variance of the difference
signal in differential quantization schemes. The system function of a p' order
linear predictor is the polynomial

P() = ¥ aya* (8.4)

k=1
The prediction error, e(n), is defined as

e(n) = s(n) —5(n) = s(n) — ¥ aps(n—k) (8.5)
k=1
From Eq. (8.5) it can be seen that the prediction error sequence is the output
of a system whose transfer function is

A(z) =1- i azk (8.6)
k=1
It can be seen by comparing Egs. (8.2) and (8.5) that if the speech signal obeys
the model of Eq. (8.2) exactly, and if a; = a,, then e(n) = Gu(n). Thus, the
prediction error filter, A(z), will be an inverse filter for the system, H(z), of Eq.
(8.1), i.e.,

G
H(z) = Vimy 8.7

The basic problem of linear prediction analysis is to determine a set of
predictor coefficients {o;} directly from the speech signal in such a manner as
to obtain a good estimate of the spectral properties of the speech signal through
the use of Eq. (8.7). Because of the time-varying nature of the speech signal
the predictor coefficients must be estimated from short segments of the speech
signal. The basic approach is to find a set of predictor coefficients that will
minimize the mean-squared prediction error over a short segment of the speech
waveform. The resulting parameters are then assumed to be the parameters of
the system function, H(z), in the model for speech production.

That this approach will lead to useful results may not be immediately
obvious, but it can be justified in several ways. First, recall that if ap = ay,
then e(n) = Gu(n). For voiced speech this means that e(n) would consist of
a train of impulses; i.e., e(n) would be small most of the time. Thus, finding
a,’s that minimize prediction error seems consistent with this observation. A
second motivation for this approach follows from the fact that if a signal is gen-
erated by Eq. (8.2) with non-time-varying coefficients and excited either by a
single impulse or by a stationary white noise input, then it can be shown that
the predictor coefficients that result from minimizing the mean squared predic-
tion error (over all time) are identical to the coefficients of Eq. (8.2). A third
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very pragmatic justification for using the minimum mean-squared prediction
error as a basis for estimating the model parameters is that this approach leads
to a set of linear equations that can be efficiently solved to obtain the predictor
parameters. More importantly the resulting parameters comprise a very useful
and accurate representation of the speech signal as we shall see in this chapter.

The short-time average prediction error is defined as

E,=Y eXm) (8.8)
=Y (s,(m) — §,(m))? (8.9)
i 2
=3 |s.(m) — )5 as,(m—k) (8.10)
m k=1

where s,(m) is a segment of speech that has been selected in the vicinity of
sample n, i.e.,

s,(m) = s(m+n) (8.11)

The range of summation in Egs. (8.8)-(8.10) is temporarily left unspecified, but
since we wish to develop a short-time analysis technique, the sum will always
be over a finite interval. Also note that to obtain an average we should divide
by the length of the speech segment. However, this constant is irrevelant to
the set of linear equations that we will obtain and therefore is omitted. We can
find the values of «, that minimize E, in Eq. (8.10) by setting
90E,/0a;=0, i=1,2, ..., p, thereby obtaining the equations

Y s,(m—i)s,(m) = i ay Y, s,(m—=i)s,(m—k) 1<i<p (812
m k=1 m )
where «, are the values of a, that minimize E,. (Since &, is unique, we will

drop the caret and use the notation a, to denote the values that minimize E,.)
If we define

¢,(ik) =Y s,(m—i)s,(m—k) (8.13)
then Ed. (8.12) can be written more compactly as
Y ad, (ik) = 6,0 i=1,2, ....p (8.14)
k=1

This set of p equations in p unknowns can be solved in an efficient manner for
the unknown predictor coefficients {a,} that minimize the average squared
prediction error for the segment s,(m).! Using Egs. (8.10) and (8.12), the
minimum mean-squared prediction error can be shown to be

1t is clear that the a’s are functions of n (the time index at which they are estimated) although
this dependence will not be explicitly shown. We shall also find it advantageous to drop the sub-
scripts non E,, s,(m), and ¢,(i,k) when no confusion will result.
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E, =Y sXm) - ﬁ oy X s,(m)s,(m—k) (8.15)

k=1
and using Eq. (8.14) we can express E, as

Ev=6,0,0 - ¥ a;6,0,4) (8.16)
k=1

Thus the total minimum error consists of a fixed component, and a component
which depends on the predictor coefficients.

To solve for the optimum predictor coefficients, we must first compute
the quantities ¢,(ik) for 1 < i < pand 0 < k < p. Once this is done we
only have to solve Eq. (8.14) to obtain the ay’s. Thus, in principle, linear
prediction analysis is very straightforward. However, the details of the compu-
tation of ¢,(i,k) and the subsequent solution of the equations are somewhat
intricate and further discussion is required.

So far we have not explicitly indicated the limits on the sums in Egs.
(8.8)-(8.10) and in Eq. (8.12); however it should be emphasized that the limits
on the sum in Eq. (8.12) are identical to the limits assumed for the mean
squared prediction error in Eqs. (8.8)-(8.10). As we have stated, if we wish to
develop a short-time analysis procedure, the limits must be over a finite inter-
val. There are two basic approaches to this question, and we shall see below
that two methods for linear predictive analysis emerge out of a consideration of
the limits of summation and the definition of the waveform segment s,(m).

8.1.1 The autocorrelation method [1,2,5]

One approach to determining the limits on the sums in Egs. (8.8)-(8.10)
and Eq. (8.12) is to assume that the waveform segment, s,(m), is identically

zero outside the interval 0 < m < N — 1. This can be conveniently expressed
as

s,(m) = s(m+n)w(m) (8.17)

where w(m) is a finite length window (e.g. a Hamming window) that is identi-
cally zero outside the interval 0 < m < N — 1.

The effect of this assumption on the question of limits of summation for
the expressions for E, can be seen by considering Eq. (8.5). Clearly, if s,(m)
is nonzero only for 0 < m < N — 1, then the corresponding prediction error,
e,(m), for a p™ order predictor will be nonzero over the interval
0 < m < N—1+p Thus, for this case E, is properly expressed as

Bym N aim) (8.18)
m=0

Alternatively, we could have simply indicated that the sum should be over all
nonzero values by summing from —eo to +oo [2].

Returning to Eq. (8.5), it can be seen that the prediction error is likely to
be large at the beginning of the interval (specifically 0<m <p—1) because we
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are trying to predict the signal from samples that have arbitrarily been set to
zero. Likewise the error can be large at the end of the interval (specifically
N<m<N+p—1) because we are trying to predict zero from samples that
are nonzero. For this reason, a window which tapers the segment, s,(m), to
zero is generally used for w(m) in Eq. (8.17).

The limits on the expression for ¢,(i,k) in Eq. (8.13) are identical to
those of Eq. (8.18). However, because s,(m) is identically zero outside the
interval 0 < m < N — 1, it is simple to show that

Nip-1 )
e e’ _ 1<i<p
6,0 k) = ;ﬂ s(m=Ds,(m=k)  ASESE @19)
can be expressed as
W= 57 s m)symri-ky  ASESP (g19p)
b (k) = ,?;o s,(m)s,(m+i Dcd=p .

Furthermore it can be seen that in this case ¢ ,(i,k) is identical to the short-
time autocorrelation function of Eq. (4.30) evaluated for (i—k). That is

¢,(i,k) = R,(i—k) (8.20)
where
N=1—k
R, (k)= Y, s,(m)s,(m+k) (8.21)
m=0

The computation of R,(k) is covered in detail in Section 4.6 and thus we shall
not consider such details here. Since R,(k) is an even function, it follows that

é,(i,k) = R,(|li—k|) j(: })% T ’1’) (8.22)
Therefore Eq. (8.14) can be expressed as
3 aR{i—k) =R () 1<i<p (8.23)
k=1

Similarly, the minimum mean squared prediction error of Eq. (8.16) takes the
form

E, = R,©0) — ¥ aR,k) (8.24)
k=1
The set of equations given by Egs. (8.23) can be expressed in matrix form
as
[ R,(0) R R,@ - R-D]| [a;] R, (1)]
R,(1) R,00 R,(1) --- R,(p-2) a, R,(2)
R,(2) R,(1) R,(0) --- R,(p-3) a; _ |R3)
(Ra(p—1) R,(p-2) R,(@-3) -+ R,0) | |, L_I_i_r,,(p}_ (8.25)
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The pXp matrix of autocorrelation values is a Toeplitz matrix; i.e., it is sym-
metric and all the elements along a given diagonal are equal. This special
property will be exploited in Section 8.3 to obtain an efficient algorithm for the
solution of Eq. (8.23).

8.1.2 The covariance method [3]

The second basic approach to defining the speech segment s,(m) and the
limits on the sums is to fix the interval over which the mean-squared error is
computed and then consider the effect on the computation of ¢ ,(i,k). That is,
if we define

N-1
E,= Y eXm) (8.26)

m=0

then ¢ ,(i,k) becomes

s p
H (8.27)

| N-1 _ , i
& ,(ik) = ,,,Eng s,(m—i)s,(m—k) 0 ”

VAV
NN

In this case, if we change the index of summation we can express ¢,(i,k) as
either

N—i—1 X
Bulik) =3, 5, (m)syom+i=k) st = (8.28a)
or ‘
3+ : <ig
ouik) = 3 s, (m)s,(mrk—i) S} =2 (8.28b)

m=—kK

Although the equations look very similar to Eq. (8.19b), we see that the limits
of summation are not the same. Equations (8.28) call for values of s,(m) out-
side the interval 0 < m < N — 1. Indeed, to evaluate ¢ ,(i,k) for all of the
required values of i and k requires that we use values of s,(m) in the interval
—p < m< N-—1. If we are to be consistent with the limits on E, in Eq.
(8.26) then we have no choice but to supply the required values. In this case it
does not make sense to taper the segment of speech to zero at the ends as in
the autocorrelation method since the necessary values are made available from
outside the interval 0 < m < N — 1. Clearly, this approach is very similar to
what was called the modified autocorrelation function in Chapter 4. As pointed
out in Section 4.6, this approach leads to a function which is not a true auto-
correlation function, but rather, the cross-correlation between two very similar,
but not identical, finite length segments of the speech wave. Although the
differences between Eq. (8.28) and Eq. (8.19b) appear to be minor computa-
tional details, the set of equations

Y audi(ik) =, (L0 =12, ... (8.292)

k=1
has significantly different properties that strongly affect the method of solution
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and the properties of the resulting optimum predictor. In matrix form these
equations become

8.0 6,12 ¢,(,3) = g AN} [a, (5.(1,0)
Si2 D) 6022 6223 - 620 ]| | ay 6 (2.0)
$.3.D 6,32 6,33 - 6,60 |as| _ |6:6.0)
¢, ¢,(2 ¢,(p3) --- ¢, (p.p) a, d),,(p,OL (8.29b)

In this case, since ¢,(ik)=¢,(ki) (see Eq. (8.28)), the p x p matrix of
correlation-like values is symmetric but nor Toeplitz. Indeed, it can be seen
that the diagonal elements are related by the equation

¢ ,(i+1,k+1) = ¢,(ik) + s5,(=i—1)s,(—k—1)
— 8,(N=1-0)s,(N—1—k) (8.30)

The method of analysis based upon this method of computation of
¢ ,(i,k) has come to be known as the covariance method because the matrix of
values {¢,(i,k)} has the properties of a covariance matrix [5].2

8.1.3 Summary

It has been shown that by using different definitions of the segments of
the signal to be analyzed, two distinct sets of analysis equations can be
obtained. For the autocorrelation method, the signal is windowed by an N-
point window, and the quantities ¢ ,(i,k) are obtained using a short-time auto-
correlation function. The resulting matrix of correlations is Toeplitz leading to
one type of solution for the predictor coefficients. For the covariance method,
the signal is assumed to be known for the set of values —p < n < N—1. Out-
side this interval no assumptions need be made about the signal, since these are
the only values needed in the computation. The resulting matrix of correla-
tions in this case is symmetric but not Toeplitz. The result is that the two
methods of computing the correlations lead to different methods of solution of

the analysis equations and to sets of predictor coefficients with somewhat
different properties.

In later sections we will compare and contrast computational details and
results for both these techniques as well as for another method yet to be dis-
cussed. First, however, we will show how the gain, G, in Fig. 8.1, can be
determined from the prediction error expression.

8.2 Computation of the Gain for the Model [2]

It is reasonable to expect that the gain, G, could be determined by matching the

This terminology, which is firmly entrenched, is somewhat confusing since the term covariance
usually refers to the correlation of a signal with its mean removed.
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energy in the signal with the energy of the linearly predicted samples. This

indeed is true when appropriate assumptions are made about the excitation sig-
nal to the LPC system.

It is possible to relate the gain constant G to the excitation signal and the
error in prediction by referring back to Eqgs. (8.2) and (8.5).3 The excitation
signal, Gu(n), can be expressed as

Gu(n) = s(n) — 3" ays(n—k) (8.31a)
k=1
whereas the prediction error signal e (n) is expressed as
e(n) =s(n) — 3 ays(n—k) (8.31b)
k=1

In the case where a;, = a, i.e., the actual predictor coefficients, and those of
the model are identical, then

e(n) = Gu(n) (8.32)

i.e., the input signal is proportional to the error signal with the constant of pro-
portionality being the gain constant, G. A detailed discussion of the properties
of the prediction error signal is given in Section 8.5.

Since Eq. (8.32) is only approximate (i.e., it is valid to the extent that the
ideal and the actual linear prediction parameters are identical) it is generally not
possible to solve for G in a reliable way directly from the error signal itself.
Instead the more reasonable assumption is made that the energy in the error
signal is equal to the energy in the excitation input, i.e.,

N-1 N=1
G* Y, u(m) = ¥, eXm) = E, (8.33)

m=0 m=0

At this point we must make some assumptions about #(#) so as to be
able to relate G to the known quantities, e.g., the a,’s and the correlation
coefficients. There are two cases of interest for the excitation. For voiced
speech it is reasonable to assume u(n) = 8(n), i.e., the excitation is a unit
sample at n = 0.4 For this assumption to be valid requires that the effects of
the glottal pulse shape used in the actual excitation for voiced speech be
lumped together with the vocal tract transfer function, and therefore both of
these effects are essentially modelled by the time-varying linear predictor. This
requires that the predictor order, p, be large enough to account for both the
vocal tract and glottal pulse effects. We will discuss the choice of predictor
order in a later section. For unvoiced speech it;is most reasonable to assume
that u(n) is a zero mean, unity variance, stationary, white noise process.

Based on these assumptions we can now determine the gain constant G by
utilizing Eq. (8.33). For voiced speech, we have as input Gd(n). If we call the
3Note that the gain is also a function of time.

“Note that for this assumption to be valid requires that the analysis interval be about the same
length as a pitch period.
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resulting output for this particular input h(n) (since it is actually the impulse
response of the system with transfer function H(z) as in Eq. (8.1)) we get the

relation
h(n) = ¥ ah(n—k) + G5(n) (8.34)
, k=1
It is readily shown [Problem 8.1] that the autocorrelation function of h(n),
defined as
R(m) =Y h(n)h(m+n) (8.35)
n=0
satisfies the relations
R(m) = i a R (|m=k|) 't 0 PR (8.36a)
k=1
and
RO =¥ R K) + G (8.36b)
k=1

Since Egs. (8.36) are identical to Egs. (8.23) it follows that
Rm)=R,(m) 1<m<yp (8.37

Since the total energies in the signal (R (0)) and the impulse response (R (0))
must be equal we can use Eqgs. (8.24) , (8.33) and (8.36b) to obtain

G2=R,(0) — 3 /R, (k) = E, (8.38)
k=1

It is interesting to note that Eq. (8.37) and the requirement that the energy of
the impulse response be equal to the energy of the signal together require that
the first p + 1 coefficients of the autocorrelation function of the impulse
response of the model are identical to the first p + 1 coefficients of the auto-
correlation function of the speech signal.

For the case of unvoiced speech, the correlations are defined as statistical
i averages. It is assumed that the input is white noise with zero mean and unity
| variance; i.e.,

| Elu(n)u(n—m)] = 3(m) (8.39)
il

: If we excite the system with the random input Gu(n) and call the output g(n)
then

| i ;

i g(n) =% agln—k) + Gu(n) (8.40)
k=1

If we now let R (m) denote the autocorrelation function of g(n), then

1 R(m) = Elg(n)g(n—m)] ='f aElg(n—k)g(n—m)] + E[Gu(n)g(n—m)]
k=1

= ¥ R (m—k) m # 0 (8.41)
k=1
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since E[u(n)g(n—m)1=0 for m > 0 because u(n) is uncorrelated with any
signal prior to u(n). For m = 0 we get

RO = ¥ a,R(K) + GElu(n)g(n)]
k=1

= )f a R (k) + G2 (8.42)

k=1

since E[u(n)g(n)] = Elu(n)(Gu(n) + terms prior ton)l = G . Since the
energy in the response to Gu (n) must equal the energy in the signal, we get

R(m)=R,(m) 0<m< p (8.43)
or '

G2=R,(0) — 3 a,R,(k) (8.44)
k=1

as was the case for the impulse excitation for voiced speech.

8.3 Solution of the LPC Equations

In order to effectively implement a linear predictive analysis system, it is neces-
sary to solve the linear equations in an efficient manner. Although a variety of
techniques can be applied to solve a system of p linear equations in p unk-
nowns, these techniques are not equally efficient. Because of the special pro-
perties of the coefficient matrices it is possible to solve the equations much
more efficiently than is possible in general. In this section we will discuss in
detail two methods for obtaining the predictor coefficients, and then we will
compare and contrast several properties of these solutions.

8.3.1 Cholesky decomposition solution
for the covariance method [3]

For the covariance method, the set of equations which must be solved is
of the form:

f a b (k) = ¢,0i,0) i=1,2, ..., p (8.45)

k=1
or in matrix notation

Pa =4y (8.46)

where ® is a positive definite symmetric matrix with (i,j)" element ¢ ,(i,j),
and a and - are column vectors with elements «,, and ¢,(/,0) respectively.
The system of equations given by Eq. (8.45) can be solved in an efficient
manner since the matrix ® is a symmetric, positive definite matrix. The result-
ing method of solution is called the Cholesky decomposition (or sometimes it is
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called the square root method) [3]. For this method the matrix ® is expressed
in the form

® = VDV! (8.47)
where V is a lower triangular matrix (whose main diagonal elements are all
1’s), and D is a diagonal matrix. The superscript ¢ denotes matrix transpose.
The elements of the matrices V and D are readily determined from Eq. (8.47)
by solving for the (i,/) * element of both sides of Eq. (8.47) giving

$,G) = 3 VadVy 1<) < i1 (8.48)
k=1
or

i1
Vidi = 6,Gi)) = 3 VadeVye 1<) < il (8.49)
k=1

and, for the diagonal elements

i
¢"(l,f) el 2 kadef.‘( (8.50)

k=1

or i
di=¢,(i)—-3Y Vid, i>2 (8.51)

k=1

with

di=¢,71,1) (8.52)

To illustrate the use of Eqs. (8.47)-(8.52) consider an example with p = 4, and
matrix elements ¢,(i,j) = ¢ ;. Equation (8.47) is thus of the form
bn ¢n b3 b4
b bn b3 b4
31 b3 b33 a3
b4 ba baz bua

1 0 0 0] [d0 0 0 O] |1 Vy Vy Vy
Va 10 0/ |0 d, 0 Of f0 1 ¥y vy -
Vaa Vi 1. 0[ |0 0 d5 0] 0 0 1 V¥,
Vit Vaao Vs 1/ |0 0 0 4/ l0 0 0 1

To solve for d; to dy4, and the V;;’s we begin with Eq. (8.52) for i = 1 giving
di= ¢y
Using Eq. (8.49) for i = 2,3,4 we solve for V,,, V3, and Va4 as
Vadi=dn . Vadi=¢y , Vyd =y
Va=daldi, Vi=ody/d,, Vy=du/d,
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Using Eq. (8.51) for i = 2 gives
dy= ¢y — Vid,

Using Eq. (8.49) for i = 3 and 4 gives

Vady= b3 — VyydiVy

Vady =gy — VadVy
or

V= (3~ V3dVy)/d,

Vo= (b4 Vad\Vy)/d,

Equation (8.51) is now used for i = 3 to solve for d;, then Eq. (8.49) is used
for i = 4 to solve for V4, and finally Eq. (8.51) is used for i = 4 to solve for
dy

Once the matrices V and D have been determined, it is relatively simple
to solve for the column vector a in a two-step procedure. From Egs. (8.46)
and (8.47) we get

VDVia = ¢ (8.53)
which can be written as
VY =y (8.54)
and
DVa=Y (8.55)
or
Via=D7lY (8.56)

Thus from the matrix V, Eq. (8.54) can be solved for the column vector Y
using a simple recursion of the form

i—1
Y=o, - 5_{‘1 VX p2iz2 (8.57)
=

with initial condition

Yi=y, (8.58)

Similarly having solved for Y, Eq. (8.56) can be solved recursively for a using
the relation

a,=V/d- ¥ Via, 1<i<p-1 (8.59)
J=i+1
with initial condition
a,=Y/d, (8.60)

It should be noted that the index i in Eq. (8.59) proceeds backwards from
i=p—1downtoi=1.
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To illustrate the use of Egs. (8.57)-(8.60) we continue our previous '
example and first solve for the Y/s assuming V and D are now known. In
matrix form we have the equation

1 o o o [n] [
Voy 10 0 |Y, s
Vs Vi 1 0f [Y3] ™ |us
Vao Voo Vs 1] Y] |4
From Eqgs. (8.57) and (8.58) we get
Y=y,
Xy iy v Pordy

Y3=14y3— Vy¥ = Vyb,
Yo=s— Va¥, = Vol — Vil
From the Y/s we solve Eq. (8.56) which is of the form
1 Vo Vi Vy| |
0 1 Vi Vil |,
0 0 1 Vgl |a;
00 0 1 a4
d, 0 0 0] [r] [ry/dg,
0 1/d, 0 o] |r) |rya,
0 0 1dy 0] |Ys|T |ryas
o o o vallrd |vya,
From Egs. (8.59) and (8.60) we get
a,= Y /d,
ay=Yyds— Vya,
ay=Yydy— Vyaz— Viay
ay=Yy/d; = Vyar— Vyaz— Vyay

thus completing the solution to the covariance equations.

The use of the Cholesky decomposition procedure leads to a very simple
expression for the minimum error of the covariance method in terms of the
column vector Y and the matrix D. We recall that for the covariance method,
the prediction error E, was of the form

E,= 640,00 — ¥ a,,0.k) (8.61)
k=1
or in matrix notation
E,=¢,0,0 —ay (8.62)
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From Eq. (8.56) we can substitute for a'the expression YD~V giving

E,=¢,0,0) - YD V-l (8.63)
Using Eq. (8.54) we get
E,= $,(0,0) — YDy (8.64)
or
E,=,0,0 - ¥ ¥4, (8.65)
k=1

Thus the mean-squared prediction error E, can be determined directly from the
column vector Y and the matrix D. Furthermore Eq. (8.65) can be used to
give the value of E, for any value of p up to the value of p used in solving the
matrix equations. Thus one can get an idea as to how the mean-squared predic-
tion error varies with the number of predictor coefficients used in the solution.

8.3.2 Durbin’s recursive solution
for the autocorrelation equations [2]

For the autocorrelation method the matrix equation for solving for the
predictor coefficients is of the form -

)f aR(|li-k) =R, (i) 1<i<yp (8.66)
k=1

By exploiting the Toeplitz nature of the matrix of coefficients, several efficient
recursive procedures have been devised for solving this system of equations.
Although the most popular and well known of these methods are the Levinson
and Robinson algorithms [1], the most efficient method known for solving this
particular system of equations is Durbin’s recursive procedure [2] which can be
stated as follows (for convenience of notation we shall omit the subscript on
the autocorrelation function):

E® = R(0) (8.67)
i—1

¢ ki=|R(i) = ¥ a"VR(i—j)|/EGD 1<i<p (868)
J=1

a) =k (8.69)

af) = o fiTD — gq =D 1<j<i-1 (8.70)

E(i) - (l—k,-z) E(f'“l) (8.71)

Equations (8.68)-(8.71) are solved recursively for i = 1,2, ..., pand the final

solution is given as

~af) 1£ji<p (8.72)

Note that in the process of solving for the predictor coefficients for a predictor
of order p, the solutions for the predictor coefficients of all orders less than p
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have also been obtained — i.e., a}” is the j" predictor coefficient for a predic-
tor of order i,

To illustrate the above procedure, consider an example of obtaining the
predictor coefficients for a predictor of order 2. The original matrix equation is
of the form

R0) R()| | R(1)

R(1) RWO| |ay] = |R(Q)
Using Eqgs. (8.67)-(8.72), we get

EOP=R(0)

k= R(1)/R(0)
af? = R(1)/R(0)
ED — R%0)-R¥1)
R(0)
k.= RQRO)-R¥1)
R*0)-R*(1)
afd = R(Q)R(0)-RX1)
RY0)-R(1)
- R(DRO)—-RM)R(2)
R*0)-RX(1)
aj=aP

Qy = (X{Z)

It should be noted that the quantity £ in Eq. (8.71) is the prediction
error for a predictor of order i Thus at each stage of the computation the pred-
iction error for a predictor of order i can be monitored. Also, if the autocorre-
lation coefficients R (/) are replaced by a set of normalized autocorrelation
coefficients, i.e., r(k) = R(k)/R(0), then the solution to the matrix equation
remains unchanged. However, the error £” is now interpreted as a normalized
error. If we call this normalized error ¥?, then :

= W =]1- Z akr(k) (873)
with
0< VD<Kl 20 (8.74)

It can be shown that the normalized error for i = p (i.e., ¥?)) can be written
in the form

vo T - k2 (8.75)

=l

where the quantities &, are in the range
-1 k<1 (8.76)
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This condition on the parameters k; is important since it can be shown [1,18]
that it is a necessary and sufficient condition for all of the roots of the polyno-
mial 4(z) to be inside the unit circle, thereby guaranteeing the stability of the
system H(z). Unfortunately a proof of this result would take us too far afield;
however, the fact that we do not give a proof does not diminish the importance
of this result. Furthermore, it is possible to show that no such guarantee of
stability is available in the covariance method.

8.3.3 Lattice formulations and solutions [11]

As we have seen, both the covariance and the autocorrelation methods
consist of two steps:

1. Computation of a matrix of correlation values.
2. Solution of a set of linear equations. y
These methods have been widely used with great success in speech processing
applications. However, another class of methods, called lattice methods, has
evolved in which the above two steps have in a sense been combined into a
recursive algorithm for determining the linear predictor parameters. To see
how these methods are related, it is helpful to begin with the Durbin algorithm.
First, let us recall that at the i" stage of this procedure, the set of coefficients
{a(? j=1,2, ..., i} are the coefficients of the i" order optimum linear predic-
tor. Using these coefficients we can define

AN) =1-Y aflz* (8.77)
k=1
to be the system function of the i”order inverse filter (or prediction error
filter). If the input to this filter is the segment of the signal,
s,(m) =s(nji-m)w(m), then the output would be the prediction error,
e,N(m) = eV(n+m), where

e(m) = s(m) — z': afs(m—k) (8.78)

k=1

Note that for the sake of simplicity we shall henceforth drop the subscript n
which denotes the fact that we are considering a segment of the signal located
at sample n. In terms of ztransforms Eq. (8.78) is

ENz) = AD(2)$(2) (8.79)
By substituting Eq. (8.70) into Eq. (8.77) we obtain a recurrence formula for

AV(z) in terms of 4YV(z); i.e.,
{

AD(z) = 46D(z) — gz DY (8.80)
(See Problem 8.5.) Substituting Eq. (8.80) into Eq. (8.79) we obtain
ED(z) = 49(2)S(2) — kiz7d V(27D S(2) (8.81)
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Fig. 8.2 Tilustration of forward and backward prediction using an i
order predictor.

The first term in Eq. (8.81) is obviously the ztransform of the prediction error
for an (i—1) * order predictor. The second term can be given a similar interpre-
tation if we define

BWz) = 274Dz 8(2) (8.82)
It is easily shown that the inverse transform of B‘(z) is
b (m) = s(m—i) = Y, af’s(m+k—i) (8.83)
k=1

This equation suggests that we are attempting to predict s(m—i) from the i
samples of the input {s(m—i+k), k=1,2,...,i} that follow s(m—i). Thus
b(m) is called the backward prediction error sequence. In Fig. 8.2 it is
shown that the / samples involved in the prediction are the same ones used to
predict s(m) in terms of i past samples in Eq. (8.78). Now returning to Eq.
(8.81) we see that the prediction error sequence e‘?(m) can be expressed as

e(m) = e V(m) — k;bV(m-1) (8.84)
By substituting Eq. (8.80) into Eq. (8.82) we obtain
BW(z) = z74 V(N8 (z) — k,AD(2)5(2) (8.85)
or
B(z) = z71BY=I(z) — K,EYD(z) (8.86)
Thus the i* stage backward prediction error is
b(m) = b V(m—1) — ke ""V(m) (8.87)

Now Egs. (8.84) and (8.87) define the forward and backward prediction error
sequences for an i order predictor in terms of the corresponding prediction
errors of an (i—1)" order predictor. Using a zeroth order predictor is
equivalent to using no predictor at all so that

eO(m) = bO(m) = s(m) (8.88)
Thus we can depict Eqs. (8.84) and (8.87) by the flow graph of Fig. 8.3. Such
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a structure is called a lattice network. It is clear that if we extend the lattice to
p sections, the output of the last upper branch will be the forward prediction
error as shown in Fig. 8.3. Thus, Fig. 8.3 is a digital network implementation
of the prediction error filter with transfer function A4 (z).

At this point we should emphasize that this structure is a direct conse-
quence of the Durbin algorithm, and the parameters k; can be obtained as in
Egs. (8.67)-(8.72). Note also that the predictor coefficients do not appear
explicitly in Fig. 8.3. Itakura [4,6] has shown that the k, parameters can be
directly related to the forward and backward prediction errors and because of
the nature of the lattice structure the entire set of coefficients
k;, i=1,2, ..., p} can be computed without computing the predictor
coefficients. The relationship is [11]

N=1
2 e(i—l)(m)b(i—l)(m_l)‘
m=0

g = N=1 N-1 .
2 (e D(m))2 2 (b4-D(m—1))2

m=0 m=0

- (8.89)

This expression is in the form of a normalized cross-correlation function; i.e., it
is indicative of the degree of correlation between the forward and backward
prediction error. For this reason the parameters k; are called the partial ¢orrela=
tion coefficients or PARCOR coefficients [4,6]. It is relatively straightforward
to verify that Eq. (8.89) is identical to Eq. (8.68) by substituting Eqs. (8.78)
and (8.83) into Eq. (8.89).

It can be seen.that if Eq. (8.89) replaces Eq. (8.68) in the Durbin algo-
rithm, the predictor coefficients can be computed recursively as before. Thus
the PARCOR analysis leads to an alternative to the inversion of a matrix and

€9(n) eMm) e?(n) . ePN(n) elP)(n)

> eln}

s(n)

Lyl 271 -t

e

btm(n) bm(n) b(m(n} b(r”(n) b(p)(n)

Fig. 8.3 Block diagram of a realizable implementation of the lattice
method.
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gives results identical to the autocorrelation method; i.e., the set of PARCOR
coefficients is equivalent to a set of predictor coefficients that minimize the
mean-squared forward prediction error. More importantly, this approach opens

up a whole new class of procedures based upon the lattice configuration of Fig,
8.3 [11].

In particular, Burg [12] has developed a procedure based upon minimizing
the sum of the mean-squared forward and backward prediction errors in Fig.
8.3;ie.,

=0 _ oo 2 0 2
E Y e (m))2+ (6'7(m)) (8.90)
m=0

Substituting Egs. (8.84) and (8.87) into Eq. (8.90) and differentiating £ with
respect to k;, we obtain
BE(f)

N—1 :
OB o) T P IRL U (U DRSET T LTI VR
ok, 2 m§=0 [e (m) — kb (m 1)]b (m-1)

P Nz":l ’b(i-])(m_l) _ kje(ikl)(m)]e(ffl)(m) 8.91)
m=0

Setting the derivative equal to zero and solving for k; gives

N=1
5 2 [e(i—l)(m)b(I—l)(m_l)]
k m=0

i1 };; le-vom|” + :);; [p¢-20m-1)|’ -

It can be shown [1] that if k; is estimated using Eq. (8.92) then

“1< k<1 (8.93)

However, it should be clear that the k;’s estimated using Eq. (8.92) will in gen-
eral differ from those estimated using Eq. (8.89), or equivalently, the auto-
correlation method.

In summary, the steps involved in determining the predictor coefficients
and the k parameters are as follows:

1. Initially set e @(m) = s(m) = b@(m).

Compute k; = a{" from Eq. (8.92).

3. Determine forward and backward prediction errors e®(m) and
b®(m) from Egs. (8.84) and (8.87).

Seti=2.

Determine k; = a [ from Eq. (8.92).

Determine « ! for j = 1,2,...,i — 1 from Eq. (8.70).
Determine e(’f)(m) and 5@(m) from Eq. (8.84) and (8.87).
Seti=i+1.

If i is less than or equal to p, go to step 5.

Procedure is terminated.

o

- I
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There are clearly several differences in implementation between the lattice
method and the covariance and autocorrelation implementations discussed ear-
lier. One major difference is that in the lattice method the predictor coefficients
are obtained directly from the speech samples without an intermediate calcula-
tion of an autocorrelation function. At the same time the method is guaranteed
to yield a stable filter without requiring the use of a window. For these reasons
the lattice formulation has become an important and viable approach to the
implementation of linear predictive analysis.

8.4 Comparisons Between the Methods of Solution
of the LPC Analysis Equations

We have already discussed the differences in the theoretical formulations of the
covariance, autocorrelation, and lattice formulations of the linear predictive
analysis equations. In this section we discuss the issues involved in practical
implementations of the analysis equations. Included among these issues are
computational considerations, numerical and physical stability of the solutions,
and the question of how to choose the number of poles and section length used
in the analysis. We begin first with the computational considerations involved
in obtaining the predictor coefficients from the speech waveform.

The two major issues in the computation of the predictor coefficients are
the amount of storage, and the number of multiplications. Table 8.1 (due to
Portnoff et al. [13] and Makhoul [11]) shows the required computation for the
covariance, the autocorrelation and the lattice methods. In terms of storage,
for the covariance method, the requirements are essentially N, locations for the
data, and on the order of p%2 locations for the correlation matrix, where N, is
the number of points in the analysis. For the autocorrelation method the
requirements are N, locations for both the data and the window, and a number
of locations proportional to p for the autocorrelation matrix. For the lattice
method the requirements are 3N; locations for the data and the forward and
backward prediction errors. For emphasis we have assumed that the N, for the
covariance method, the N, for the autocorrelation method, and the N for the
lattice method need not be the same. We will discuss this question later in this
section. Thus in terms of storage (assuming N, N, and N; are comparable)
the covariance and autocorrelation methods require somewhat less storage than
the lattice method.

The computational requirements for the three methods, in terms of mul-
tiplications, are shown at the bottom of Table 8.1. For the covariance method,
the computation of the correlation matrix requires about N,p multiplications,
whereas the solution to the matrix equation (using the Cholesky decomposition
procedure) requires a number of multiplications proportional to p°. (Portnoff
et al. give an exact figure of (p*+9p>+2p)/6 multiplications, p divides, and p
square roots.) For the autocorrelation method, the computation of the auto-
correlation matrix requires about N,p multiplications, whereas the solution to
the matrix equations requires about p? multiplications. Thus if N, and N, are
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Table 8.1 Computational Considerations in the LPC Solutions

Covariance Autocorrelation Lattice
Method Method Method
(Cholesky Decomposition) | (Durbin Method) | (Burg Method)
Storage
Data Ny N, 3N,
Matrix proportional to p%/2 proportional to p L
Window 0 N, e
Computation
(Muitiplications)
Windowing 0 N, .
Correlation proportional to Nyp proportional to Npp _
Matrix Solution proportional to p? proportional to p? 5Ny

approximately equal, and with Ny >> p, N, >> p, then the autocorrelation
method will require somewhat less computation than the covariance method.
However, since in most speech problems the number of multiplications
required to compute the correlation function far exceeds the number of multi-
plications to solve the matrix equations, the computation times for both these
formulations are quite comparable. For the lattice method a total of SN 1 mul-
tiplications are needed to compute the set of partial correlation coefficients.?®
Thus the lattice method is the least computationally efficient method for solving
the LPC equations. However, the other advantages of the lattice method must
be kept in mind when considering the use of this method.

Another consideration in comparing these three formulations is the stabil-
ity of the resulting system

. A
H(z) = — (8.94)

This system is stable if all its poles lie strictly inside the unit circle in the =
plane. The poles of the system, H(z), are the zeros of denominator polyno-
mial 4 (z), where

4@ =1~ Y azt (8.95)
k=1

As we have asserted, for the autocorrelation method all the roots of 4(z) lie
inside the unit circle — i.e., H(z) is guaranteed to be stable. It should be
noted that this theoretical guarantee of stability for the autocorrelation method
may not hold in practice if the autocorrelation function is computed without
sufficient accuracy. In such cases the roundoff encountered in computing the
autocorrelation can cause the matrix to become ill conditioned. Markel and
Gray have shown that these undesirable effects can be minimized by pre-
emphasizing the speech to make its spectrum as flat as possible [1]. With the
use of a pre-emphasizing filter, smaller wordlengths can be used in practice and

SMakhoul has discussed a modified lattice method for obtaining the partial correlation coefficients
with the same efficiency as the normal covariance method [11].
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the resulting predictor polynomials will generally remain stable. The Durbin
algorithm provides a convenient test for stability since it is necessary and
sufficient that the parameters k; (PARCOR’s) must satisfy the condition

-1< k<1 (8.96)

Thus if, in the process of determining the predictor coefficients {a), any of the
quantities k; violate Eq. (8.96) then it is known that there are roots of 4 (z)
outside the unit circle.

For the covariance method, the stability of the predictor polynomial can-
not be guaranteed. However, in practice, if the number of samples in the
frame is sufficiently large, then the resulting predictor polynomials will almost
always be stable. This is due to the fact that for a large number of samples in
the analysis frame, the covariance and autocorrelation methods yield almost
identical results.

For the lattice method the predictor polynomial is guaranteed to be stable
since the predictor coefficients are obtained from the partial correlation
coefficients which, by definition, satisfy Eq. (8.96). In ‘addition, the stability is
preserved even when the computation is performed using finite word length
computations [1].

In the case when the predictor polynomial stability is uncertain, it is gen-
erally required that the roots of the predictor polynomial be determined and
tested for stability. If a root is found to be outside the unit circle, a simple
correction procedure is to reflect the root inside the unit circle, thereby ensur-
ing a stable predictor polynomial with the same frequency response as the
unstable polynomial.

Two other considerations in comparing and contrasting the three formula-
tions of the LPC equations are the choice of number of predictor parameters, p,
and the choice of the frame length N. The choice of p depends primarily on
the sampling rate and is essentially independent of the LPC method being used.
Since the speech spectrum being analyzed can generally be represented as hav-
ing an average density of 2 poles (i.e., one complex pole) per kiloHertz due to
the vocal tract contribution, then a total of F poles are required to represent
this contribution to the speech spectrum, where Fy is the sampling rate in
kiloHertz. Thus for a 10 kHz sampling rate, a total of 10 poles is required to
represent the vocal tract. In addition a total of 3-4 poles is required to ade-
quately represent the source excitation Spectrum and the radiation load. Thus
for a 10 kHz simulation, a value of p of about 13 or 14 is required. To verify
this conclusion, Figure 8.4 shows a plot (due to Atal and Hanauer [3]) of the
normalized rms prediction error versus the predictor order p for sections of
voiced and unvoiced speech for a 10 kHz simulation. Although the prediction
error steadily decreases as p increases, for P on the order of 13-14 the error has
essentially flattened off showing only small decreases as p is increased further.
It is interesting to note from this figure that the normalized rms prediction
error for unvoiced speech is significantly higher than for voiced speech. This is
of course as expected since the model for unvoiced speech is nowhere near as
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Fig. 8.4 Variation of the RMS prediction error with the number of pred-
ictor coefficients, p. (After Atal and Hanauer [3].)

accurate as it is for voiced speech. Additional experimental evidence of the
behavior of the prediction error as a function of pis given in the next section.

The choice of section length N is a very important consideration in imple-
mentation of most LPC analysis systems. Clearly, it is advantageous to keep N
as small as possible since the total computation load, for all three methods, is
essentially proportional to N. For the autocorrelation method it has been
shown that N must be on the order of several pitch periods to ensure reliable
results [1,2]. Since a window is used to weight the speech in the autocorrela-
tion method, the section duration must be sufficiently long so that the tapering
effects of the window do not seriously affect the results. Thus analysis
durations from N = 100 to N = 400 samples (at a 10 kHz rate) have been used
in LPC implementations of the autocorrelation method, with most systems
leaning toward the larger values of N. For both the covariance and lattice
methods, the choice of section length is governed by several considerations.
Since no windowing is required, there are no real limitations on how small the
section size can be. If the analysis can be restricted to regions within each pitch
period (i.e., a pitch synchronous analysis is performed) then values of N on the
order of 2p have been used successfully. However if such small values of N are
used and if a pitch pulse occurs within the analysis interval, unsatisfactory
results are obtained. Thus in most practical systems in which it is not possible
to perform a pitch synchronous analysis, values of N for the covariance and lat-
tice methods are comparable to those for the autocorrelation method. In the
next few sections we show results from experimental evaluations of the effects
of section length, and section position on the prediction error for the covariance
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and autocorrelation methods.® We first digress into a brief discussion of the
LPC error signal and the normalized error derived from it.

8.5)The Prediction Error Signal

A by-product of the LPC analysis is the generation of the error signal, e(n),
defined as

e(n) = s(n) — i a s(n—k) = Gu(n) (8.97)
k=1

To the extent that the actual speech signal is generated by a system that is well
modelled by a time-varying linear predictor of order p, then e(n) is equally a
good approximation to the excitation source. Based on this reasoning, it is
expected that the prediction error will be large (for voiced speech) at the begin-
ning of each pitch period. Thus the pitch period can be determined by detect-
ing the positions of the samples of e(n) which are large, and defining the
period as the difference between pairs of samples of e(n) which exceed a rea-
sonable threshold. Alternatively the pitch period can be estimated by perform-
ing an autocorrelation analysis on e(n) and detecting the largest peak in the

-y ercocrn svon
Mehhhacdad  sododbobabad
TR Y N W Y
L a1 T T T T
AMEMAIMAL bbb
ochochohochn ik,

Fig. 8.5 Examples of signal (differentiated) and prediction error for
vowels (i, e, a, o, u, ). (After Strube [14].)

®Investigations by Rabiner et al. [16] have found that a good choice of parameters for the lattice
method are essentially those used for the covariance method. Thus we do not differentiate
between these methods in the following sections.
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Fig. 8.6 Typical signals and spectra for LPC covariance method for a
male speaker. (After Rabiner et al. [16].)

appropriate range. Another way of interpreting why the error signal is valuable
for pitch detection is the observation that the spectrum of the error signal is

approximately flat; thus the effects of the formants have been eliminated in the
error signal.

To illustrate the nature of the error signal Figure 8.5 (due to Strube [14])
shows a series of sections of the waveforms for several vowels, and the
corresponding prediction error signals. For all these simple vowel sounds the
error signal exhibits sharp pulses at intervals corresponding to the pitch periods
of these vowels.

Some further examples of LPC error signals are given in Figures 8.6-8.9.
In each of these figures part (a) shows the section of speech being analyzed,
part (b) shows the resulting prediction error signal, part (c) shows the log mag-
nitude of the DFT of the signal in part (a) (obtained via FFT computation)
with the log magnitude of H(e/T) superimposed, and part (d) shows the log
magnitude spectrum of the error signal (obtained via FFT computation). Fig-
ures 8.6 and 8.7 are for 20 msec of an /i/ vowel (as in we) spoken by a male
speaker (LRR) using the covariance and autocorrelation methods (with a Ham-
ming window) respectively. The error signal is seen to be sharply peaked at the
beginning of each pitch period, and the error spectrum is fairly flat, showing a
comb effect due to the effects of the pitch period. Note the rather large predic-
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tion error at the beginning of the segment in Fig. 8.7 for the autocorrelation
method. This is, of course, due to the fact that we are attempting to predict
the samples of the signal from the zero valued samples outside the interval
0 < m <£199. The tapering effect of the Hamming window is thus not com-
pletely effective in reducing this error.

~ Figures 8.8 and 8.9 show similar results for 20 msec of an /a/ vowel (as
in father) for a female speaker (SAW). For this speaker approximately 5 com-
plete pitch periods are contained within the analysis interval. Thus in Fig. 8.8
the error signal displays a large number of sharp peaks during the analysis inter-
val for the covariance method of analysis. However, the effect of the Hamming
window in the autocorrelation method of Fig. 8.9 is to taper the pitch pulses
near the ends of the analysis interval; hence the peaks in the error signal due to
the pitch pulses are likewise tapered.

The behavior of the error signal shown in the preceding figures would
lead one to believe that it would, by itself, be a natural candidate for a signal
from which pitch could simply be detected. Unfortunately the situation is not
quite so clear for other examples of voiced speech. Makhoul and Wolf [5] have

LRR-IY VOWEL

M=14 N=200
AUTOCORRELATION METHOD
HAMMING WINDOW

4485 /\\
o \PJK/V\\““ILXKvar/AAV\ i
W SIGNAL

-4944
0 TIME (SAMPLES) : 199
1373
WHMAN.AAM AN A.llﬂ | N (b)
TPV Wy wvv U'\f'v'
ERROR
-1373
0 TIME (SAMPLES) 199
102
} SIGNAL SPECTRUM
LOG
(db)
22
FREQUENCY Hz
?6
LOG
(db) WW\/W/\J\N ()
ERROR SPECTRUM
41
Hz
FREQUENCY

Fig. 8.7 Typical signals and spectra for LPC autocorrelation method for a
male speaker. (After Rabiner et al. [16].)
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Fig. 8.8 Typical signals and spectra for LPC covariance method for a
female speaker. (After Rabiner et al. [16].)

shown that for sounds which are not rich in harmonic structure, e.g., liquids
like r, I, or nasals such as m, n, the peaks in the error signal are not always very
sharp or distinct. Additionally at the junctions between voiced and unvoiced
sounds, the pitch markers in the error signal often essentially disappear.

In summary, although the error signal e(n) appears to be an ideal candi-
date for a pitch detector, it has its own difficulties in locating pitch markers for
a wide variety of voiced sounds, and thus cannot be relied on exclusively for

this purpose. In Section 8.10.1 we shall discuss one pitch detection scheme
based upon the prediction error signal.

8.5.1 Alternative expressions
for the normalized mean-squared error

The normalized mean squared prediction error for the autocorrelation
method is defined as
N4+p—1
3 eim)

Vy=—t—— (8.98a)
Y sHm)
m=0
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where e,(m) is the output of the prediction error filter corresponding to the
speech segment s,(m) located at time index 7. For the covariance method, the
corresponding definition is

N=1
Y eXm)
m=0
Fr = 55 (8.98b)
5,2(m)
m=0
Defining = —1, the prediction error sequence can be expressed as
e,{m) = — a5, (m—k) (8.99)
k=0
Substituting Eq. (8.99) into Eq. (8.98) and using Eq. (8.13) it follows that
(i.j)
V= Ryl (8.100a)

i=0 j=0 i¢n(0»0) %
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Fig. 8.9 Typical signals and spectra for LPC autocorrelation method for a
female speaker. (After Rabiner et al. [16].)
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and substituting Eq. (8.14) into (8.100) gives

¢ ,(0,i)
V,=-— P — 8.100b
Lo 00 (81000
Still another expression for ¥, was obtained in the Durbin algorithm; i.e.,
V, =TT 1—kD (8.101)
i=1

The above expressions are not all equivalent and are subject to interpretation in
terms of the details of a given linear predictive method. For example, Eq.
(8.101), being based upon the Durbin algorithm is valid only for the autocorre-
lation and lattice methods. Also, since the lattice method does not explicitly
require the computation of the correlation functions Egs. (8.100a) and(8.100b)
do not apply directly to the lattice method. Table 8.2 summarizes the above
expressions for normalized mean-squared error and indicates the scope of vali-
dity of each expression. (Note that the subscript n and the superscript p have
been eliminated in the table for simplicity.)

Table 8.2 Expressions for the Normalized Error

Covariance Autocorrelation Lattice
Method Method Method
3 eX(m)
V= -g—z({ Valid Valid* Valid
s°um
“ (i)
V=YY a [;"(0'”’0) @, | Valid Valid** Not Valid
M i . . .
VoY o 2ol Valid Valid** Not Valid
~ %1°$0,0
v=1I a-«x» Not Valid Valid Valid
i

*This expression is computed using the windowed signal and upper limitis N — 1 + D.
**In these cases ¢(i,j) = R (i—j).

8.5.2 Experimental evaluation of values for the LPC parameters

.To provide guidelines to aid in the choice of the LPC parameters p and N
for practical implementations, Chandra and Lin [15] performed a series of
investigations in which they plotted the normalized mean-squared prediction
error, for a p" order predictor versus the relevant parameter for the following
conditions:

1. The covariance method and the autocorrelation method
2. Synthetic vowel and natural speech
3. Pitch synchronous and pitch asynchronous analysis

where V'is defined as in Table 8.2. Figures 8.10-8.15 show the results obtained
by Chandra and Lin for the above conditions [15].

426




PITCH SYNCHRONOUS ANALYSIS

0.7 o
\ Synthetic Vowel-heed
\ Pitch Period ~ 83 Samples
\ Sampling Frequency -10 kHz
=60
06 A - Autocorrelation Method
| o - Covariance Method
C 1
S L
g
v @ 03f
@
w
a
i
[
- -
= 0.2
=
@
o
z
[oRNS
O 1
o] 2 4 6 8 10 12

ORDER OF LINEAR PREDICTOR, p

Fig. 8.10 Variation of prediction error with predictor order, p, for voiced

section of a synthetic vowel—pitch synchronous analysis. (After Chan-
dra and Lin [15].)

Figure 8.10 shows the variation of V with the order of the linear predic-
tor, p, for a section of a synthetic vowel (/i/ in heed) whose pitch period was
83 samples. The analysis section length N was 60 samples beginning at the
beginning of a pitch period — i.e., these results are for a pitch synchronous
analysis. For the covariance method the prediction error decreases monotoni-
cally to 0 at p = 11 which was the order of the system used to create the syn-
thetic speech. For the autocorrelation method the prediction remains at a value
of about 0.1 for values of p greater than about 7. This behavior is due to the
fact that for the autocorrelation method with short windows (N = 60) the pred-
iction error at the beginning of the segment is an appreciable part of the total
mean-squared error. This is, of course, not the case with the covariance

method, where speech samples from outside the averaging interval are available
for prediction.

Figure 8.11 shows the variation of ¥ with the order of the linear predictor
for a pitch asynchronous analysis for the same section of speech as used in Fig.
8.10. This time, however, the section length was N = 120 samples. For this
case the covariance and autocorrelation methods yielded nearly identical values
of V for different values of p. Further the values of V decreased monotonically
to a value of about 0.1 near p = 11. Thus in the case of an asynchronous LPC
analysis, at least for the example of a synthetic vowel, both analysis methods
appear to yield similar results.

Figure 8.12 shows the variation of ¥ with N (section length) for a linear
predictor of order 12 for the synthetic speech section. As anticipated, for
values of N below the pitch period (83 samples) the covariance method gives
significantly smaller values of ¥ than the autocorrelation method. For values of
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Fig. 8.11 Variation of prediction error with predictor order, p, for voiced
section of a synthetic vowel—pitch asynchronous analysis. (After Chan-
dra and Lin [15].)

V at or near multiples of the pitch period, the values of V show fairly large
jumps due to the large prediction error when a pitch pulse is used to excite the

system. However, for most values of N on the order of 2 or more pitch
periods, both analysis methods yield comparable values of V.

Figures 8.13-8.15 show a similar set of figures for the case of a section of
natural voiced speech. Figure 8.13 shows that the normalized error for the

0.25 S
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Sampling Frequency -10 kHz
020} | Prediction Order -p=12

. O - Autocorrelation Method
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015
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Fig. 8.12 Variation of prediction error with section length, N, for a
voiced section of synthetic speech. (After Chandra and Lin [15].)
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Fig. 8.13 Variation of prediction error with predictor order, p, for a
voiced section of a natural vowel—pitch synchronous analysis. (After
Chandra and Lin [15].)

covariance method is significantly lower than the normalized error for the auto-
correlation method for a pitch synchronous analysis, whereas Figure 8.14 shows
that for a pitch asynchronous analysis, the values of V are comparable. Finally
Figure 8.15 shows how the values of V vary as N varies for an analysis with
p = 12. It can be seen that in the region of pitch pulse occurrences, the value
of ¥ for the autocorrelation analysis jumps significantly whereas the value of V
for the covariance analysis changes only a small amount at these points. Also
for large values of N it is seen that the curves of V for the two methods
approach each other.

8.5.3 Variations of the normalized error with frame position

We have already shown some properties of the LPC normalized error in
Section 8.5.2 — namely its variation with section length N, and with the
number of poles in the analysis, p. There remains one other major source of
variability of V—namely its variation with respect to the position of the analysis
frame. To demonstrate this variability Figure 8.16 shows plots of the results of
a sample-by-sample (i.e. the window is moved one sample at a time) LPC
analysis of 40 msec of the vowel sound /i/, spoken by a male speaker (LRR).
Figure 8.16a shows the signal energy (computed at a 10 kHz rate); Fig. 8.16b
shows the normalized mean-squared error (V) (again computed at a 10 kHz
rate) for a 14 pole (p=14) analysis with a 20 msec (N=200) frame size for the
covariance method; Fig. 8.16¢ shows the normalized mean-squared error for the
autocorrelation method using a Hamming window; and Fig. 8.16d shows the
normalized mean-squared error for the autocorrelation method using a rec-
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Fig. 8.14 Variation of prediction error with predictor order for a voiced
section of a natural vowel—pitch asynchronous analysis. (After Chandra
and Lin [15].)

tangular window. The average pitch period for this speaker was 84 samples (8.4
msec); thus about 2.5 pitch periods were contained within the 20 msec frame.
For the covariance method the normalized error Shows a substantial variation
with the position of the analysis frame (i.e., the error is not a smooth function
of time). This effect is essentially due to the large peaks in the error signal,
e(n), at the beginning of each pitch period as discussed previously. Thus, in
this example, when the analysis frame is positioned to encompass 3 sets of
error peaks, the normalized error is much larger than when only 2 sets of error
peaks are included in the analysis interval. This accounts for the normalized
error showing a fairly large discrete jump in level as each new error peak is
included in the analysis frame. Each discrete jump of the normalized error is
followed by a gradual tapering off and flattening of the normalized error. The
exact detailed behavior of the normalized error between discrete jumps depends
on details of the signal and the analysis method.

Figures 8.16c and 8.16d show somewhat different behavior of the LPC
normalized error for the autocorrelation analysis method using a Hamming win-
dow, and a rectangular window respectively. As seen in this figure the normal-
ized mean-squared error shows a substantial amount of high frequency varia-
tion, as well as a small amount of low frequency and pitch synchronous varia-
tion. The high frequency variation is due primarily to the error signal for the
first p samples in which the signal is not linearly predictable. The magnitude of
this variation is considerably smaller for the analysis using the Hamming win-
dow than for the analysis with the rectangular window due to the tapering of
the Hamming window at the ends of the analysis window. Another component
of the high frequency variation of the normalized error is related to the position
of the analysis frame with respect to pitch pulses as discussed previously for the
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covariance method. However, this component of the error is much less a factor
for the autocorrelation analysis than for the covariance method — especially in
the case when a Hamming window is used since new pitch pulses which enter
the analysis frame are tapered by the window.

Variations of the type shown in Fig. 8.16 have been found typical for
most vowel sounds [16]. The variability with the analysis frame position can be

reduced using allpass filtering and spectral pre-emphasis of the signal prior to
linear predictive analysis [16].

8.6 Frequency Domain Interpretations
of Linear Predictive Analysis

Up to this point we have discussed linear predictive methods mainly in terms of
difference equations and correlation functions; i.e., in terms of time domain
representations. However, we pointed out at the beginning that the coefficients
of the linear predictor are assumed to be the coefficients of the denominator of
the system function that models the combined effects of vocal tract response,
glottal wave shape, and radiation. Thus, given the set of predictor coefficients
we can find the frequency response of the model for speech production simply
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Fig. 8.15 Variation of prediction error with section length for a voiced
section of natural speech. (After Chandra and Lin [15].)
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LPC systems. (After Rabiner et al. [16].)
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by evaluating H(z) for z = e/“i.e.,

G __ @
1~ f, o e vk A (e’)
k=1

If we plot H(e’*) as a function of frequency” we should expect to see peaks at
the formant frequencies just as we have in spectral representations discussed in
previous chapters. Thus linear predictive analysis can be viewed as a method of
short-time spectrum estimation. Indeed such techniques are widely applied out-
side the speech processing field for just this purpose [12]. In this section we
shall present a frequency domain interpretation of the mean-squared prediction
error and compare linear predictive techniques to other methods of estimating
frequency domain representations of speech.

H(ej"') =

(8.102)

8.6.1 Frequency domain interpretation
of mean-squared prediction error

Consider a set of predictor coefficients obtained using the autocorrelation
method. In this case, the mean-squared prediction error can be expressed in
the time-domain as

E =% eXm) (8.103a)

m=0

or in the frequency domain (using Parseval’s Theorem) as
E,= == [ 18,/ ]2 4 () |%dw (8.103b)
2o Y

where S,(e/”) is the Fourier transform of the segment of speech s,(m), and
A(e’®) is

A(e/) =1- ﬁ a e Iok (8.104)
k=1
If we recall that
. &

H(e’®) = - 8.105
k&%) A(el®) ¢ )

“then Eq. (8.103b) can be expressed as

_ G2 T 1Si(e/))?

E,= o fﬂ e % (8.106)

Since the integrand in Eq. (8.106) is positive it follows that minimizing E, is
equivalent to minimizing the integral of the ratio of the energy spectrum of the
speech segment to the magnitude squared of the frequency response of the
linear system in the model for speech production.

'See Problem 8.2 for a consideration of how to evaluate & (e/®) using the FFT.
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In Section 8.2 it was shown that the autocorrelation function, R,(m), of
the segment of speech, s,(m), and the autocorrelation function, R (m), of the
impulse response, h(m), corresponding to the system function, H (z), are
equal for the first (p+1) values. Thus, as p — oo the respective autocorrelation .
functions are equal for all values and therefore

lim [H(e/)|?=|S,(e/%)|2 (8.107)
P

This implies that if p is large enough we can approximate the signal spectrum
with arbitrarily small error with the all-pole model, H(z).

It is interesting to note that even though Eq. (8.107) says that as p — oo,
|H(e/)|?=S,(e’)|% it is not necessarily (or generally) true that
H(e’”) = §,(e/“) — i.e., the frequency response of the model need not equal
the Fourier transform of the signal. This is so because S,(e/“) need not be
minimum phase, whereas H(e/“) is required to be minimum phase since it is
the transfer function of an all-pole filter with poles inside the unit circle.

To illustrate the nature of the spectral modelling capability of linear
predictive spectra, Fig. 8.17 (due to Makhoul [7]) shows a comparison between
20 log 1o H(e’*)| and 20 logg|S,(e/*)|. The signal spectrum was obtained by
an FFT analysis of a 20 msec section of speech (sampled at 20 kHz), weighted
by a Hamming window as discussed in Chapter 6. The speech sound was the
vowel /ae/. The LPC spectrum was that of a 28-pole prédictor (p=28)
obtained by the autocorrelation method [2]. The harmonic structure of the sig-
nal spectrum is clearly seen in this figure. A significant feature of the LPC
spectral modelling can also be seen in this figure. This is the fact that the LPC
spectrum matches the signal spectrum much more closely in the regions of
large signal energy (i.e., near the spectrum peaks) than near the regions of low
signal energy (i.e., near the spectral valleys). This is to be expected in view of
Eq. (8.106) since regions where |S,(e’®)| > |H(e/%)| contribute more to the
total error than regions where |S,(e/)| < |H(e/“)|. Thus the LPC spectral
error criterion favors a good fit near the spectral peaks, whereas the fit near the
spectral valleys is nowhere near as good.

60,
p=28

=

@

@ s0

>

© 40 4

[+ 4

w

& 30 1

» I

B A

= n 4

- : P

i

'&"]0 LB | Ll ‘\
o
0

1 2 3 a 5 3 7 8 9 10
FREQUENCY (kHz)

Fig. 8.17 28 pole fit to an FFT signal spectrum. (After Makhoul [17].)
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Fig. 8.18 Spectra for /a/ vowel sampled at 6 kHz for several values of

predictor order p.

The above discussion suggests that the order p of the linear predictive
analysis can effectively control the degree of smoothness of the resulting spec-
trum. This is illustrated in Fig. 8.18 which shows the input speech segment,
the Fourier transform of that segment and linear predictive spectra for various
orders. It is clear that as p increases, more of the details of the spectrum are
preserved. Since our objective is to obtain a representation of only the spectral
effects of the glottal pulse, vocal tract, and radiation, it is clear that we should
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choose p as discussed before so that the formant resonances and the general
spectrum shape are preserved.

It should be pointed out that we have assumed in this discussion that the
predictor parameters were computed using the autocorrelation method. This
was necessary because only in this case is the Fourier transform of the short-
time autocorrelation function equal to the magnitude squared of the short-time
Fourier transform of the signal. However this does not preclude the use of H
(e/*) as a spectrum estimate even if the predictor coefficients are estimated by
the covariance method.

8.6.2 Comparison to other spectrum analysis methods

We have already discussed methods of obtaining the short-time spectrum
of speech in Chapters 6 and 7. It is instructive to compare these methods with
the spectrum obtained by linear predictive analysis.

As an example, Fig. 8.19 (due to Zue [10]) shows four log spectra of a
section of the synthetic vowel /a/. The first two spectra were obtained using
the short-time spectrum method discussed in Chapter 6. For the first spec-
trum, a section of 512 samples (51.2 msec) was windowed, and then
transformed (using a 512 point FFT) to give the relatively narrow band spectral
analysis shown at the top of Fig. 8.19. In this spectrum the individual harmon-
ics of the excitation are clearly in evidence due to the relatively long duration
of the window. For the second spectrum the analysis duration was decreased to
128 samples (12.8 msec) leading to a wideband spectral analysis. Now the exci-
tation harmonics are not resolved; instead the overall spectral envelope can be
seen. Although the formant frequencies are in evidence in this spectrum, it is
not a simple matter to reliably locate or identify them. The third spectrum was
obtained by homomorphic smoothing as discussed in Chapter 7. The
unsmoothed spectrum was obtained from a 300 sample (30 msec) section using
the FFT method described above. The smoothed spectrum shown in this figure
was obtained by linear smoothing of the log spectrum. For this example the
individual formants are well resolved and are easily measured from the
smoothed spectrum using a simple peak picker. However, the bandwidths of
the formants are not easily obtained from the homomorphically smoothed spec-
trum due to all the smoothing processes which have been used in obtaining the
final spectrum. Finally the bottom spectrum is the result of a linear predictive
analysis using p = 12 and a section of N = 128 samples (12.8 msec). A com-
parison of the linear prediction spectrum to the other spectra shows that the
parametric representation appears to represent the formant structure very well
with no extraneous peaks or ripples. This is due to the fact that the linear
predictive model is very good for vowel sounds if the correct order, p, is used.
Since the correct order can be determined knowing the speech bandwidth, the
linear prediction method leads to very good estimates of the spectral properties
due to the glottal pulse, vocal tract and radiation.
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a direct comparison of the spectra of a voiced section
ined by both homomorphic smoothing and linear pred-
mant frequencies are clearly in evidence in both plots,
LPC spectrum has fewer extraneous peaks than the
This is because the LPC analysis assumed a value of
resonance peaks could occur. For the homomorphic

spectrum no such restriction existed. As noted above, the spectrum peaks from
the LPC analysis are much narrower than the spectrum peaks from the
homomorphic analysis due to the smoothing of the short-time log spectrum.
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Fig. 8.20 Comparison of speech spectra obtained by (a) cepstrum
smoothing; and (b) linear prediction.

8.6.3 Selective linear prediction

It is possible to apply the above ideas to a selected portion of the spec-
trum, rather than uniformly over the entire spectral range. This idea has been
called selective linear prediction by Makhoul [8]. The reason this method is of
potential value is that one can model only those regions of the spectrum which
are important to the intended application. For example, a sampling rate of 20
kHz is required in many speech recognition applications to adequately represent
the spectrum of fricatives. For voiced sounds one is generally interested in the
region from 0 to about 4 kHz. For unvoiced sounds the region from 4 kHz to
8 kHz is generally of most importance. Using selective linear prediction the
signal spectrum from 0 to 4 kHz can be modelled by a predictor of order ) 2R
whereas the region from 4 kHz to 8 kHz can be modelled by a different predic-
tor of order p,.

The way in which selective linear prediction is implemented is relatively
straightforward. To model only the frequency region from- f=f4t0 f=f3,
all that is required is a simple linear mapping of the frequency scale such that
f = f4 is mapped to /=0 and f = fg is mapped to f = o'/27 = 0.5 Gi.e.,
half the sampling frequency). The predictor parameters are computed by solv-
ing the predictor equations where the autocorrelation coefficients are obtained
from

- ]- f o' je'i '
R(r)=—2?_[r[S,,(ef )2 el (8.108)

Figure 8.21 (due to Makhoul [8]) illustrates the method of selective linear
prediction. The signal spectrum is identical to the one of Fig. 8.17. The region
from 0 to 5 kHz is modelled by a 14-pole predictor (p;=14), whereas the region
from 5-10 kHz is modelled independently by a 5-pole predictor (p7=5). It can
be seen that at 5 kHz, the model spectra show a discontinuity since there is no
constraint that they agree at any frequency.
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8.6.4 Comparison to analysis-by-synthésis methods

As discussed in Chapter 6, the error measure which is normally used in
analysis-by-synthesis methods is the log of the ratio of the signal power spec-
trum to the power spectrum of the model, i.e.,

; 2
fy lS”(ejm)JZ
E = fiog |11t 4
J; 0g |H(e-"“)|2 ®

Thus for analysis-by-synthesis minimization of £’ is equivalent to minimizing
the mean square error between the two log spectra.

(8.109)

A comparison between the error measures used for LPC modelling and
analysis-by-synthesis modelling leads to the following observations:

1. Both error measures are related to the ratio of the signal to model
spectra.

2. Both error measures tend to perform uniformly over the whole fre-
quency range.

3. Both error measures are suitable to selective error minimization over
specified frequency regions.

4. The error criterion for linear predictive modelling places higher weight
on frequency regions where |S,(e/)|2> |H(e/“)|? than when
|Su(e/)|? < |H(e%)|% whereas the error criterion for analysis-by-
synthesis places equal weight on both these regions.

The conclusion which is drawn from these observations is that when deal-
ing with signal spectra which are unsmoothed (as in Figure 8.17) the linear
predictive error criterion yields better spectral matches than the analysis-by-
synthesis method [7]. Furthermore the required computation for the linear
predictive modelling is significantly less than for the analysis-by-synthesis
method. If one is modelling smooth signal spectra (as might be obtained at the
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Fig. 8.21 Application of selective linear prediction to the signal spectrum
of Fig. 8.17 with a 14-pole fit to the 0-5 kHz region and a 5-pole fit to
the 5-10 kHz region. (After Makhoul [2].)

439




-—1 1

Ay Az As A As

q
—-— Ay — - ) —>
-~ A ——— L_H_._..
A —

-~ Ay —

{a)

(t4ry) (141, (14r5) (1+rgz ?

ug(n) u (n)
- fy ~ra r ~r3 ra =Fg ®=r(
24

2
A (1-ry) 2! (1-rp) ¥ {1-r3)

(b)

Fig. 8.22 (a) Lossless tube model terminated in infinitely long tube; (b)
corresponding signal flow graph for infinite glottal impedance.

output of a filter bank) then both the LPC and analysis-by-synthesis methods
give reasonably good fits to the spectra. In practice the analysis-by-synthesis
method is applied almost always to this type of signal spectrum.

8.7 Relation of Linear Predictive Analysis to Lossless Tube Models

In Chapter 3 we discussed a model for speech production that consisted of a
concatenation of N lossless acoustic tubes as shown in Fig. 8.22. The reflection
coefficients r, in Fig. 8.22b are related to the areas of the lossless tubes by

s A1 — A
Gy SR Tk

Ay + Ay
In Section 3.3.4, the transfer function of such a system was derived subject to
the condition that the reflection coefficient at the glottis was r; =1, i.e., the

glottal impedance was assumed to be infinite. In Section 3.3.4, the system
function of a system such as shown in Fig. 8.22 was shown to be

N
l_[ (1+rk)z_N/2

(8.110)

V(z) = £ = (8.111)
where D (z) satisfies the polynomial recursion
Dy(z) =1 (8.112a)
Dy(z) = Dy _(2) + 1z *Dyy(z71) (8.112b)
D(z) = Dp(2) (8.112¢)

All of this is very reminiscent of the discussion of the lattice formulation
in Section 8.3.3. Indeed, there it was shown that the polynomial

440

M




A R S

e e e

A@D =1- Y az (8.113)
k=1 ;

obtained by linear prediction analysis could be obtained by the recursion

A0) =1 (8.114a)
AD(Z) = A0D(2) — k,z7ig (=D(z7Y) (8.114b)
A@Z) = AP)(z) (8.114¢)

where the parameters {k;} were called the PARCOR coefficients. By comparing
Egs. (8.112) and (8.114) it is clear that the system function

Zadn
H(:) = — (8.115)

obtained by linear prediction analysis has the same form as the system function
of a lossless tube model consisting of p sections. If

I‘,—=— kf' (8.116)

“then it is clear that

D(z) = A(2) (8.117)

Using Eq. (8.110) and Eq. (8.116) it is easy to show that the areas of the
equivalent tube model are related to the PARCOR coefficients by

1+k,

A; (8.118)

i+1

Note that the PARCOR coefficient gives us a ratio between areas of adjacent
sections. Thus the areas of the equivalent tube model are not absolutely deter-
mined and any convenient normalization will produce a tube model with the
same transfer function.

It should be pointed out that the "area function" obtained using Eq.
(8.118) cannot be said to be the area function of the human vocal tract. How-
ever, Wakita [17] has shown that if pre-emphasis is used prior to linear predic-
tive analysis to remove the effects due to the glottal pulse and radiation, then
the resulting area functions are often very similar to vocal tract configurations
that would be used in human speech.

8.8 Relations Between the Various Speech Parameters

Although the set of predictor coefficients, ay 1 < k < p, is often thought of
as the basic parameter set of the linear predictive analysis, it is straightforward
to transform this set of coefficients to a number of other parameter sets, to
obtain alternative representations of speech. Such alternative representations
often are more convenient for applications of linear predictive analysis. In this
section we discuss how other useful parameter sets can be obtained directly
from LPC coefficients [1,2].
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8.8.1 Roots of the predictor polynomial

Perhaps the simplest alternative to the predictor parameters is the. set of
roots of the polynomial

A@) =1- ¥ apz =] U-z,27 (8.119)
k=1 k=1

That-is, the roots [z,-, i=1,2,...,p} are an equivalent representation of A (z). If
conversion of the zplane roots to the s-plane is desired, this can be achieved by

setting
Z;=1¢€ 4 (8.120)

where s;= o ; + j(), is the splane root corresponding to z; in the zplane. If
z; = z;, + jz; then

1 —1] Zii
Q= T tan [;—] (8.121)

and ‘

e 3 g
Aht - log(z? + z? (8.122)

Equations (8.121) and (8.122) are useful for formant analysis applications of
LPC analysis systems.

8.8.2 Cepstrum

Another alternative to the LPC coefficients is the cepstrum of the impulse
response of the overall LPC system. If the overall LPC system has transfer
function H(z) with impulse response 4 (n) and complex cepstrum 4 (n) then it
can be shown that 4 (n) can be obtained from the recursion

2 n=1 n
h(n) =a,+ 3 (—S)h(k)a,,_k 1.€n (8.123)
k=1
where
B="5 bt ——f (8.124)
n=0 1- C!kzkk
k=1

8.8.3 Impulse response of the all-pole system

The impulse response, h(n), of the all-pole system with the transfer
function of Eq. (8.124) can be solved for recursively from the LPC coefficients
e ;

h(n) = 3 ah(n—k) + Go(n) 0 < n (8.125)
k=1
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where /1 (n) is assumed (by definition) to be 0 for n < 0, and G is the ampli-
tude of the excitation.

8.8.4 Autocorrelation of the impulse response

As discussed in Section 8.2, it is easily shown (see Problem 8.1) that the
autocorrelation function of impulse response of the filter defined as

R() = )EO () hGi~i) = R (=) (8.126)

satisfies the relations ",
R(G) = )51 aR(i-k]) 1< (8.127)

and N
R(0) = ?fl a,R(k) + G? (8.128)

Equations (8.127) and (8.128) can be used to determine R (i) from the predic-
tor coefficients and vice versa.

8.8.5 Autocorrelation coefficients of the predictor polynomial
Corresponding to the predictor polynomial, or inverse filter,
A@D) =1- ¥ a,z* (8.129)
k=1
is the impulse response of the inverse filter

a(n) =38(n) - ﬁ ad(n—k)
k=1

The autocorrelation function of the inverse filter impulse response is

R =T aatk+d 0<i<p (8.130)
k=0

8.8.6 PARCOR coefficients

For the autocorrelation method the predictor coefficients may be obtained
from the PARCOR coefficients using the recursion

all =k, (8.131a)
aj(j) == aj(f—l) == k,-a,-gfn 1 ‘g,j 's, I_l (8.131b)
with Egs. (8.131a) and (8.131b) being solved for i = 1,2, .. ., p and with the
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final set being defined as _
a=a  1<j<yp (8.131¢)

Similarly the set of PARCORS may be obtained from the set of LPC
coefficients using a backward recursion of the form

ki=al? (8.132a)
(D) 4 g.(D)g () ‘
g = a—’T—aTz-“;f dgggi=} (8.132b)
where / goes from p, to p—1, down to 1 and initially we set
P =a; 1<j<p (8.132)

8.8.7 Log area ratio coefficients

An important set of equivalent parameters which can be derived from the
PARCOR parameters is the log area ratio parameters defined as

it A ik l‘k;
s 75 e P

1<igyp (8.133)

The g; parameters are equal to the log of the ratio of the areas of adjacent sec-
tions of a lossless tube equivalent of the vocal tract having the same transfer
function as the linear predictive model as discussed in Section 8.7. The g
parameters have also been found to be especially appropriate for quantization
by Makhoul [2] and others [1] because of the relatively flat spectral sensitivity
of the g/'s.

The k; parameters may be directly obtained from the & by the inverse
transformation

k.,‘_

e I1<i<p (8.134)
+ e”

8.9 Synthesis of Speech from Linear Predictive Parameters

Speech can be synthesized from the linear predictive analysis parameters in
several different ways. The simplest way is to use a system which is the same
parametric representation as was used in the analysis. Figure 8.23 shows a -
block diagram of such a speech synthesizer. The time varying control parame-
ters needed by the synthesizer are the pitch period, a voiced/unvoiced switch,
the gain or rms speech value, and the p predictor coefficients. The impulse
generator acts as the excitation source for voiced sounds producing a pulse of
unit amplitude at the beginning of each pitch period. The white noise generator
acts as the excitation source'for unvoiced sounds producing uncorrelated, “uni-
formly distributed random samples with unity standard deviation, and zero
mean. The selection ‘between the two sources is made by the voiced/unvoiced
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Fig. 8.23 Block diagram of linear predictive synthesizer.

control. The gain control G determines the overall amplitude of the excitation.
The synthetic speech samples are determiried by

5(n) = 3 a,5(n=k) + Guln) (8.135)
k=1

A network which realizes Eq. (8.135) is shown in Fig. 8.23. This direct form

network is the most simple and straightforward method for synthesizing speech

from the predictor parameters. A total of p multiplies and p adds are required

to generate each output sample.

In the synthesis model of Fig. 8.23 the synthesis parameters must be
changed with time. Although the parameters are usually estimated at regular
intervals during regions of voiced speech, the control parameters are changed at
the beginning of each period. For unvoiced speech they are simply changed
once per frame (i.e., every 10 msec for a 100 frame/sec rate). The updating of
control parameters at the beginning of each pitch period (called pitch synchro-
nous synthesis) has been found to be a much more effective synthesis strategy
than the process of updating the parameters once each frame (called asynchro-
nous synthesis). This requires that the control parameters be interpolated to
obtain the values at the beginning of each pitch period. Atal has found that the
pitch and gain parameters should be interpolated geometrically [3] (i.e., linearly
on a log scale); however, due to stability constraints, the predlctor parameters
themselves cannot be interpolated. This is due to the fact tha it interpolation
between two sets of stable predictor coefficients can lead to an unstable interpo-
lated result. One way around this difficulty; according to Atal, is to interpolate
the first p samples of the autocorrelation function of the impulse response of
the filter of Fig. 8.21. Using the relations of Section 8.4, the predictor
coefficients can be obtained from the first p samples of the autocorrelation of
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Fig. 8.24 Equivalent lossless tube models using (a) two multiplier junc-
tions; and (b) one multiplier junction.

the impulse response, and vice versa. Furthermore, the interpolated autocorre-
lation coefficients always lead to a stable filter.®

The synthesizer of Fig. 8.23 has been used in a wide variety of simula-
tions of LPC systems. Its main advantage is its simplicity and ease of imple-
mentation. Its main drawback is that it requires considerable computational
accuracy to synthesize the speech because the structure is basically a direct
form recursive structure which tends to be quite sensitive to changes in the
coefficients. Perhaps the most attractive alternative to synthesis based on the
predictor parameters is the use of the reflection coefficients or the PARCOR
coefficients in a lossless. tube equivalent. In other words, this direct form net-
work in Fig. 8.23 can be replaced by a structure such as Fig. 8.22. The advan-
tage of such a structure is that the multipliers are the reflection coefficients,

= — k;, which have the property that they are bounded (|k;| < 1), and also
that they can be interpolated directly while maintaining a stable filter. Such
structures are also less sensitive to quantization effects in finite word length
implementations of the synthesizer than the direct form implementation of Fig.
8.23.

0-900Hz  5:1
VOICED
s(n) x(n) INVERSE | ¥{n) PEAK —
Z—s! LpF > DEC b AUTOCORRELATION [—>{,, - o [—>{INTERPOLATOR .
_Tj
INVERSE
FILTER
ANALYSIS
p=4
FILTER

COEFFICIENTS
Fig. 8.25 Block diagram of the SIFT algorithm for pitch detection.
lg'Similarly the PARCOR coefficients or‘the log area ratio coefficients can be interpolated and the

resulting system is guaranteed to be stable if the parameter sets which are being interpolated are
stable.
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It is clear from Fig. 8.22b that to implement a p™ order synthesis filter as
an acoustic tube model requires 4p + 2 multiplications and 2(p—1) additions
per sample as compared to p multiplications and p additions for the direct form.
In Section 3.3.3 it was shown that the four multiplier junctions in Fig. 8.22 can
be replaced by one and two multiplier junctions at the expense of increased
number of additions. By making the substitutions indicated in Fig. 3.41, the
flow graph of Fig. 8.22b can be transformed into those shown in Fig. 8.24. Fig-
ure 8.24a requires 2p — 1 multiplications and 4p — 1 additions while Fig. 8.24b
requires p multiplications and 3p — 2 additions. In using lossless tube models
for synthesis, the choice of the particular form depends on a variety of factors
so that it is not possible to say that any one form is the most efficient.

8.10 Applications of LPC Parameters

As evidenced in the preceding sections of this chapter, the theory of linear
prediction is highly developed. Based on this theory, and its implications, a
large variety and range of applications of linear predictive analysis to speech
processing has evolved. Schemes have been devised for estimating all the basic
speech parameters from linear predictive analyses. Based on such analyses,
vocoders have been studied extensively, leading to an understanding of the
quantization properties of the various LPC representations. Finally these tech-
niques have been used in many speech processing systems for speaker
verification and identification, speech recognition, speech classification, speech
dereverberation, etc. In the following sections and in Chapter 9 we present
outlines of several representative methods for estimating speech parameters
using linear predictive analysis.

8.10.1 Pitch detection using LPC parameters

We have already discussed how the error signal e(n) from the LPC
analysis can, in theory, be used to estimate the pitch period directly. Although
this method will generally be capable of finding the correct period, a somewhat
more sophisticated method of pitch detection was proposed by Markel [19].
This algorithm is called the SIFT (simple inverse filtering tracking) method. A
similar method was proposed by Maksym [20].

S

Figure 8.25 shows a block diagram of the SIFT algorithm. The input sig('-'
nal s(n) is lowpass filtered with a cutoff frequency of about 900Hz, and then
the sampling rate (nominally 10 kHz) is reduced to 2 kHz by a decimation pro-
cess (i.e., 4 out of every 5 samples are dropped at the output of the lowpass
filter). The decimated output, x(n), is then analyzed using the autocorrelation
method with a value of p =4 for the filter order. A fourth order filter is
sufficient to model the signal spectrum in the frequency range 0-1 kHz because
there will generally be only 1-2 formants in this range. The signal x(n) is then
inverse filtered to give y(n), a signal with an approximately flat spectrum.’®

9The output y(n) is simply the prediction error for the fourth order predictor.
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Fig. 8.26 Typical signals from the SIFT algorithm. (After Markel [191.)

Thus the purpose of the linear predictive analysis is to spectrally flatten the
input signal, similar to the clipping methods discussed in Chapter 4. The
short-time autocorrelation of the inverse filtered signal is computed and the
largest peak in the appropriate range is chosen as the pitch period. To obtain
additional resolution in the value of the pitch period, the autocorrelation func-
tion is interpolated in the region of the maximum value. An unvoiced

classification is chosen when the level of the autocorrelation peak (suitably nor-
malized) falls below a given threshold.

Figure 8.26 (due to Markel [19]) illustrates some typical waveforms
obtained at several points in the analysis. Figure 8.26a shows a section of the
input waveform being analyzed; Fig. 8.26b shows the input spectrum, and the

448




reciprocal of the spectrum of the inverse filter. For this example there appears

to be a single formant in the range of 250 Hz. Figure 8.26c shows the spec-

g trum of the signal at the output of the inverse filter, whereas Fig. 8.26d shows

I the time waveform at the output of the inverse filter. Finally Fig. 8.26e shows
the normalized autocorrelation of the signal at the output of the inverse filter.
g A pitch period of about 8 msec is clearly in evidence.
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Fig. 8.27 (a) Spectrogram of original speech: (b) center frequencies of
complex -pole locations for 12 order linear predictive analysis. (After
Atal and Hanauer [3].)
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The SIFT algorithm uses the linear predictive analysis to provide a spec-
trally flattened signal to facilitate pitch detection. To the extent that this spec-
tral flattening is successful, the method appears to be a reasonably good one for
pitch analysis. However, for high pitched speakers (such as children) the spec-
tral flattening is generally unsuccessful due to the lack of more than one pitch
harmonic in the band from 0 to 900 Hz (especially for telephone line inputs).
For such speakers and transmission conditions, other pitch detection methods
may be more successful.

8.10.2 Formant analysis using LPC parameters [21-23]

Linear predictive analysis of\”speech has several advantages, and some
disadvantages when applied to the problem of estimating the formants for
voiced sections of speech. Formants can be estimated from the predictor
parameters in one of two ways. The most direct way is to factor the predictor
polynomial and, based on the roots obtained, try to decide which are formants,
and which correspond to spectral shaping poles [21,22]. The alternative way of
estimating formants is to obtain the spectrum, and choose the formants by a
peak picking method similar to the one discussed in Chapter 7 [23].

A distinct advantage inherent in the linear predictive method of formant
analysis is that the formant center frequency and bandwidth can be determined
accurately by factoring the predictor polynomial. Since the predictor order p is
chosen a priori, the maximum possible number of complex conjugate poles
which can be obtained is p/2. Thus the labelling problem inherent in deciding
‘which poles correspond to which formants is less complicated for the LPC
method since there are generally fewer poles to choose from than for compar-
‘able methods of obtaining the spectrum such as cepstral smoothing. Finally
extraneous poles are generally easily isolated in the LPC analysis since their
bandwidths are often very large, compared to what one would expect for
bandwidths typical of speech formants. Figure 8.27 shows an example that

illustrates that the pole locations do indeed give a good representation of the
formant frequencies [3].

The disadvantage inherent in the LPC method is that an all-pole model is
used to model the speech spectrum. For sounds such as nasals and nasalized
vowels, although the analysis is adequate in terms of its spectral matching capa-
bilities; the physical significance of the roots of the predictor polynomial is
unclear. It is not clear if the roots correspond to the nasal zeros or the addi-
tional nasal poles; or if they are at all related to the expected resonances of the
vocal tract. Another difficulty with the analysis is that although the bandwidth
of the root is readily determined, it is generally not clear how it is related to the
actual formant bandwidth. This is because the bandwidth of the root has been

shown to be sensitive to the frame duration, frame position, and method of
analysis.

With these advantages and disadvantages in mind, several methods have
been proposed for estimating formants from LPC derived spectra using peak
picking methods, and from the predictor polynomial by factoring methods.
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Fig. 8.28 Block diagram of LPC vocoder.

Once the candidates for the formants have been chosen, the techniques used to
label these candidates — i.e., the assigning of a candidate to a particular for-
mant, are similar to those used for any other analysis method. These include
reliance on formant continuity, a need for spectral pre-emphasis to minimize
the possibility of close formants merging, and the use of an off the unit circle
contour for evaluating the LPC spectrum thereby sharpening the spectral peaks.
Discussion of the various methods is given by Markel [21,22], Atal [3],
Makhoul and Wolf [5], and McCandless [23].

8.10.3 An LPC vocoder — quantization considerations [24-25]

One of the most important applications of linear predictive analysis has
been the area of low bit rate encoding of speech for transmission (the LPC
vocoder) and storage (for computer voiced response systems). Figure 8.28
shows a block diagram of an LPC vocoder. The vocoder consists of a
transmitter which performs the LPC analysis and pitch detection, and then
codes the parameters for transmission, a channel over which the parameters are
sent, and a receiver which decodes the parameters and synthesizes the output
speech from them. We have already discussed both the analyzer and the syn-
thesizer. We assume, for simplicity, that the channel is an error free transmis-
sion medium. Thus in this section we look at the coder and decoder to see
which set of parameters is most appropriate for encoding at a given bit rate.

The basic LPC analysis parameters are the set of p predictor coefficients,
the pitch period, a voiced/unvoiced parameter, and the gain parameter. Tech-
niques for properly coding pitch, voiced/unvoiced switch, and the gain are fairly
well understood. For the pitch period 6 bit quantization is adequate; for the
voiced/unvoiced switch, 1 bit is required; and for the gain a total of about 5
bits distributed on a logarithmic scale are sufficient [3].

Although one could consider direct quantization of the predictor
coefficients, this approach is not recommended because, to ensure stability of
the predictor polynomial, a relatively high accuracy (8-10 bits per coefficient). is
required. The reason for this is that small changes in the predictor coefficients
can lead to relatively large changes in the pole positions. Thus direct quantiza-
tion of the predictor coefficients is generally avoided.

This leaves open the question as to an appropriate parameter set for cod-
ing and transmission. Among the proposed parameter sets the most reasonable
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candidates are the predictor polynomial roots, and the set of reflection
coefficients. The predictor polynomial roots can readily be quantized in a
manner which guarantees that the resulting polynomial is stable. This is
because roots inside the unit circle guarantee stability of the predictor polyno-
mial. Using this approach Atal [3] has found 5 bits per root (i.e., 5 bits for the
center frequency and 5 bits for the bandwidth) are adequate to preserve the
quality of the synthesized speech so as to make it essentially indistinguishable
from speech synthesized from the unquantized parameters.

Using such a coding scheme, the overall bit rate for transmission or
storage is 72-F bits per second where F; is the number of frames per second
which are stored or transmitted. Typical values for F; are 100, 67, and 33 giv-
ing bit rates of 7200, 4800, and 2400 bits per second respectivelygb

Another interesting parameter set which can be easily quantized and for
which stability can be guaranteed is the set of PARCOR coefficients, k. The
stability condition on the ks is |k;| < 1 which is simple to preserve under
quantization. Makhoul and Vlswanathan [25] have found that the distribution
of the reflection coefficients is highly skewed: thus a transformation of these
parameters is required to optimally allocate the fixed number of bits in a rea-
sonable manner. Using a spectral sensitivity measure, Makhoul and
Viswanathan [25] found the optimal transformation to be of the form

g . _'1‘_'1','_
3 A4,
where A; is the area function of a lossless tube representation of the vocal tract.
Thus the optimal parameter for linear encoding.is the logarithm of the ratio of
areas of a lossless tube representation of the vocal tract. It is easily seen that
Eq. (8.136) maps the region —1 < k; <1 to —o < g < o. Using this
transformation Atal [27] found that the coefficients g; had a fairly uniform
amplitude distribution, and low inter-parameter correlations; therefore these
parameters were quite good for digital transmission. With this parameter set a

total of about 5-6 bits per log area ratio is necessary to achieve the same quality
synthetic speech as obtained from the uncoded parameters.

1- | . .
= f(k) = log|—" 1<i<p  (8136)

1+k

In all the above coding schemes it was assumed the parameters were
being encoded using some type of PCM representation. It has recently been
demonstrated by Sambur [26] that the coding techniques discussed in Chapter 5
can be applied directly to the various LPC parameter sets leading to further
decreases in the required bit rates for transmission and storage. Using ADPCM
coding of the predictor parameters, Sambur claims good quality speech with bit
rates on the order of 1000-2000 bits per second.

8.10.4 Voice-excited LPC vocoders [27,28}
We have already shown that the weakest link in most vocoders is accurate

estimation and representation of the excitation function. In Chapter 6 we dis-
cussed some vocoder systems which did not require direct estimation of pitch
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Fig. 8.29 Block diagram of a voice-excited LPC vocoder.

and voiced/unvoiced classification, but instead represented the excitation in
terms of the phase (or phase derivative) of the signal. Another approach to
avoiding direct estimation of excitation parameters for a vocoder is the voice-
_ excited vocoder. Systems of this type have been studied by Atal et al. [27] and
5 Weinstein [28]. Figure 8.29 shows a block diagram of a voice-excited LPC
: vocoder. - There are two distinct transmission paths in this system; one produc-
i ing a low frequency band of the direct signal, one producing the normal
vocoder parameters (e.g., LPC coefficients, spectral magnitudes, etc.). The low
; frequency band, which can be coded using any of the methods described in
Chapter 5, is used to generate the excitation signal for the synthesizer by an
appropriate combination of nonlinear distortion and spectral flattening. The
reason this procedure is effective is that the low frequency band contains all the
necessary information about the excitation — i.e., it is periodic with the correct
period for voiced speech, and it is noise-like for unvoiced speech. Thus, using
such a scheme to generate the excitation eliminates the need for methods for
estimating pitch, and voiced/unvoiced classification. However, this method has
the disadvantage that additional information must be transmitted over the chan-
nel to accurately describe the low frequency band of the signal; thus voice-
excited vocoders generally require somewhat higher bit rates than conventional
vocoders. For example a voice-excited LPC vocoder requires on the order of
3000-4000 bps or about 1000-2000 bps more than the conventional LPC
vocoder described in the previous section. The benefit obtained from the
higher bit rates is an increased uniformity. in the speech quality for different
speakers and transmission conditions, due to the elimination of the pitch and
voiced/unvoiced detector. The details of implementation of voice excited LPC
vocoders are given by Atal et al. [27] and Weinstein [28].

8.11 Summary

In this chapter we have studied the technique of linear prediction of speech.
We have primarily focused on the formulations which provide the most insight
i into the modeling of the process of speech production. We have discussed the
issues involved with implementing these systems and have tried to compare the
similarities and differences between the basic methods whenever possible.
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