SELECTED ADVANCED TOPICS IN
DIGITAL SIGNAL PROCESSING

RicHARD M. STERN

ADSP Press

Copyright © 2020 Richard M. Stern
Copying prohibited

All rights reserved. No part of this publication may be reproduced or transmitted in any
form or by any means, electronic or mechanical, including photocopying and recording,
or by any information storage or retrieval system, without the prior written permission
of the publisher.

Art. No xxxxx
ISBN XXX—XX—XXXX—XX—X
Edition 0.8

Cover design by Cover Designer

Published by ADSP Press
Printed in Pittsburgh, Pennsylvania USA

Contents

il =l
- &

—

Preface [
1 Working Between Continuous and Discrete Time 1
1.1 Introduction 1
1.2 Sampling of continuous-time signals 2
1.3 Reconstruction of continuous-time signals from their samples 6
1.4 Introduction to discrete-time decimation and interpolation 9
1.4.1 Decimation: reducing the sampling rate by an integer factor M . . . 9
1.4.2 Interpolation: increasing the sampling rate by an integer factor L. . 13
1.4.3 Changing the sampling rate by a rational factor L/M 16
2 Efficient Decimation and Interpolation, 19
2.1 Interchanging elements to improve efficiencies 19
2.1.1 Signal flowgraph notation 19
2.1.2 Efficient downsampling: the direct method 21
2.1.3 Efficient upsampling using transposed filter forms. 22
2.2 Interpolation and decimation using polyphase filters 24
2.2.1 Interpolation using polyphase filters 26
2.2.2 Implementation of interpolation using a filter with time-varying co-
efficients 29
2.2.3 Decimation using polyphase filtering 30
2.3 Efficient change of sampling rate by L/M 31
3 Short-Time Fourier Transformscoviiiiiiieeennnineeennnn. 35
3.1 Introduction 35

3.2

3.3

3.4
3.5

3.6

3.7

4.1
4.2

4.3

4.4
4.5
4.6

5.1
5.2
5.3
5.4

Computing the short-time Fourier transform 35
3.2.1 Impact of window sizeand shape 36
3.2.2 Inversionof the STFT 38
Alternate interpretations of the STFT operation 38
3.3.1 Fourier transform interpretation of the STFT 39
3.3.2 Lowpass filter interpretation of the STFT 39
3.3.3 Bandpass filter interpretation of the STFT 40
3.3.4 Implementations of the STFT using real time functions and impulse
FESPOMSES « v v v v v v v v e e e e e e e e 40
Downsampling the STFT 42
Short-time Fourier synthesis 43
3.5.1 The Filter Bank Summation (FBS) method 43
3.5.2 The Overlap-Add (OLA) method 45
Sampling in time and frequency 46

3.6.1 The Fourier-transform implementation with overlap-add synthesis . 46
3.6.2 Thelowpass and bandpass implementations with filterbank-summation

synthesis 47
Applications of short-time Fourier analysis 48

3.7.1 Spectral subtraction oo o000 48

3.7.2 Phasevocoding oo o L. 49
Introduction to Random Processes i, 53
Introduction 53
Review of probability and random variables 53

4.2.1 Probabilityofevents 54

4.2.2 Randomwvariables 54

4.2.3 Selected other relationships 55
Introduction to random processes 55

4.3.1 Ensembleaverages 57

4.3.2 Stationarity 58

4.3.3 Timeaverages o v it 60

4.3.4 Ergodicity 61
Gaussian random processes 63
Power Spectral Density Functions 64
Random processes and linear filters 66
Classical Power Spectral Density Estimation 69
Introduction 69
Overview of parameter estimation 70
Estimates of the mean and variance of a random process 71

Estimates of the autocorrelation function 73

5.5
5.6

5.7

6.1

6.2

6.3
6.4

7.1

7.2

7.3

7.4
7.5

8.1
8.2
8.3
8.4

Estimating power spectral density functions by computing the periodogram 74

Performance of PSD estimators based on the periodogram 75
5.6.1 The mean of the periodogram 75
5.6.2 The variance of the periodogram 78
Smoothed estimators of power spectral density 79
5.7.1 The Bartlett method 79
5.7.2 Windowing the autocorrelation function: the Welch method 81
Introduction to Maximum Entropy Spectral Estimation 85
Introduction 85
Information and Entropy 85
Spectral estimation by maximizing entropy 87
The all-pole model of a spectral estimate 89
Introduction to Linear Prediction 91
Introduction 91
7.1.1 Linear prediction of the current sample of a random process 92

7.1.2 How linear prediction relates to the all-pole (autoregressive) model 93

Solution of the LPC equations 93
7.2.1 General solution of the LPC equation 93
7.2.2 The autocorrelation method and Levinson-Durbin recursion 94
7.2.3 The covariance solution of the LPC equations 96
7.2.4 Recursive relationships between the LPC coefficients and reflection
coefficients 97
7.2.5 Computation of the LPC gain parameter 98
7.2.6 The LPC error in time and frequency 99
The FIR lattice filter 100
7.3.1 Time-domain and frequency-domain characterization of the lattice
filter 100
7.3.2 Physical interpretation of the functions e;[n] and b;[n] 102
7.3.3 Deriving the reflection coefficients from the forward and backward
prediction errors: the PARCOR method 103
All-pole IIR lattice filters 105
Proof of the recursive lattice filter relationship 107
Introduction to Adaptive Filtering i, 109
Introduction 109
The adaptive linear combiner 111
The performance function 112

Finding the minimum MSE analytically 114

8.5

8.6
8.7
8.8

9.1
9.2
9.3
9.4
9.5

9.6
9.7
9.8
9.9
9.10

Finding the minimum MSE empirically

8.5.1 Newton’smethod
8.5.2 Gradientdescent

The least mean squares (LMS) adaptation algorithm
The recursive least squares (RLS) adaptation algorithm

The adaptive lattice algorithm

Introduction to Adaptive Array Processing
Introduction to microphone arrays

Delay-and-sum beamforming

Beam steering

Narrowband adaptive array algorithms

Broadband adaptive array algorithms

9.5.1 The Griffiths LMS algorithm
9.5.2 TheFrostalgorithm
9.5.3 The Griffiths-Jim algorithm

.. 137

9.5.4 The minimum-variance distortionless response (MVDR) formulation 137

Appendix. Working with Delta Functions
Axiomatic definition of the delta function

Limiting definitions of the delta function

Implicit definition of the delta function

Computation with the delta function

The unit step function and derivatives of discontinuous functions

R =Y = (U 1 =

139
140
140
141
142

0. Preface

I first volunteered to teach a second course beyond the standard DSP course in the spring
of 1985. At that time, as well as now, the content of the standard DSP course like 18-491
was fairly consistent across universities, typically following texts such as those written
by Oppenheim and Schafer or Proakis and Manolakis. Nevertheless, I was surprised to
find that the content for courses at the second level was all over the map. After a bit
of experimentation, I came to decide that the set of topics presently covered in 18-792,
which include both the deterministic discussions on change of sampling rate and short-
time Fourier analysis, and a prolonged discussion of selected topics related to random
signals including spectral estimation, linear prediction, adaptive filtering, and adaptive
arrays.

Teaching the course became much easier by the publication in 1988 of the book Advanced
Topics in Signal Processing, edited by Jae Lim and Al Oppenhiem, the former a fellow
student and the latter an early mentor from my college and graduate school days. I used,
and continue to use, chapters from the Lim and Oppenheim book!, as well as the excellent
book on speech processing Digital Processing of Speech Signals by Larry Rabiner and Ron
Schafer, published in 1978 and updated in 2010.

Over the years there would be times at which I would have to miss lectures because of
conflicts with professional conferences, obligatory meetings with research sponsors, etc.
After some less-than-successful experiments with substitute lecturers I began in 2000 to
pre-record the lectures I missed and have a teaching assistant present the lecture in class
and respond to questions. Especially early on, it was not so easy to see the board at times
in the videos, so I would supplement the lectures with very rough printed notes that were

IThe Lim and Oppenheim book is currently out of print, but we have permission to reprint selected
chapters for internal use.

ii

distributed in class. As time went by, the coverage of the course by the notes grew to
about half of the lectures and the notes improved with editing. I started distributing the
notes even for lectures when I was present in person because they appeared to be helpful
to some.

As we all know, our style of teaching this year (along with pretty much everything else)
has been radically affected by COVID-19. Because every lecture this fall will be presented
online (although the technology has improved quite a bit), I took on the task of expanding
the notes to cover the entire course, formatting the material as a pseudo-book. My mo-
tivations were several: making the contents of the lectures more accessible (even though
the lectures themselves and in-class notes are recorded and available to the students),
helping the students navigate and integrate material from multiple primary sources with
better transitions, and in part having the opportunity simply to present the material in
my own fashion.

It should be clearly understood, though, what these notes are and what they are not.
Specifically, these notes are no more than a condensed prose transcription of what I
present in class. They do not provide anything close to the context that is available from
reading the original sources, which are identified at the beginnings of each chapter. Simi-
larly, they are not guaranteed to provide all the information that is in the original lectures.
Hence, these notes should be considered to be a supplement to, rather than a replacement
for, the original lectures and text material. All of these disclaimers notwithstanding, I do
hope that they will be useful to at least some of you.

I deeply thank Mark Lindsey, Jade Traiger, Tyler Vuong, and Yangyang (Raymond) Xia
for reviewing earlier drafts of this text and providing many useful corrections, com-
ments, and suggestions. I also thank Vrishrab Commuri for translating earlier versions of
some chapters from FrameMaker to LaTeX, and for a great deal of additional advice and
comments. Finally, I thank Danish Mohammed Danish, Stella Getz, Loic Lescoat, Davis
Polito, John Shi, Carlos Taveras, Naoki Tsuda, Zach Vickland, Hanzhi Yin, and especially
Ruiyang Jin and Yinghao Ma for pointing out additional errors in the initial manuscript.
Nevertheless, please let me know about any remaining errors, as well as any suggestions
you might have that would make the text more correct, complete, and helpful. Thank you
all!

—Richard Stern
August 27, 2020

Chapter 0. Preface

To Lauren, Sarah, and all my students

iii

1. Working Between Continuous and Discrete Time

Wi’ &)

1.1 Introduction 1
2 Sampling of continuous-time signals 2
1.3 Reconstruction of continuous-time signals from
their samples 6
1.4 Introduction to discrete-time decimation and
interpolation 9

In signal processing we need to be able to move fluently between the continuous-time and
discrete-time worlds. Natural signals, and our perception of them, nearly always occur
in the continuous-time world. Nevertheless, almost all signal processing operations are
implemented in the discrete-time world. Hence we need to be able to understand how we
move from one world to the other, and to understand the implications that sampling has
on the nature of the signals in time and frequency.

1.1 Introduction

In this chapter we review the mathematics that are the basis for sampling of continuous-
time signals and their reconstruction. We will also discuss the closely-related mathemat-
ics that underly discrete-time decimation and interpolation that enable changes in the
effective sampling rate of a discrete-time signal.

2 1.2. Sampling of continuous-time signals

1.2 Sampling of continuous-time signals

x.(t) z[n] = z.(nTh)
— C/D —>

TTl

zo(t) = Y we(nT1)d(t — nTy)

z(t) n=—o0 zn] = x.(nT1)
@ .| Convertto

Discrete Time

T s(t)= Y 6(t—nTy)

n=—oo

Figure 1.1: Upper panel: block diagram of C/D conversion. Lower panel: Specification of
the underlying signal processing.

The block diagram in the upper panel of Fig. 1.1 shows the basic structure of the ideal
continuous-to-discrete-time converter or C/D converter. The input is a continuous-time
function x.(t), which we assume to be a bandlimited time function such that its continuous-
time Fourier transform X(jQ) equals zero for |Q| > W.! The output is a discrete-time
function x[n] that is equal to x.(t) evaluated at times t = nT;, where T is the sampling
period in seconds.

In order to understand the mathematical representation of sampling and its implications,
we use the more detailed description in the lower panel of Fig. 1.1. Specifically, the input
is first multiplied by s(t), an infinite train of delta functions of area 1, which are separated
by an interval of T; seconds. The function x,(t) is the product of x.(t) and s(¢), and is a
train of delta functions x,(t) that are separated in time by intervals of T} seconds and have
areas equal to the amplitude of the original signal x.(nT;) at the times at which the im-
pulses occur. This sequence is then converted magically (in our mathematical model) into
discrete time pulses x[n] which have amplitudes equal to the areas of the corresponding
delta functions in x,(t), so x[n] will be equal to x.(nTy).

Time-domain representations. It is helpful to be able to visualize these signals in both
time and frequency. The left side of Fig. 1.2 depicts, for an arbitrary time function and
its spectrum, the various continuous-time functions and discrete-time functions depicted
in Fig. 1.1. Their Fourier transforms are shown on the right side of the figure. More
specifically,

o0

s(t) = Z S(t—nTy) (1.1)

n=—oo

IWe will adopt the notational convention of using the Greek letter Q) for continuous-time frequency in
radians per second and using w for discrete-time frequency in radians.

Chapter 1. Working Between Continuous and Discrete Time 3

T

() Xe(79)
/\/\ <> %\A (a)
» L ! ! I 0
(O
)

I I I
—on/T) -wbw 2 /Ty dn)Ty
2 S

S(H)
‘ (b)
¥ | | | e
727T/T1 | 27T/T1 47T/T1
A X ()
AN/ A\
¢ I 1 —— O
—2r /Ty -w w o/ gw/Tl 4 /Ty
4 X(&¥) 7"
o-
- o AT (d)
M, =A A A A
-1 vl ' ,IW -wr I wn A jT I,r -
§ 2 . WT12 4

Figure 1.2: Left column: the time functions (a) x(t), (b) s(t), (c) xs(¢), and (d) x[n]. Right
column: The corresponding Fourier transforms in continuous and discrete time.

As described above,

x(H) = xe(t)s(t) =) xe(nTy)s(t-nTy) (1.2)

n=—co
The function x[n] is a train of discrete-time samples that have amplitudes that are equal
to the areas of the corresponding impulses of x,(t). We also note that x,(t) is a function of
t, which is a real variable, while x[n] is a function of n, which is meaningful only when it

is an integer.
oo

x[n] = Z x(ITy)8[n —1] (1.3)

I=—c0

Frequency-domain representations. Considering now the corresponding functions in
the frequency domain, let us assume that X.(jQ), the continuous-time Fourier transform
(CTFT) of x.(t), is of arbitrary shape, nonzero only for |[(Q] < W, and with a maximum
amplitude equal to A, as depicted in Fig. 1.2. It can be shown that S(jQ2), the CTFT of
s(t), is also an infinite train of delta functions:

S(jQ):zT—T Zé(g—%") (1.4)

k=—c0
Now, because x4(t) = x(t)s(t) in the time domain, we obtain in the frequency domain

X(j0) = 5= X(j0)+S(j0) = %j X(j0)S(i(C - 0))do (1.5)

(Se]

4 1.2. Sampling of continuous-time signals

where the symbol * indicates convolution. Because convolving X (jQ2) with an infinite
train of delta functions merely replicates and shifts the spectrum, we obtain

, 1. o 27 2k 1« , 21k
Xs(jQ) = EXC(]Q)* Z Tlé(Q_Tl): ﬁkz Xc(] (Q—Tl)) (1.6)

k=—c0 =—00

as shown in Row (c) of Fig. 1.2.

Input frequency 8 kHz

1‘ T T
05}
©
c
(=2
7
5
o
£
=l w \/ \/ \y 7
_1 L L L L L L L L L
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
t, seconds x1073
1 Resulting frequency 2 kHz
T T S T T
< 05F
c
(=
I I I I
- 0
>
j=N
5
O o5t g
_1 L L L L L L L L L
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
t, seconds x1073

Figure 1.3: Example of aliasing distortion, with an input signal of 8 kHz (upper panel)
sampled at 10 kHz producing an output signal of 2 kHz (lower panel).

Avoiding aliasing distortion. In order for the continuous-time signal to ultimately be
recovered without distortion, it is necessary that the replications of the original spectrum
in Fig. 1.2 not overlap one another. It can easily be seen that the separation of the replica-
tions is related to the sampling period T; while the width of the replications is twice the
signal bandwidth W. It is clear from Fig. 1.2 that overlap will be avoided if

27 T
— -W>WorW< — 1.7
T, or T, (1.7)

In other words, the sampling frequency must be at least twice as great as the bandwidth
of the incoming signal to avoid aliasing distortion. This, of course, is merely a restate-
ment of the Nyquist constraint that determines the minimum sampling frequency for
distortionless recovery of the continuous-time signal.

Figure 1.3 shows an example of the aliasing that occurs when the sampling frequency
is not great enough. The upper panel is an 8-kHz sinusoid with sample points super-
imposed by sampling at 10 kHz, which imposes an upper bound of 5 kHz for sampling

Chapter 1. Working Between Continuous and Discrete Time 5

without aliasing. The lower panel of the figure depicts the function that emerges from the
sampling and reconstruction process: a 2-kHz signal. Note that the discrete-time sample
points fit both the 8-kHz input signal and the 2-kHz output signal equally well. To pre-
vent the effects of aliasing, it is common to precede a C/D converter by a lowpass filter
with gain ideally equal to 1 and a cutoff frequency of () = 7/ T;.

Relating continuous-time and discrete-time frequency. The relationship between X,(j(2),
the CTFT of x,(t), and X(e/“), the discrete-time Fourier transform (DTFT) of x[n], is a bit
subtle. From the definition of the DTFT, X(e/?) is

(o) o)

X(el)=) xlnem= Y xo(nTy)e e (1.8)

n=—o0o n=—oo

Writing the definition of X,(j(2) and incorporating Eq. (1.2) produces

X,(jQ) = Jm x(t)e 7O dt = Jm i x (nT))8(t —nTy)e 1Pt dt (1.9)

0 p=—c0

Interchanging the sum and the integral and applying the procedures for integrating ex-
pressions with delta functions (see the Appendix for a detailed discussion of integration
with delta functions) produces

=) 0 =)

X,(jQ) = Z xc(nTl)J S(t—nTy) e 7dt = Z x (nTy)e 71T (1.10)

Nn=—00 —00 n=—0o0

We note that the final terms of Eqs. (1.8) and (1.10) are identical, except that
w=0QT (1.11)

where again T; is the sampling period. This means that X(e/?), the DTFT of x[n], is
identical to X (jQ), the CTFT of x,(t), except that the frequency axis is scaled by the
sampling period T;.? (Although it is easy to confuse discrete-time and continuous-time
frequency in expressions like Eq. (1.11), keep in mind the dimensional analysis that
discrete-time frequency in radians is equal to continuous-time frequency in radians per
second times the sampling period in seconds.)

2If X,(jQ) includes delta functions, the areas of the delta functions would be scaled according to the
relationship 6(at) = (1/al)o(t), as discussed in the Appendix.

6 1.3. Reconstruction of continuous-time signals from their samples

1.3 Reconstruction of continuous-time signals from their samples

z[n] (1)
— D/C —

.

(o]

zs(t) = Z x[n]é(t — nTh)
x[n] r(t)
Ct_Jnvert to_ Lou_/pass
Continuous Time Filter

P

Figure 1.4: Upper panel: block diagram of D/C conversion. Lower panel: Specification of
the underlying signal processing.

Let us now turn our attention to the reconstruction process, which is in some ways a re-
versal of the sampling process. Figure 1.4 summarizes the major processing steps. The
discrete-time sequence x[n] is converted into the continuous-time sequence of delta func-
tions x,(t), in which the areas of the impulses in continuous time are equal to the corre-
sponding amplitudes of the discrete-time samples:

(o)

X (t) = Z x[n]6(t - nTy) (1.12)

n=-—oo

This sequence of delta functions is passed through an ideal lowpass filter with transfer

function
Tz, |Q| < T(/T2

Hp(jQ) = { 0, otherwise (1.13)

The gain factor of T, in H p(j(2) ensures that if the original signal is sampled with a great
enough sampling frequency to avoid aliasing, and if the sampling period T; equals the
time T, between the samples used in reconstruction, then the continuous-time recovered
signal x,(t) will be identical to the original input x.(¢). In effect, when T; = T, the gain
factor of T, in the lowpass filter in the D/C converter is intended to compensate for the
factor of 1/T; that incurred in the C/D conversion process. If T, = Tj, the signal passing
through will nominally incur a gain of T,/T;.

The reconstruction process is illustrated in the frequency domain in Fig. 1.5 which can
be seen to retrace most of the functions shown in Fig. 1.2 in reverse order. In this figure
we assume that the reconstruction sample period T, is equal to the original sampling
period T, although this is not always the case. The discrete-time sequence x[n], depicted
in the upper panel of Fig. 1.5 is first converted into the continuous-time sequence of

Chapter 1. Working Between Continuous and Discrete Time 7

A X(ej‘”)
<= ATy (a)
—27 W | WT /2 4
2m — WTQ
Hyp(jQ) 2 Xs(59)
T
727r/T2 -w W/ I;W A onTy Ar /Ty
-Ww
L X, (jQ) Tp
ATy /T, (c)
>t | | — Q
! \\ —or /Ty -wiw 21/ Ty A7 /Ty

Figure 1.5: Reconstruction of a continuous-time function from its samples. Left side: the
time functions (a) x[n], (b) xs(¢), and (d) x,(¢). Right side: The corresponding Fourier
transforms in discrete and continuous time. The ideal lowpass filter H;p(jQ) is also
shown in panel (b) in red. In plotting, we assume that T, = T} in Fig. 1.2.

delta functions, x,(t), which is depicted in the central panel of Fig 1.5. As discussed in
conjunction with Eq. (1.8) through Eq. (1.11), X(jQ), the CTFT of x,(t), is identical to
X(e/®), the DTFT of x[n] except that frequencies are scaled according to the relationship
that w = QT,, which produces an infinite train of replications of the original frequency
response, as in the central panel of Fig. 1.5. The lowpass reconstruction filter is depicted
in red in the central panel of Fig. 1.5, and the product of X,(jCQ2) and H;p(jQ2) is the single-
mode spectrum X,(jQ) which is (ideally) equal to the original input spectrum X.(jQ2)
depicted in Fig. 1.2.

It is helpful to consider what is going on in the time domain to understand the nature of
the reconstruction of the continuous-time output x,(t) from the sequence of delta func-
tions x¢(f). The output in the time domain is (as usual) the convolution of the input with
the unit impulse response of the filter:

Xy (t) = x(t) * hpp(t) (1.14)
The unit impulse response of the filter is easily obtained directly:
1 (Y . sin (1ct/Ty)
]Qt — jQt _ 2
th J‘ HLP]Q) dQ = e jn/Tz Tze dQ —T(t/T2 (115)

This is a continuous-time sinc function with amplitude equal to 1 at t = 0 and regularly-
spaced zero crossings at t = nT,. Because the convolution of any function with a train
of impulses produces replication of the original function at the times of the impulses,
weighted by the impulse areas, we obtain

(o) (o)

(0 =it x) = hup(t)=) xlalete-nTs) =) ™R (L1

n=—co N=—o0

8 1.3. Reconstruction of continuous-time signals from their samples

Input
o =
T
Lo
o
—o
—o
—e
—o
———0o0
—-
—o
to
%3
—o
——0
—e
©
)
|

0 2 4 6 8 10 12 14 16 18 20

Sinc functions

18 20

I

0 2 4 6 8 10 12 14 16 18 20
t, seconds

Figure 1.6: Upper panel: a segment of a discrete-time signal. Center panel: representation
of that signal in continuous time by a linear combination of sinc functions. Lower panel:
the sum of the sinc functions as of t = 15 seconds.

In other words, the reconstructed continuous-time function x,(¢) can be represented as
the sum of an infinite train of sinc functions, delayed by intervals of T, and scaled ac-
cording to the corresponding value of x[n]. This is illustrated in Fig. 1.6, which uses the
convenient but unrealistic value of T, = 1 second. The upper panel of Fig. 1.6 depicts
a short segment of a discrete-time signal. The central panel shows its reconstruction as
a series of weighted and delayed sinc functions. Note that the reconstruction is exact at
the time of the original samples as the sinc function centered each sample point has an
amplitude of 1 while the other sinc functions are all zero. The values of the reconstructed
signal (lower panel) between the sample points are obtained by summing all the sinc
functions together. While there is an infinite number of sinc functions, they decay away
fairly rapidly. The lower two panels of Fig. 1.6 are computed only through 15 seconds. It
can be seen that the reconstruction of x,(t) appears to be accurate except for values of ¢
that are near to or greater than 15 seconds.

In practice, of course, the actual lowpass filter to reconstruct the continuous-time signal
would not be ideal for multiple reasons including the fact that all ideal filters are fun-
damentally unrealizable. Nevertheless, the reconstructed signal would still be an infinite
linear combination of the unit impulse response of the lowpass filter that is actually used.

Chapter 1. Working Between Continuous and Discrete Time 9

1.4 Introduction to discrete-time decimation and interpolation

It is frequently necessary or desirable to change the effective sampling rate of discrete-
time signals. We consider three standard ways of manipulating the effective sampling
frequency in discrete time:

* Decimation or downsampling the signal by an integer factor of M, which decreases
the effective sampling rate by a factor of M

* Interpolation or upsampling the signal by an integer factor L, which increases the
effective sampling rate by a factor of L

* A combination of interpolation and decimation which changes the effective sam-
pling rate of the signal by the rational factor of L/M.

There are multiple potential motivations for changing the sampling rate. For example,
the sampling rate may be needed to combine signals that had been recorded at different
different sampling rates, as would be necessary if audio from a CD recorded at the stan-
dard rate of 44.1 kHz were used as background music for a film, which uses 48 kHz as the
standard sampling rate. Multi-rate signal processing is useful for delaying a signal by a
fractional number of samples. For example, a delay of 1/4 sample can be accomplished by
upsampling a signal by a factor of 4, delaying by a single sample, and then downsampling
by a factor of 4. Finally, multi-rate signal processing techniques are frequently useful in
the design of filters that must have a very narrow passband (or stopband) with narrow
transition bands.

Figure 1.7 illustrates downsampling and upsampling for a short segment of a discrete-
time speech signal. The original signal is depicted in the upper panel, while the central
panel shows the signal after downsampling by a factor of 3, and the lower panel shows
the signal after upsampling by a factor of 2. The solid curve in red shows the original
continuous-time signal from which the discrete-time signal was derived. The left column
shows the three functions with the horizontal axes scaled to maintain the continuous-
time envelope unchanged, while the right column plots the three discrete-time samples
in a fashion that preserves the spacing between the samples. It can be seen that the deci-
mation and interpolation operations can be interpreted either as a decrease or increase of
the effective sampling rate of the discrete-time functions relative to the continuous-time
functions (as in the left column) or as an intrinsic compression or expansion in time of
the discrete-time functions (as in the right column).

In the following sections we describe and discuss the fundamental mathematics of discrete-
time decimation, interpolation, and change of sample rate by a rational factor. We will
find that the operations associated with decimation and interpolation are closely related
to ideal C/D and D/C conversion, respectively, that had been described in Secs. 1.2 and
1.3 above. We will discuss computationally-efficient ways of realizing these operations in
Chapter 2 below.

1.4.1 Decimation: reducing the sampling rate by an integer factor M

In continuous-time signal processing, Fourier transform properties relate compression in
time to expansion in frequency and vice-versa. Specifically, if

x(t) & X(jQ) (1.17)

10 1.4. Introduction to discrete-time decimation and interpolation

Original time function
0.8

0.8
06 Preserving envelope , 06 Preserving time scale
D
04} 04
02} 0.2
0 0
0 5 10 15 0 5 10 15
Decimation by M=3
08 \ 0.8
06| 1 0.6
D
04} 04
02} 0.2
0 0
0 1 2 3 4 5 : 0 5 10 15
Interpolation by L=2
0.8 T 0.8
06| 1 0.6
D
04} 04
02} 0.2
0 0
0 5 10 15 20 25 30 0 5 10 15

Figure 1.7: Comparison of an original discrete-time function (upper row), the function
after decimation by M = 3 (central row), and the function after interpolation by L = 2
(lower row). Left column: the spacing of the samples is scaled according to the change in
sample rate. Right column: the spacing of the samples is constant across all three sample
rates.

then

1_(.Q
x(at) & |a|X(]|a|) (1.18)
As we noted above, we can think of decimation as a process by which we compress in
the signal along the time axis. Nevertheless, the time-compression is not straightforward
because of the constraint that discrete-time signals are meaningful only for sample values
that are integer. For example, if we were downsampling by a factor of 2, each of the
odd samples of the original time function would disappear after decimation. In order
to represent the impact of the samples that do not “survive” the decimation process on
the frequency response, we must set those samples to zero explicitly in our mathematical
analysis of the processing. Consequently, we mathematically describe the decimation
process as in lower panel of the block diagrams in Fig. 1.8. The upper panel of this
figure shows the basic structure of a system that performs decimation or downsampling
by a factor of M. The input is a discrete-time function x[n], which we assume to be
a bandlimited time function such that its discrete-time-time Fourier transform X(e/®)
equals zero for W < |w| < . The output is the decimated discrete-time function x,[m]
which is equal to x[n] evaluated at times n = mM, where M is the downsampling ratio.
(We use the index m rather than # to call attention to the fact that the effective time base
changes after decimation.)

The mathematical representation of the decimation process is specified in more detail in

Chapter 1. Working Between Continuous and Discrete Time 11

x[n] xq[m| = xz[mM]
— * M —>

z[n] xp[n] xqlm] = z[mM]
Compress
(: :) in discrete time

TpM[n}: > dln—rM]

r=—00

Figure 1.8: Upper panel: block diagram of decimation by M. Lower panel: Specification
of the underlying signal processing.

the lower panel of Fig. 1.8. Specifically, the input is first multiplied by pys[#], an infinite
train of delta functions in discrete time of amplitude 1, which are separated by an interval
of M samples. The function x,[n] is the product of x[m] and py[n], and is a train of delta
functions of amplitude x[nM] which are separated in time by intervals of M samples,
with the values of x,[n] set equal to zero when 7 is not an integer multiple of M. This
sequence is then compressed in time so that x,;[m] = x[mM].

z[n] X(e7)
06| I I o A @
o L]] [0 S ANA
02 cee .o
o T T e T T T n | | B W
0 s 1 1 —2r -w W 2 4
pulnl'§ ? ? Py(e’¥)
. xS EEEAREEEEY
1 1 | 1 1 1 W
% 5 10 15n 72} 2r /M 2% 4‘7r
(0] . Xp(e’)
06 A/M (c)
RN AVAVAVAVAVAVAYAYAYA!
02 e P
o ‘ T L9 T ‘ n | LS 1 =W
0 05 1 15 2 25 3 85 4 45 5 —or WL WA 2 /M o on dr
2 /M - W
Tq [7101]6 i Xale?) 27 /M
ui A/M (d)
04
% 5 1 16" -+ WM w4 o e
o - WM

Figure 1.9: Representative time functions and their spectra in discrete-time decimation,
illustrated for M = 3. Left side: the time functions (a) x[n], (b) pp[n], (c) x,[n], and (d)
x4[m]. Right side: The corresponding discrete-time Fourier transforms.

Time-domain representations. It is helpful to be able to visualize these signals in both
time and frequency. The left side of Fig. 1.9 depicts, for an arbitrary time function and its
spectrum, the various discrete-time functions depicted in Fig. 1.8 for the downsampling
ratio M = 3. The corresponding Fourier transforms are shown on the right side of the

12 1.4. Introduction to discrete-time decimation and interpolation

figure. More specifically,
pmin] = Zé[n—rM] (1.19)
r=—c0

_ | x[n], n=rM
Xp[”] = x[n]pm([n] = { 0, otherwise

The functions x[n], py([n], and x,[n] are depicted in panels (a), (b), and (c), respectively
in the left column of Fig. 1.9. The function x,[n] consists of the samples of x[n] that will
survive the decimation process. The output of the decimation process, x;[m], consists of
these same nonzero samples, but the time axis is now compressed so that the nonzero
delta functions are now found at successive values of the new time index m.

(1.20)

Frequency-domain representations. Considering now the corresponding functions in
the frequency domain, we will assume that X(e/*’), the DTFT of x[n], is of arbitrary shape,
bandlimited such that X(e/¢) = 0 for W < |w| < 7, and with a maximum amplitude equal
to A, as depicted in Fig. 1.9. Like all DTFTs, X (e/®) is periodic with period 27.

It is easy to demonstrate by computing the inverse DTFT that Py;(e/®), the DTFT of py[n],
is also an infinite train of delta functions:

PM(ef“’):%Z i 5(w—2—”k) 2 Z Z (a)———Z r) (1.21)

k=—c0 r=—00]=—c0

Py(e/¢) is expressed in double-sum form to emphasize the fact that the DTFT is periodic
with period 27 and that there are M equally-spaced delta functions within each periodic
cycle, separated by w = 27t/M, and each with amplitude 27t/M. Because x,[n] = x[n]pp[n]
in the time domain, the corresponding DTFTs are

. 1)) 1 n . .
jwy— jw joy_— jo j(w—0)
Xp(e7?) 27zX(e) ® Pp(e/) e j X(e!)Py(e)do (1.22)

—TC

where the symbol ® indicates circular convolution. Because convolving X (e/®) with the
limited train of delta functions within a span of w = 27 for Py;(e/“) merely replicates and
shifts the spectrum M — 1 additional times, we obtain

00 M-1
; 1 2 2 1 . r
le) = X)o7 Y ofw-)=) xe @ #) .2

k=—c0
as shown in Row (c) of Fig. 1.9.

Avoiding aliasing distortion. In order for the downsampled discrete-time signal to be
ultimately be recovered without distortion, it is necessary that the replications of the
original spectrum in Fig. 1.9 not overlap one another. It can easily be seen that the
separation of the replications is related to the downsampling ratio of M while the width
of the replications is twice the signal bandwidth W. It is clear from Fig. 1.9 that overlap

will be avoided if 5
T WsWorw<Z (1.24)
M M

In other words, the sampling frequency must be at least 2M as great as the bandwidth
of the signal to avoid aliasing distortion. Most practical downsampling systems include

Chapter 1. Working Between Continuous and Discrete Time 13

a lowpass filter of gain 1 and a nominal cutoff frequency of /M to avoid distortion by
aliasing.

Changing the sampling rate. The final step in the decimation process is changing the
time scale of the discrete-time function so that the non-zero samples have successive in-
dices. Specifically, we define a new function and a new time axis x;[m] = x,[mM]. The
DTEFT of x4[m] can be computed directly:

(o) o0

X, (/) = Z xg[m]e10m = Z xp[mM]e_jw’m (1.25)

m=—oo Mm=—00
Letting | = mM or m = I/M produces

’

X, (el”') = i xp[1]e 1 () = i xy[1e 1) = xp(%) (1.26)

|=—c0 |=—c0

In other words, the output X,(e/®’) is identical to the DTFT xp(ejw), except that it is
stretched in frequency to be wider by a factor of M. We use the symbol w’ to represent the
frequency after downsampling to recognize the fact that the frequency scale has changed
because the time scale has changed. This function is depicted in the right column of the
bottom panel of Fig. 1.9. While you may be concerned that m = [/M is not integer for
some values of m, these are exactly the values of m for which the function x,[m] is equal
to zero.

1.4.2 Interpolation: increasing the sampling rate by an integer factor L

x[n] x;[m] = x[m/L] for m =rL
x[n] e[m] zi[m]
—> Expand —»| Lowpass filter —»

in discrete time

Insert L — 1 zeros Gain L, Cutoff /L

Figure 1.10: Upper panel: block diagram of interpolation by L. Lower panel: Specification
of the underlying signal processing.

Just as decimation or downsampling is similar in some ways to C/D conversion, discrete-
time interpolation or upsampling has some similarities to D/C conversion, which is at
the end of the day itself an interpolation process in continuous time. Interpolation by
a factor of L includes two major steps: (1) “expanding” the discrete-time function by
inserting L — 1 samples of amplitude zero between each successive sample of the input

14 1.4. Introduction to discrete-time decimation and interpolation

and (2) lowpass filtering the resulting signal using an ideal filter with gain L and cutoff
frequency /L.

Expansion in time. Figure 1.10 depicts the major functions involved with interpolation
in time and frequency. Using x[n] to designate the input, we will represent the expanded
time function as

x[m] :{ x[m/L], m/L integer (1.27)

0, otherwise

to produce the interpolated sequence x;[m] as the filter output. As stated above, we will
use the variable m rather than n for the time index as a reminder that the time scale has
changed.

The discrete-time sequence x,[m] that represents the expanded signal can also be written

as
00

x,[m] = Z x[1)8[m —1IL] (1.28)
|=—c0
This sequence of weighted delta functions is passed through an ideal lowpass filter with

transfer function
L, |w|<m/L

0, M/L<|w|<™ (1.29)

Hyp(e®) = {
The gain factor of L in Hyp(e/”) ensures that if an original signal is upsampled and then
downsampled by the same ratio, the original signal will be recovered without distortion
and with the same amplitude. There is no need to be concerned with aliasing distortion
in the interpolation process because no information is lost.

@

10/ aln] X()
5 f 4 @
LT, gl
0 s Tn | | | v
0 5 10 15 -W w 2r — W 2
ofzelml 9 .)
A Hpp(e*) ¢ L o
<= A
L LU L L = A AIRAAAAAS
0 10 20 30 40 50 60 —+— o . f f f f «
—T -W/L v \m /L by 2T
10@,,[7,1] , /L
' Xi(e) 2% - W/L
I a 3 LA ()
T iy = /N
. TT?M" TT‘PMQTT TTTT mot | 1 W’
0 10 20 30 40 50 60 _ JT -W/L'W/L Lr QLr

Figure 1.11: Functions involved in process of interpolation by a factor of L = 4 in the time
and frequency domains. Left side: the time functions (a) x[n], (b) x,[m], and (c) x,[m].
Right side: The corresponding Fourier transforms in discrete time. The ideal lowpass
filter Hyp(e/®) is also shown in panel (b) in red.

The upsampling process is illustrated in the time and frequency domains in Fig. 1.11,
which can be seen to retrace most of the functions shown in Fig. 1.9 in reverse order. The
discrete-time sequence x[n], depicted in the upper panel of Fig. 1.11 is first converted into

Chapter 1. Working Between Continuous and Discrete Time 15

the expanded sequence of delta functions x.[m], which is depicted in the central panel of
Fig 1.9, as describe above. It is easy to demonstrate that the X,(e/*"), the DTFT of x,[m] is
identical to X(e/¢), the DTFT of x[m] but contracted in frequency by a factor of L:

(o) (o)

X (jo') = Z x,[m]e @™ = Z xy[m/L]e7i®™ (1.30)

m=—o0 m=—oco,m=rL

Letting I = m/L or m = L, we obtain

X (jo') = Z x[m/L]e @™ = Z x[[e 1@ = Z x[1]e 1@ D= X (1) (1.31)
m=—oco,m=rL |=—00 |=—00

Lowpass smoothing. The output of the decimation process is obtained by passing the
expanded signal x,[m] through the lowpass filter. In the time domain we convolve x,[m]
with the unit sample response of the filter:

xi[m] = xe[m]+hyp[m] (1.32)
The unit sample response of the filter is easily obtained directly:

sin (7tm/L)

tm/L (1.33)

1 TC . . 1 /L 0
th[m]:—j HLp(e]“’)e]w"dw:—f Le/>*™dQ =L
210 J 2 -7/L
This is a discrete-time sinc function with amplitude equal to L at m = 0 and regularly-
spaced zero crossings at m = rL. Because the convolution of any function with a train
of impulses produces replication of the original function at the times of the impulses,
weighted by the impulse areas, we obtain

sin(mt(m—rL)/L)
ni(m—rL)/L

xilm] = hyplm]«xelm] = huplm]) x[rja(m=rL)=1) x[r]

r=—00 r=—00

(1.34)

In other words, the interpolated discrete-time function x;[m] can be represented as the
sum of an infinite train of sinc functions in discrete time, delayed by intervals of L and
scaled according to the corresponding value of x[m]. The interpolation process works
exactly the same way as the reconstruction of continuous-time functions in D/C conver-
sion, as illustrated in Fig. 1.11, except that the resulting function x;[m] is discrete in time
rather than continuous in time.

As in C/D conversion, the actual lowpass filter to reconstruct the interpolated signal
would not be ideal. Nevertheless, the interpolated signal would still be an infinite lin-
ear combination of delayed and scaled unit sample response of the lowpass filter that is
actually used.

In the frequency domain, the the lowpass filter limits the frequencies passed to |w’| < 1t/L,
as depicted in red in the central panel of Fig. 1.11. As depicted in the lower panel of Fig.
1.11, the output frequency response is

X(el®), || < /L

(o) =
Xi(e™™) {o, /L < || <7 (1.35)

16 1.4. Introduction to discrete-time decimation and interpolation

z[n] Expand z;[n] Contract i ylr]
—»| Expand »| Lowpass filter »| Lowpass filter > -ontractin |
in discrete time discrete time
Insert L — 1 zeros Gain L, Cutoff /L Gain 1, Cutoff 7/M Remove zeros between samples
Ws wl = Lws Wl |: [iws Wl = Lw, wl = (L/M)ws
Upsample by L Downsample by M
ziln] p[m] . ylr]
—> FXP and. » Lowpass filter > (.',‘ontract.m —>
in discrete time discrete time ”
We wy = (L/M)ws

Insert L — 1 zeros Gain L, Cutoff Min(m/M,7/L) Remove zeros between samples

Figure 1.12: Block diagram of a system that changes the sampling rate by the rational
fraction L/M. Upper panel: direct implementation by cascading interpolation by L with
decimation by M. Lower panel: integrated system in which the cascade of two lowpass
filters is replaced by a single lowpass filter.

1.4.3 Changing the sampling rate by a rational factor L/M

Changing the effective sampling rate by a rational factor of L/M can be thought of as first
upsampling by L and then downsampling by M. For example, to change the sample rate
of a speech signal from 20 kHz to 16 kHz, we would first upsample by L = 4 to 80 kHz
and then downsample by M =5 to 16 kHz. Note that 80 is the least common multiple of
the upsampling and downsampling ratios L and M.

Figure 1.12 depicts two implementations of a system that changes the effective sampling
rate by the fraction L/M. The upper panel shows the direct implementation of such a
system, consisting of the cascade of upsampling by L followed by decimation by a factor
of M. The lowpass antialiasing filter that is part of most practical decimation systems is
included explicitly in the figure. In addition to the change in sampling rate, the ampli-
tude of the input will be scaled by the factor of L/M by the processing. As discussed in
the section the ideal antialiasing filter prior to decimation has a gain of 1 and a cutoff
frequency of w/M. The lowpass filter that performs the interpolation in the upsampling
module has a gain of L and a cutoff frequency of /L. The initial block in the upper panel
simply inserts L — 1 zeros between each successive sample of the input. The final block
contracts its input in time by a factor of M, preserving only those samples for which the
input sample index is an integer multiple of M.

The lower panel of Fig. 1.12 depicts a more efficient implementation that replaces the
cascade of the two ideal lowpass filters. It will have a gain of L and a cutoff frequency
that is the minimum of 7t/L and n/M.

In summary, we have reviewed in this chapter the mathematics that are used to describe
the processes of ideal conversion of signals from continuous time to discrete time and
vice versa, known as ideal C/D and D/C conversion. We also discussed the basic math-
ematics that describe discrete-time change in sampling rate, including interpolation (or
upsampling), decimation (or downsampling), and change of sampling rate by a rational
fraction. We noted that decimation is similar to C/D conversion in a number of respects
and that interpolation is similar to D/C conversion.

Chapter 1. Working Between Continuous and Discrete Time 17

In the following chapter we will discuss techniques used to make the upsampling and
downsampling operations much more computationally efficient.

18

1.4. Introduction to discrete-time decimation and interpolation

2. Efficient Decimation and Interpolation

251k Interchanging elements to improve efficiencies 19

2.2 Interpolation and decimation using polyphase
filters 24

223 Efficient change of sampling rate by L/M 31

While the core decimation and interpolation procedures are easy to implement, the filters
associated with them are not. This chapter discusses efficient ways of computing the algo-
rithms that change the sampling rate of discrete-time signals.

The approaches introduced in the last chapter for changing the sampling rate are only
useful insofar as they can be computed efficiently. This chapter discusses three general
methods by which the computational load associated with upsampling, downsampling,
and change of sampling rate can be very substantially reduced. We begin with a discus-
sion of efficiencies enabled by simply interchanging the order of upsampling or down-
sampling with other elements of the filtering operations. We then introduce the topic
of polyphase filtering, which enables us to combine these efficiencies with the use of
fast Fourier transforms. Finally we discuss the special case of the implementation of al-
gorithms that accomplish change in sampling rate by a rational fraction, which has an
efficient solution based on filters with time-varying coefficients.!

2.1 Interchanging elements to improve efficiencies

The most straightforward approach to computational efficiency is to perform as much
computation as possible on the low-frequency side of the system. We discuss how this
can be done in this section.

2.1.1 Signal flowgraph notation

As you most likely already know, signal flowgraphs are an efficient graphical represen-
tation that enable us to easily design, interpret, and understand systems used in digital
signal processing.

I This material is based on the corresponding discussions in Secs. 3.2 and 3.3. in Lim and Oppenheim
(1988).

19

20 2.1. Interchanging elements to improve efficiencies

z1[n] + x2n]

Addition

azn] x[n] 2:1 x[n —1]

(o]
\ A
(o]

Multiplication Unit delay

Figure 2.1: Signal flowgraph notation for the basic signal processing operations of addi-
tion, multiplication, and unit delay.

As an example, consider the difference equation that implements a generic causal LSI
system:

N M
ylnl=) awln-kl+) bia{n-1] (2.1)
k=1 1=0
It can easily be shown that the corresponding transfer function of the filter is

Y(z) Yiobiz! B(z)

M) =) " T2y et~ AG)

z[n) bo y[n]
o > > > »—0
A vzl A
a b1
A v 2! A
as b2
A v 2! A
as b3
vzl 4
ba

Figure 2.2: Flowgraph of a generic IIR filter with three poles and four zeros.

As is well known, the coefficients of the denominator polynomial A(z) determine the pole
locations while the coefficients of the numerator polynomial B(z) determine the locations
of the zeros of H(z). We note that this very ubiquitous signal processing component is
realized with only three distinct operations: addition, multiplication by a constant, and
single-sample delay. Figure 2.1 shows the representation of these three operations in
signal flowgraph form. As is discussed in basic DSP courses, there are multiple structures
that implement Eq. (2.1) of which the most straightforward is the direct form, which is

Chapter 2. Efficient Decimation and Interpolation 21

>

1([)71] h=[0] TLp [n] * M xzq[m] = xpp[mM]

vy 2 A

LB

Figure 2.3: Realization of a simple decimator without any optimization for computational
efficiency.

illustrated in Fig. 2.2 for M = 4 and N = 3. Finite-impulse response (FIR) filters are an
important subclass of filters which have a unit sample response that lasts for only a finite
number of samples, as the name implies. These filters are realized as in Eq. (2.1) and
Fig. 2.2 but with all of the coefficients a; set equal to zero. Note that FIR filters have
feedforward sections but no feedback.

2.1.2 Efficient downsampling: the direct method

Now let us consider a simple decimation or downsampling system, which consists of an
antialiasing filter followed by a device that compresses the time axis by a factor of M,
discarding all samples except for n = rM. Specifically, x;[m] = x;p[mM], as discussed
in Sec. 1.4.1. Figure 2.3 illustrates such a system, using an FIR filter with an arbitrary
number of zeros, M,.?

It is straightforward to verify that the downsampling system in Fig. 2.3 incurs M, +1
multiplications and M, additions for each sample that is input to the system. But it is
equally easy to recognize that this type of organization is very wasteful, as the decimator
immediately discards M —1 out of every M samples that appear at the output of the filter.
To the extent possible, what we would really like to do is perform only the multiplications
and additions that will actually remain after the downsampling operation.

Another way of thinking about this optimization is that we would like to perform as
many multiplications and additions on the side of the low-frequency side of the decima-
tion operation, which would imply interchanging the order of computation of the various
processing elements depicted in Fig. 2.3 to do as much of the computation as possible
after the downsampling. Figure 2.4 compares inputs and outputs for the three major
signal processing operations depicted in Fig. 2.1. In this figure the input sequence is
assumed to be x[n] = n+ 1 and the second input to the addition operation is assumed to
be x,[n] = 10(n+ 1). The inputs and outputs for n = 0,1,2 are depicted explicitly in the

2We adopt in this section only the notational convention of using the variable M, to designate the number
of zeros in the FIR filter, as opposed to the customary M. This is to avoid confusion with the use of M to
indicate the downsampling ratio.

22 2.1. Interchanging elements to improve efficiencies

Downsample later Downsample first
[1,2,3,...] Addition [1,2,3,...]
el E
l (11,44,77,..] (11,44,77,..]
3 —»—o0
[10, 20, 30, . .] (10,20, 30, ..]
—} 3
Multiplication
1,2,3,...] 5 [5,20,35,...] 1,2,3,...] 5 [5,20,35,...]
o—p— l 3 ——>»—o o—»| l 3 —>»—o0
Unit delay
[1,2,3,...] [0,3,6,...] [1,2,3,...] [~2,1,4,..]
27t 27t

Figure 2.4: Comparison of inputs and outputs of the three signal processing operations
when they are followed by or preceded by downsampling.

figure. It can be easily seen that interchanging the downsampling operation with addi-
tion or multiplication has no effect on the output, but interchanging the unit delay with
the downsampling does change the output sequence. Hence, we can freely interchange
the downsampling operation with addition and multiplication but not with delay. Figure

:r,([:n] N ‘ M hiO] xd[zl] =oz[mM]
v ! ¢M hE] A
vy 27! ¢M hEQ] A

Figure 2.5: Realization of an efficient decimator by interchanging system elements.

2.5 depicts a more efficient realization of the decimation operation obtained by perform-
ing the decimation before the multiplication and addition operations. It can be seen that
while the original decimator structure in Fig. 2.3 incurs approximately M, + 1 multipli-
cations and M, additions per input point, the reconfigured structure shown in Fig. 2.5
reduces the number of multiplications and additions per input point by a factor of M by
the simple artifice of re-ordering the components of the decimator.

2.1.3 Efficient upsampling using transposed filter forms.

Figure 2.6 is a signal flowgraph of a standard interpolation system. As we discussed in
Sec. 1.4.2, the initial box is a direct interpolator, which inserts L — 1 samples of ampli-
tude zero between each successive input point. This is followed by an ideal lowpass filter,
which is shown as a standard direct-form implementation of an arbitrary FIR filter in
Fig. 2.6. Unfortunately, there is no opportunity to interchange the upsampling operation

Chapter 2. Efficient Decimation and Interpolation 23

z[n] ze[m] A[O] wi[m]
—> ?L > > >
vt 4
h[1]
vy 2! A
h[2]
vy 2! A

LG

Figure 2.6: A simple interpolation system using the direct-form implementation of the
FIR lowpass filter.

with any other operation to place the multiplications and additions on the low-frequency
side because in virtually all branches the upsampling operation would need to be in-
terchanged with a delay block before reaching the multiplications and additions, which
would change the output.

This problem can be overcome by using the transposed-form implementation of the low-
pass filter. Specifically, the network transposition theorem by S. J. Mason states that if one
were to reverse the direction of flow of the arrows in the flowgraph with a single input
and a single output, and interchange the input and output, the output of the network
would remain the same for any input.

z[n) h[0] yln] yn] h[0] z[n] x[n] h[0] y[n)
O > > > O O < << < O O > > > O
vz ! 4 127! Y v
B[] B B[]
a b c
@ vy 4) A) Y WP
hi2] h2] h2]
v o4 A Y

I_h[z\fu AL AL

Figure 2.7: Implementation of transposition for a simple FIR network. (a) The original
direct-form implementation of the filter. (b) The network after reversing the directions of
signal flow and interchanging input and output. (c) The network of panel (b) redrawn so
that the signals flow from left to right.

Figure 2.7 illustrates these operations for a simple direct-form FIR filter. Panel (a) shows

24 2.2. Interpolation and decimation using polyphase filters

the original direct-form implementation of the FIR filter. Panel (b) shows the effect of
interchanging input and output and reversing the direction of the signal flow. Panel (c) is
simply Panel (b) redrawn so that the signal flow is left to right, producing the transposed-
form realization that is very similar to the original direct form except that the delays
are now on the output side of the structure. It is easily verified that the outputs of the
networks in panels (a) and (c) are identical for any input.

z[n h[0]
<[> | > > ?L
v A,

hE] fL

\/
\/

\/

\

\/

hE] fL

|_:hiMz]

Figure 2.8: Realization of an efficient interpolator by interchanging system elements.

Figure 2.8 shows the signal flowgraph of an efficient implementation of the interpolation
operation, developed by interchanging the upsampling operation with the multiplica-
tions, reducing the number of multiplications by a factor of L by moving them over to the
low sampling-rate side, although the number of additions remains unchanged.

By comparing Fig. 2.8 with Fig. 2.5 (or by comparing 2.6 with Fig 2.3), it can be seen that
the interpolation and decimation operations can be thought of as network transposes of
each other, provided that the basic downsampling operation is converted into an upsam-
pling operation, and vise versa, in performing the network transpositions. We will make
use of this property in the section below in our discussion of polyphase implementations.

2.2 Interpolation and decimation using polyphase filters

Consider the block diagram in Fig. 2.9, which is a generic specification of a system that
increases the sample rate by a factor of L, as discussed in Chapter 1. The input x[n] can

Chapter 2. Efficient Decimation and Interpolation 25

LU L e 0
F LFs LF

Figure 2.9: Block diagram of a system that interpolates by a factor of L.

be any signal of any bandwidth. As before, the expanded version of the signal w[m] is
defined as follows:
wim] :{ x[m/L], m/L integer (23)

0, otherwise

Note that the effective frequency of the output time index m is L times that of the input
time index n. The filter h[m] is ideally a lowpass filter with cutoff frequency 7/L and gain
L. The input and output of the filter are related (as usual) by the convolution sum

y[m] = Z h[m - kw[k] = Z h[m — k]x[k/L] (2.4)
k=—c0 k=—c0, k=rL

Let us define r = k/L or k = rL. We can then rewrite the convolution as

(o)

ylml=) hlm—rL]x[r] (2.5)
r=—00
4 ‘ ®
20 Y
O 1 T 1 1 1
-1 -0.5 0 0.5 1 15 2 2.5 3
n
4 — ‘ px
i~
IE'ZO T
0 0—0—© T 0—O0—°© o0—©0—© 0—O0—9©
-4 -2 0 2 4 6 8 10 12
k
1 \
i~
E 051 T N
<
06—6—6—o6 ¥ ? T T T o—o0—0—o
-4 -2 0 2 4 6 8 10 12
k

Figure 2.10: Examples of the functions x[n], w[k], and h[m — k] for a value of m = 7. The
filter h[m] is assumed to be FIR and of length N = 8.

At this point it is helpful to get an idea of what these functions look like on the ground.
Figure 2.10 above plots representative examples of the functions x[n], w[k], and h[m — k]

26 2.2. Interpolation and decimation using polyphase filters

for m = 7 using a simple FIR lowpass filter with length N = 8 and a unit sample response
equal to

(2.6)

] (3/4)", 0<n<7
h[n] = { 0, otherwise

Note that for m = 7, the only elements involved in the computation of the result are h[3]
(which multiplies x[1]) and h[7] (which multiplies x[0]). The previous output sample,
y[6]. would have been obtained by multiplying two other filter coefficients h[2] and h[6]
by the same two values of x[n], x[1] and x[7], respectively. We will elaborate below on
this observation that successive output points are obtained by multiplying the same input
points by different filter coefficients.

It is convenient for us to redefine r (without changing anything) as

m
r=|—|-n 2.7
5 @7
where 7 is now a new auxiliary variable. Recall that the floor operator |m/L] denotes the
largest integer that is less than or equal to m/L. (Note that this # is not the time index for
the input. The duplication of notation is unfortunate, but is used to maintain consistency
with the notation of the Lim and Oppenheim chapter.)

Note that
m- HL = ((m)y (2.8)

where ((m)); represents m modulo L. Substituting Eq. (2.7) into Eq. (2.5) we obtain

D 3 A T e

Equations (2.4), (2.5), and (2.9) reflect the fact that with the ideal interpolator, only 1/L of
the filter coefficients are involved in the computation of any given output sample. Gen-
eralizing the example shown in Fig. 2.10, Table 2.1 below summarizes which values of
x[n] and h[m] are involved in the computation of each output sample y[m] for situations
in which the filter h[n] is assumed to be FIR with length N = 8.

Note that the coefficients of h[m] used to calculate the output point y[m] rotate cyclically
with increasing m with period L, while the coefficients of x[n] are fixed for L successive
output points. For more realistic filters with a larger value of N, N/L coefficients will be
involved in the calculation of a given output point y[m], but they will still rotate cyclically
with period L. This phenomenon can be interpreted in two different ways, as discussed
below.

2.2.1 Interpolation using polyphase filters

Consider a set of filters p;[n] that are obtained from the lowpass filter h[n] in Eq. (2.9),
advancing the samples in time, and then decimating them by a factor of L. Specifically,
we define the polyphase filters p;[n] to be

pin]=h[nL+1]for0<I<L-1 (2.10)

Chapter 2. Efficient Decimation and Interpolation 27

m x[n] h[m]
0 h[0], h[4]
1 | x[0],x[~1] | K[1],K[5]
h[2], h[6]
h[3],h[7]
]

x[1],x[0] | h[1],K[5]

x| O G W N

x[2],x[1] | h[0O], h[4]

Table 2.1: Intermediate values in upsampling.

Fig. 2.11 provides an example for how polyphase filters are derived for the simple case
of N =9 and L = 3. The upper graph represents the original unit sample response h[n],
which is designed to approximate an ideal lowpass filter with cutoff frequency 7t/L. The
lower three graphs in the left panel depict the three polyphase filters that are derived
from h[n], p;[n] for 0 <1 < L—1, with the correspondence between the samples of h[n] and
pi[n] indicated by the colors red, blue, and green, respectively. The efficient interpola-
tion is accomplished by inputing the low-sample-rate input x[#n] to all L polyphase filters
simultaneously, upsampling the outputs, then delaying the outputs successively by one
sample, and finally adding the resulting signals to produce the output y[m] defined by
Eq. (2.9). This structure is illustrated in the left panel of Fig. 2.12 below.

An alternative interpretation of polyphase interpolation is depicted in the right panel.
Here the upsampled output y[m] is obtained from the outputs y;[m] of the successive
polyphase filters using a switch (sometimes called a commutator) that rotates cyclically
with period L. After L outputs are obtained, the input x[n] is updated by one sample.
In either implementation of polyphase interpolation, there are L times as many output
samples as input samples. Each output sample is obtained from the output of a different
polyphase filter in succession, and after we get to the output of p;_;[n] we return to the
output of py[n] but with a new input sample.

Note that this structure is efficient using either implementation because the filter compu-
tations are performed at the low sample rate. In fact, the polyphase approach provides
the same reduction of computation that was obtained using the direct approach that in-
terchanges the processing element, as described in Sec. 2.1. Nevertheless, the polyphase
implementations also enables further efficiencies. Because the filter structure itself re-
mains intact using the polyphase implementations, the convolutions can be implemented
using Fast Fourier transforms combined with the overlap-add or overlap-save algorithm.

28 2.2. Interpolation and decimation using polyphase filters

Polyphase impulse rt esponses Angles of polyphase filters

!

5 6 7 8

o
o

0 1 2 3

9 o5l Slope = —2/3

ZP(e?) /7
Il
|

N O

S N0 3 - —9 3 A

-1.5

‘ ‘ ‘ ‘
25 5 75 1
n w/m

o
-
N G
o

Figure 2.11: Left panel: Development of polyphase filters p;[n] by decimating an original
filter h[n] illustrated for L = 3 and N = 9. Right panel: phase responses for the three
polyphase filters shown in the left panel. Magnitudes are equal to 1 for all w.

x[nj ylm] x{n]
o > o fL > o o »| gm0
AT
| pun il fL > | pinl
AT
> palnl il > fL » | palnl
~1
A*
\ \
T 7! “\\
Lyl prgm 2 fL - Lyl ppam |2
F Fl=LF, F F' = LF,

Figure 2.12: Left panel: Block diagram of interpolation by a factor of L using polyphase
filters. Right panel: alternate implementation using a rotary switch.

It is worthwhile to consider the frequency responses of the individual polyphase filters.
As described in Eq. (2.10), the polyphase filters are derived from the prototype filter by
advancing the sample response of h[n] successively for each value of I and then decimat-
ing the resulting response by L. The prototype filter is assumed to be an ideal lowpass
filter with magnitude of the form

. L, |w|<n/L
H(el®) = (2.11)
0, W/L<|w|<m

Decimating the sample response by L expands the frequency response by a factor of L,

Chapter 2. Efficient Decimation and Interpolation 29

Discrete-Time

Sample & Hold Hm” ig((M))L [0]
z[n] Uz y[m]
2 ly m g(("”))L[l] 4
el
1L =X
1y . i g2 |
e G
1L "X
21y
-y . 9(m)) (@ — 1]
Lo T
1L g%,

Figure 2.13: Block diagram of interpolation by a factor of L using filters with time-varying
coefficients.

which causes |P(e/®)| to be allpass with gain 1 for all frequencies. The phase of the
polyphase filters is different for each filter. Let us assume that the original prototype
lowpass filter h[n] is implemented as an FIR linear-phase lowpass filter of length N.
This means that its unit sample response will be symmetric about the sample point
n=(N —1)/2 (which equals 4 in Fig. 2.11), causing the phase response to be

/P(ef®) = IR (2.12)

where [represents the index of the polyphase filter for 0 </ <L-1, N is the length of the
FIR filter, and L is the upsampling ratio, as before.

In other words, the decimated filters p;[n] will each have different linear phase shifts,
which is of course why the filters are collectively referred to as “polyphase filters.” The
right panel of Fig. 2.11 shows the phase responses of the polyphase filters for N = 9 and
L=3.

2.2.2 Implementation of interpolation using a filter with time-varying coeffi-
cients

We can rewrite Eq. 2.9 as

ylm] = i gm[n]xn%J —n] (2.13)

&mln] = h[nL+((m)).] (2.14)

where

Note again that the coefficients g,,[n] vary cyclically with period L. Equations (2.13) and
(2.14) suggest that the convolution of x[n] with h[n] to produce the upsampled y[m] can
be thought of as a convolution of the flipped and shifted version of x[n] with a filter that

30 2.2. Interpolation and decimation using polyphase filters

has time-varying coefficients, with the pattern of coefficients repeating after L successive
samples of y[m] are output. The input function x[n] is input at the low sampling rate F;
while the output y[m] emerges at the higher sampling rate, F, = LF,. The alternate form
with time-varying coefficients is depicted in Fig. 2.13 below.

:[nl W > xgln] iy > y[m]o . xgln] poli] > yim] o
Ty A \ A
e R pinl |y
Ty A A
> W - o pn] - poln] >
Ty A . A
L» lM NG »——T OLI["I Pagiln] J
F, F|=F,/M F, Fl=F,/M

Figure 2.14: Left panel: Block diagram of decimation by a factor of M using polyphase
filters. Right panel: alternate implementation using a rotary switch.

Note that in Fig. 2.13, the system samples the values of x[n] and holds them, updating
the samples after L successive values of the output y[m] are generated. We assume that
the length of h[n], N, is an integer multiple of the upsampling ratio L, and specifically
N = QL or Q = N/L. In this rendering, the number of rows in the block diagram is equal
to Q, which is also the length of the polyphase filters. In fact, for each value of the output
time index m, the vertical column of coefficients g, is identical to the coefficients of
the polyphase filter p;[n] that would be used to produce the value of y[m] in question.
After L successive output values, the samples of x[n] at the left shift downward, and a

new value of x[n] is input.

2.2.3 Decimation using polyphase filtering

In our discussions about polyphase implementations we have focussed on interpolation
because the mathematics are more intuitive. Nevertheless, polyphase forms for decima-
tors exist as well, using both the original polyphase filters themselves and the implemen-
tation using a single filter with time-varying coefficients.

The easiest way to develop the polyphase filter form for decimation is through the
use of the network transposition theorems. Specifically, we noted in Sec. 2.1.3 that the
transpose of a signal-flow network is obtained by reversing the directions of the arrows
and interchanging input and output. And if in addition we reverse the direction of the
downsampling and upsampling arrows in decimation and interpolation, the transpose of
interpolation becomes decimation and vice versa. Fig. 2.14 depicts the signal flow-graph
structure of the polyphase decimator, both in the original form and in the modified form
using a rotary switch. In the latter case, the rotary switch operates at the input sampling

Chapter 2. Efficient Decimation and Interpolation 31

frequency and applies each input sample to the inputs of each of the polyphase filters in
succession. A single output is generated from each of M successive inputs, causing the
output sampling frequency to be 1/M times the input sampling frequency.

2.3 Efficient change of sampling rate by L/M

z[n] “_ w[’i hik] v[k] *M y[m] = v[mM]
F, LF, LF, (L/M)F;

Figure 2.15: Block diagram of a system that interpolates by L and decimates by M.

A system that changes the sampling rate by the ratio L/M is illustrated in Fig. 2.15
above. In comparing this figure to that of interpolation by L (Fig. 2.9), we note that the
output of the interpolator is now replaced by the function v[k] and that y[m] = v[mM].
In other words, the output for a system that changes the sampling rate by the ratio L/M
is identical to that of the output of an interpolator by a factor of L except that the time
argument m in the block diagram for the interpolator replaced by mM. This implies that
for the case of a rational change of sampling rate, Eqs. (2.13) and (2.14) can be rewritten
as

sl =Y gulalx|| %] -] (2.15)
where
gmln] = h[nL+((mM))[] (2.16)
ylm] | «[[| 4] | sul0]
mo| || (@2m);
0 0 0
1 0 2
2 1 1
3 2 0
4 2 2
5 3 1
6 4 0

Table 2.2: Timing relationships between y[m] and x[n] for M =2 and L = 3.

To get some insight about the meaning of the arguments in Eqgs. (2.15) and (2.16) as they
vary in time, let us consider the very simple case of M = 2 and L = 3. Table 2.2 describes
how the key arguments in Eqs. (2.15) and (2.16) vary with changes in m. By comparing

32 2.3. Efficient change of sampling rate by L/M

1
.
£ o5l
<0
0
0 1 2 3 4 5 6
m
1
.
S
-;.0.5
0
0 1 2 3 4

Figure 2.16: Comparison of two signals with a sampling-rate ratio of 3/2.

the entries of Table 2.2 with the arrival times of the samples of x[n] and y[m] in Fig. 2.16,
it can be seen that the argument |mM/L] in Eq. (2.15) denotes the sample of x[n] that
arrived most recently for each value of y[m]. The coefficients for g, rotate cyclically,
as before.

This in turn implies that the efficient structure for the change of sampling rate by the
ratio L/M is only slightly different from the structure in Fig. 2.13 for interpolation by L,
as depicted in Fig. 2.17 below. The only change from the interpolator system in Fig. 2.13
is that the input is now sampled at the new input rate, which varies asynchronously with
the output rate. The multiplication by the coefficients g,,[n] is as before.

Discrete-Time

Sample & Hold mM 9d((m))L [0]

2[n) ~_ ! HT” ! ylm]
o—> ML =<>§—'_>
E M | gy 1] 4
~— -] s
M/L -
1y) “LMJ) 2} i g2 |
||

w® —
21y
Z—l .) m))L [Q - 1]
v . HIILIJ/V[J Q- 1)} gi()

Figure 2.17: Block diagram of an efficient system that upsamples by L and downsamples
by M.

Chapter 2. Efficient Decimation and Interpolation 33

In summary, we have discussed three ways of decreasing the computation associated with
decimation and interpolation, typically by factors on the order of M or L. The direct
interchange-based approach is especially useful when non-standard filter implementa-
tions (such as the linear phase form) are used. The polyphase implementation is espe-
cially valuable because it enables the use of fast Fourier transform techniques in per-
forming the actual filtering. The method involving time-varying coefficients is especially
useful in implementing changes of sampling rate by the rational factor L/M.

34

2.3. Efficient change of sampling rate by L/M

3. Short-Time Fourier Transforms

Sk Introduction 35
3.2 Computing the short-time Fourier transform 35

33 Alternate interpretations of the STFT operation 38

3.4 Downsampling the STFT 42
3.5 Short-time Fourier synthesis 43
3.6 Sampling in time and frequency 46
B8, Applications of short-time Fourier analysis 48

Traditional Fourier transforms describe the frequency components in a signal averaged
over all time. The most important and informative aspects of signals like speech and
music, however, is how these frequency components evolve over time. In this chapter we
discuss short-time Fourier transforms, which enable us to characterize signals with time-
varying frequency components.

3.1 Introduction

While frequency-domain representations such as the DTFT and the DFT are useful, they
both are obtained by summing the time function x[n] from —co to co. This means that
the DTFT and DFT describe frequency components in the signal averaged over all time.
Interesting signals like music and speech are characterized the ways in which frequency
components change over time. (These components could represent objects such as the
phonemes that constitute a spoken word or the individual notes that constitute a musical
composition.) These observations motivated the development of the short-time Fourier
transform (STFT).!

3.2 Computing the short-time Fourier transform

The STFT considers only a short-duration segment of a longer signal and computes its
Fourier transform. Typically this is accomplished by multiplying a longer time function
x[n] by a window function w(n] that is brief in duration. Two commonly-used finite-
duration windows are the rectangular window, which essentially extracts only the desired
short sequence without further modification, and the Hamming window, which applies a
taper to the ends to improve the representation in the frequency domain. If the continu-

I'Most of these discussions follow the treatment of the material in the books on speech signal processing
by Rabiner and Schafer (1978, 2010).

35

36 3.2. Computing the short-time Fourier transform

ous frequency variable w is used (as in the DTFT), the STFT can be described as

X[n,w) = i wln —m]x[m]e @™ (3.1)

m=—-0o0

In principle, the window could be either finite or infinite in duration, and in the latter
case exponential windows are popular. The delimiters in X[#, w) are unconventional, of
course, and this usage is intended to highlight the fact that the frame index n is discrete
while the frequency variable w is continuous.

In practice, it is common to evaluate the STFT at only a finite set of equally-spaced points
along the frequency axis, just as the DFT is frequently used instead of the DTFT in con-
ventional applications of digital signal processing. We will use the variable N to spec-
ify the number of discrete frequency channels used in the STFT, and the variable N,
to specify the length of the window function w[n] when it is finite in duration. Using
these notational conventions, the frequencies over which the STFT is evaluated become
wy = 21k/N. With a finite-duration window with nonzero values of n from 0 to N, — 1,
the STFT equation becomes

n n
X[n, k] = Z wln —m]x[m]e ™ = Z w[n — m]x[m)e I 2mk/N (3.2)
m=n—(N,—1) m=n—(N,—1)

Note that X[n, k] is a function of both time and frequency and now both the time and
frequency variables are discrete. The variable n denotes the location of the analysis win-
dow along the time axis, and the segment of time delimited by the window is frequently
referred to as the analysis frame. The variable k is a frequency index, and is sometimes
referred to as a frequency bin. We can think of the STFT as representing the DFT of the
finite-duration time function x[m]w[n — m]. Here the variable m is a “dummy” time ar-
gument and the variable n identifies the location of the short segment of the original
time function as it is extracted using the window w[n —m], which moves along the m-axis
according to the value of n.

3.2.1 Impact of window size and shape

Let us begin by turning our attention to the impact of the window shape and duration
on the nature of the STFT. We can formalize the interaction between the original time
function, the window size and shape, and the resulting STFT as follows. Considering
first the continuous-frequency version of the STFT, recall that X[n, w) is the DTFT of the
input function x[n] multiplied by the window function. The Fourier transform of w([n—m]
is

wln-m] & Z wln —mle O™ (3.3)
m=—00
Letting | = n—m and m = n - we obtain
wn-m] & Z wl]e 10NN = gmjonyy (giw) (3.4)
I=—c0

Hence,
w[n —mlx[m] < %(W(e‘j“’)e_jw”)@X(ej“’) (3.5)

Chapter 3. Short-Time Fourier Transforms 37

Window duration 10 ms

T AL L T ET - e |

o
T
|

IS

Frequency (kHz)

[N

o

Time (s)
Window duration 50 ms

T T =

o

IS

Frequency (kHz)

[N

o

0.2 0.4 0.6 0.8 1 1.2
Time (s)

Figure 3.1: Impact of window duration on the STFT. A spectrogram of a brief utterance
is shown, using Hamming windows of duration 10 ms (upper panel) and 50 ms (lower
panel).

where the symbol ® indicates circular convolution.

In other words, the STFT can also be thought of as the circular convolution in frequency
of the Fourier transform of the original input signal with the Fourier transform of the
window function time reversed and shifted. Because briefer functions in time produce
broader Fourier transforms in frequency, the use of a brief analysis window w[n] will
give us good temporal resolution at the expense of a lot of blurring in frequency, while
a broader temporal window will provide sharp spectral resolution at the expense of re-
duced temporal resolution. This applies to the discrete-frequency implementation of the
STFT as well.

The tradeoff between temporal and spectral resolution is illustrated in Fig. 3.1. Figure
3.1 shows two examples of a spectrogram of a brief utterance (“Welcome to DSP-1”) spo-
ken by the author. The horizontal axis represents time while the vertical axis represents
frequency. For now it is sufficient to note that the speech waveform can be modeled by
a filtered pulse train called glottal pulses, which are generated by the vocal chords with
time-varying fundamental frequency. The glottal pulses are input to an acoustic filter
with time-varying frequency response that is shaped by the configuration of the throat,
tongue, and lips, etc. (It should also be noted that some phonemes such as /s/ , /f/,
and /th/ are produced by exciting the acoustic filter with broadband noise instead of the
quasi-periodic glottal pulses.) As the colors in the display go from blue to green to yel-
low to orange to red for a particular spectro-temporal element, the power of the signal
becomes greater for that frequency and time. In fact, the desire to analyze, display, in-
terpret, and manipulate the time-varying characteristics of speech and music in a useful
fashion has been the prime motivation toward the development of the mathematics that

38 3.3. Alternate interpretations of the STFT operation

are the basis for the STFT.

In the example of Fig. 3.1, we can observe that the /c/ sound in “welcome” occurs just af-
ter 0.2 seconds and the /s/ in “DSP” occurs at about 0.65 seconds. The window functions
used in the figure are Hamming windows of duration 10 ms (upper panel) and 40 ms
(lower panel). The fundamental frequency of the vocal tract pulses varies, but it is about
100 Hz, and the corresponding period is about 10 ms. The windows are overlapped by
50 percent for reasons to be discussed below. The image in the upper panel appears to
show vertical bars, which occur because the window duration is comparable to the 10-ms
period of the glottal pulses, so some of the so-called analysis frames occur at the time of
the glottal pulses and some of them occur between them. In contrast, horizontal bars are
seen in the lower panel of Fig. 3.1, which is computed using windows of duration 50
ms. In this case, the window duration is long enough so that the window smears over
successive glottal pulses, but the frequency resolution is now sufficiently fine that the
horizontal bars appear at analysis frequencies that are multiples of the fundamental fre-
quency, which is about 100 Hz. It can be seen that the separation of the vertical bars in the
upper panel of Fig. 3.1 is approximately .01 seconds and the separation of the horizontal
bars in the lower panel is approximately 100 Hz.

In practice, the duration of the analysis window is set according to the needs of the ap-
plication. For example, the window duration is typically between 20 and 35 ms for auto-
matic speech recognition, but longer than that (75-120 ms) for speaker identification.

3.2.2 Inversion of the STFT

As we have stated, we can think of the STFT as the Fourier transform of the windowed
time function:

x[m]w[n—m] o X[n,w) so (3.6)
w[n—m]x[m] = %J‘n X[n,w)e!“"dw (3.7)
For n = m we can write .
x[n]w[0] = %j X[n,w)e"dw (3.8)
or, solving for x[n],
1 " jwn
x[n] = W[O]J— X[n,w)e!“"dw (3.9)

Hence the only absolute constraint for being able to recover x[n] from X[n, w) is that
w[0] = 0.

3.3 Alternate interpretations of the STFT operation

Although so far we have talked about the STFT simply as being the DTFT or DFT of
a time function after it is multiplied by a sliding window in time, there are two other
mathematically-equivalent ways of formulating the STFT. We discuss and compare the
three implementations of the STFT in this section. We will use the DFT-based formulation
of the STFT in this section because it is this formulation that is most commonly used in
practice.

Chapter 3. Short-Time Fourier Transforms 39

3.3.1 Fourier transform interpretation of the STFT

x[m] COMPUTE
—>®—> prr > X[n k]

wln — m)]

Figure 3.2: The Fourier transform implementation of the STFT.

As discussed above, the most straightforward way of thinking about the calculation of
the STFT is as a multiplication of the time function x[m] by a finite- or infinite-duration
window function w[n —m], followed by the computation of the Fourier transform of their
product:

X[n, k] = Z (x[m]w[n — m])e 2N — Z (x[m]w[n—m])e /<™ (3.10)
m=n—(N,-1) m=n—(N,—1)

In the expression above, which assumes a finite-duration window of length N, the vari-
able n indicates the position of the window, which designates the location of the “analysis
frame.” The variable k refers to the frequency bin in question. This is referred to as the
Fourier transform implementation of the STFT.

3.3.2 Lowpass filter interpretation of the STFT

L@—» o] s X[

—Jjwkn

e

Figure 3.3: The lowpass filter implementation of the STFT.

We can rearrange the terms of the STFT equation slightly to produce

X[n, k] = Z w[n—m]x[m]e M = Z w[n —m](x[m]e~ IO (3.11)
m=n—(N,—1) m=n—(N,—1)

This corresponds to multiplying the signal x[n] by the complex exponential function
e J2k/IN = p=j@i and passing the product through a filter with unit sample response
w[n]. This implementation of the STFT, which is referred to as the lowpass filter implemen-
tation, is depicted in the Fig 3.3 above.

40 3.3. Alternate interpretations of the STFT operation

Multiplying x[n] by e /“" shifts the spectrum to the left by wy, so that the components
that were originally at frequency wy now lie at frequency 0. Because the unit sample re-
sponses of typical windows are lowpass in nature, the STFT X|[n, k] reflects the smoothed
frequency content of the original function x[n] at frequency wy as it evolves over time
(represented by the variable n). As noted above, the lowpass filter implementation is
mathematically equivalent to the Fourier transform implementation of the STFT X{[n, k].

3.3.3 Bandpass filter interpretation of the STFT

ﬂb w[n]ejw’“" —>®—> X|n, k]

—Jwgn

e

Figure 3.4: The bandpass filter implementation of the STFT.

A third mathematically-equivalent interpretation can be obtained by a simple manipula-
tion of the STFT expression:

n n
X[n, k] = Z wln —mx[m]e I = Z (w[n - m]ej“’k(”_m))x[m] e orn
m=n—(N,-1) m=n—(N,—1)

(3.12)
This implies that the input signal is passed through a bandpass filter consisting of the
original lowpass window filter, frequency shifted so that it now passes frequency compo-
nents centered around frequency wy. The spectrum of the output is then translated to the
left so that the components of X[n, k] that were originally at frequency wy are ultimately
centered around frequency zero. This interpretation is shown in the Fig. 3.4 above and is
referred to as the bandpass filter implementation.

Keep in mind that all three interpretations of the STFT are mathematically equivalent
and that they all characterize X[n, k| as representing the smoothed frequency content of
the original function x[n] at wy, evolving over time.

3.3.4 Implementations of the STFT using real time functions and impulse
responses

The original lowpass and bandpass filter implementations assume multiplication by com-
plex exponentials, and in the bandpass-filter implementation the filters have complex
unit sample responses. For example, the lowpass filter implementation described in Eq.
(3.11) above can be illustrated as

Chapter 3. Short-Time Fourier Transforms 41

e-]0n

. <) . win] . X(n.0]

e-_]ZfZTl/N

> winl . Xin,1]

x[n]

IO

> <: :> > wind p X[nkl

IN-DmIN

X/[n,N-1]
—p| w(n] —»

Figure 3.5: The lowpass filter STFT implementation on a channel-by-channel basis.

Each channel in Fig. 3.5 can be written as
X[n, k] =w[n]* (x[n]e‘j‘”"”) = w[n]*(x[n]cos(wgn)) — jw[n]* (x[n]sin(wgn)) (3.13)

which we can rewrite as
X[n, k] =X,[n,k]—-jX;[n k] (3.14)

Note that the functions X, [n, k] and X;[n, k] are both real. This system is illustrated in Fig.
3.6

cos(wkn)

(: ———— w[n] _>X'[n,k]

sin(wkn)

x[n]

w[n] —»Xi[n’k]

Figure 3.6: Single channel of the lowpass STFT implementation using real sample re-
sponses.

The corresponding bandpass filter implementation is a bit more algebraically involved,
but can be obtained using similar principles, as is seen in Fig. 3.7.

42 3.4. Downsampling the STFT

X, [n, k] ¢ + X, [n, k|

—p| winjcos(cyn) ®—>®—>
x[n] ®{\ .

Ly wn]sin(wn) ®—>®_>
Xi [n, k]

cosl| (okn)

Figure 3.7: Single channel of the bandpass STFT implementation using real sample re-
sponses.

Note that the functions X,[n,k] and X;[n,k] (immediately before the cosine multiplica-
tions) have magnitudes that are equal to the final outputs X,[n k]| and X;[n,k]. If we
are only interested in computing the short-time magnitude spectrum (which is frequently
the case), we can eliminate all the computation after the filter outputs, which causes the
bandpass implementation to be more computationally efficient than the lowpass imple-
mentation because the multiplications are folded into the filtering.

3.4 Downsampling the STFT

X[n,1] X[m, 1] Yim, 1] Yin, 1]
X[n,2] X[m,2] Y[m,2] Yin, 2]
Xn,3] X[m,3] Y{m,3] Yin, 3
el » Decimate » Store or » Interpolate > i
— STFT X|n, k]= byR X|[m, k]= Process | Y [m, k]= by R Y(n, k}= ISTFT —»
X[n, N — 1 X [m, N —] V[, N — I Vin N <]
EG Fs FS/R FS/R Fs Fs

Figure 3.8: Block diagram of a complete STFT analysis/synthesis with downsampling.

In practice, the STFT coefficients are frequently downsampled as depicted in Fig. 3.8,
either for efficiency in computation or for efficiency in manipulation or modification of
the representation in the STFT domain. This is possible because STFT coefficients in
a fixed frequency bin evolve slowly as a function of time. It is easiest to understand
how this happens by reviewing the lowpass filter STFT implementation, as depicted in
Fig. 3.3, which describes the STFT calculation as shifting the spectrum to the left by wy
radians and then lowpass filtering the frequency-shifted signal by a filter having the unit
sample response of w([n]. As an example, let us consider the Hamming window, which

Chapter 3. Short-Time Fourier Transforms 43

10 -

-10 - —— Hamming window

20 — Ideal filter

-30 -

-40 -

- VIAANnanann

0 0. .4 0.7

Magnitude of transfer function, dB

wlmw

Figure 3.9: Magnitude in dB of the DTFT of a Hamming window of length 41 samples
(blue curve). The red curve is the response of the corresponding ideal filter.

is frequently (although far from exclusively) used as the window function for STFTs. It
is well known that the main lobe of the DTFT of the Hamming window has a mainlobe
width of 87/(N,, — 1) radians (including both positive and negative frequencies) where
N,, is the length of the window. For example, a Hamming window of length 41 would
have its first zero crossing in positive frequency at /10 radians, which suggests that the
output of this filter could be downsampled by a factor of 10.

Figure 3.9 compares the actual magnitude of the transfer function of a Hamming window
of length 41 (blue curve) with the corresponding ideal filter (red curve). It is clear that
the response of the Hamming window itself used as a lowpass filter is far from ideal,
either in terms of the flatness of the response in the “passband” or in the suppression
of sidelobes in the “stopband.” Nevertheless, this approximation is commonly used in
short-time Fourier transforms and normally it works well enough. And, in general, the
location of the first zero-crossing in the frequency response of the window function is
typically used as the nominal cutoff frequency for windows of other shapes as well.

3.5 Short-time Fourier synthesis

We will consider two methods of recovering the time function x[n] from the STFT X[n, k],
one based on the filtering implementations and the other based on the Fourier transform
implementation. We will first consider the filterbank implementation.

3.5.1 The Filter Bank Summation (FBS) method

Let us assume that w[#n] is of finite duration, and that w[n] = 0 for0 < n < N,, — 1. Because

X[n, k] = Z (x[m]w[n —m])e k™ (3.15)
m=n—(N,-1)

where as usual wy = 2wk/N, we can write

w(n—mlx[m] = ZX[n,k]ej“’km (3.16)

44 3.5. Short-time Fourier synthesis

ei0n
X[n,0]
—>
ejZ/m/N
X[n,1]
—>
ejwkn : 1/(Nwf[0]) y[n]
X[n k]
—>
ejZﬂ(N-I)n/N
X[n,N-1] ¢
—>

Figure 3.10: Block diagram of the filterbank summation (FBS) method of STFT synthesis.

Hence, for w[0] # 0 we obtain

N-
Nw[O ZX[n kei@n (3.17)
k=0

This implies that in principle we can obtain the time function by multiplying the vari-
ous short-time Fourier transform coefficients X[#, k] by the function ¢/“¥"*, adding all the
products together, and dividing by Nw[0].

Are there any constraints on the window size and shape that are required for this to work?
Let us designate the output of a complete analysis-synthesis system as y[n]. Then we can
write

N-1 | N e . .
y[n] = N ;X n, kel " = Nw[0] Z[Z X[m]w[n—m]e‘]“’km]e]“’k" (3.18)

k=0 \m=—o0

Since the argument of the inner sum can be written as x[m]w[n — m]e/“*"="), this expres-
sion can be rewritten as

-1

S ') N-1
y[n] = Nw[0] Z,x[n]*(w[n]e]wkn) - W[o]x[”]*(w[”] ejwk"] (3.19)

k=0

In order for y[n] to be at least proportional to x[n], we would need for the expression
inside the parentheses to be proportional to d[n]. As you know, we can write the inner

sum as
N-1

i2
£ T] — ej2mn/N ’
=0

Chapter 3. Short-Time Fourier Transforms 45

which is equal to N for n = rN for integer r and zero otherwise. Hence we must require
that w[n] = 0 for n = rN and n = 0 in order for the filter-bank summation (FBS) method
of synthesis to be used. This condition is sometimes called the “FBS constraint.” The
FBS constraint is satisfied trivially for finite-duration windows of length N, but it is also
satisfied by another class of windows known as Nyquist windows such as the familiar
sin(x)/x and sin(Nx)sin(x) functions, which have an infinite number of equally-spaced
repeating zeros in the time function.

Another way of expressing the FBS constraint is that we require that w[n] satisfy the
constraint
wlnlpn([n] = o[n] (3.21)

where N is the number of equally-spaced frequency channels and py[n] is a pulse train
with period N:

1, n=rN
pnln]= (3.22)
0, otherwise

This, of course is simply a compact way of stating that w[n] =0 for n =N and n = 0
otherwise, as before. Taking the DTFT of Eq. (3.21) above produces

%W(ejw)@)PN(ejw) =1 (3.23)

where Py(e/®) is the DTFT of py[n] and the symbol ® indicates circular convolution as
before.

As you will recall, the DTFT Py(e/¢) is an infinite train of delta functions in frequency,
each with area 27t/N, separated by 2rt/N along the frequency axis. This means that an
alternate form of the FBS constraint is

N-1

1 .

N > W (e/(@=27/N)y = some constant (3.24)
1=0

In other words, the FBS constraint is satisfied if the DTFTs of the window translated every
271t/N radians along the w-axis and added together sum to a constant that is independent
of w.

3.5.2 The Overlap-Add (OLA) method

The overlap-add (OLA) method, which is based on the Fourier transform implementation
of the STFT, is easier to describe and analyze than the FBS method. In our discussion here
we will make use of the DTFT-based definition of the STFT, but the OLA method using
the DFT-based definition works in exactly the same way.

Consider samples of the STFT spaced apart by R frames, X[rR, w), which we will also
refer to as Y,(e/¢). The inverse DTFT of Y, (e/*) is w[rR —m]x[m] = y,[m], as defined in Eq.
(3.7). We obtain the output function y[m] by simply adding all of the inverse transforms
y,[m] together:

y[m] = Z y,[m] = i w[rR —mx[m] = x[m] i w[rR —m] (3.25)

r=—o0 r=—o0 r=—oo

46 3.6. Sampling in time and frequency

Clearly, for y[n] to be equal to x[n] we must ensure that the sum of all the window func-
tions equals 1:

(o)

Z w[rR-m] =1 (3.26)

r=—co

This is satisfied, for example, by rectangular windows that are abutted and triangular or
Hamming windows that are overlapped by 50 percent, as depicted in Fig. 3.11, among
many other window shapes and spacings.

151

1
=
s 05
0
0 200 400 600 800 1000 1200
n
151
— 1r
£
= 0.5
0
0 200 400 600 800 1000 1200
n
151
- 1F
£
- /><><>O<>O<><><><><><
0
0 200 400 600 800 1000 1200

n

Figure 3.11: Examples of sequences of rectangular, triangular (Bartlett), and Hamming
window functions of length 200 that sum to 1. Note that the the rectangular windows
may be abutted, while the triangular and Hamming windows must be overlapped by 50
percent.

3.6 Sampling in time and frequency

As in many other engineering applications, we are interested in being as efficient in com-
putation and storage as possible. We briefly discuss in this section the number of numbers
that are (nominally) needed to obtain a complete characterization of a time function us-
ing short-time Fourier analysis, specifically reviewing how many frequency channels we
need and how sparsely we can sample in time for a given window w[n]. As will see, the
answer to these questions can depend on whether OLA or FBS synthesis is used. We
will consider only FIR windows at this time, although the same principles hold for IIR
windows as well.

3.6.1 The Fourier-transform implementation with overlap-add synthesis

Let us consider first the Fourier-transform implementation with overlap-add synthesis.
As has been discussed above, time sampling using OLA is determined by the length and
shape of the window. Specifically, the spacing must be such that the sum of the windows

Chapter 3. Short-Time Fourier Transforms 47

(in the locations that they occur at) must add to a constant, as discussed above. This
means, for example, that if we have a rectangular window with length N,,, successive
windows can be abutted, causing the window spacing to be N,,. If Hamming windows
are used, on the other hand, a 50% overlap will be needed, requiring the windows to be
spaced apart by N,,/2 samples. Since we are computing DFTs for each window, we need a
DFT size that is at least as large as the duration of the window to avoid temporal aliasing,
or at least N, channels. Now let us define the constant N, to represent the total number
of numbers per second of input needed to store the signal using the STFT representation.
For a sampling rate of F; and a rectangular window of length N,, the Ny would be equal to
the sampling rate times the number of channels divided by the spacing of the windows.
For rectangular windows this would be

N, = = F, (3.27)

N, = = 2F, (3.28)

3.6.2 Thelowpass and bandpass implementations with filterbank-summation
synthesis

For either the lowpass or bandpass implementation with FBS resynthesis, the number
of channels is determined by the FBS constraint that for a given window length N,, the
window shape w[n] must be such that

w(n] =0 for n=rN, with r =0 (3.29)

This constraint is automatically satisfied for an FIR window if the number of channels N
is greater than or equal to N,,. The time sampling is determined by the effective band-
width of the window. This is determined by looking for the first frequency w at which
the Fourier transform of the window, W(e/“) is zero, as shown in Fig. 3.9. For a rectan-
gular window this frequency is 27t/N,, and for the Hamming window this frequency is
41t/(N,, —1). Recall from our discussion of multi-rate DSP that if a discrete-time signal
is limited to frequencies of /M, we can downsample it by a factor of M;. Hence, for a
sampling rate of F; and a downsampling rate of M, the total number of samples per sec-
ond would be the sampling rate times the number of channels divided by the decimation
rate, which for rectangular windows would be

FsNy

= =2F .
N; No/2) s (3.30)

For Hamming windows the total number of samples per second would be

EsNy

Ne=N, 1ya

~ 4F, (3.31)
As can be seen, the number of numbers per second using FBS resynthesis needed to rep-
resent a signal is twice as many as with OLA resynthesis, which in turn is twice as many
as the original sampled waveform in the time domain. In fact, the representation is even

48 3.7. Applications of short-time Fourier analysis

more inefficient because the STFT coefficients are complex, requiring two real numbers
each, although if the time function is real, the coefficients representing positive and neg-
ative frequencies would be complex conjugates of each other. Nevertheless, the STFT
representation is widely used in all cases because of the insight it can provide in analyz-
ing signals as well as the signal-manipulation operations that it enables.

3.7 Applications of short-time Fourier analysis

3.7.1 Spectral subtraction

Spectral subtraction was first proposed by Boll in 1979 as a means to remove additive
noise from speech and other signals. It was the foundational algorithm for a huge quan-
tity of work in speech enhancement. It is extremely simple, but it has been improved
on by dozens if not hundreds of subsequent research papers. Some of the latter work is
reviewed superficially in a subsection of the book Spoken Language Processing,> by Huang,
Acero, and Hon (all former CMU students and faculty). In essence, the goal of spectral
subtraction is to remove (or at least attenuate) background noise in speech. This is accom-
plished by first estimating the power spectrum of the background noise at a time when
speech is believed not to be present. The magnitude of the noise estimate is subtracted
from the magnitude of the DFT coefficients in each frame. The difference of the mag-
nitudes is combined with the original phase in each frame to produce a new set of DFT
coefficients. The output time function is reconstructed by computing the inverse DFT of
each frame, and then reconstructing the time function from each STFT frame, typically
using the overlap-add method as discussed above.

A great deal of work has been performed with the goal of improving the basic spectral
subtraction algorithm. Typically these efforts address one of the following issues:

* With the actual noise (and signal) changing over time, it is easily possible for the
subtraction to result in a negative magnitude which is impossible in theory and
problematical in practice. The most basic solution to this problem is to simply force
the floor of the subtraction to be zero. Many more sophisticated schemes have been
proposed that typically involve “under-subtracting” the estimated noise magnitude
from the magnitude of the spectral of the incoming signal.

* In reality the masking noise is not stationary. Many algorithms have been proposed
to update the estimate of the power spectrum of the background noise dynamically,
in an adaptive fashion. These approaches typically depend on being able to detect
the absence of the target speech, though, which can be a difficult problem in many
practical applications.

* Inrecent years especially, greater attention has been focused on the consequences of
the mismatch between the magnitude of the frequency response in the individual
frames and the corresponding phases. (This happens, of course, because we are
combining the phase of the original speech with the magnitude of the signal after
subtracting the magnitude of the noise estimate.) Some approaches to this have
been successful, but they all involve iterative nonlinear estimation techniques.

2Huang, X. D., Acero, A., and Hon, H.-W., Spoken Language Procesing, Prentice-Hall PRT, 2001.

Chapter 3. Short-Time Fourier Transforms 49

3.7.2 Phase vocoding

Phase vocoding was originally developed by Flanagan and Golden (1966) as a technique
to accomplish high-quality speech coding. While phase vocoding did not prove to be a
commercially-successful method to encode speech, it does have a number of properties
that make it useful for expanding and contracting speech in time, and for changing the
pitch of music with relatively small changes in the musical timbre. In this section we
describe the basic principles of phase vocoding and describe how it is applied to nonlinear
transformations in time and frequency.

cos(wgn)
N a[n, k]
x[n wn I
L»@—» wn| ——» X|[n, k]
T sin(wgn)
e~ Jwkn bln, k]
o]

Figure 3.12: The lowpass filter interpretation of the STFT in complex form (left panel)
and with real coefficients (right panel)s.

Figure 3.12 recapitulates a single channel of the lowpass filter implementation of short-
time Fourier analysis, in both the original complex exponential form (left panel), and
using real coefficients (right panel). Note that we are now using a slightly different nota-
tion to represent the STFT coefficients as

X[n, k] =a[n, k] - jb[n, k] (3.32)
where a[n, k] = Re[X[n, k]] and b[n, k] = —Im[X[n, k]].

Now let us consider the STFT coefficients in terms of their magnitude and phase. Specif-
ically, we can represent X[n, k] as

X[n, k] = |X[n, k]| (3.33)

where O[n, k| represents the instantaneous phase at frame n and frequency bin k. Clearly,
we can obtain the magnitude and phase of the STFT directly from the real and imaginary
parts a[n, k] and b[n, k] via the standard trigonometric relations:

X[, K]l = \Ja2[n,k] + b2[, k] and €[, K] = ~tan™" (%) (3.34)

Note that if the STFT coefficients X[#n, k] are Hermitian symmetric, by taking the inverse
transform we can represent the corresponding time function for that channel as

xi[n] = X[, k]| (e O1Klein 1 7Okl gmiont) = 21X [, k]| cos(wyn + 6], k]) (3.35)

and in principle the entire waveform could be reconstructed by summing these cosines
across all channels:

x[n] = Zxk[n] = Z2|X[n,k]|cos(a)kn+ O[n,k]) (3.36)
k

k

50 3.7. Applications of short-time Fourier analysis

The original idea of phase vocoding was to extract and transmit the magnitude and phase
terms representing the signal at each frame, reconstructing the waveform at the far end
from this information only.

Outputs of 500-Hz channel

T
=
= 0 -m_pm_m.—mm—_ |
x
1 L L L L
0 0.5 1 15 2 25
x10*
__20 T T T
X
S10¢f 4
X
= ‘
0 0.5 1 15 2 25
x10%
~ 100 ‘ ‘ \ \
4
£ 50 F e
S
N 0 | | | |
0 0.5 1 15 2 25
x10%
~ 1
=
S oo} il
S
N 1 1 1
0 0.5 1 15 2 25
n x10%

Figure 3.13: Representations obtained via phase vocoding for a channel at wy = 27t500.
From top to bottom, depicted for that channel are (a) x¢[n], |X[n, k]|, 2X[n, k] (unwrapped),
and /X[n, k] (wrapped and normalized by dividing by).

Figure 3.13 depicts the magnitude and phase of the “Welcome to DSP-I1” utterance for a
typical channel at 500 Hz. The figures show the representation of the waveform in that
channel as reconstructed using Eq. (3.35), along with the magnitude and phase of the
STFT representation. Note that the phase is presented twice: in its original “unwrapped”
form and in terms of the principal value, with the values of O[n, k| constrained to lie
between —7t and 7 radians.

From Fig. 3.13 it can be seen that both forms of the phase function are problematic.
Specifically, if the phase is transmitted in its original unwrapped form, the magnitude of
the phase is unbounded and in general will get large quickly, ultimately causing overflow
after a sufficient time. If only the principal value is transmitted, that signal will have a
very large bandwidth because of the abrupt transitions by 27 radians when the magni-
tude of the phase exceeds 7 in either direction. The solution to this problem is to transmit
an approximation to the derivative with respect to time of the phase function.

To simplify the analysis of this approach, we will briefly detour into continuous-time
processing. Specifically, let the continuous-time and continuous-frequency representa-
tion that is similar to that of Egs. (3.35) and (3.36) be:

x(t) = Zxk(t) = ZZ|X[t,Q]|cos(a)kt+ 0[t,Q]) (3.37)
k k

where
X (1) = 2|1X(t, Q)| cos(wit + O(t,Q)) (3.38)

Chapter 3. Short-Time Fourier Transforms 51

Note that the derivative of the argument of the cosine term, wy + 6(t,), has the dimen-
sion of frequency. In fact, the derivative of the phase term 6(t,Q;) is considered to be
the instantaneous frequency of that channel. One of the motivations for transmitting the
magnitude and phase derivative rather than the magnitude and phase is that the instan-
taneous frequency of a signal typically changes slowly because of physical limitations on
how that signal was produced, regardless of whether the source is a human or a machine.

Generalizing, we can define the continuous-time analog of the STFT as

[ee)
X (t,Qp) = J X (T)w(t —1)e 7k dt (3.39)
—00

where w,(t) is a continuous-time window function, and the other variables are in direct
correspondence to their discrete-time counterparts. This suggests that the STFT coeffi-
cients in continuous time and frequency can be represented as

X (t,Qy) = |Xc(tle)|ej95(t'Qk) = ac(t,Qr) = jbe(t, Q) (3.40)
where "
X (£, Q)| = [a2 (£, Q) + b2(, Q)| (3.41)
and b(t,C2)
- £, L
O.(t, Q) = —tan™! [% 3.42
C(k) an ac(t,Qk):| ()
Using the relationship
1
—tan"!(x) = 3.43
ax ") 1+x? (343)
it follows directly that instantaneous frequency can be represented as
cos(wgn)
l aln, k]
— : —> win] > Xin, k
" Com}? ute ‘ []|= Decimate —»
z[n] L, | Magnitude
> 0[n, k| 0[n, k|
Cgr:: Slge > “d/dt” > Decimate [—>
— : —— w[n] >
b[n, k]
sin(wgn)
Figure 3.14: Block diagram of the encoding portion of the phase vocoder.
, be(t, Qp)dc(t, Qx) — ac(t, Qp)be(t,Q
Qc(t,Qk): C(k)ac(k) aC(k) C(k) (3.44)

ag (t, Q) + b2 (1, Q)
The discrete-time analogy to Eq. (3.44) is
_ b[n,wilaln, o] - aln, wi]bln, wy]

Ol il = 21, wop] + b2[1, oy] (3-45)

52 3.7. Applications of short-time Fourier analysis

. | X [n, K]
Interpolate .
Generate | X [n, k]| cos(wkn + 0[n, k) .
— O[n, k] 0[n, k| Cosine
Interpolate > “Integrate” .

Figure 3.15: Block diagram of the decoding portion of the phase vocoder.

These equations have the advantage that they do not require the arctan operation to be
evaluated directly.

Figures 3.14 and 3.15 summarize the encoding and decoding steps for phase vocoding.
In the encoding process, the magnitude and phase derivative, |X[n,k]| and O[n, k], are
computed from the real and imaginary parts of the STFT coefficients, a[n, k] and b[n, k]
according to Eq. (3.34) for the magnitude and Eq. (3.45) for the phase derivative. While
the differentiation in time in the expressions d[n,k] and b[n,k] in Eq. (3.44) cannot be
implemented exactly in discrete time, there are many discrete-time approximations to
continuous-time differentiation of which the simplest is the first difference:

xgialn] = o (xDn] = = 1) (3.46)
where T is the sampling period. This is a reasonable approximation to differentiation
at low frequencies for which sin(wn/2) ~ wn/2. In addition, there are many standard
filter design techniques (including the Parks-McClellan equiripple filter design method)
that produce approximations to ideal differentiation that are valid over a much greater
frequency range.

As Fig. 3.15 indicates, conversion from the magnitude and phase-derivative represen-
tation to the time function is begun by “integrating” the phase derivative to obtain the
instantaneous running phase. This is normally approximated by computing the running
cumulative sum of the phase derivative after processing is completed. The instantaneous
phase and the magnitude are combined to obtain the time-domain signal in each channel:

xp[n] = 2|1X[n, k]|cos(wgn + O[n, k]) (3.47)

where as usual wy = 27k/N. The signals in each positive frequency channel x;[n] are
summed over all channels to obtain the output waveform.

Time compression and transposition. Two popular uses of phase vocoding are in chang-
ing the rate of speech without affecting intelligibility, and in musical transposition. Specif-
ically, multiplying all of the instantaneous frequencies of the representation of a musical
performance by a constant will increase the pitch by the same constant. For example,
multiplying the instantaneous frequencies by 6/5 = 1.2 will increase the pitch by the ra-
tio of 6 : 5, which is equivalent to transposing upward by a minor third in music.

Speech rate can be changed by scaling the instantaneous frequencies by a constant factor
while changing the sampling rate by that same factor. For example, slowing down speech
by a factor of 1.2 is easily accomplished by multiplying the instantaneous frequency by
1.2 while increasing the sampling frequency by the same factor.

4. Introduction to Random Processes

o

4.1 Introduction 53
4.2 Review of probability and random variables 55
4.3 Introduction to random processes 59
4.4 Gaussian random processes 63
4.5 Power Spectral Density Functions 64
4.6 Random processes and linear filters 66

One of the most important things about advanced DSP is that the time functions that we
encounter vary randomly. In this chapter we discuss how we characterize these “random
processes” mathematically. Understanding this characterization is enormously important
in order for us to be able to deal with the randomness that is encountered everywhere in
the real world.

4.1 Introduction

Random processes are at the heart of most techniques developed in ADSP. They are a nat-
ural extension of the concept of random variables in probability theory. In this chapter we
briefly and superficially review some of the concepts discussed in the lectures. These top-
ics are treated in greater detail in Appendix A of Oppenheim, Schafer, Yoder, and Padgett
(2010), and in somewhat greater detail in Chapter 8 of Oppenheim and Schafer (1975)!.
There are, of course, many complete text and reference books on random processes.

4.2 Review of probability and random variables

Probability theory is used to describe some things that are difficult to develop using clas-
sical techniques in which the outcome of a “random experiment” will vary in an unpre-
dictable fashion from trial to trial, but in which the statistics of the outcomes over a long
time are more predictable. For example, tossing a coin is actually nothing more than a
very complicated problem in Newtonian mechanics: if we knew the position and velocity
of a coin when we throw it up in the air, and if we knew the location and mechanical
reflectance of all the objects in the room, we should be able to predict whether it will land
“heads” or “tails.” But it is hard to solve the problem that way, and the truth is that we do
not really care. A more useful characterization is to simply state that each side comes up
about half the time, and that successive tosses are independent. We could make a similar

IPortions of this chapter are loosely based on the discussions in Chapter 8 of Oppenheim and Schafer
(1975).

53

54 4.2. Review of probability and random variables

argument with dice, roulette wheels, etc. The important thing is that probability is just a
mathematical characterization that is both consistent and useful.

4.2.1 Probability of events

Many discussions of probability theory begin with a discussion of probabilities of events.
Consider, for example, a set of events A; that are mutually exclusive and assigned proba-
bilities P[A;]. While normally we would expect that these probabilities would reflect the
relative frequency of observing the various events A;, from the mathematical standpoint
the only constraint is that the probabilities must be numbers between 0 and 1 and that
these numbers must sum to 1 over all possible events. We also talk about the joint prob-
abilities of two events P[AB] as well as the conditional probability of one event given the
other, P[A|B]. These are related according to the equation

P[A|B] = % (4.1)
Since
P[AB] = P[A|B]P[B] = P[B|A]P[A] (4.2)
we can write the well-known Bayes rule,
plya) = PLAEILS s

Bayes rule is the conceptual foundation for most of statistical decision making and ma-
chine learning.

4.2.2 Random variables

Many interesting things that are modeled by probability theory can be described as ran-
dom experiments of which the outcome is a number. These outcomes are referred to as
random variables. For example, the random variable x may represent the temperature out-
side the front door of my home at 9 am today. This number (which could in principle be
any real number but is much more restricted in practice) is unknown a priori but we have
some idea of what it might be like statistically, given the time of year. (The temperature
in September is likely to be different from the temperature in January!) Other sources
of such a priori knowledge might include what the temperature was yesterday, and what
the weather announcer said on television in the morning the temperature is likely to be.
Another example of a random variable is the integer number representing the number of
passengers that are in the first bus that stops at the corner of Fifth and Highland Avenues,
not far from my home.

We will use the probability density function (pdf) p,(a) to represent the random variable
x. Note that the name of the random variable is identified by the subscript of p, and the
dummy variable a represents possible values that x may take on. The probability density
function is related to probabilistic events by the equation

b
Pla<x<b]= J py(a)da

a

Chapter 4. Introduction to Random Processes 55

We know that p,(a) cannot be negative, and its integral over all values of a must be 1. We
can define the conditional probability density function py4(a|A) and the joint probability
density function p,,(a,) in similar fashion. Note that the marginal probability density
px(a) can be obtained by integrating the joint probability density function p,,(a, B) over
all possible values of f:

pAM=J‘pWW$Mﬁ (4.4)

4.2.3 Selected other relationships

You should have covered many useful relationships and properties of random variables
in your prior courses in probability theory.

For example, two random variables x and y are statistically independent if their joint pdf
can be factored into two marginal pdfs:

Pxy(a, B) = px(@)py(B) (4.5)

The expected value (or statistical average) of any function of x, g(x), can be obtained by

Elgtl = [glalpilara (4.6
In other words, the statistical average of the function of g(x) equals every possible value
of g(x) weighted by the relative likelihood of observing the particular value of x from
which the calculation of the function g(x) is based.

Some specific statistical averages will be used widely in our discussions. For example, the
mean of x is m, = E[x], the variance of x is 02 = E[(x — m)?] = E[x?] - m2, the standard
deviation of x is oy, and the covariance of two random variables x and y is 0, = E[(x -
my)(y - my)] =E[xy] - My My

4.3 Introduction to random processes

As we discussed above, the outcome of a “random experiment” in probability theory is
either a discrete event, or a number which we refer to as a random variable. The key differ-
ence between random variables and random processes is that random processes (which
are also referred to as stochastic processes) can be considered to be the outcome of a
random experiment for which the outcome is a time function x[n] (called a “sample func-
tion”) that in principle extends over all time, from —oo to co.

The value of a sample function at a particular time 5, is referred to as x[n], and it will
also be notated from time to time as x,,. These values of a sample function of a random
process at a specific time are actually random variables, and they are represented by the
pdf py, (@) or Px,, (a). (Lamentably, neither of these notational conventions is very ele-
gant!)

Examples of brief segments of sample functions of a random process are shown in Figs.
4.1, 4.2, and 4.3, which in succession depict segments of broadband noise, speech, and a
random-phase cosine wave of the form x[n] = cos(wn+¢) where ¢ is a random parameter.

56 4.3. Introduction to random processes

Note once again that in all cases the actual sample functions actually extend from —oo to
oo in time, and only a brief portion is depicted of necessity. (In other words, we can only
observe a part of one sample function of any particular random process in our lifetime!)
Note also that in the case of the random-phase cosine the sample functions appear to
be deterministic. Nevertheless, they are random because the phase of each cosine is a
random parameter.

S o0 T?T ® @TT?? QTOT @TOTOUQ Tﬁ?ﬁj‘? 79 T@ T @T ¢ ?WP T
< iﬁ i 9 il%&w@f} é(Lééidﬁ) 5L i éiéﬁﬂ

0 10 20 30 40 E;-:) 60 70 80 90 100
o byt 120 058 et a2 000 T% FIREE
%_2 R I RN % I B BOH

0 10 20 30 40 5r:) 60 70 80 90 100
= :ﬁj o af ool Tc&P‘ o @T @Pﬁ ?@WT T?T 9 ?T‘R%P ol oT
IR e

0 10 20 30 40 .':—I)’(]) 60 70 80 90 100

Figure 4.1: Sample functions of a white-noise random process.

S o8 T @WM Wmnw?ﬁ??ﬁ?? %P%\%
< %@&M&W @g o

- O'z i, mﬁ@? ? 9.9 TTW | @%TT o9 | T
Z op %MM Mw@%om Wgw& 17 &ié
= '0 mT T i T ?OTUT ? m?ﬁ T T F e, P T@? o900 P O%T 0P
= é&@&%(u)%éoillﬂéJ)gD@@& i6@56$$0é£60$$$

Figure 4.2: Sample functions of a speech waveform.

Chapter 4. Introduction to Random Processes 57

I
]

0 10 20 30 40 50 60 70 80 90 100

Figure 4.3: Sample functions of random-phase cosine waves.

4.3.1 Ensemble averages

Ensemble averages (commonly known as expected values) describe the average values of
random variables (including the random variables obtained by evaluating random pro-
cesses at specific times), averaged over the ensemble of sample functions. Most of the
important characteristics of random processes that we care about, such as their means,
variances, covariances are actually ensemble averages.

In general, the expected value of any function g of a random variable x[#n] is defined as

oo

E[g(x[n]>]=f ¢(@)pa(@)da (4.7)

—00

Clearly this expression is no different from evaluating an arbitrary statistical average of a
general random variable as in Eq. (4.6), except that these random variables were obtained
by looking at the sample functions of a random process at a particular time.

Some important statistical averages based on x[n] include

* The mean of x[n] is

(o)

g = Elx{n]] = f apsn(@)da (4.8)

—00
The mean, of course, represents the average value of x at time #, averaged across all
sample functions in the ensemble.

* The autocorrelation (or autocorrelation function) of x[n] is

¢xx[n1,nz]=]E[X[n1]x*[nz]]=J_ f_ a B P, Jxin,) (@, B)d avd p (4.9)

where in this discussion the asterisk symbol () indicates complex conjugation. (Most
of the random processes that we consider will have strictly real sample functions,

58

It is easy to show that Yyy(u,,n,] = Prxlny,n,] = Mxn, M

process x[n]is o

4.3. Introduction to random processes

and we will drop the asterisk symbol at some point.) The autocorrelation function
is a measure of how much the sample functions of x at time n; resemble the same
sample functions at time n,. It plays a very important role in calculating power
spectral density functions, as we will discuss below.

The autocovariance function of x[n] is
Vxx[nli ”2] = IE[(x[nl] - mx[nl])(x[nZ] - mx[nz])*] (4-10)
= J J (o - mx[nl])(ﬁ - mx[nz])*px[nl]x[nz](ar ﬁ)dadﬁ (4.11)

Clearly the autocovariance function is very similar to the autocorrelation function.

The crosscorrelation function of the random processes x[n] and y[n] is

(;bxy[”l’”Z] = E[(x[”l]y*[”ﬂ] = J: J: aﬁ*px[nl]y[m](a’ﬁ)dadﬁ (4-12)

Unsurprisingly, the crosscorrelation function is a measure of how much the sam-
ple functions of x at time n; resemble the sample functions of y at time n,. The
crosscorrelation function plays a very important role in estimating the time delay
between two signals, which is a key enabling technology for location services such
as GPS.

* The crosscovariance function of x[n] and y[n] is

Vaylmn na] = E(xlm] = g) 9lna] = myp,))'] (4.13)
Z_f_ J_ (@ = 1, 1)(B = My [1,]) P, Jy[n) (@ B)d ad (4.14)

;[]’ Also, the variance of the random

2 =91 n]. Here are a few important properties of random processes:

x[n]

* Summation of expectations. E[x[n]+ y[n]] = E[x[n]] + [E[y[n]] always, because of

the linearity of the expectation operator.

* Multiplication by a constant. [E[ax[n]] = alE[x[n]], again because of the linearity of

expectation.

* Summation of variances. Var([x[n]+y[n]] = Var[x[n]]+Var[y[n]] only if the random

processes x[n] and y[n] are statistically independent.

4.3.2 Stationarity

Consider the three random processes with sample functions shown in Figs. 4.4, 4.5, and
4.6. The sample functions in Fig. 4.4 appear to be more or less the same over all time,
and for these sample functions the time origin (i.e. n = 0) could be shifted without visibly
affecting the properties of the sample functions. In contrast, the sample functions in Fig.
4.5 appear to be drifting upward after about Sample 50, while the sample functions in
Fig. 4.6 appear to become more variable after about Sample 50, and for these processes

Chapter 4. Introduction to Random Processes 59

;@? g @ﬂ) qspq ¢ T@T@% ?TTT P o Q?Poj T qua @Tf(%

I I I I I I I I I
0 10 20 30 40 50 60 70 80 920 100

07@(%@ 200l ?T WT ?TT T%‘%@ ‘Pm‘?ﬁw I 0 o0 |
%ooi WM(L&) f&%é@ o9, b o7 lg&&g}&

I I I I I I I
0 O 30 40 50 60 70 80 920 100
4 T T T T T T T T T

) % T‘?ﬂ) W%‘P%%PT o@@ﬁ ey (DT? TTQ%@?@ |
g S st e i o

o r\:

-2r

_4 1 1 1 1 1 1
0 10 20 30 40 50 60 70 80 90 100

Figure 4.4: Sample functions of a stationary random process.

10~

Z;m@ 930 5 P 05 o0 %@%&WT%W?W?WWWWWTWT

= %@50‘@@@ L{b@@‘

-5 1 1 1
0 10 20 30 40 50 60 70 80 90 100

10+

o R N W?T@?WW?WWWTWTW

& &D

-5 L L L L L L L L

o 10 20 30 40 5 60 70 8 80 100
15 ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘
101

i sl
o290 2@aP . co bom am P4 @W

ol R B Sy

0 10 20 30 40 5 60 70 8 8 100

Figure 4.5: Sample functions of a nonstationary random process with increasing mean.

the temporal origin is meaningful (and is depicted at about 50 samples before the changes
in the sample functions are observed). We characterize the property that the first process
has and that the latter two do not have as stationarity.

We typically define two types of stationarity: wide-sense and strict-sense stationarity. A
random process is strict-sense stationary (SSS) if

1. E[x[n]] = E[x] = m,, a constant independent of time

2. ¢yx[ny1,n,] depends only on n, — ny, so we can write ¢y [11,12] = Pyy[n, —n1] =

Pucx[m]

60 4.3. Introduction to random processes

0 MUUO@“?GSP% G %ﬁr@ﬂﬂ?
R R RS RS R I
—20f B
=% 10 20 3 20 50 6 70 80 % 100
20 \
10(T T B
0 D e R I R TR R, Qo) O? P k@ ? Tf
A R IEN
-10f e
2% 10 20 % 20 50 60 70 8 % 100
20 .
10F T .
‘ i O SererCT GE crin§ R &P a9 ?TOT% ®
-10f

_20 | | | | | | | | |
0 10 20 30 40 50 60 70 80 90 100

Figure 4.6: Sample functions of a nonstationary random process with increasing variance.

3. For any collection of times ny,n,,n3,... etc., any joint moment such as
E[x[n]x[n,]x[ns],...] etc., the result depends only on the differences between the
times in question, n, —ny,n3 —ny, N3 —ny,... , etc.

A random process x[n] is wide-sense stationary (WSS) if only the first two conditions above
are satisfied.

Stationarity in general (i.e. “strict-sense stationarity”) requires that similar relations hold
true for higher order moments of the random process as well. It is usually quite hard to
prove. Knowing that a random process is WSS will be good enough for us almost all of
the time. Conceptually, stationarity means that the location of the time origin does not
affect the statistics of the process, as noted above.

4.3.3 Time averages

While ensemble averages are well defined and mathematically consistent, they are not
very helpful in practice because we never can look at multiple sample functions, as men-
tioned above. Instead, we estimate ensemble averages by their corresponding time av-
erages, which are meaningful only if a random process is stationary. Specifically, for a
stationary random process, we define the time average of an arbitrary function g(-) of the
random process x[n] as

< g(x[n]) >= lim

Nooo 2N +1 g(x[n]) (4.15)

Note that the random process must be wide-sense stationary in order for the limit of this
sum to converge. Figure 4.7 compares the samples in the ensemble used to compute a
time average (which are horizontally arranged, in red, within a single sample function)
with the samples used to compute an ensemble average (which are vertically arranged, in
green, and which represent a single time across all sample functions).

Chapter 4. Introduction to Random Processes 61

£ :‘;Lﬂ L&
9‘0 100
n
°l T o a ‘]
RUANAR | ISP *n Tl oolse el e
) 2L 7 L ‘zL ‘i\ QC | f|7 1 ﬁl L 3\: I ('EJ;L:)L:
0 10 20 30 40 50 60 70 0 9 100
n
T
>

Figure 4.7: Comparison of samples used to compute time averages (horizontally arranged,
in red) with those used to compute ensemble averages (vertically arranged, in green).

Some important time averages include

* The time-averaged mean of x[n]is

< x[n] >= lim x[n] (4.16)

Nooo 2N +1

The mean, of course, represents the average over all time of the values of x.

* The time-averaged autocorrelation of x[n]

x[n]x*[n+m] >= lim x[n]x*[n+m] (4.17)

N—oowo 2N +1

where the asterisk symbol (*) indicates complex conjugation, as before.

Other time averages can be computed in the same fashion.

4.3.4 Ergodicity

Since the theory of random processes is based on ensemble averages but we must esti-
mate the ensemble averages by measuring time averages, it would be very helpful if the
corresponding time and ensemble averages are all equal. In other words, we would like
it if

Elg(x[n])] =< g(x[n]) > (4.18)

and more generally

E[g(x[n1], x[n2], x[n3],... x[nN])] =< g(x[n1], x[n2], x[n3],... x[nN]) > (4.19)

for all functions g(-) operating on all sample functions of the random process x[#], and all
N. This property is called ergodicity. More specifically, a random process is “ergodic” if all

62 4.3. Introduction to random processes

of its corresponding time and ensemble averages are equal. Ergodicity is generally hard
to prove. Conceptually, ergodicity means that the statistical attributes of each sample
function is reincarnated in each of the other sample functions sooner or later. While most
stationary random processes are also ergodic, there are some spectacular exceptions to
this rule.

Example 4.1 (Ergodicity of the random-phase cosine) Consider the example of the
random phase continuous-time cosine x(t) = cos(wt + ¢), where the phase ¢ is a
random parameter that has a uniform pdf between values of ¢ = 0 and ¢ = 27t. We
will first calculate the ensemble average mean and autocorrelation:

Blx0]= [xppfalda
Note here that the probability density function specifies the distribution of values
of the amplitude of x(f) and that t itself is not a random variable. The expected
value of x(t) is much more easily obtained by conditioning it on the random phase
parameter:

21

E[x(t)] = Joo E[x(t)l¢ = alpy(a)da = f cos(wt + a)%da =0

oo 0

(In evaluating the last integral, note again that the variable being integrated is «
and not t). Now let us consider the ensemble-average autocorrelation function for
the (real) random-phase cosine. We will use the parametric evaluation as before:

27
E[x(t1)x(t2)] = Ryx(tr, 12) = L E[(cos(wty + P)cos(wty +)P = a)lpg(a)da
To evaluate this integral we will use the familiar trig identity
cos(x)cos(y) = %(cos(x +7v)+cos(x—p))

which produces

Ry (t1,1£2) :J Ecos(a)(tl +t2)+2a)p¢(a)da+j Ecos(a)(tl —t))pyla)da
0 0

Recalling that py(a) = 5 for 0 < a < 27, we note that the first integral integrates to
zero as we are integrating the cosine over exactly two periods. The second integral
actually does not depend on « at all, and we obtain

1 2 1 1
R, . (t;,t)) = =cos(w(ty —t —da = —cos(w(t; —ty)) = = cos(wT) = R, (T
)= geostolt =) | 5-da = 3 cos(w(t = 12) = 5 cos(@r) = Run(®)
where T = t; — t, = t, — t; because the cosine is an even function. Note that because
the random-phase cosine has a mean that is a constant and an autocorrelation that
depends only on 7 = t, — t;, the random-phase cosine is WSS.

Now, using similar techniques, we can obtain the time-averaged mean and autocor-
relation function for the random process x(t) = cos(wt + ¢) where this time ¢ is an

Chapter 4. Introduction to Random Processes 63

unknown but arbitrary constant. Specifically, we can calculate the continuous-time
averages

T
<x(t) >= Tlgl;oﬁ . cos(wt + ¢)dt and
1 T
<x(t)x(t+17)>= Tlim — cos(wt + ¢p)cos(w(t+ 1)+ p)dt
—00 =TT

We obtain the same answers:

[E[x(t)] =< x(t) >= 0 and

Ry () = E[x(t)x(t +)] =< x(t)x(t + T) >= %cos(wr)

indicating that the random-phase cosine is indeed ergodic, at least in the second-
order sense.

Example 4.2 (Ergodicity of the constant random process.) Now consider the very
simple discrete-time random process x[n] = k, where k is in turn a random variable,
for example a Gaussian with mean zero and variance 1. It can easily be shown that
x[n] is a stationary random process with the ensemble-average mean equal to the
mean of the Gaussian, zero. Note that the time-average means of each of the sample
functions are all different (and equal to the value of the sample function, of course).
But the time average means are generally not the same as the ensemble average
mean which would be zero in this case. Hence, this process is stationary but not
ergodic. This is unusual, but there are a few other similar examples (mostly nearly
as contrived) that can be developed.

4.4 Gaussian random processes

A random process is Gaussian if the random variables formed by sampling the random
process at specific instants of time all are jointly Gaussian random variables. Although
this may seem like a circular definition, it really isn’t ... to test for Gaussianity, it is only
necessary to show (or be told) that the pdf of the corresponding random variables are
really Gaussian. In other words, individual random variables are Gaussian if

1 (a —my)?)
pxla) = —exp(— (4.20)
: \2mo? 207
For Gaussian random vectors we generally use the matrix form of the pdf:
_ 1 1 T -1
prla) = exp(- (@ - m) € (@ = my) (4.21)

where m, is the N-dimensional mean vector, C, is the N x N covariance matrix of the
jointly Gaussian random variables, and |- | is the determinant operator.

A Gaussian random process is not necessarily stationary, but if it is wide-sense station-
ary, it is also strict-sense stationary. (This is because higher-order moments of Gaussian
random variables can always be factored into first-order and second-order moments.)

64 4.5. Power Spectral Density Functions

4.5 Power Spectral Density Functions

The power spectral density function is the mathematical representation that enables us to
characterize the frequency distribution of a random process. As you may recall, the total
energy of a discrete-time function may be represented as

Energy = Z |x[n]]? (4.22)
n=—oo

The problem with the use of energy is that all stationary random processes have infinite
energy. This is because stationarity implies that E[[x[n]|?] = ¢+,(0) is a constant that is
independent of 1, so when we sum that quantity over all time the result becomes infinite.
(Deterministic periodic time functions also have infinite energy for basically the same
reasons.)

A more appropriate measure is power, which refers to energy divided by time. We can
define the power associated with a sample function of a stationary random process x[n]
in terms of the time average

N
) 1 2
= 4.23
Power 1\1[1_1)110 N1 H_E_N|x[n]| ()

Note that this is also the time average of the quantity |x[n]|?, so if the random process
is ergodic, power will also be equal to the ensemble average IE[|x[n]|%], or [E[x?[n]] if the
sample functions of the random process are all real. While the total power is obtained
from this average, we will consider now the very important power spectral density function,
which describes how the total power is distributed over the constituent frequency com-
ponents. To provide greatest insight, we will consider three approaches to the definition
of power spectral density functions.

T, ‘
—»| Hpp(e¥) —>

HBp(ejw)
A A A
1 <> <>
w
| | | | -
[[[[=
—Tr —Wo wo T

Figure 4.8: The linear filter definition of power spectral density functions.

Physical definition. Consider the system in Fig. 4.8. Assume that the input to the filter
x[n] is a stationary random process with a particular distribution of power respect to
frequency, and with a total power equal to o2. The filter is an ideal bandpass filter with

Chapter 4. Introduction to Random Processes 65

bandwidth A and center frequency wj. As A becomes small, the amount of power in the
signal that emerges from the output of the filter is equal by definition to

2A
Power in band = prx(wo) (4.24)

In the expression above, the function P,,(w() represents the power spectral density func-
tion of the random process x[n] at the frequency wy. The factor of 2 in the numerator
represents the fact that both positive and negative frequencies are passed through the fil-
ter. The factor of 1/27 is needed because the total power in x[n] is obtained by integrating
P, (w) over all frequencies:

1 I
Total power = e J P (w)dw = o’x2 + m?c (4.25)
-

Similarly, the power between two frequencies w; < |w| < w, (considering both positive
and negative frequencies) is

2 @2
Power in frequency band = o P (w)dw (4.26)

w1

In other words, the power spectral density function is proportional to the amount of
power in a random process that is present at a given frequency.

Fourier transform definition. Recall that we defined the total power as

N
. 1 2
Power = I\l{l_r)réo N1 n_E_N |x[n]] (4.27)

From Parseval’s theorem we can also derive the power spectral density function as what
we get when we compute the magnitude squared of the DTFT of the sample functions
windowed over a finite duration, divided by the duration of the observations. We then
compute the expected value of the result over all of the sample functions of a random
process, and then taking the limit as the duration goes to infinity. Hence we can define
the power spectral density function P, (w) of a real random process x[n] as

N

Z x[n]ejon

n=—N

Py(w) = lim E

2
4.28
Noow 2N +1] ()

Note that this expresses the power spectral density function as energy per unit time,
broken down into frequency components

Autocorrelation function definition. Again assuming that the random process x[n] is
real, by expanding the magnitude squared expression (as in Eq. (4.28)), we obtain

N N *
Z x[n]e‘j‘“")[Z x[l]e‘j“’l]]
!

n=—N =—N
(4.29)

N N
Z Zx[n]x*[l]e_j“’m_l)] (4.30)

N

Z x[n]eon

n=-

1
2N +1

Py(w) = lim E E

N

2
= lim
Nocw 2N +1

or P (w)= lim

66 4.6. Random processes and linear filters

Letting m = | —n we can rewrite this as

Py (w) = lim E

N—ooo 2N +1

N] 0o n+N

YA =)) palmle e (431)
N

n=-— n=-oom=n—-N

Replacing the variable m by —m we obtain

W)=) ulomleTM =) [mle" (4.32)

The latter equality is valid because, again, the random process x[n] is assumed to be
real, so that ¢, [m] is even. In other words, the power spectral density function of a
real random process is the DTFT of the corresponding autocorrelation function. This
relationship is known as the Wiener-Khinchin theorem, and it is typically the easiest way
to evaluate power spectral density functions.

A random process is said to be white if it has a power spectral density function that is a
constant over all frequency, i.e.
2
Py (w) = Ox (4.33)

This implies that the autocorrelation function of a white random process is an impulse:
Prx[m] = Ufé[m] (4.34)

Since a white random process must also be zero mean (otherwise there would be a DC
bias and hence an impulse in the power spectral density function at w = 0), this implies
that the values of a sample function of a white random process at different times are all
statistically independent.

4.6 Random processes and linear filters

x[n] yin]

—_ hin] — >

We are often interested in what happens to the statistics of a random process when it is
passed through a linear filter. Specifically, let us assume that a real wide-sense stationary
random process x[n] is input to a linear filter with unit sample response h[n] producing
the output process y[n]. As in the case of deterministic signals, the input and output are
related by the convolution sum

(o)

ylnl=) hlkJx[n—k] (4.35)

k=—0c0
The mean of the output is easily obtained as

(o) (o) (o)

Z k]x[n - k]l Z h[k)E[x[n - k]] = m, Z h[k]

n=—o00 k=—c0

E[y[n]] =

Chapter 4. Introduction to Random Processes 67

The autocorrelation of the output is also straightforward to compute but requires a little
more algebra:

(o)

byylm] = E[y[n]y[n+m]] = E Z Zhl]x[n+m—l] or (4.36)

k=—co

byylm] = Z Zh[k E[x[n - k]x[n+m—1]] i ih [KIh[1prxlm +k—1] (4.37)

k=—col=—00 k=-c0l=-0c0

Now let r =1 —k or | = r + k. Substituting, we obtain

4)})3) Z¢xx m-—r Zh 1’+k (4.38)

The inner sum,) ; h[k]h[r + k], can be considered to be the convolution of the unit sample
response h[n] with itself time-reversed, which is actually the (unnormalized) autocorre-
lation function of the deterministic function h[n]. Recognizing this, we can rewrite the
equation for the output autocorrelation as

byy[m Z¢xx m=r]ppnlr] = Pxx[m]* ppnlm] = dx[m] = h[m]+ h[-m] (4.39)

Hence, the autocorrelation function of the output random process is obtained by convolv-
ing the autocorrelation function of the input convolved with the unit sample response and
convolved again with the unit sample response time reversed. Finally, noting the Fourier
transform pairs

h[m] < H(el®)

h[-m] < H*(el®)
(PXX[m] < Pxx(w)
we can obtain a relationship between the input and output power spectral density functions:
. " .) . 2
yylm] = Pu[m] * h[m] h=m] & Pe(w)H(e/)H (/) = Pe(w) [H(e)[" (4.40)

In other words, the output PSD equals the input PSD multiplied by the magnitude squared
of the transfer function of the filter. It can also be shown quite easily that the cross-

correlation function between the input and the output can be written as

Pxy[m] = E[x[n]y*[n+m]] = §pyx[m]+h[m] (4.41)
and
ny((‘)) = Pxx(w)H(ejw) (442)

68

4.6. Random processes and linear filters

5. Classical Power Spectral Density Estimation

s o)

Introduction 69
5.2 Overview of parameter estimation 70
5.3 Estimates of the mean and variance of a random
process 71
5.4 Estimates of the autocorrelation function 73
. Estimating power spectral density functions by
computing the periodogram 74
5.6 Performance of PSD estimators based on the
periodogram 75
5% Smoothed estimators of power spectral density 79

The power spectral density function is the means by which we characterize the frequency
content of a random process. Nevertheless, estimating power spectra accurately is a sur-
prisingly difficult problem. This chapter describes how we can use “classical” methods to
estimate power spectral density functions accurately, despite some challenging fundamen-
tal limitations.

5.1 Introduction

The power spectral density function (PSD function) is the means by which we charac-
terize the frequency content of a random process x[n]. As it turns out, estimating power
spectral density functions in a fashion that is unbiased and consistent is surprisingly dif-
ficult to do, even though the problem of spectral density function estimation has received
a great deal of attention for decades. This difficulty is reflected in the fact that there
are currently a large number of spectral estimation algorithms that are widely used for
different types of random processes (cf. Kay and Marple, 1991).

There are two major types of approaches to solving the power spectral density estimation
problem. The first family of approaches, which are referred to collectively as “classical”
approaches, is based on estimation of the Fourier transform of the autocorrelation func-
tion, followed by further processing to reduce the variance of this estimate. The second
type of approach, which will be addressed in the following two chapters, characterizes
the spectral density function as a parametric function, and the individual parameters of
this function are estimated using various techniques.

In the sections below we begin by discussing various aspects of parameter estimation it-
self, including what makes an estimation algorithm a good algorithm. We continue with
some discussion of estimators for the mean, variance, and autocorrelation functions of
a random process. Next we define the periodogram, which is an estimate of the Fourier
transform of the autocorrelation function of a random process, and consequently the ba-
sis for estimating power spectral density functions. We show that the variance of the

69

70 5.2. Overview of parameter estimation

periodogram is unacceptably high, but that this variance can be reduced through the use
of multiple types of smoothing.!

5.2 Overview of parameter estimation

It is frequently necessary to estimate parameters of random processes. These parameters
could be truly deterministic parameters such as the phase of the random-phase cosine
that we have studied in some detail, and they also could be statistics of random processes
such as their expected value or the coefficients of the autocorrelation function. We begin
by discussing the general process of parameter estimation, and we then discuss some at-
tributes of good estimators. Subsequently we provide some simple examples of estimates
of statistical parameters of random processes.

Observations x N
—_— P .
Unknown Statistical Estimate a(x)
. - >
Parameter a Parameter Estimator
D

Figure 5.1: Conceptual diagram of the estimation process.

Consider a deterministic but unknown parameter a that characterizes a random process.
Typically these parameters are random because we only can estimate them by observing
a finite portion of a single sample function of a random process that they affect. The
estimate that we obtain will vary from trial to trial because the samples of the random
process from which we derive the estimate are themselves stochastic. We refer to the
estimate of the random parameter as @¢. Note that the “hat” symbol over the & is used to
distinguish it from the parameter «a itself.

We will focus on the following common measures of goodness of parameter estimates:

Bias. The bias of an estimate of a random parameter is defined by
B=a-E[d] (5.1)

Bias, obviously, represents the extent to which the average value of the estimate differs
from the true value of the parameter that is being estimated. While zero bias is typically
preferred, it is acceptable for a parameter to have a known bias, since that bias can be
added to the estimate to obtain a new estimate with zero bias.

Variance. The variance of the estimate is defined by

Var[d] = E[(d - E[d])?] = 0} (5.2)
As always, the variance describes how spread about the mean the individual samples of
the random parameter are likely to be. We will frequently observe a tradeoff between bias
and variance in choosing which estimate to use for a particular parameter.

I This material is based on the corresponding discussion in Chapter 11 of Oppenheim and Schafer (1975).

Chapter 5. Classical Power Spectral Density Estimation 71

Mean square error (MSE). The mean square error of an estimate is defined as

MSE(d) = E[(d - a)*] = 02 + B? (5.3)

Consistency. An estimator is consistent if

lim B=0and lim az =0 (5.4)
N—->co N->oo
where N is the number of observed samples of the random process. Consistency is an
important measure of the asymptotic properties of estimates. Unsurprisingly, we would
normally want to have the bias, variance, and MSE be as small as possible, and for the
estimator to be consistent.

5.3 Estimates of the mean and variance of a random process

Let us now consider a discrete-time random process x[n]. We will assume that the sam-
ples of x[n] are statistically independent and identically distributed, with true mean and
variance m, and o?. (Note that this process would be white if its mean were equal to
Zero.)

A pair of “reasonable” estimates of the mean and variance of x[n] are the corresponding
sample mean and sample variance:

N-1
1
1, = N x[n] (the sample mean) (5.5)
n=0
N-1
1
52 = N ;(x[n] —1i1,)? (the sample variance) (5.6)

Now let’s look at these estimates in terms of some of the attributes of estimators defined
above.

The expected value of the sample mean. We can obtain the statistical average of the
sample mean quite easily:

1 N-1 N N-1
E[#,]=E N Zx[n] Z [x[n]] My = my (5.7)
n=0 n=0 n:O

Consequently B = [E[r1, | — m, = 0 for the sample mean.

The variance of the sample mean. The variance of the sample mean is obtained by com-
puting

Or%zx :]E[(Thx_mx)z] :IE[H%ZC]—WIQZC (5.8)
1 -1 1 N-1 1 N-1 N-1 -1
_ - 2 2
5 =E|y) aln A] m? = {Z]E[x [n]] + Z Z lE[x[n]]]E[x[l]]} m>
n=0 l:O n=0 n=0 1=0,l=n
(5.9)
2 2 2N 2

G% :Gx+mx+mx(N 1)_m)2C:Gx (5.10)

1 N N N

72 5.3. Estimates of the mean and variance of a random process

We can also see that the sample mean is consistent because its bias and variance asymptote
to zero as the number of samples increases to infinity. (Actually, the bias is always zero,
as noted above.)

Mean of the sample variance. The mean of the sample variance is obtained by

| Nt 1 Nt
E[67]=E| 5) (xln] mx)2] =)_E{FInl-2alnli + (i)’ (5.11)
n=0 n=0
where again
| Nt
iy = N x[n] (5.12)
n=0
The first term of the expression for [E[6/] is
| Nt | N
NZIE[xZ[n]]zﬁ (02 +m2)=02+m? (5.13)
n=0 n=0

n=0 n=0 1=0 n=0 [=0
) N-1) N-1 N-1 o2
_ 2 — _ 2 2 2 X 2
=3) BCll-<5)) Elalnllll]=~5(of +md) = (N = Dmi = =25 —2m]
n=0 n=01=0,l#n
(5.15)

The third term of the expression for [E[62] is

N-1) N-1 4 N-1 PN N N-1 N-1
5 Zm 2] = ﬁ B ZN ZlE[x[l]x[r]] =S {—2 E[x2[1]] + Z E[x[r] x[l]]}
1=0 r=0 n=0 1=0 r=0 1=0,l=r
(5.16)
N-1 /o 2 2 2 2
1 N-1
:Nz{g";jmu(N)mx}:%’wm,% (5.17)
n=0
Adding the three terms together produces
2 2 N -1
E[62]=02+m2—22 —om2+ % 2 = o2 (5.18)

N * N * N F
Note that the variance of the sample mean does not equal the mean of the sample variance
of x[n].

Variance of the sample variance. The derivation of the variance of the sample variance
goes beyond the scope of the present discussion. Suffice it to say that it can be shown that

Varl6?] = (Bl n]] - (BL[n]) (519)

This suggests that the sample variance is a consistent estimate of the variance, even
though it is a biased one. If the process x[n] is Gaussian, we can break the fourth moment

Chapter 5. Classical Power Spectral Density Estimation 73

[E[x*[n]] into the sums and products of second-order moments like E[x?[n]] according
to the moment factoring theorem; otherwise there is no general approach to simplifying
this term. We discuss some of the issues associated with estimating variance in the next
chapter when we consider the estimation of power spectral density functions.

5.4 Estimates of the autocorrelation function

Let us now turn our attention to the problem of estimating autocorrelation functions.
Consider a wide-sense stationary ergodic random process x[n] with mean m, = 0, so that
we know that the power spectral density functions exists without delta functions. Under
these conditions we can write

Vax[m] = ¢xxlm] = Elx[n]x[n + m]] =< x[n]x[n + m] > (5.20)

In general, given a sequence of N consecutive samples of x[n] we can write the sample
autocorrelation sequence

N-1-|m|

! x[n]x[n+m], |m| <N (5.21)

N —|m|

Ca,cx[m] =

n=0

Note that the number of samples involved in computing the sample autocorrelation func-
tion ¢, [m] depends on the value of the lag parameter m and is equal to N —|m|. It is easy
to show that this sample autocorrelation function is unbiased:

1 N-1-|m|
N_lmlE[; x[n]x[n+m] =N ; E[x[n]x[n+m]] = ¢y [m]
(5.22)

It can be shown (cf. Jenkins and Watts) that the variance of ¢, [m] can be approximated

by

N-1-|m
1 |m|

E[ciy[m]] =

(o)

D (3 + Gl + mlpcll = m] (5.23)

=—00

1

Var[cy[m]] = ml

with the expression above being valid for |m| < N. So for fixed m and large N, the vari-
ance of the sample autocorrelation function c;,[m] goes to zero, leading to a consistent
estimator.

A second plausible estimator of the autocorrelation function is

N-1-|m|

Coxm] = N Z x[n]x[n+m] = N I_\]|m|c;x m] (5.24)
n=0

(Note the absence of the prime symbol on the left hand side of the equation above.) From
Eq. (5.24) we can see that

N —|m
Eleglml] = "o,] (5.25)
Hence the estimator c,,[m] is biased but it is asymptotically unbiased because
N —|m m
B =l - Blewnl] = (1=)= Bl o (5.26)

74 5.5. Estimating power spectral density functions by computing the periodogram

Since
N A LU (527)
we can write its variance using Eq. (5.23) as
Var[cy[m]] = Mvar[c' [m]] (5.28)
XX - N2 xx :
or -
1
Var[ewlml]~ 5) (9311 + Guall + mlpssll = m] (5.29)
|=—c0

Note that for the biased estimator c,,[m], the variance of the estimate goes to zero as the
number of samples becomes infinite for all values of m. In addition to a more fundamen-
tal consideration to be discussed in the following chapter, estimates of power spectral
density functions tend to be based on the estimator c,,[m] even though it has a (known)
bias because the variance of the estimator c;,[m] can become arbitrarily large as |m| ap-
proaches N. (Again, this happens because only a few samples are available for the cal-
culation when |m| approaches N.) As before, in comparing these two estimators we see a
tradeoff between bias and variance: c,,[m] is biased while ¢, [m] is not, but the variance
of ¢, [m] asymptotes to zero for large N while that of c;,[m] does not. These issues are
especially important in estimating power spectral density functions, because the tails of
estimates of ¢, [m] contribute just as much to its Fourier transform as do the samples
with small lags.

5.5 Estimating power spectral density functions by computing the
periodogram

We noted in Chapter 4 that the Wiener-Khinchin theorem showed that the power spec-
tral density (PSD) function is the Fourier transform of the autocorrelation function of
a wide-sense stationary random process. We also discussed two ways of estimating the
autocorrelation function, along with the tradeoff between bias and variance that results.

The most obvious approach to the estimation of the power spectral density function is to
first obtain a consistent estimate of the autocorrelation function and then compute the
DTEFT of that sample autocorrelation function, applying the Wiener-Khinchin theorem.
While both ci,[m] and c,,[m] have means and variances that asymptote to zero as the
number of samples goes to infinity, the biased estimator of the autocorrelation function
Cxx[m] is more widely used because it has been conjectured that the mean-square error of
the biased estimator is less than that for the unbiased estimator for many practical cases.
We will also discuss a more fundamental reason for using c,,[m] below. We define the
periodogram I (w) as the DTFT of the biased sample autocorrelation function ¢, [m]:

N-1

Iv(@)=) cylmleom (5.30)

m=—(N-1)
Substituting the definition for c,,[m] from (5.24) we obtain

N-1 N-1 N-1 1

Iy(w) = Z % Zx[n]x[n+ mle 1O = % Zx[n] i x[n+mle1®m (5.31)

m=—(N-1) = n=0 n=0 m=—(N-1)

Chapter 5. Classical Power Spectral Density Estimation 75

Keep in mind in the above equation that x[n] is assumed to be real. Now let I = n+m, so
m=1-n:

1 i e w(l-n) l i +'u)nN 1 jwl * (jw jw
=N Zx[n] Z x[1]e”] = x[n]e™ x[1]e”? —XN(e]) XN (e7Y)
n I=n—(N-1) n:0 =0
(5.32)
where the subscript N in Xy (e/®) is used as a reminder that we are computing the DTFT
of only a finite segment of the time function. The limits on the inner sum were changed
because x[n] is nonzero only for 0 < n < N —1, as noted above. This leads to our second

way of thinking about the periodogram:
1 jw 2
In(w) =7 [Xn(e)] (5.33)

where as before Xy (/) is the DTFT of the segment of the random process x[n] for 0 <
n <N —1. As we observed in the discussions leading up to Eq. (4.28), the power spectral
density function can be thought about as the expected value of the magnitude squared
of the Fourier transform of a limited-duration segment of a random process divided by
that duration, taking the limit as the duration is increased to infinity. In Eq. (5.33) we
see that the periodogram can be thought of as the instantaneous approximation (without
the expectation operation) of the true power spectral density, in that it is the magnitude
squared of the Fourier transform of a limited-duration segment of a sample function of
x[n], again divided by the duration of that segment.

5.6 Performance of PSD estimators based on the periodogram

In this section we will consider the mean and and variance of the periodogram.

5.6.1 The mean of the periodogram

The mean of the periodogram is relatively easy to compute:

N-1 N-1
Elly(@)]=E|) cxx[m]e_j“’m} =) Eleg[m]leom (5.34)
m=—(N-1) m=—(N-1)
Because the biased estimate of the autocorrelation function can be expressed as
N-1-|m|
1 N —|m|
Calm] = ZO x{nlxln+m] = == cl[m] (5.35)
n=

[cf. Eq. (5.24)], the expectation of the periodogram can be written as

N-1 N-1

Eiy@l= Y Elealmllen= Y Mg pupeion (5.36)
=—(N-1) m=—(N-1)
N-1

=y Nl e (5.37)

=—(N-1)

76 5.6. Performance of PSD estimators based on the periodogram

as cy[m] is an unbiased estimate of ¢,,[m]. Another way to look at this calculation is to
think of the expected value [E[c,,[m]] as being a windowed version of ¢, [m]:

Nl e[m], |ml <N

E[cy[m]] = _ (5.38)
0, otherwise
Defining the Bartlett window as
SR ml <N
wy[m] = (5.39)
0, otherwise
We can write the expected value of the biased autocorrelation function as
E[cye[m]] = wB[m](Pxx[m] (5.40)
Hence we can redefine the expected value of the periodogram as
N-1 _
Elly(@)]=) wg[mlpylmle " (5.41)
m=—(N-1)

The windowing operation that produces [E[c,,[m]] from ¢,[m] is depicted graphically in
the left column of Fig. 5.2. Since E[Iy(w)] is the Fourier transform of the product of the
true autocorrelation function and the Bartlett window in time, it can be expressed in the
frequency domain as the circular convolution of the true power spectral density function
P (w) with Wg(e/®), the Fourier transform of the Bartlett window:

Elly ()] = o Pul) 0 Wi(e) = o [Pa(@Wy(00 (5.42)
wplm] wr[m)
wg[m] wr[m]

U

Figure 5.2: Examples of the formation of the expected values of c,,[m] (left column) and
Cyx[m] (right column) by multiplying the true autocorrelation ¢, [m] by wg[m] and wg[m]
depicted below for N = 6 in each case, which implies a total window length of 2N -1 =11.

Chapter 5. Classical Power Spectral Density Estimation 77

We had chosen to define the periodogram in terms of the biased autocorrelation function,
cxx[m]. Had we used instead the unbiased autocorrelation function, c;.,[m], the expression
for the mean of the autocorrelation function would have been

1 N-1—|m| 1 N-1-|m|
el = | =y) slalsbem| = =g) dalnd = bl
(5.43)
where
1, |m/<N
wg[m] = (5.44)

0, otherwise

The expected value of the corresponding periodogram, which we label as I};(w) for con-
venience would be

TC

s Pal@O W) = o [PO 0 (5.49

Ell}y(w)] = 5~)

where as before Wy(e/¢) is the Fourier transform of wg[m]. This operation is depicted in
the upper right panel of Fig. 5.2.

wpn] Wg(e?*)
1 @ 6
08 5
4
06
3
0.4
2
02 ;
0 n 0 w/m
-5 0 5 1 05 0 05 1
wr[n] Wr(el)
10 000 0 00
10
08
0.6 5
0.4
0 w/m
02
0 n 5
5 0 5 1 05 0 05 1

Figure 5.3: The rectangular and Bartlett window functions, wg[n] and wg[n], and their
Fourier transforms, Wg(e/“) and Wg(e/“). Functions are plotted with a value of N =6,
producing a total window duration of 11, as in Fig. 5.2.

Using basic discrete-time Fourier transform definitions and properties, it is easy to show
that the Fourier transforms for the rectangular and Bartlett (or triangular) windows wg[m]
and wg[m] are
; sin(w(2N —-1)/2)
W Jjw —
r(€) sin(w/2))

(5.46)

78 5.6. Performance of PSD estimators based on the periodogram

and

1

Wp(e/”) = —((5.47)

sin(wN/2) 2
N

sin(w/2)

The Fourier transforms Wp(e/*’) and Wg(e/?) are plotted in Fig.5.3 for the value of N = 6
for a total window duration of 11. As N goes to infinity, both Wg(e/*) and Wg(e/®) con-
verge to a delta function of area N, so both I (w) and I};(w) are asymptotically unbiased.
As N becomes finite and smaller, the periodogram will become increasingly biased as
[E[Iy(w)] becomes “blurred” by the convolution of the main lobe of Wg(e/®) or Wg(e/®)
with the true power spectrum Py, (w).

We note that the Fourier transform of the Bartlett window is strictly positive while the
Fourier transform of the rectangular window is both positive and negative at different fre-
quencies. This is important because it means that if the unbiased autocorrelation function
cy[m] were used as the basis for an estimate of the power spectral density function, the
power spectrum could have an expected value that is negative for some frequencies. This
violates the constraint that a power spectral density function must be non-negative for
physical reasons, which is why the biased autocorrelation function c,,[m] is preferred in
estimating power spectral density functions using the periodogram. We elaborate on this
issue further in Sec. 5.7.2.

5.6.2 The variance of the periodogram

The major problem with the periodogram is that its variance is not well behaved. In fact,
the variance of the periodogram cannot be easily calculated except for the simplest of
stationary random processes. While some analytical solutions to this problem have been
proposed by Jenkins and Watts (1968), Oppenheim and Schafer (1975) describe an ap-
proach that provides approximate expressions for the variance obtained when using the
periodogram to estimate the power spectrum of nonwhite Gaussian random processes.
Their approach leads to the approximate expression

sin(wN)

2
Var[Iy(w)] ~ P2 (w) {1 + (m) } ~ P2 (w) for large N (5.48)

The most important thing about this result is that the approximate variance is propor-
tional to the true power spectral density function and does not become smaller as N in-
creases. This is in part a consequence of the fact that as |m| approaches N, the values
of the autocorrelation function are estimated with increasing unreliability because these
coefficient estimates are based on a smaller amount of actual overlapping data points.
Because the autocorrelation is converted to the periodogram through Fourier transforma-
tion, the unreliability of the estimates of the autocorrelation coefficients in the tails causes
estimates of the values of all the coefficients in the power spectral density function to be-
come unreliable. This fact is illustrated in Fig. 5.4, which depicts sample periodograms
for a stationary random process that is Gaussian but not white. We note that when the se-
quence length N = 256, there is substantial spectral blurring and the dip in the spectrum
at approximately w = 0.4 is filled in because of the convolution in frequency of the true
PSD with the DTFT of the window function as described in Eq. (5.42).

Chapter 5. Classical Power Spectral Density Estimation 79

Periodogram, N = 256

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
wlT

Periodogram, N = 1024

.m.li'l. 1 1 i I 1 1 1 I]

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
wlm

Figure 5.4: Example periodograms of a nonwhite Gaussian random process for segments
of three different length. The red curve indicates the true power spectral density function.

The most significant thing that we can observe from Fig. 5.4, though, is that the variance
of the periodogram does not diminish as the number of samples used to estimate it in-
creases from 256 to 4096, which is consistent with the result of Eq. (5.48). In fact, the
only way to reduce the variance of the periodogram is by averaging multiple estimates of
it. We discuss two methods to accomplish this in Sec. 5.7 below.

5.7 Smoothed estimators of power spectral density

The key to reducing the variance of the periodogram as an estimate of power spectral
density is to invoke statistical averaging in some fashion. The two major ways of doing
this are averaging the periodograms of subsets of the observed samples over time and
(implicitly) averaging values of the estimate in frequency. This section describes and
discusses these approaches.

5.7.1 The Bartlett method

The most straightforward way to reduce variance is to compute periodograms over suc-
cessive samples of the random process and average these periodograms over time. As

80 5.7. Smoothed estimators of power spectral density

usual, let us assume that we have a total of N samples of data: we observe the random
process x[n] for 0 < n < N —1. We begin by partitioning the data into K abutting sections
of length M, so that N = MK:

xXDnl=xn+((i-1)M)], 0<n<M-1, 1<i<K (5.49)

Computing the periodograms for each subsequence we obtain

, | P
II(\;I)(a)) = Zx(’)[n]e_]“’” (5.50)
n=0

The Bartlett spectral estimate is obtained by averaging the K individual periodograms:

K .
Bul)= 2) (@) (551)
i=1

The expected value of the PSD estimate provided by Bartlett averaging is easy to obtain:
1) 1
; ‘
E[Bas(w)] = ¢ ;EUM (@)] = 5-Pulw) © Wp(e/*) (5.52)
1=

with the last equality following Eq. 5.42. In this case, Wp(e/?’) is the DTFT of a Bartlett
window of duration M. We note that the expected value of the Bartlett average is always
the convolution of the true PSD with the DTFT of the window function regardless of
the number of sections averaged, K, but as K increases, the duration of each individual
segment M will decrease, causing the width of the main lobe of Wp(e/%) to become wider
and the estimate B, (w) to become more biased.

The variance of the estimate B,,(w) will depend in part on the extent to which the suc-
cessive subsequences x)[n] are statistically independent. If M is sufficiently large that
¢prx[m] is relatively small for |m| close to M, then successive subsequences of x[n] will be
approximately statistically independent. In that case, we can use the property that the
variance of the sum is the sum of the individual variances, allowing us to write

K
Var[B,, ()] ~ % ;\/arm‘j(w)] ~ %Pfx(a)) (5.53)
i
with the last approximate equivalence following the discussion leading up to Eq. (5.48).
In other words, the resulting variance is inversely proportional to the number of seg-
ments that are used for the averaging. The price that is paid, though, is that with a fixed
amount of input data, the duration of each subsequence M decreases, which causes the
bias to increase as the effective width of the mainlobe of Wg(e/%) increases. Hence, there
is a tradeoff between better variance and worse bias as the number of subsequences K is
increased for a fixed segment length N of the observed random process.

These effects can be seen in Fig. 5.5, which shows the sample estimates of P,,(w) obtained
by extracting 1, 4, and 16 abutting subsequences from 1024 samples of a Gaussian ran-
dom process, and subsequently averaging the periodograms that are obtained. It can be
seen that as the number of subsequences increases, the variance decreases but the bias
increases.

Chapter 5. Classical Power Spectral Density Estimation 81

1 section of length 1024

40

m
T
3
x
x
o
wlm
0 4 sections of length 256
[u1]
T
3
x
x
o
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
wlm
40 16 sections of length 64
m
o
3
x
x
o
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
wlm

Figure 5.5: Effects of the number of segments on bias and variance using the Bartlett
method. Estimates of power spectra are shown for 1024 samples of a stationary Gaussian
random process, comparing results obtained by averaging 1,4, and 16 subsequences of
the random process. The true power spectral density is shown in red.

5.7.2 Windowing the autocorrelation function: the Welch method

A second way of reducing the variance of the periodogram is by averaging it over fre-
quency over a neighborhood of frequencies. For example, we can define the smoothed (or
“smeared”) periodogram as

1 T ;

Sulw)= 5 | InOW (el)do (5.54)
21 J_x

where W,(e/®)is a fgnction that has a smearing pulse in the frequency domain, not unlike

the functions Wg(e/”) and Wg(e/”) that we have already discussed. Let us define the

generic window function w(m] to be the inverse DTFT of W (e/“):

1 (7 .
wg[m] = —J W,(e/?)e! " dw (5.55)
21t J_;
so that we obtain the Fourier transform pair
M-1 _
Sel@)= Y cx[mw[m]e T (5.56)

m=—(M-1)

82 5.7. Smoothed estimators of power spectral density

It is clear that it is necessary for w[m] to be real and even in order for S,,(w) to be real and
even, which is required for S,,(w) to be a valid power spectral density function. While
we also know that S,,(w) must be non-negative, it is less obvious what constraints this
places on the function w,[m]. As we have discussed above, a sufficient but not necessary
condition for Sy,(w) to be nonnegative is for W,(e/¢) itself to be nonnegative, since we
know that S,,(w) is the convolution of W(w) with the periodogram I;(w), which we
know will be nonnegative.

1 section of length 1024

40

m
o
3
o
x
o
wln
m
o
3
*x
td
o
0 0.1 0.2 03 04 05 06 07 0.8 0.9 1
wlw
0 16 sections of length 64
1]
o
3
x
x
o
0 0.1 0.2 03 0.4 05 06 07 0.8 0.9 1
wlm

Figure 5.6: Effects of windowing the time function before calculating the power spectrum.
Estimates of power spectra are shown for 1024 samples of a stationary Gaussian random
process, comparing results obtained by averaging 1,4, and 16 subsequences of the random
process. The true power spectrum is shown in red, the Bartlett estimate obtained by
averaging periodograms is shown in blue, and the Welch estimate obtained by windowing
the data before computing the averaged periodogram is shown in green.

One way of assuring that W,(e/*) is nonnegative is to require that w,[m] be itself an auto-
correlation function, since the Fourier transform of an autocorrelation function will have
the properties of a power spectral density function and hence be non-negative. In other
words, we need to choose wg[m], the inverse DTFT of the smoothing function W;(e/“) to
be of the form

(o)

we[m] = Z wlk]w[m + k] (5.57)

k=—oo

for some finite-duration w[m]. This can be guaranteed if we apply the window w[m] to the
original sample function rather than to the autocorrelation function as is done implicitly

Chapter 5. Classical Power Spectral Density Estimation 83

in the discussions leading up to Eqgs. (5.41) and (5.45). Specifically, the Welch method pro-
poses that smoothed power spectral density function estimates be obtained by averaging
series of modified periodograms. Specifically, let

K
1
=0 Il (5.58)
i=1
where
S M-1 2
7 Zx [nJw[n]e®"| fori=1,2,...,K (5.59)
n=0

and x)[n] was defined in Eq. (5.49). The normalizing constant U is needed for the
smoothed estimate to be unbiased, and is equal to

| M-
_ 2
U_M Zdw [n] (5.60)

Note that if w[n] is rectangular with

1, 0<n<M-1
wln] = (5.61)
0, otherwise

the resulting value of U will be equal to 1. The original Bartlett window used in Eq.
(5.42) can be thought of as the autocorrelation of the window w[n] in Eq. (5.61), so the
normalization term U is already a part of Eq. (5.42) implicitly. Figure 5.6 shows the
original estimated power spectra calculated according to the Bartlett method (in blue) to
the same calculation obtained by imposing a Hamming window on the segments of the
original data (in green), following the Welch method. It can be seen that the imposition of
the window is helpful in reducing the bias, especially in the notch of the spectral estimate,
without adversely affecting the variance of the estimate. As before, expressions for the

variance of the smoothed estimate of the power spectrum, S,,(w), and using the Welch
method, BY,(w), are difficult to develop without further assumptions and approximations.
Welch (1970) noted that if the segments x(!)[1] are non-overlapping,

1
Var[BY,] ~ Kszx(w) (5.62)

Figure 5.6 shows the effect of windowing the data explicitly before computing the modi-
fied periodograms following the Welch method [Eqgs. (5.58) through (5.60)].

Further discussion on the variance of periodograms and smoothed periodograms may be
found in Oppenheim and Schafer (1975).

In summary, we described and discussed in this chapter some of the most widely-used
approaches to classical spectral estimation. All of these techniques are based on the pe-
riodogram, which can be thought of as either the Fourier transform of the sample auto-
correlation function of a finite segment of observed data or as the squared magnitude of

84 5.7. Smoothed estimators of power spectral density

the Fourier transform of the same data segment divided by the number of samples in the
segment. It was shown that with reasonable computation procedures the expected value
of the periodogram would asymptote to the true power spectral density function as the
number of samples in the calculation increased to infinity. Unfortunately, the variance
of the periodogram does not decrease, even when a large number of observed samples
is used in the calculation. We showed that variance can be reduced either by dividing
the observed data into sections and computing the average of the periodograms obtained
for each section or by smoothing the periodogram in frequency, which is equivalent to
multiplying the original data by a window function in time.

All of the methods described in this chapter work from either a finite segment of observed
data or the autocorrelation function of those data, calculated over only a finite number
of lags. In effect, this is equivalent to assuming that the values of the autocorrelation
function beyond the limit of calculation are equal to zero. While this may be approxi-
mately true in some cases, it is certainly not true in many practical cases of interest. In
the next chapter we begin a discussion about an entirely different way of thinking about
estimating power spectra: we will make no assumptions at all about the tails of the au-
tocorrelation function, but we will constrain the values of these unknown coefficients to
create an estimated power spectral density function that is as “smooth” as possible.

6. Introduction to Maximum Entropy Spectral Estimation

6.1 Introduction 85
6.2 Information and Entropy 85
6.3 Spectral estimation by maximizing entropy 87
6.4 The all-pole model of a spectral estimate 89

In the previous chapter we developed estimates of the power spectral density function of a
random process from a finite number of samples of its autocorrelation function, implicitly
assuming that autocorrelation values outside the limited range are equal to zero. In this
chapter we develop an alternate approach that makes no assumptions at all about the
unknown autocorrelation values. The only constraint on the PSD estimate is that it must
be as “smooth” as possible.

6.1 Introduction

In this chapter we discuss the derivation of the maximum entropy method (MEM) for
estimation of the power spectral density function.!

In the classical spectral estimation techniques that we have discussed (including the
Bartlett, Blackman-Tukey, and Welch methods) we have estimated ¢,,[m], the autocorre-
lation function of the random process x[n] for m < P and developed spectral estimates
from the periodogram, which is the DTFT of the estimated autocorrelation function.
These methods all make an implicit assumption that ¢, [m] = 0 for |m| > P. (The variable
P is used in the MEM spectral estimation literature in the same way that N was used
in discussing autocorrelation in Chapter 5.) In contrast, the MEM approach makes no
assumption about the values of ¢, [m] = 0 for [m| > P, but seeks instead to obtain the
estimated power spectrum that is as “smooth” as possible.

6.2 Information and Entropy

Implementation of the MEM method would require that we have a measure of “smooth-
ness” of an estimated power spectral density function. The entropy H associated with a
power spectral density function is proposed as the corresponding measure of smoothness.

IMuch of the discussion in this chapter follows Sec. XV in the review/tutorial article by E. A. Robinson,
E.A., “A historical perspective of spectrum estimation,” Proceedings of the IEEE, vol.70, no.9, pp. 885-907
(1982).

85

86 6.2. Information and Entropy

The concept of entropy is encountered in a number of fields. For example, in thermo-
dynamics, entropy is a measure of the amount of “disorder” of a system. Entropy is a
central concept as well in aspects of statistical information theory and coding, as initially
proposed by Claude Shannon in 1948. (Shannon received an honorary doctorate from
CMU for these contributions, among many other things, in the 1980s.) In information
theory, the information associated with learning that a discrete probabilistic event X; is
true is the log of the event’s inverse probability:

I(X:) = 1og(ﬁ) ~ log(P(X;]) (6.1)

In other words, the information associated with an event can be thought of as the amount
of “surprise” engendered by learning that the event is true. If the log is calculated us-
ing base 2, the information associated with an event is measured in bits. Note that the
information associated with an event of a priori probability 0.5 is equal to one bit, and
that if we learn of the outcomes of two statistically independent events, the information
associated with that joint event is equal to the sum of the information associated with the
two events individually.

By definition, entropy is the expected value of the information over a collection of events:

N
H=) -log(P(X;])P[X;] (6.2)
i=1

Example 6.1 (Entropy associated with the roll of a die) As an example, consider the
information associated with the outcomes of roll of a fair die (i.e. the singular form
of “dice”), which has six surfaces, each landing on top with probability 1/6:

6
H= Z—logz(P[Xi]P[Xi] = —log,(1/6)(1/6) = 2.585 bits
=il

Now consider in contrast the information associated with an unfair die for which
P[1] = 0.5 and the probability of surfaces 2 through 5 is 0.1:

N
H= Z—logz(P[Xi])P[Xi] = —log,(1/2)(1/2) + 5log,(1/10)(1/10) = 2.161 bits
g=il

Note that the entropy associated with those probability densities is greater when
the probabilities are uniformly distributed than when the probability is more con-
centrated in a single outcome. This is consistent with the idea that a PSD function
will be “smoothest” when its entropy is maximized.

For a continuous random variable x the information associated with its probability den-
sity function is can be written as

TC

H(m(a))zf “log(px(a))ps(a)da (6.3)

—TC

Chapter 6. Introduction to Maximum Entropy Spectral Estimation 87

Similarly, the entropy associated with a power spectral density function P, (w) is

H= % J-n log(Pyy(w))dw (6.4)

Note again that the greatest value of H for P, (w) will occur when Py, (w) is uniform over
frequency (i.e. “white”), while H will decrease as spectral density becomes more focussed
in a narrow band of frequencies.

6.3 Spectral estimation by maximizing entropy

In general, we assume that we begin the MEM estimation problem by being given the first
P lags of an autocorrelation function (or obtaining estimates of them),

Pxx[m], for 0 <|m|< P (6.5)

We then attempt to obtain the power spectral density function P, (w) that is “smoothest”
subject to the constraint that the inverse DTFT of P, (), qux[m], equals the true autocor-
relation function, ¢, [m] for |m| < P. (§[m] can have any value for [m| > P). As discussed
above, this means that we wish to maximize the entropy of the estimate of the spectral
density function Pe(w),

1 J” .
H=— | (log[Py(w)])dw (6.6)
27_(. g XX
subject to the constraint that
A 1 T .
Pxx[m] = ZJ- Po(w)e!“"dw = pyy[m), for 0 <|m| < P (6.7)
=Tt

Although this problem can be solved in principle using Lagrange interpolation, we will
obtain our result using more prosaic means. As usual,

[ee)

Per(@)=) uxlmle ™ (6.8)

m=—o0

We will try to find the values of (ﬁxx[m] for |m| > P that maximizes the expression for H
above. We begin by considering the partial derivative

IEA @ _ jom (6.9)

b [m]
which implies
alog(pxx(w)) _ e jom

J = - (6.10)
a(PXX[m] Pxx(w)

So, maximizing the entropy of the process requires that for |m| > P.

JH 0 1 T .
Ipurlm] aqﬁxx[m]ﬂj-n log(Pux(w))dw =0 (6.11)

88 6.3. Spectral estimation by maximizing entropy

Taking the derivative inside the integral we obtain

H 1 (™ dlog(P 1 (7™ e jom
Aa—z—f de:—j dw=0 (6.12)
aqux[m] 27{ -TC acpxx[m] 277: —TC Pxx(w)
Hence we need to constrain
1 n A - A 1
— P “Lemiomge =0 f P where (P g 6.13
= _n(() e w or [m| > P where (Py,(w)) P () (6.13)

For notational convenience, let us define 1, [#1] to be the inverse DTFT of (P, (w))™!, with

Yy [m] =0 for |m| > P (6.14)
Hence we can write (P,,(w))™! as
P
(pxx(w)y1 = Z Ilbxx[m]eijwm (6.15)
m=—P
or)
pxx(w) = (6.16)

Zi:_p lszx[m]e_jwm

Generalizing from DTFTs to z-transforms, this corresponds to

. 1
XX = 6.17
(Z) 51:—P Yx[m]zm ()
with
pxx(w) = pxx(z) (6.18)

z=el®
Because P, (w) is a real and even function of frequency, its reciprocal, 1/P,(w), is a real
and even function of frequency, so ¢, [m], the inverse transform of the reciprocal, will be
a real and even function of m. This means that the poles of P,,(z) will occur at reciprocal
locations in the z-plane, so the existence of a pole at location z = z, implies that there will
also be a pole at z;'. Mathematically, this can be expressed as

2 2
pxx(w) = % = % (6.19)
A(2)A(z7Y) (1-ayzt—azz 2 —apz P)(1 —ayz—ayz2---—apzl)

From the point of view of power spectral density, this suggests that the random process
x[n] can be modeled as the output of a linear filter that has a white noise process w(n] as
its input.

Specifically, if w[n] has a power spectral density function (and variance) equal to o2, the
power spectral density of x[n] is equal to

P (w) = H(z)H(z"") (6.20)

z:efw
where in this case, the z-transform of h[n] is of the form

G

H(z)= ————
1- Zle akz‘k

(6.21)

Chapter 6. Introduction to Maximum Entropy Spectral Estimation 89

In other words, the maximum entropy solution states that the power spectrum Py, (w)
that matches the autocorrelation function ¢, [m] for |m| < P and at the same time is as
“smooth” as possible can always be characterized as the result of passing a white-noise
process through an all-pole filter. Of course, we have not yet specified exactly what that
power spectrum actually is. We will address the solution to this problem in detail in
Chapter 7 below.

6.4 The all-pole model of a spectral estimate

— h [n] —

Figure 6.1: Parametric power spectral density function estimation by modeling. The ob-
served random process x[n] is assumed to be generated by passing a white random process
w(n] through an LSI filter of a known type.

In the last section we noted that the maximum entropy solution to power spectral density
estimation can be characterized by passing a white-noise process w[n] through an all-pole
LSI filter, as illustrated in Fig. 6.1. This is an example of a type of parametric spectral esti-
mation, and the LSI filter is sometimes referred to as a model of that power spectrum. We
then attempt to estimate the parameters that characterize the filter model that provides
the best parametric approximation to the unknown power spectrum. (In contrast, in the
methods of power spectral density estimation discussed in Chapter 5 we worked from
a general estimate of the entire autocorrelation function and then applied smoothing of
some sort to reduce the variance of the estimated PSD function.)

In general, there are three types of parametric models that can be considered. The moving
average (MA) model has zeros but not poles:

M
H(z) = B(z) = Zblz‘l (6.22)
1=0

The name of the MA model derives from the fact that the output is indeed a weighted
linear combination of a moving average of input data points. In DSP, of course, this type
of model is simply referred to as a finite-impulse response (FIR) filter.

The autoregressive (AR) model has poles but no zeros:

G

Hz)=—— 7
1-YN apz*

(6.23)

As we have noted, this is the type of model that we found to be the solution to the MEM
formulation of the PSD estimation problem.

90 6.4. The all-pole model of a spectral estimate

The third type of model has both poles and zeros and is called (unsurprisingly) the au-
toregressive moving-average (ARMA) model:
B(z) Y lobiz!

HE =207 1 S (6.24)

Of the three models above, the autoregressive (all-pole) model is the most widely used in
part because the equations are most easily solved. While we will consider solutions for
the all-pole model in detail in the following chapter on linear prediction, it is worthwhile
to develop here the equations that will form the basis for the solutions.

The equations above specify
G X(z)

Hiz) = 1—2,121:1 ayzk - W(z)

(6.25)

Cross-multiplying and taking the inverse z-transform, and now using P to denote the
number of poles produces

P
x[n]—Zakx[n—k] = Gw|[n] (6.26)
k=1
or ,
x[n] = Zakx[n—k]+Gw[n] (6.27)
k=1

The white noise process is wide-sense stationary by definition, and hence the observed
process x[n] is as well. Its autocorrelation function is

P
OGxx[m] =E[x[n]x[n+m]=E x[n][akx[n+m—k]+Gw[n+m]]] (6.28)
. k=1
= Zakx[n]x[n+m—k] + GE[x[n]w[n + m]] (6.29)
Lk=1

Taking the expectation inside the sum produces

P
Pxx[m] = Z“k(f)xx[k] +02 form=0 (6.30)

k=1

and ,
Prxlml =) apllm—kl] for m=1 (6.31)

k=1

(The absolute value in the argument is used in Eq. (6.31) because the autocorrelation
function is even for real random processes. The derivation of the equations above also
assumes that the filter h[n] is causal.)

Equations (6.30) and (6.31), referred to as the Yule-Walker equations, are the basis for many
solutions to problems involving all-pole modeling. We will discuss some solutions to
these equations in our discussion of linear prediction in the following chapter.

/. Introduction to Linear Prediction

o

7.1 Introduction 91
7.2 Solution of the LPC equations 93
7.3 The FIR lattice filter 100
7.4 All-pole IIR lattice filters 105
7.5 Proof of the recursive lattice filter relationship 107

Linear prediction is one of the most widely used techniques to model speech signals, and
the underlying mathematics are the basis for a number of other foundational signal pro-
cessing techniques as well. We also introduce the lattice filter in this chapter, which has
many interesting properties.

/.1 Introduction

In this chapter we discuss most of the key concepts of linear prediction and lattice filters.
As we noted in Chapter 6, the linear prediction approach is one of several ways to accom-
plish filter design by modeling, where we try to come up with a parametric representation
that most closely matches the power spectral density function of an unknown random
process.!

Specifically, we discussed three times of parametric models for PSD functions at the end
of Chapter 6: the moving average (MA) model which has zeros only, the autoregressive
(AR) model which has poles only, and the autoregressive-moving average (ARMA) model
which has both poles and zeros Of the three types of parametric models, the all-pole AR
model is the most commonly used, largely because the design equations used to obtain
the best-fit AR model are simpler than those used for MA or ARMA modelling. Serendip-
itously, the all-pole model also has the ability to describe most types of speech sounds
quite well, and for both of these reasons the all-pole model has become widely used in
speech processing.

In these notes, we will begin with some general comments about linear prediction, which
drives us to consider an all-pole model of the power spectrum of a one-dimensional sig-
nal. We will then consider in varying degrees of depth the three major ways in obtaining
the parameters of the model, the autocorrelation method, the covariance method and

IThe material in this chapter is based on the discussion of LPC in the text Digital Processing of Speech
Signals (1978) by L. R. Rabiner and R. W. Schafer, which was updated in 2010 with the title Digital Speech
Processing.

91

92 7.1. Introduction

the partial correlation (PARCOR) method. We will conclude with a short introduction to
lattice filters.

7.1.1 Linear prediction of the current sample of a random process

In our initial consideration of linear prediction, let us imagine that we are observing a
random process x[n] . We would like to determine how to obtain a “best” prediction of the
current sample of x[n] from the previous P samples of the random process. Specifically,
let the predicted value %[n] be defined by

P
x[n] = Zakx[n—k] (7.1)
k=1

We can define the error of the approximation to be

e[n] = x[n]—-x[n] = x[n] - Zakx n—kj (7.2)

Later we will consider in some detail the z-transform of the error function:

P
z)[1- Zaszk
k=1

It is convenient to define the expected value of the square of the error function:

Zakx n— k]]] (7.4)

Our immediate goal is to determine the set of {a;} that minimize £2. For a particular
coefficient a; this is typically accomplished by differentiating &£ with respect to a;, setting
the derivative equal to zero, and solving for «;,

E(z) = = X(2)A(z) (7.3)

&% = Ele?[n]] = E[(x[n] - 2[n])’]

2 P
giai =E|2 x[n]—;akx[n—k]]x[n—i]} =0 (7.5)
or
E[x[n]x ZakIE x[n—k]] (7.6)

where 1 <i <P and d; represents the estimated value of «;. Defining

$li, k] = E[x[n—i]x[n—k]] (7.7)
we obtain
P
Y axdli k] = ¢1i, 0] (7.8)
k=1

It can also be shown that

P
£ = $[0,0]-) ar[0.k] (7.9)
k=1

Chapter 7. Introduction to Linear Prediction 93

You may recognize Eqs. (7.8) and (7.9) as being a form of the Yule-Walker equations,
which you have already been exposed to (using a slightly different set of notational con-
ventions) in the context of our discussion of MEM spectral estimation. We will solve these
equations making use of two specific assumptions about the definition of ¢[7,k] in Sec.
7.2.

7.1.2 How linear prediction relates to the all-pole (autoregressive) model

wln] a[n]

— h [n] —

Figure 7.1: Random process modeled by passing white noise through a linear filter.

Although the discussion of the previous section was framed strictly in the context of
determining the coefficients {a;} that produce the “best” linear prediction of the current
sample of x[n] from the previous P samples, it is also often useful to consider x[n] to be
the output of an all-pole filter as in Fig. 7.1 above, which is reprinted from the previous
chapter. Assume that the unit sample response of the filter h[n] has a z-transform of the
form

X(z) G G
W(z) 1-YP azk Al2)
Note that the notational is somewhat unusual, as x[n] represents the system output (rather
than its input). In spectral estimation and system identification problems, the input func-
tion is typically assumed to be white noise, and the squared magnitude of the frequency
response of the filter is a parametric estimate of the power spectral density function of the
output random process. In speech processing, the input w(n] represents the excitation of
the vocal tract, which could be a quasi-periodic function corresponding to glottal pulses
for voiced speech segments, and a broadband noise source for unvoiced speech segments.

H(z) = (7.10)

By taking the inverse z-transform of both sides of Eq. (7.10) we obtain the expression

p
e[n] = x[n] - x[n] :x[n]—Zakx[n—k] = Gw[n] (7.11)
k=1

It is typically assumed that the predictor coefficients {a;} that minimize the average
square of e[n] provide a good model of the vocal tract configuration that is used to pro-
duce a particular segment of speech. The gain parameter G is used in synthesizing an
output waveform from the input excitation that has a power that best matches that of the
observed output.

7.2 Solution of the LPC equations

7.2.1 General solution of the LPC equation

We will first consider the solution of the LPC equations for the general expression of
¢[i,k] as defined above, and then consider the two special cases that lead to the so-called
“autocorrelation” and “covariance” solutions.

94 7.2. Solution of the LPC equations

Let us assume for the sake of example that P = 4. The system of equations in Eq. (7.8) can
be written for 1 <k <P as

ar¢[L 1]+ arp[1, 2]+ az¢[1, 3]+ ayp[1, 4] = ¢[1, 0]
@1 $[2,1]+ az9[2.2] + a39[2.3] + aapl2,4] = $[2,0 12
a1 (3, 1]+ a20[3,2] + a3 (3, 3] + asp[3, 4] = ¢[3, 0] '
arp[4, 1]+ azp[4, 2] + asp[4, 3] + ayp[4,4] = ¢[4, 0]
These equations can be written in matrix-vector form as
[oL1] 912 [13] ¢14] || e | [o[L0]]
¢12.1] ¢[2,2] $[2,3] P[2.4] || a2 | _| #[2,0] (7.13)
o[3,1] $[3,2] ¢[3,3] ¢[3,4] || a3 ¢[3,0]
| P[4 1] o[42] ¢[43] o[44] || as | | ¢[40] |
Note that Eq. (7.13) is of the form
Ra =P (7.14)

where R is a P x P matrix of autocorrelation coefficients, & is a P x 1 vector of elements
{ax} and P is a P x 1 vector of autocorrelation coefficients. This equation is known as the
Wiener-Hopf equation, which is encountered frequently in optimal signal processing.

In general, a direct solution to the Wiener Hopf equation can be obtained by pre-multiplying
both sides of Eq. (7.14) by the inverse of R:

a=R7'P (7.15)

The inversion of the R matrix can be accomplished by Gaussian elimination and other
similar techniques, which are O(P?) in computational complexity. In the next section we
discuss a particular formulation of the LPC problem that produces a solution that is far
more computationally efficient.

7.2.2 The autocorrelation method and Levinson-Durbin recursion

As you may have noted, we still have not specified how the autocorrelation coefficients
¢[i,k] are obtained from the original waveform x[n]. One reasonable approach is to ob-
tain the correlation coefficients by first extracting a finite-duration segment of x[n] by
multiplying by a window function and then computing the first P autocorrelation coeffi-
cients of the finite length segment, as illustrated in the upper panel of Fig. 7.2. In other
words, we assume that

x[n] = x[n]w[n] (7.16)

where w[n] is nonzero only for 0 < n < N-1. In this case we can define the autocorrelation
function as

N-1+min(i k) N-1-i+min(i,k)

oli k] = Z xX[m—i]x[m—k] = Z xX[m]x[m+i—k] (7.17)

m=max(i,k) m=—i+max(i,k)

Chapter 7. Introduction to Linear Prediction 95

Autocorrelation method

sumover | SlbH
TIME

Covariance method

> —i

z
i, k]
SUM OVER
TIME

v
N

>
—>

Figure 7.2: Comparison of the autocorrelation and covariance methods of obtaining auto-
correlation coefficients for use in linear prediction. The window w[n] is of finite duration.

for 1 <i <P and 1<k <P. Note that despite the inelegant notation, there will always be
N —|i — k| non-zero terms in the sum. It can easily be seen that Eq. (7.17) represents the
short-term autocorrelation function of a segment of x[n] and that

Pli, k] = Pli — k] (7.18)

Because the number of nonzero elements of the argument of the summation decreases as
li — k| increases, it is common to use a tapered window such as the Hamming window for
w(n].

Using this definition of the autocorrelation function and again dropping the subscripts n,
Eq. (7.13), the Wiener-Hopf equation, reduces to

[o[0] 1] ol2] o131 |[o | [o011]
o1 9l0] o1 2] || a2 | _| ¢12) 719
ol2] 1] ¢[0] 1] || a5 | | o[3]

03] 912 ¢l1] $l0] || as | | 4]

This method of solution is known as the autocorrelation solution of the LPC equations.
Because the resulting correlation matrix R is Toeplitz (i.e. the elements of each diagonal
of the matrix, major and minor, are identical), a simpler solution known as Levinson-
Durbin recursion is possible. As we will see in a moment, Levinson-Durbin recursion is
O(P?) in complexity.

The equations of the Levinson-Durbin recursion, which are used to compute the corre-

96 7.2. Solution of the LPC equations

sponding reflection coefficients and LPC parameters are

E = ¢[0] (7.20)
i1 (i)
#li1= T o pli]
ki = = . , calculated for 1 <i <P (7.21)
E(i-1)
o k, (7.22)
a](.’) = a;l_l) —k,-ocfl_;l), forl<j<i-1 (7.23)
EW = (1 -k?)E(D (7.24)

Equations (7.21) through (7.24) are solved recursively for i = 1,2,...,, P and the final solu-
tion is given by

)

aj=a) for1<j<P (7.25)

The coefficients {k;} for 1 <i < P are referred to as the reflection coefficients. They consti-
tute an alternate specification of the random process x[n] that is as unique and complete

as the LPC predictor coefficients {a,({P)}. The reflection coefficients are actually far more ro-
bust to coefficient quantization than the predictor coefficients, so they are frequently the
representation of choice in applications such as speech coding or speech compression.

If the magnitude of the reflection coefficients |k;| is less than 1 for 1 <i < P, all of the roots
P

of the polynomial A(z) =1-)} a,(cp)z_k will lie inside the unit circle. This means that if
k=1

|k;] < 1, the resulting filter H(;) will be stable. It can be shown that deriving the {k;} in
the fashion described above using Levinson-Durbin recursion guarantees that |k;| < 1. We
will make extensive use of the reflection coefficients {k;} in our discussion of lattice filters.

7.2.3 The covariance solution of the LPC equations

An alternate way of deriving the autocorrelation functions used to solve the LPC equa-
tions would be to always compute all lags of the autocorrelation function over the same
time indices, as illustrated in the lower panel of Fig. 7.2. In a sense, this means that we
are correlating and then windowing, while with the autocorrelation method we window
and then correlate.

Under these circumstances the autocorrelation computation becomes

N-1 N-1-i
Pl k] = Zx[m—i]x[m—k] = Z xX[m]x[m+i—k] (7.26)
m=0 m=—i

which as before is evaluated for 1 <i < P and 0 < k < P. Although this computation is
similar to that of Eq. (7.17), it is not identical to it because the limits of the summations
are different. Specifically, it is very important to note that

oli k] = Pk, i] = Plli - k] (7.27)
Because the number of samples used in the autocorrelation computation is always N re-

gardless of the magnitude of the correlation lag, it is not considered necessary to multiply
the argument of the summation by a tapered window before summing.

Chapter 7. Introduction to Linear Prediction 97

Under these circumstances, Eq. (7.13), the Wiener-Hopf equation reduces to

[pl11] 91,2 ¢[13] ¢[L4] |[e | [ol100]
GI21] l22] ¢[23] ¢[24] || @ | _| ¢[2,0) 728)
o131 ¢[3,2] ¢[3.3] @341 || as | | 913,0]

| pl41] $[42] 6[43] ¢[44] || as | | $[40] |

This solution to the LPC equations is called the covariance solution because the autocorre-
lation matrix on the left has the Hermitian symmetry that is characteristic of an arbitrary
covariance matrix.

We note that the Levinson-Durbin recursion cannot be used to solve this equation because
the autocorrelation matrix is Hermitian symmetric but not Toeplitz. This equation is typi-
cally solved using the Cholesky decomposition method which was discussed superficially
in class and is treated in more detail in RS.

In general, the covariance solution provides a linear prediction of the current sample of
a random process with somewhat less mean-squared prediction error than the autocor-
relation solution. Nevertheless, the autocorrelation solution is far more commonly used
in applications such as speech processing because it is so much more computationally
efficient.

The pole locations will be inside the unit circle provided that the reflection coefficients {k;}
are all less than one in magnitude, but this is not guaranteed when the covariance method
is used. In practice, if it is observed that at least one reflection coefficient is greater than
one in magnitude, it is quite straightforward to calculate the actual pole locations that
correspond to that particular analysis segment, and then reflect the poles that lie outside
the unit circle to mirror-image locations inside the unit circle.

7.2.4 Recursive relationships between the LPC coefficients and reflection co-
efficients

In Secs. 7.2.2 and 7.2.3 above, we discussed how the LPC coefficients can be obtained from
the autocorrelation coefficients of an observed random process. We also noted in that
section that the reflection coefficients k; completely specify the LPC characterization of a
random process just as the LPC coefficients a; do. In fact, given either set of coefficients,
we can always obtain the other by a simple linear recursion. Specifically, to convert from
the reflection coefficients k; to the LPC coefficients «;, we use the recursion

Leta! = k; starting at i =1

1
o)~ ol kol for 1 <1 i1 (7.29)

Repeat fori=1,2,..,P

98 7.2. Solution of the LPC equations

Similarly, we can convert from the LPC coefficients «; to the reflection coefficients k; if we
have all of the a}l) fori=1,2,..,P:

P
Let kp = 0(;))
Starting with i = P, let k; = afl) (7.30)
(i-1) Ofl(l)+kia§l_)z . ..
@, =———fori=P,P-1,..,2,1and [=4,i—1,...,2,1
1-k?

1

7.2.5 Computation of the LPC gain parameter

The LPC gain parameter G can be computed in either of two ways. From the zeroth-order
Yule-Walker equation,

P P
¢WJH:E:aHHQH+03:§:am$lH+G2 (7.31)
k=1 k=1
we easily obtain
14
G? = $[0,0]- Zakq[)[o,k] (7.32)
k=1

More prosaically, we can also estimate the gain parameter if both the input and output of
the filter are available. From Egs. (7.2) and (7.3) we note that

P
e[n] = x[n] - x[n] :x[n]—Zakx[n—k] (7.33)
k=1
The z-transform of e[n] is

P
E(z) = X(z) - ZakX(z)z_k =X(z2) = X(2)A(z) (7.34)
k=1

P
1- Zakz_k
k=1

Combining the equation above with the defining relationship X(z) = W(z)H(z) = W(z)G/A(z)
we obtain

G _ GW(z) E(z)

AD=Ho ™ X "X (7.35)
implying, of course, that
G= % or e[n] = Gw[n] (7.36)

Since both e[n] and w[n] are typically time-varying stochastic signals, we typically esti-
mate G from the short-term ratio of their energies:

N-1
Y e’[m]
el — (7.37)

N-1
Y w?[m]
m=0

Chapter 7. Introduction to Linear Prediction 99

7.2.6 The LPC error in time and frequency

Consider once again the all-pole filter representation discussed in Sec. 7.2, with the all-
pole transfer function

X(z2) G G
H(z) = = = (7.38)
WE LA
k=1
As noted above in Egs. (7.33) and (7.36),
P
e[n] =x[n]-x[n] =x[n]- Zakx[n —k] = Gw[n] (7.39)
k=1
These relations also imply that
E(z) = X(2)A(2) (7.40)

as we will note below in our discussion of lattice filters (with slightly different notation).
The error signal e[n] is “peakier” than the original time function x[n] and its spectrum
E(e/®)is flatter than that of X(e/¢). Because of this peakiness, the error signal is frequently
used as the basis for estimating the instantaneous fundamental frequency of a signal.

It is also useful to consider the error signal in the frequency domain in more detail. If
we are using the autocorrelation method of the LPC solution, we can write by applying
Parseval’s theorem

-1

(T 1 (" . ,
Energy = Zez[m] =5 Lz |E(e/)?dew = o LZ IX (/) |A(e!)2 d w (7.41)
m=0
where
. P .
Ae?)=1- Zal(cp)eﬁ“’k (7.42)
k=1
Since H(e/®) = A(eGiw) we obtain
G2 (™ |X(el®)|?
Energy = —J Mda) (7.43)
21)y [H(&)P

As you may recall from our discussion of maximum entropy spectral estimation, the au-
tocorrelation coefficients of the filter with impulse response h[n] are identical to those of
the random process x[n] for lags of magnitude less than or equal to P. In other words,

Pxx[m] = ppn[m] for m < P (7.44)
Hence,
JHm Gpp[m] = dro[m] (7.45)
lim H(e/) = X(e/*) and (7.46)
lim E, = G? (7.47)

P—co

100 7.3. The FIR lattice filter

We note from Eq. (7.43) that the energy of the error signal is the integrated ratio of the
squared magnitude of |X(e/¢)|> and |[H(e/®)|?. This causes the match between these two
quantities to be closer for frequencies where these functions are of greater magnitude
than those in which the functions have lesser magnitudes. In other words, |X (eJ®)|? and
|H(e7®)|> will match each other more closely at their peaks than at their valleys. This is
also especially good for the application of LPC analysis to speech processing, as percep-
tual studies indicate that the peaks of the frequency response are much more important
in determining percep- tion than the corresponding valleys.

7.3 TheFIR lattice filter

zn] _eofn] e1n] e2ln] en—1n] enlnl = yln]
v —kq —ko —kn
1 —k —ky 1 —kn
bol] bl baln] byaln] bl

Figure 7.3: The FIR lattice filter.

Consider the basic lattice filter structure in the figure above. It should be obvious that this
is an FIR filter structure, as it contains no feedback loops. In addition, if we set the input
x[n] to be equal to o[n], we can observe easily by inspection that h[0] = 1 and h[N] = —ky.
The value of hn] for other values of n is obtained by observing all the different ways of
passing a signal through the lattice while incurring exactly n delays, and adding all of the
corresponding branch transmittances. It can be seen that the sample response will be a
linear combination of the k;.

7.3.1 Time-domain and frequency-domain characterization of the lattice fil-
ter

As can be seen from Fig. 7.3 above, the FIR lattice filter is defined by the following
recursive relations:

x[n] = eg[n] = bg[n] (7.48)
ej[n] =ei_1[n]-kibj_1[n-1] (7.49)
bi[n] = —kie;_1[n]+b;_1[n—1] (7.50)
y[n] =en[n] (7.51)

Because the structure is FIR, we can make use of the following general characterization
of its transfer function for the entire filter:

N
1 Zal(N)z_l = A(2) (7.52)
=1

Chapter 7. Introduction to Linear Prediction 101

We will also make use of the transfer function from the input to the e;[n] at a given stage
of the lattice. For this, let

Ai(z) = Ei2) _y -Zaf)z—l (7.53)

The corresponding transfer function from the input to the b;[n] at a given stage of the
lattice is similarly

B (7.54)

We note that Ag(z) = Ay(z) =1 and Ay (z) = Y(2)/X(2).

Using this notation, we can write the z-transforms of the equations that define the lattice
as

X(z) = Eo(z) = Bo(2) (7.55)
Ei(z) = Ei_y(2) - kiz ' B;_1(2) (7.56)
Bi(z) = —kiE;_1(2) +z ' Bi_1(2) (7.57)
Y(z) = Ex(2) (7.58)

It is shown in Sec. 7.5 that if the {@;} and {k;} are related by the Levinson-Durbin equation
[and specifically Eq. (7.23) above], then
Ai(2) = A (2) ~kiz A (271) (7.59)
and _
Ai(z) =z A;j(z7h) (7.60)

These equations are important because they enable us to develop a recursive characteri-
zation of the transfer function of the lattice filter stage by stage. Substituting Eq. (7.53)
into Eq. (7.59) we obtain:

i i—1 i—1
1- Za}l)z_l =1- Zal(l_l)z_l —kiz [1 - Zal(l_l)zl] (7.61)
I=1

1=1 =1
Matching the coefficients of an arbitrary term of power z=" we obtain

(i) —r (i-1) (i-1)_—r

—a,'z " =—a; 'z +kia;_ 'z (7.62)
or, of course
ai i ar N, al(. 2 (7.63)

as specified by the Levinson-Durbin recursion. In other words, the FIR lattice filter is a
structure in which the visible (and manipulable) coefficients of the filter are the reflec-
tion coefficients k; of the Levinson-Durbin algorithm! Of course, you have already seen
other filter structures in which the manipulable coefficients are parameters in the for-
mal mathematical description. For example, the coefficients of an FIR filter structure are
the values of the unit sample response of that filter. In addition, the coefficients of the
frequency-sampling structure form of an FIR filter are the DFT coefficients that specify
that filter’s response in the frequency domain. In this case, the all-zero transfer function
of this lattice filter is the reciprocal of the all-pole model used to describe the original
random process, or in other words the filter A(z) is the inverse of H(z) in Eq. (7.10) if we
set the gain parameter G equal to 1.

102 7.3. The FIR lattice filter

Forward error . Backward error
S S
R N A
/ 5 /C\) f%\Q » RN /% N ~
SR N SERVARCIIC S
& $ 5 $ r%\&v 8 ﬁ? @§
SR &
& RN
Z[n] &n — 4]

Figure 7.4: Comparison of the sample values used for calculation of forward and back-
ward error with P = 4.

7.3.2 Physical interpretation of the functions ¢;[n] and b;[n]

Up until now we have been thinking of the functions e;[n] and b;[n] as arbitrary internal
functions. Nevertheless, they each do have a physical meaning relating to linear predic-
tion error. Consider first the transfer function to the functions in the upper “rail” of the
lattice:

_Ei(z) _Ei(z) _ . i (i) _—1
Ai(z) = Foz) - X(2) =1 ;al z (7.64)

Taking the inverse z-transform we obtain

e;[n] :x[n]—ial(i)x[n—l] = x[n] - x[n] (7.65)
I=1

which is identical (to within a sign) to the linear prediction error defined in Eq. (7.2).
Again, this expression describes the difference between the current sample x[n] and the
“best” linear prediction of x[n] using the previous i samples. Hence the expression e;[n]
is referred to as the i*"-order forward prediction error, as illustrated in the left panel of Fig.
7.4.

Let us now consider the functions b;[n] in the lower “rail” of the lattice. Combining Egs.
(7.54) and (7.60) we obtain

Ai(z)=2z""A;(z7Y) = A (7.66)

i i
1- Za;l)zl] =z Zal(l)zl_i (7.67)
I=1 =1

Again, taking the inverse z-transform we obtain

Bi(z)
X(z)

Z—i

b;[n] :x[n—i]—ial(i)x[n+(l—i)] (7.68)

I=1

Comparing Eqs. (7.65) and (7.68) we observe that b;[n] represents the difference between
x[n—1i], the value of the input function i samples ago, and some linear combination of the

Chapter 7. Introduction to Linear Prediction 103

following i samples of the input, running from x[n — (I —i)] right up to x[n]. In fact, the
same linear prediction coefficients are used, but they are applied backward. One way of
thinking about this is that b;[n] is what we would have obtained if we calculated e;[n] but
with the input function x[n] presented in time-reversed order. Because of all this, b;[n]
is referred to as the i'"- order backward prediction error, as illustrated in the right panel of
Fig. 7.4.

7.3.3 Deriving the reflection coefficients from the forward and backward pre-
diction errors: the PARCOR method

In Sec. 7.2.2 we derived the LPC coefficients i and the reflection coefficients k; of the best-
fit all-pole model to the samples of a random process by implementing the Levinson-
Durbin recursion to solve the autocorrelation equations. As you will recall, equations
were developed by starting with the difference equation relating the input and output,

P
x[n] = Za,ﬁp)x[n —k]+ Gw[n] (7.69)
k=1

and finding the values of the a](CP) that minimize the expected value of the square of the

forward error. Specifically, starting with

P 2
E= Z x[m] - Zakx[m - k]] (7.70)
m k=1

we computed the partial derivative of E with respect to each of the a; we obtained the
equations

P
> a lli - kl] =] (7.71)
k=1
where
¢[i] = E[x[n]x[n+1i]] (7.72)

With knowledge of the values of the autocorrelation coefficients for i = 0,1,2,..., P we can

use the Levinson-Durbin recursion to obtain all the LPC coefficients a,(;) for model orders
1 through P and the corresponding reflection coefficients k;.

We can also obtain estimates of the reflection coefficients k; (and subsequently the LPC

coefficients al(:)) using expressions for forward and backward error developed in the pre-
vious section. Specifically, if we let

Ef =) (eiln))? (7.73)

the corresponding mean square error using statistical averages would be

&% = Elef[n]] = E[(e;1 [n] - kibj_1[n - 1))] (7.74)

1

104 7.3. The FIR lattice filter

Computing the derivative of &2 with respect to k;, setting the derivative to zero, and
solving for k; produces the estimate

Ele;_1[n]b;_1[n—1]]

ki = E6% n 1] (7.75)

Typically the expected values are implemented as time averages, resulting in the expres-
sion N

f_ Lo €ica[n]bia[n—1]
Z Zg:_ol b1'2_1 [n—1]

(7.76)

where the superscript f in the symbol klf reminds us that this version of the reflection
coefficient was derived using the mean squared forward error e;[n].

Note that this estimate for the reflection coefficient at a given stage of the lattice is ex-
pressed in terms of the expected values of the products of the forward and backward
errors of the previous stage in the numerator, and the expected value of the square of
the backward prediction error in the denominator. The expression in the numerator is
actually the cross-correlation of the forward and backward error functions of the previous
stage, and the expression in the denominator is the energy of the backward error of the
previous stage.

Because of these physical interpretations, this method of obtaining the estimate of the re-
flection coefficients is referred to as the partial correlation or PARCOR method. Generaliz-
ing to an abitrary number of stages, the calculation begins by computing the zeroth-order
forward and backward errors directly by setting them equal to the energy of the input
x[n], calculating ky using Eq. (7.76), and then obtaining the next set of forward and back-
ward errors using Eqs. (7.49) and (7.50). Reflection coefficients for the remaining stages
are obtained easily by iterating over Eqs. (7.76), (7.49) and (7.50). As you will recall, with
the autocorrelation and covariance methods described in Sec. 7.2, we obtained the LPC
parameters and reflection coefficients by beginning with a complete set of estimates of
the autocorrelation functions of the input. In contrast, the PARCOR method computes
the autocorrelation function coefficients indirectly, through a recursive computation of
cross-correlation of prediction error functions. This approach has some very attractive
statistical properties and is widely used.

Of course, there is nothing magic about the forward prediction error. We can just as
easily perform a similar calculation with the backward prediction error b;[n]. Performing
a similar set of operations on the backward prediction error produces the very similar
estimate for the reflection coefficient

pb_ Y N eisi[n]biq[n—1]
: Yoo ey [n]

Various methods have been proposed for combining the two estimates of the reflection

coefficients obtained using the PARCOR method, klf and kf’ . For example, the Itakura
estimate of the reflection coefficients is obtained by combining these two results according

to the equation
N (7.78)

(7.77)

Chapter 7. Introduction to Linear Prediction 105

The Burg estimate of the reflection coefficients produced by combining these two results
according to the equation
2k] K
kB = 7 Ll (7.79)
k| +k

7.4 All-pole lIR lattice filters

As noted above, we developed in Sec. 7.3 an all-zero lattice filter with the transfer func-
tion

- En(2)
Iqmzl—E:QNGJ:E%% (7.80)
=1

Referring to the figure at the beginning of Sec. 7.3, we note that the input is x[n] =
eg[n] and the output is y[n] = ey[n]. If we could maintain the same filter structure but
interchange the input and output, we would obtain the transfer function
E 1
02) _ (7.81)
&)
1-) o z7!
I=1

which clearly is an all-pole transfer function, and in fact is exactly the transfer function
of the original filter considered, H(z), with the gain factor G set equal to 1.

Recall that the original definitions of the stages of the FIR lattice filter were

ei[n] = ej_1[n] —kib;_1[n—1] (7.82)
biln] = —kie;_1[n]+b;_1[n-1] (7.83)

With a trivial amount of algebra, Eq. (7.82) can be rewritten as
ei_1[n] = ej[n]+kibj_1[n—1] (7.84)
Egs. (7.83) and (7.84) suggest the following lattice structure for a single stage:

ei[n] ei—1[n]

bi[n] bi—1[n]
Figure 7.5: Signal flow diagram of a single stage of the IIR lattice filter.

Combining into multiple stages, we obtain the following IIR lattice structure:

106 7.4. All-pole IIR lattice filters

e2[n] e1[n] eo[n] = y[n]
> > O
+ko +k1
—ky —k
z:l Z:‘—l 2_1
" by[n] by [n] bo[n]

Figure 7.6: Signal flow diagram of a multistage IIR lattice filter.

Note that ey[n] is now the input and that ey[n] is the output. This filter will have the

transfer function .
Hiz)=——— (7.85)
&)
1-Y a 'z
I=1
where the LPC parameters are related to the reflection coefficients according to the usual
Levinson-Durbin relationship. Since the filter is IIR with feedback loops, it does have the

potential to be unstable. However, it is guaranteed to remain stable if
|k;| <1 for all (7.86)

As we noted above, this condition is guaranteed to be satisfied for the autocorrelation
and PARCOR solutions of the LPC equations because these solutions are based on the
equations of the Levinson-Durbin recursion.

Chapter 7. Introduction to Linear Prediction 107
/7.5 Proof of the recursive lattice filter relationship
To prove: Al)(z) = A= (z)—k;zlAU-D(z71)
From the definition of A)(z) and the Levinson-Durbin relation we have
i (i)
Dz =1- Voo
AY(z) =1 Za]. z
=1
(i) _ (1) (i-1) -
a; = a; —kial_]- , 1<7<i-1
agl) =k;
Substituting for aii), we have
i-1
Ad(z)=1— Za](.l)z J kg (7.87)
j=1
Substituting for a](.i)
i-1 ,
Az =1- Z[a(l Vi k,al(z_;l)z_]] —k;z™!
j=1
i—1 (1) i—1 (1)
1— 1 — —
=[{1-) a; zJ+kiZal]z]—k,z’
j:l]:1
In the second term, let j =i —j’, then
BRI E ~)
/ 1— —1 1— i/—1 —1
AW (z) = 1—Za]. z |+ k; Z aj 2l 7 —kiz!
| j=L] j=i-l
i—1 (1) 1 i—1 (1)
—11=- = - -if1 = =0T
=1 Za z k; aj (z7)
j=1] i=1

I
=
T
T
P
N
N
|
ks
N
L
3
T
T
P
NI
L

108 7.5. Proof of the recursive lattice filter relationship

8. Introduction to Adaptive Filtering

o

8.1 Introduction 109
8.2 The adaptive linear combiner 111
8.3 The performance function 51e2
8.4 Finding the minimum MSE analytically 114
8.5 Finding the minimum MSE empirically 115
8.6 The least mean squares (LMS) adaptation
algorithm il
8.7 The recursive least squares (RLS) adaptation
algorithm 119
8.8 The adaptive lattice algorithm 121

Classical discrete-time filters have fixed coefficients that are determined to meet predefined
specifications such as passband and stop band ripple, critical frequencies, etc. This chapter
describes the structure and function fo simple adaptive filters, which have coefficients that
vary with time in order to realize a performance goal such as noise suppression or signal
prediction. The optimal values of these time-varying coefficients are typically not known
a priori or they may vary with time as environmental conditions change.

8.1 Introduction

Conventional filters with fixed coefficients are designed with a particular goal in mind,
such as attenuating all frequencies above a particular “cutoff” frequency. The design pro-
cedure frequently consists of choosing the set of coefficients that would best approximate
a desired frequency response. There are multiple well-developed techniques to accom-
plish this, as was discussed in basic digital signal processing courses.

Adaptive filters, in contrast, have coefficients that are allowed to vary over time. They
are used when the filter response that best accomplishes a particular task is not known a
priori, or when the nature of the operating environment is expected to change over time. A
typical system goal would be for a filter to suppress undesired noise to the greatest extent
possible while leaving the target signal (which frequently is speech or music) intact to the
extent possible.!

For various historical reasons, the notational conventions commonly used in the litera-
ture to describe adaptive filters and the signals that pass through them are different from
the standard notation that we have used above to describe frequency analysis and con-
ventional filters. Specifically, the system input and output are frequently denoted as x;
and yy, respectively, rather than x[n] and y[n] as in previous chapters. (Note that the time

IThe material in this chapter is a condensation of the chapter on adaptive filters by Stearns in the text
edited by Lim and Oppenheim. The Stearns chapter is in turn an abstraction of many topics in the book
Adaptive Signal Processing published in 1985 by B. Widrow and S. D. Stearns.

109

110 8.1. Introduction

variable is now a subscript rather than a function argument, and that we are now using k
rather than #n to denote time.)

Figure 8.1 above is a diagram of the standard adaptive signal processor. Using the modi-
fied notation just introduced, x; represents the input to and y; represents the output from
the adaptive processor. The signal dy represents the so-called desired signal. The signal
ex = dy — v is referred to as the error signal, which is the difference between the desired
signal (which is what we presumably want) and the adaptive processor’s output (which
is what we are presently getting). The coefficients of the adaptive processor are manipu-
lated in a fashion that minimizes the square of the error signal £2 = IE[e]%], the mean-square
error or MSE. This tends to make the signal y; at the output of the adaptive processor to
be as much as possible like the desired signal di. The diagonal arrow through the adap-
tive processor box indicates that the coefficients of the adaptive processor are variable,
and that their values are controlled by the error signal e = dj —vy.

/ |
o BV SN
/

Figure 8.1: Block diagram of a standard adaptive signal processor.

Sk + Nk

PRIMARY
CHANNEL d

, / :

e Tk ADAPTIVE Yo — €k

— > > —>
PROCESSOR ()

REFERENCE OCESSO

CHANNEL

Figure 8.2: Block diagram of a standard noise cancellation system.

While it may not be obvious why the structure in Fig. 8.1 is potentially useful, the purpose
of the various elements becomes more evident when considered in the context of the
common adaptive noise cancellation structure as in Fig. 8.2 above. The primary channel
consists of the sum of a target speech or music signal s; to which a noise signal n; is added.
(The term “noise signal” refers to any kind of noise or interference (including echoes) that
is added to the target signal; n; could, for example, represent background speech or music
that is simply not what is desired.) The reference channel (which is also sometimes called
the secondary channel) contains a second noise signal 7, that is correlated with 7.

Chapter 8. Introduction to Adaptive Filtering 111

As an example, consider one of the earliest applications of adaptive noise cancellation:
communication among fighter pilots wearing oxygen masks in military aircraft. The au-
dio signal input to the primary channel is detected by a microphone inside the mask, and
it consists of the pilot’s speech plus a filtered version of the very loud ambient noise inside
the aircraft. The reference channel signal n, is obtained from a microphone within the
cockpit but outside the mask. This signal consists of the ambient cockpit noise without
the filtering that occurs when the cabin noise is propagated through the pilot’s mask, and
essentially none of the pilot’s speech (which is at a much lower intensity level compared
to the noise in the cabin). The adaptive processor attempts to filter the noise signal n; in
the reference channel so that it most closely approximates the noise component #; in the
primary channel. If y; were to closely approximate ny, the two would almost cancel each
other out, and the system output would consist mostly of the target signal. In practice,
the amount of noise cancellation that is obtained depends on the degree of correlation
between the noise in the primary and reference channels (greater correlation provides
greater cancellation). In addition, it is very important that the target signal not leak into
the reference channel and that the target and noise signals be statistically independent.

8.2 The adaptive linear combiner

Tk Tr—1 Tr—2 Tk—3 Tk—(N-1)
» A4 > A » A4 > —»| 4
.os
Tok Tik T2k T3k TN—-1,k
Wok — W1 k—pf Wak —| W3 j— WN -1,k —
.
—_ Yk

Figure 8.3: FIR filter structure as used in adaptive filtering.

While there are a number of different types of adaptive processors, the easiest type to
study is the adaptive linear combiner (ALC). The output of an ALC can be described by the

equation
L-1

Yk = leszk (8.1)

1=0

where the {w;} represent the variable weights of the adaptive filter and the signals {x;;}
are the inputs to those weights. While this equation can be applied directly to any system
for which the output is obtained by computing the linear combination of the outputs of
an array of sensors, the most common implementation for the adaptive processor is that
of an FIR filter with variable coefficients. This structure is depicted in Fig. 8.3 above
with the notational conventions commonly used to describe adaptive systems. We note
that the filter coefficients (or “weights”) are now variables with the variable name wy,
where the first subscript identifies the individual filter coefficient under consideration
and the second coefficient indicates the time index. The diagonal arrows through the
multiplication symbols again indicate that the filter coefficients vary over time. Another

112 8.3. The performance function

important variable shown in the picture is the observation vector, which is by definition
the set of signal inputs to the variable weights. If the adaptive processor is in the form of
an FIR filter, the observation vector components x;; are equal to delayed versions of the
original input where x; = x;_;, which approximates n, for the application in Figure 3.2

It is frequently convenient to represent the inputs {x;;} and variable filter coefficients wy;
as column vectors:

X0k Wok

X1k Wik
Xp=| xo [and Wi =1 woy (8.2)
| XL-1,k | | WL-1,k |

Using the notation of linear algebra it is easy to show that

L-1

Yk = ZXkazk = X{ Wi = W/ X (8.3)
1=0

where the T in the equation above denotes the matrix transpose operator.

8.3 The performance function

In order to develop algorithms for minimizing the mean square error we must first de-
velop an analytical expression for what that error is. As before we define the error as

er = dk —Vk = dk —XkTWk = dk — WkTXk (8.4)

and
ef =d} + WX, X W, - 24, W' X, (8.5)

If dy, e, and x; are all zero mean and wide-sense stationary, and statistically independent
of one another (which in real life is normally not true), then

&? = Ele}] = E[d?]+ W E[X; X[|W; - 2E[d, X[|W, (8.6)

To simplify the notation, let us define
R = E[X;X[] and P = E[d; Xy] (8.7)
Note that R is an L x L matrix and that P is an L x 1 vector. Hence it follows directly that
&? =E[e}] = E[d}]+ W RW - 2PTW (8.8)

As noted above, the coefficients in the adaptive filter are normally manipulated to min-
imize the statistically-averaged squared value of the error signal 2. Note that the ex-
pression for the MSE &2 above is a quadratic function of the weight vector W. As a

2The multiple use of the variable x in this equation is unfortunate. The variable x with a single subscript
denotes delayed versions of the input; the variable x with double subscripts denotes individual components
of the observation vector.

Chapter 8. Introduction to Adaptive Filtering 113

consequence, there is only one single minimum value of £2 over all the possible values of
the coefficients in W.

For purposes of illustration, let us consider an adaptive filter that has only two variable
coefficients, wy and wy. Figure 8.4 depicts a typical example of the “performance surface”
for such an adaptive filter, which is a plot of the MSE &2 as a function of wy and w;. As
can be seen, the performance surface is bowl-shaped, and the surface is in the form of a
parabola in two dimensions (which is actually called a hyperparabola). As noted above,
every quadratic performance surface has a single minimum, which in this example is
at wy = 40 and wy = 60. These coefficient values are the best possible values for the
(imaginary) filter under consideration. In principle, the shape of the performance surface
depends on the specific optimal values of the coefficients for a particular application (40
and 60 in this case), the correlations between the components of the observation vector
X and the desired signal di and (especially) the correlations of the components of the
observations X; with each other, which is 0.7 in the example in Fig. 8.4.

i
HHIRAINRL
1000 | i \QJ\ f

800 \

600

400,

200

100
80
60
40

20
80 100

Coefficient w 40 60
1 0 20

Coefficient w o

Figure 8.4: Plot of the mean-square error &2 as a joint function of the two filter coeffi-
cients, wg and wy.

Another way of describing the performance surface is in terms of its “contour lines” as in
Fig. 8.5. The left panel of Fig. 8.5 depicts a performance surface for a system in which
the optimal adaptive filter coefficients are 40 and 60, and the correlation p between the
two components x; and x; of the observations is equal to 0.7, as in Fig. 8.4. The right
panel of Fig. 8.5 depicts the contour lines of a similar performance surface, but in this
case the correlation between the components of the observations equals 0.0 (i.e., there
is no correlation between x; and x;). In general, the contours lines of the performance
surface are circles if and are uncorrelated (as in the right panel of the figure), and they
become increasingly-elongated ellipses as the correlation increases. (In linear algebra
terms, increasingly-elongated ellipsoidal contour lines reflect increasing spread of the
eigenvalues of the correlation matrix of the observations.) The degree of correlation of
the observations is important, as will be discussed below.

114 8.4. Finding the minimum MSE analytically

1

Coefficient w ;
Coefficient w

NN - e T / A
0 10 20 30 40 50 60 70 80 90 100 0 10 20 30 40 50 60 70 80 90 100
Coefficient w, Coefficient W,

Figure 8.5: Contour plots of mean-squared error for two values of the correlation p be-
tween xg and x;: 0.7 (left panel) and 0.0 (right panel). The minimum value of &2 is
obtained with the values of the filter coefficients wy and w; are equal to 40 and 60, re-
spectively, in both cases.

8.4 Finding the minimum MSE analytically

If there were only a single weight w, we would obtain the value of w that minimizes &2 by
differentiating with respect to w, setting the derivative equal to zero, and solving for w.
With the vector W we perform a similar series of operations, working from the gradient
operator. Define the gradient of &2 to be

awO
9&?

J 2 g
v=Sw=| (8.9)
9&?
,awL,l_

Recall from Eq. (8.7) above that
&’ =E[e}] = E[d}]+ W RW - 2PTW
Differentiating with respect to the elements of W it follows directly that

_ 98 _
V=ors =2RW - 2P (8.10)

Let W* represent the value of W that minimizes £2. W* is easily obtained by solving
V=0=2RW*-2P which produces W*=R™'P (8.11)

We note that this is the familiar Wiener-Hopf equation, Eq. (7.15), which you have en-
countered before in conjunction with the discussion on linear prediction. We can also

Chapter 8. Introduction to Adaptive Filtering 115

easily obtain an expression for the minimum MSE by plugging W™ into the expression for
the MSE:

& =E[dl]+ WIRW* - 2PTW* (3.12)
=E[d]+(R'P)"RR'P-2P"R'P '
Combining terms we obtain
& =E[d}]+P'R'P-2PTR'P
=E[d}]-P'R'P (8.13)
=E[d{]-PTW*

Note that the MMSE depends only on R and P. And please remember that W* refers to
the optimal coefficients, not complex conjugation.

8.5 Finding the minimum MSE empirically

In this section we will discuss two methods to find the minimum MSE empirically: New-
ton’s method and gradient descent.

8.5.1 Newton’s method

Recall that we discussed the gradient in the section above:

Jw
&2

2 ¢

— 85 _| dw

V=ow =

=2RW -2P (8.14)

&2
L awL,l i

Pre-multiplying both sides of the above equation by $R~! produces

1 1
ER’IV:ER’l[ZRW—2P]:W—R’1P:W—W* (8.15)

Rearranging the terms of the above equation gives us a different way of thinking about
W
1

W*:W—ER‘lv (8.16)
This is essentially Newton’s root finding method set up to find the zero of the gradient
operator. What this means in principle is that if we have perfect knowledge of R, we can
move to the “bottom of the bowl” (i.e., the minimum value of £?) in one step because
knowing the position and slope is sufficient to detect the bottom of the bowl and because
the surface is quadratic and the statistics are known. Of course neither of these is true in
real life: we do not know R and we do not know V ... both must be estimated empirically.

116 8.5. Finding the minimum MSE empirically

8.5.2 Gradient descent

One way to “hedge our bets” about the value of that provides the MMSE is to move toward
the bottom of the bowl in small increments, rather than in one big step as in the case of
Newton’s method. Specifically, we can move toward the MMSE value at the bottom of the
bowl one step at a time using the relationship

Wi, = Wy —puRV (8.17)

Keep in mind that the gradient operator produces a vector that points in the direction
of “up”, so what this equation teaches us to do is locate the direction on the plane that
corresponds to “down” and walk a little ways in the direction of “down”. The parameter
p in the equation above is the stepsize parameter. Clearly, larger values of y would enable
us to get to the bottom of the bowl faster, but the residual error once we are close to the
bottom would be greater for larger values of p as the coefficients are likely to oscillate
around their true values because of the larger stepsizes.

Since V =2RW - 2P, we can rewrite the iterative equation above as
Wii1 = Wi — uRY2RW = 2P) = (1 — 2p) Wy + 2uW* (8.18)

We can get some idea how the coefficient trajectories evolve by assuming an arbitrary
initial coefficient vector Wy and iterating Eq. (8.18) a few times:

Wi = (1 -2u)Wy + 2uW* (8.19)
W, = (1= 2p)Wy +2uW* = (1= 2p) [(1 = 2p) Wy + 2uW*)] + 2uW* (8.20)
= (1=2u)> Wy +2uW*(1 + (1 -2p)) (8.21)
Similarly, ~— W3 =(1—-2u)°Wy+2uW*(1 + (1= 2p) + (1 —2u)?) (8.22)

k-1
and Wi =(1-2p)f+2uW" Z(l —2p) (8.23)

i=0

Using the formula for the finite sum of exponentials we obtain
1—(1-2p)k
—(1—2u)k .

We=(1-2u)fwy+wW T2 (8.24)
= (1-2u) Wy + W*(1 - (1-2p)) (8.25)

While it may not be obvious, (1 —2p) in the first term is a sampled decaying exponential
and (1 — (1 - 2u)¥) in the second term is a sampled rising exponential. Equation (8.25)
would have been more transparent had it been written in the form of

Wi = e Wy + (1 —e W)W* (8.26)
where t; = k in this expression. We can expand the exponential in a Taylor series

(-1/7)* (-l/7)’ N

-1/t _ 1 _
e =1-1/7t+ o + 3l

(8.27)

Keeping only the first two terms produces

e VTx1-1/t (8.28)

Chapter 8. Introduction to Adaptive Filtering 117

This implies that
et = VD (1 —1/7)* which corresponds to (1 —2u)* (8.29)
Matching terms provides the correspondence
1/t=2port=1/2pu (8.30)

Summarizing, this tells us that the recursion for Wy causes the coefficient vector to move
exponentially from W, toward the true optimal coefficient vector W*, and that the time
constant 7 is inversely proportional to the stepsize parameter y. The average error curve
for the coefficients also decays exponentially.

8.6 The least mean squares (LMS) adaptation algorithm

The gradient descent solution developed in Eq. (8.17) in the previous section
Wi = Wi—puR™'V

has two sets of problems: we don’t know the values of the statistics R and P and we don’t
know the value of V, either. We get around these problems by making two changes:

1. Ignore the factor of R™! in the above equation.

2. Replace the average statistics R and P by their instantaneous values. Specifically,
we replace R = IE[XkaT] by XkaT and we replace P = E[d; X] by d; X}.

In other words, we replace

Wis1 = We—pR'V
= W, — uR"' (2RW;. - 2P)
= Wi — uR ™' 2E[X; X, |W, - 2E[di X,])
by .
Wii1 = Wy = 2u(X X Wy — di Xy) (8.31)

Based on our definitions for y; and ej, we can rewrite this expression as

W1 = Wi = 2pX(yx — dy) or (8.32)
Wi = Wi+ 2]4Xk6k (8.33)

This extremely simple expression is the least-mean squares or LMS algorithm, developed
by Widrow in the 1970s. It is one of the most widely used adaptation algorithms. We note
that the coefficient trajectories produced by the LMS algorithm become a noisy approxi-
mation to the ideal trajectories that would have been obtained using the gradient descent
algorithm if the actual statistics R and P were known. For this reason, the LMS algorithm
is sometimes called a “stochastic gradient” algorithm.

As an example, Fig. 8.6 compares the coefficient tracks produced by the LMS algo-
rithm (irregular black curves) with the corresponding gradient-descent tracks (smooth
red curves) for the two performance surfaces with correlations of and between the two

118 8.6. The least mean squares (LMS) adaptation algorithm

coefficients. As can be seen, the actual tracks show a degree of randomness and irregu-
larity because the calculations are based on instantaneous observations rather than the
corresponding mathematically-correct statistical averages. Nevertheless, it can also be
seen that the tracks converge to the correct values, despite the fact that the journey is
more irregular. This occurs because calculating the coefficient values iteratively provides
parameter estimates that are averaged over time, which provides reasonable accuracy

1
1

Coefficient w
Coefficient w

|

\ -
10 20 30 40 50 60 70 80 920 100 0 10 20 30 40 50 60 70 80 920 100
Coefficient w o Coefficient W,

Figure 8.6: Comparison of tracks of steepest descent (smooth red curves) from initial
coefficient values of 40 and 10 to final coefficient values of 40 and 60 with actual LMS
coefficient tracks (irregular black curves). Values of correlation between the components
of the observations are 0.7 (left panel) and 0.0 (right panel) as in the two previous figures.

The LMS algorithm is remarkably simple and quite effective. Nevertheless, it does suffer
from potentially slow convergence when the components of the observation vector are
highly correlated with one another as in the left panel of Fig. 8.6. As we have discussed,
the LMS algorithm causes the tracks of the filter coefficients to follow (on average) trajec-
tories that are perpendicular to the contour lines, which is not the most direct path to the
bottom of the bowl when the observations are correlated. This is of particular concern
when the FIR filter structure is used for the adaptive filter in this discussion, because in
this case the observation components are merely successive delayed values of the original
input signal.

Several approaches to the original LMS formulation using FIR adaptive filters have been
proposed to ameliorate the problem of slow convergence when the observations are cor-
related. These include:

1. The use of alternate adaptation algorithms. Other coefficient-update algorithms
have been proposed that converge rapidly than the LMS algorithm when observa-
tions are correlated, at the expense of increased computational complexity. The
most widely-used such approach is the recursive least-squares (or RLS) algorithm.
These algorithms attempt to decorrelate the observations by estimating iteratively
and applying the inverse of the correlation matrix.

2. Alternate filter structures. There are other filter structures, such as the FIR lattice
structure, which provide intrinsic decorrelation of the observations.

Chapter 8. Introduction to Adaptive Filtering 119

3. Frequency-domain approaches. The convolution performed by the adaptive FIR
filter can also be performed in the frequency domain using fast Fourier transform
techniques. Performing the adaptation in the frequency domain as well has the fur-
ther advantage that the Fourier transform operation is intrinsically orthogonalizing,
and hence will decorrelate the observations naturally.

4. Subband approaches. Adapting separate frequency bands in the frequency domain
in parallel also reduces the correlation in the observations because the power spec-

trum in local regions tends to be flatter (which implies reduced eigenvalue spread)
than the entire power spectrum.

We will discuss the RLS and lattice implementations in Secs. 8.7 and 8.8 below.

8.7 The recursive least squares (RLS) adaptation algorithm

As noted above, the LMS algorithm is widely used but it is subject to slow convergence
because its coefficient trajectories follow the path of steepest descent, which can be quite
indirect if the observations {Xj} are highly correlated with one another. Recall that the
original iterative gradient descent algorithm derived directly from the Newton solution,
Eq. (8.18), was

Wis1 = Wy = 2uR™ 'V = Wy + 2pe, R X (8.34)

The contribution of the matrix Rzl in Eq. (8.17) is to decorrelate or “whiten” the obser-
vations, and indeed it is the removal of R~! while formulating the LMS algorithm, that
causes the coefficient trajectories to move indirectly to the minimum error by following
the perpendicular to the contour lines, rather than moving directly to the optimal coeffi-
cient values regardless of whether the eigenvalue spread is small or large.

x[n] y[n]
——» hn]l=al-a)"un] —m

X, XF R,
_ k
—> hy = a(l — a) Uk I

Figure 8.7: Upper panel: conventional LSI filter that implements exponential smoothing.
Lower panel: implementation that realizes the estimated correlation matrix Ry.

The recursive least squares (RLS) algorithm, which is also referred to in the Stearns chap-
ter in Lim and Oppenheim as the “LMS-Newton” algorithm, produces a coefficient trajec-
tory that moves directly to the optimal coefficients W* by iteratively estimating the matrix
R7! and the stochastic gradient simultaneously. We can approach the iterative estima-
tion of Ry by first considering the adaptive estimation of a parameter by exponentially-
weighted smoothing. For example, consider the very simple one-dimensional LSI sys-
tem depicted in the upper panel of Fig. 8.7, which has the unit sample response h[n] =

120 8.7. The recursive least squares (RLS) adaptation algorithm

a(l —a)"u[n] where 0 < & < 1. It is easy to show that the difference equation that relates
the output to the input is
y[n]=(1-a)y[n-1]+ax[n] (8.35)

The lower panel of Fig. 8.7 depicts a similar LSI system with the sample response, but
using the notation of the Stearns chapter in Lim and Oppenheim. This filter operates
element by element on its input, which is the L x L matrix XkaT , producing as its output
Ry, which is a running exponential estimate of the autocorrelation matrix R = IE[XkaT]
The corresponding difference equation relating output to input in the lower panel is

Rk = (1 - Oé)l/ék_l + OCXng (836)
Let us now premultiply Eq. (8.36) by 1@;1 and postmultiply it by 1@,21:
RI'RR! = (1-)RR R +aR! X X R (8.37)
Cleaning up Eq. (8.37) produces
R' =(1-a)R! +aR ' X X R, (8.38)

Postmultiplying Eq. (8.38) by X produces

R' X = (1-a)R' X + aR ' X X R X (8.39)

or
or Rl X = R X [(1-a) + aX[R X] (8.40)

Now, let §; = ﬁ;}le. We can then write trivially
S = R X [(1 -)+ a X[$;] (8.41)

Because the matrices Ry and R;l are symmetric, we can write SAkT = XkTIé]il. Dividing
both sides of Eq. (8.41) by [1—a+ anT $¢] and postmultiplying by T = X1<TR121 produces

RI'XXIR ! = L (8.42)
kAT T l—a+aXE§k '
where again
§ = Ri!, Xi
Now ... substituting (8.42) into (8.38) produces
S ST
R = (1 -a)R +a——k
l-a+aX, S
which is easily rewritten as
A 1 (4 $eSF
e —— R —a—— (8.43)

T (l—a) (! 1-a+aX]$

This equation is (finally!) the update equation for Rlzl that has been the missing piece in
the RLS algorithm. Please note that the only new concept is the recursive estimation of Ry
in Eq. (8.36). Everything after that was just a series of algebraic operations that enabled
us to convert the iterative estimate of ﬁk into an iterative estimate of I%,;l. We can now
write the complete RLS update equations as:

Chapter 8. Introduction to Adaptive Filtering 121

1. Let ﬁal =R ! if R is known or %I if it is not, where o is the variance of the input
signal xy.

2. Let SAk = R;le.
3. Update the estimated inverse covariance matrix:
1 (A SkS¢
k = ARei 7 a
(1-a) I-a+aX, S
4. Calculate the error function from the filter output: e, = dj —XkT Wy
5. Update the coefficients: Wy, = Wy + Zyekﬁllek

We iterate Steps 2-5 in the normal update of the filter coefficients. As you will recall, the
LMS algorithm in contrast is simply

Wie1 = Wi + 2pe X

As discussed in class, the RLS algorithm converges faster than the LMS algorithm when
the performance surface is elongated in shape, which happens when the components of
X} are correlated or (alternatively) the matrix R has large eigenvalue spread.

8.8 The adaptive lattice algorithm

The adaptive lattice filter is an alternate way to develop fast adaptation by exploiting
the decorrelation of the signals to subsequent stages of the adaptive lattice. Of course
we have already discussed lattice filters in Secs. 7.3 and 7.4 in our discussion of linear
prediction, so we will not repeat most of the basics other than to point out notational
changes. The process of obtaining the adaptive algorithm parallels the development of
the LMS algorithm, so it should be easy to understand.

Let us begin by comparing the notational conventions for the lattice structure from our
discussion of linear prediction with the notational conventions used by Stearns in Fig. 8.8
below. The figure above compares the notational conventions used to describe the (fixed)
FIR lattice filter in the text by Rabiner and Schafer and also in Secs. 7.3 and 7.4 and
the (adaptive) FIR lattice filter developed in Chapter 5 in the Lim and Oppenheim text,
which we will adopt in this chapter. It is important to keep in mind that the coefficients
k; in the adaptive lattice filter are actually time varying (i.e., k; = k;[k]). Consequently we
must take some care not to confuse the (unsubscripted) symbol k that indicates the time
index with the (subscripted) k;[k], which are the time-varying reflection coefficients. Also
note the change in letter symbol to denote the forward error, the reversal in sign in the
reflection coefficients, and the change in indexing of the reflection coefficients. The lattice
update equations using the notational conventions of Stearns are:

fivr1lk] = filk] +k;bi[k — 1] (8.44)
biri[k] = kifilk] +bi[k - 1] (8.45)
Let us consider the MSE of the forward error signal:

&7 = E[f, (k1] = BIfilk] + kibi[k - 1])°] (8.46)

i+1

122 8.8. The adaptive lattice algorithm

Rabiner and Schafer
x[n] epln] e,[n] eyn] yinj=esln]
o o
 J —k; —k; —k;3
_kf _'k.? _'kj'
byfnj _;_; bfnj ;_f by[n] ;f byfnf
Stearns
Xy SolM filH Solkl Y75k
e o
Y kﬂ kj’ "‘2
kﬂ kf kL’
bolkl 1 b 1 bkl 1 bslk]

Figure 8.8: Comparison of fixed lattice filters from Rabiner and Schafer with adaptive
lattice filters of Stearns.

As you will recall, the free parameters of the lattice filter are the reflection coefficients
{k;[k]}. Proceeding as before, we will first obtain the optimal solution for the error assum-
ing that statistics are known by differentiating the MSE with respect to the parameter k;,
setting the derivative to zero, and solving for k;.

def
5. = E[2(f;[k] + k;bi[k - 1])b;[k-1]] =0 (8.47)
Solving for k;:
E[f;[k]bi[k —1]] = K E[b [k~ 1]] (8.48)
(¢ = BLAb - 1)) (5.49)
E[b2[k—1]]

This solution, of course, is exactly the same as the PARCOR method of estimating reflec-
tion coefficients that we have seen before in our discussion of linear prediction. The only
differences (including the sign change) are a consequence of the changes in notation.

Now let us consider the correlation across subsequent stages when the optimal value of
k; is used. We will consider the forward errors:

E{fir1[k1filk]] = BI(fi[k] + kibi[k - 1]) filk]] (8.50)

Plugging in the optimal value of ki we observe

_ filk]bilk - 1]bi[k - 1]

Elfin [kIfi[K]] = E b2[k—1]

[ﬁ[k]]fi[k]} =0 (8.51)

In other words, the forward error stages are uncorrelated when the coefficients are fully
adapted. The same is true for the backward error stages.

Chapter 8. Introduction to Adaptive Filtering 123

Now let us consider the LMS update equations for the k;[k] coefficients. As before, we can

write
ki[k+1] :ki[k]—,ul-V (852)

where in this case
9¢}
V= 5 = E[2(f;[k] + k;b;[k —1])b;[k —1]] (8.53)
1
Note that we are subscripting the stepsize parameter y; so that it may vary in magnitude
from stage to stage if desired. Replacing the expected value of the right side of Eq. (8.53)

by its instantaneous value and substituting back in to Eq. (8.52), we obtain
kilk +1] = ki[k] = pi[2(fi[Kk] + ki [k]b;[k = 1])b;[k = 1]] (8.54)

Note that the expression inside the parenthesis above is just f;,1[k], so we obtain for the
LMS lattice update equation the very simple expression

kilk +1] = ki[k] = 2p; fi1 [K]bi[k - 1] (8.55)

Jou
S
Py
=

z folk] J1[K]

ES
(=]
=
B
3
ES
o~
V)
=

o] o [] oo []
| -1 ‘---k‘r. 51 ‘---k‘r. 51 ‘---kr. 51
bo [k] = Tok b1 [k] = T1k bg [k}] = T2k bg [k} = I3k
y
/@' wor wik /@' Wk ws
¢ ¢ ¢ .
| | | 1
L : : v
| Ly Ly > > €
S E E A

Figure 8.9: The adaptive lattice filter used as a preprocessor that decorrelates the obser-
vations for the conventional adaptive FIR filter.

The adaptive lattice algorithm can achieve faster convergence than the original LMS algo-
rithm because the observations at successive stages are uncorrelated once the coefficients
become sufficiently adapted. One common application of the adaptive lattice is as a pre-
processor for the conventional adaptive FIR filter. As an example, Fig. 8.9 describes this
configuration. The lower half of the system in Fig. 8.9 is a conventional FIR filter with
the coefficients updated according to the LMS algorithm. The upper half of the figure is
an adaptive lattice filter, with the coefficients updated according to the LMS-like update
method described in Eq. (8.55). While the adaptive FIR filter using the LMS algorithm
would normally converge slowly because the observations tend to be mutually correlated,
especially when the input is spectrally concentrated, the combined lattice-FIR structure
converges quickly because the observations of the FIR filter are the backward errors at
each stage of the lattice, which are mutually uncorrelated as discussed above in conjunc-
tion with Eq. (8.51).

124 8.8. The adaptive lattice algorithm

9. Introduction to Adaptive Array Processing

o

CRil Introduction to microphone arrays 125
9.2 Delay-and-sum beamforming 126
9.3 Beam steering 130
9.4 Narrowband adaptive array algorithms 130
9.5 Broadband adaptive array algorithms 33

Adaptive array systems are able to develop a response that favors signals arriving from
a desired “look” direction over signals arriving from other directions. This chapter dis-
cusses the principles of adaptive arrays and introduces some of the basic algorithms used
to implement them.

9.1 Introduction to microphone arrays

The use of sensor arrays enables us to develop systems that exhibit greater response from
waves coming from one direction than from other directionss. In general we seek to
maintain a constant undistorted response from the direction of the desired signal (some-
times called the “look” direction), while suppressing to the extent possible the response
from signals from other directions, which could be simple background noise or malev-
olent interfering signals. While in principle many types of sensors can be used, such as
the elements of antennas used in broadcast television and other types of communication
antennas, vibration sensors for earthquake detection and other types of seismic analysis,
etc., we are primarily concerned with acoustical applications in speech and audio pro-
cessing using omnidirectional microphones as the sensors.

In this chapter we first review the basic properties of the simplest type of array, the delay-
and-sum beamformer. Although delay-and-sum beamforming performs only modestly (it
typically is used as a baseline to which the behavior of better-performing systems can be
compared), understanding the physics that underly its performance will facilitate a more
general understanding of sensor arrays. We then continue by reviewing the design and
function of selected classic array-processing algorithms.!

IThis material on adaptive array algorithms is in part a condensation of material from Chapter 13 on
narrowband arrays and Chapter 14 on broadband arrays in the text Adaptive Signal Processing by Widrow
and Stearns, published by Prentice-Hall in 1986.

125

126 9.2. Delay-and-sum beamforming

Incoming
Wavefront

N

- af

49

44

;

»

VYYYYYYYY
|

<)Output

Q

1

Steering

Microphones Delays

Figure 9.1: Basic block diagram of a delay-and-sum array

9.2 Delay-and-sum beamforming

Consider the system depicted in Fig. 9.1. Let us assume a set of N sensors (N =9 in the
Fig. 9.1) in a straight line separated by a distance of d meters. The outputs of the sensors
are passed through a set of steering delays Ay and then added together. An incoming plane
wave of sound is arriving from the upper left corner of the figure, at an angle 0 relative
to a line that is perpendicular to the line that passes through the microphones.

Incoming
Wavefront

AN

Figure 9.2: Detailed view of array geometry.

Figure 9.2 above is a more detailed view of the upper area of the array. Note that if the
arriving wavefront is planar and the wavefront arrives at the angle 6 indicated, the dis-

Chapter 9. Introduction to Adaptive Array Processing 127

tance from the source to Microphone 1 is Ad = d sin(6) meters greater than the distance to
Microphone 0. The corresponding difference in arrival time is At = Ad/c = dsin(0)/c. The
constant c represents the speed of sound, nominally 340 m/s for standard temperature
and humidity.

Let us suppose that the input to the system is x(¢) = cos(wt). If all the steering delays Ay
are zero, the output will be

N-1
cos(w(t —kAt)) = ZRe[ej(“’(t_kAt))] (9.1)
k=0 =

Further expansion of this expression produces:

N-1 ‘ N-1 N-1
y(t) — ZRe[e]w(t—kAt)] — Re Ze]w(t—kAt — Re e]w e—]kat] (9.2)
k=0 k=0 k=0

Note that the above expression is of the form Re[Ae/“!] where the complex number A is
referred to as the complex amplitude or phasor. Let the complex amplitude A be equal to
A =|Alef?. In this case we have

Re[Ael®t] = Re[|Ale!?eI¥t] = Re[|Ale/ 9] = |Alcos(wt + O) (9.3)

In other words, the magnitude of A is the amplitude of the resulting cosine while the
phase of A is the phase of the cosine. At the moment we are primarily concerned with the
magnitude of A.

Continuing our analysis of the phasor of Eq. (9.2) we observe that

N-1

N-1 —jwNAt
Ao } :e—jkat _ } :e(—ja)At)k _ (e
(1 _e—ijt)
k=0 k=0
joNAt _ joNAt
. — 2 — 2
:e—]wAt¥e _ e _ (9.4)
jwAt _ jwAt
e 2 —e 2
NwAt
—2]sm(A)

The first factor is a pure phase term, leaving as the magnitude of the complex amplitude
A the expression

sin(N“ﬁAt) Sin(_Nwd;Cin_(e)) Sin(_Nnd/S\in(e))
Al = ——%—=— wdsin(0), . ndsin(0) (9:3)
sin(“3°) sin(——-—) sin(—5—)

The latter expression was obtained using the relationship ¢ = wA/27 from physics. The
expression for |A| is readily recognized as a form of the familiar sin(Nx)/sin(x) expression
that we frequently encounter in discrete-time spectra. We plot |A(0)| in Fig. 9.3 as a
function of 6 ford = 8.5 cm, N =9, and v = w/21 = 500 Hz. We show the plots using both
the conventional cartesian coordinate system and the polar coordinate system (which is

128 9.2. Delay-and-sum beamforming

90 10
8 1 120 60
-1
150 5 30
6 L
5 L
180 0
4 L
3 L
210 330
2 L
. 240 300
270
0 ‘ ‘ ‘
0 100 200 300 400 500 Hz

0, degrees

Figure 9.3: Comparison of directional sensitivity of a simple linear array in rectangular
coordinates (left panel) and polar coordinates (right panel).

most commonly used for directional sensitivity curves), plotting |A(0)| as a function of 8
in the latter case.

Figure 9.4 below compares polar plots as a function of frequency for frequencies of 500 to
4000 Hz in steps of 500 Hz. Again, we use the parameters d = 8.5 cm and N = 9. We show
only the half-circle on the right side (i.e. arrival angles between —90 and 90 degrees); the
left side is identical because of symmetry.

It is worth noting the following attributes of the curves shown in Fig. 9.4:

* The beampatterns change as a function of frequency. This occurs because the actual
beam is formed by interference and cancellation involving interactions between the
distance betwSpecifically, In particular it can be seen that as frequency increases,
the width of the main lobe of the directivity pattern becomes increasingly narrow.
This is usually undesirable because it means that as a target moves slightly off-
axis, the frequency response in response to it will change, with high frequencies
becoming increasingly attenuated.

* Significant sidelobes appear at the frequency v = 4000 Hz for the values of N and
d under consideration. This is because at that frequency the response begins to be
affected by spatial aliasing. Conventional temporal aliasing occurs when the incom-
ing signal that is sampled has frequency components that exceed half the sampling
rate, the Nyquist frequency. Stated another way, to avoid temporal aliasing (which
causes high-frequency components to appear at the output as lower-frequency com-
ponents) we must be assured that the sampling is “dense” enough so that at least
two samples occur within a single period of the highest frequency component of the
signal. With spatial aliasing, in contrast, we must ensure that the spatial sampling
is dense enough so that the sensors are not separated by a distance of more than half

129

Chapter 9. Introduction to Adaptive Array Processing

%
10
120 & 120 &0
s 8
6 6
150 a0 150 0
s .
[Ye— 2
| N) —
180 () o 180 F‘“j:: —— o
210 20 210 20
210 0 210 0
270 0
500 Hz 2500 Hz
%0 0
10 0
120 & 120 &
8 8
6 6
150 a0 150 a0
4 4
2 2
180 Yoo 180 -~
210 20 210 20
20 0 20 0
70 70
1000 Hz 3000 Hz
90
10
120 60 0,
8 120 0
s
6
150 a0 s
4 150 30
4
2
I - 2
180 > o !
- 0 62: —
210 20
210 20
210 20
20 20 0
70
1500 Hz
3500 Hz
% %
1 10
120 & 120 &
s ~&
6 q
150 30 150 | 30
4 4
2 E
180 > 0 180 %: —— o
\
210 =0 210 =0
_/
210 20
270
4000 Hz

%00

Figure 9.4: Comparison of delay-and-sum polar plots as a function of source frequency.

Only responses from the right side (|6| < 90 degrees) are depicted.

a wavelength along the direction of arrival. In other words, to avoid spatial aliasing,
(9.6)

we must ensure that
where v is the frequency in Hz.

) A Tc c
dsm(9)<5_;orv<m

130 9.3. Beam steering

While the temporal aliasing constraint is expressed only in terms of frequency, the
spatial aliasing constraint depends on frequency w, sensor distance d, and the ar-
rival angle 0. If the spatial aliasing constraint is violated, signals arriving from a
direction toward the side will appear as if they arrived from a location closer to the
center (or the look direction in this case).

* While we derived these results using a continuous-time input, the result is the same
for a discrete-time input if we take into account the effects of temporal sampling.

9.3 Beam steering

The calculations and examples above were presented as if the desired direction of the
beam (or the “look direction”) were zero degrees, the perpendicular to the line of the sen-
sors. To rotate the beam so that the maximum response is toward a different direction, it
is only necessary to manipulate the steering delays so that they cancel the time difference
of arrival when the signal is from that particular direction, such that the signals from each
microphone representing a source emanating from the look direction are time aligned af-
ter the delays. For example, if we define the coordinates as in Fig. 9.1 and the arrival
angle is 30 degrees, with a separation of 8.5 cm, we would obtain At = dsin(6)/c = 125pus,
and the corresponding steering delays would be

Ar=(N-1-k)Atfor0<k<N-1 (9.7)

While it was noted above that the beampatterns are the same for continuous time and dis-
crete time in principle, the steering delay increments Ay are real numbers that would in
general be affected by rounding to the nearest integer. For example, a sampling frequency
of 16 kHz implies a sampling period of 62.5 us. The steering delay of 125 us is imple-
mented easily for this sampling frequency as it is exactly two samples, but this is just
coincidental for this particular arrival angle, and in practice quantization of the steering
delays can be a serious problem. One solution to this problem is to increase the sampling
rate of the input to the steering delays by upsampling and then downsampling the output
by the same rate factor, effectively providing the opportunity to obtain fractional delays
at the original sampling frequency as discussed in Sec. 1.4.

9.4 Narrowband adaptive array algorithms

We now turn our attention to some of the ways in which practical adaptive array systems
are implemented. In this section we introduce some of the basic principles that govern
how narrowband signals are processed. We generalize this discussion to systems that
process broadband signals in Sec. 9.5.

Let us begin by considering the simple two-element narrowband array depicted in Fig.
9.5. The primary and reference channels are assumed to receive plane waves arriving at a
propagation angle of 6. Internal noise from the sensors and other sources is represented
by 11y and n,k, which are assumed to be white and statistically independent of each other.
The system with input x; and output yy effectively functions as an ordinary filter that can
produce a transfer function with any desired magnitude and phase, but only at a single
frequency.

Chapter 9. Introduction to Adaptive Array Processing 131

N1k
Primary channel
C cos(wok + ¢

7_\‘ Bandpass dy,
filter + v

Secondary channel
C’ cos(wo(k —0) + gb >

7_\. Bandpass Lk i
filter p Wik Yk
o Tik +
Arriving 90 »
wavefront |

nak

\

Figure 9.5: Block diagram of a narrowband array processing system.

We will assume for now that the input to the primary channel is simply s; = C cos(wok+¢),
where ¢ represents an unknown uniformly-distributed absolute phase shift. Based on the
physical considerations discussed in Sec. 9.2 and illustrated in Fig. 9.2, the input to the
secondary or reference channel based on the would be C cos(wg(k +9)+¢), where the time
delay is represented by

dsin(0) 2mdsin(0)

o= =
cT /\Oa)oT

(9.8)

The delay ¢ is expressed in terms of the number of samples where T is the time between
samples (or the sampling period). As usual, w(represents the frequency of si, Aq is
the corresponding wavelength at propagation speed ¢, and d is the spacing between the
sensors. The bandpass filter is assumed to be an ideal narrowband filter that includes the
signal frequency wy. As in the previous chapter, the output of the of the adaptive filter is

1

Vi = lekwlk = X]?Wk = WkTXk (9.9)
1=0
where
w X
w,o=| *landx, =|"* (9.10)
Wik X1k

where the elements of Xj are the inputs to the weights in W;.

As before, the optimal coefficient values are determined by the Wiener-Hopf equation
W =R"'P where

= v [(62+C
XokXok XokX1k 5 0
R=E[XXT]= . o
2
T

+
(9.11)
X1kX0k X1kX1k 0 oy +5

where o represents the variance of the components of the internal noise signals 7;; and

a

132 9.4. Narrowband adaptive array algorithms

ny that pass through the bandpass filters. Similarly,

dix 2 cos(dw
P =Edx]= || (6wo) (9.12)
dpxqi 2 sin(owyg)

Hence, we can obtain the optimal coefficients using the Wiener-Hopf equation:

wl 21 0 5 (sin(w) 207 + C2 | sin(dwy)

If 6 =0, 6 will be zero as well and we will obtain

C2
W* = | 207+C (9.14)
0

These results were obtained by assuming that the arriving signal is a WSS random-phase
cosine wave, with the phase parameter being independent (as usual) of the statistics char-
acterizing the internal noise sources.

In general, the 90° phase shift in the lower branch of the reference channel combined with
the weights wy and w; of the adaptive filter means that a cancelling signal in the reference
channel can be developed with arbitrary magnitude and phase at a single frequency. In
the original Howells-Appelbaum configuration shown in Fig. 9.5, this means that a single
interfering source can be cancelled in the reference channel. If only a single source is
present (as shown in Fig. 9.5), the signal source itself would be cancelled if its power is
large compared to that of the components of the internal noise sources that are passed
through the bandpass filter. On the other hand, if the signal power is small compared to
that of the internal noise, the output of the system will be proportional to the input.

In the most common application of this system, the weights of the system are first adapted
to a strong signal arriving from the direction of desired cancellation. Once the weights are
adapted, the system will pass signals arriving from any other direction without significant
attenuation, but would severely attenuate signals arriving from the direction of arrival of
the signal with which the system was adapted. If it is necessary to cancel sources arriving
from more than one direction simultaneously, this can be easily accomplished by adding
additional identical reference channels in parallel to the one depicted in Fig. 9.5 with
two additional adaptive weights. The outputs of the reference channels are summed to
form vy, which is subtracted from the signal from the primary channel, dj, as before.
The number of interfering signals that can be cancelled is equal to the total number of
reference channels. The weights of the system will converge to cancel the N -1 interfering
sources with the greatest power at the time of adaptation, where N is the total number of
Sensors.

While this system is designed to process narrowband signals, it can be generalized to han-
dle broadband signals by replacing the adaptive elements of Fig. 9.5 (i.e. the two weights
and the 90° phase shifter by an adaptive LSI filter. This filter is typically implemented as
a simple FIR filter as in Fig. 8.3. The adaptive linear filter in each reference channel, in

Chapter 9. Introduction to Adaptive Array Processing 133

effect, enables us in principle to control the magnitude and phase of its outputs at mul-
tiple frequencies, specifically the DFT frequencies wy = 21tk/L where L is the number of
taps in the filter. Increasing the FIR filter length will increase the spectral resolution in
the directivity pattern, and increasing the number of reference channels will increase the
number of interfering signals that can be cancelled simultaneously.

We discuss several practical approaches to broadband adaptive array processing in the
following section.

9.5 Broadband adaptive array algorithms

In Sec. 9.4 above we first developed the concept of the delay-and-sum beamformer and
beam steering through the imposition of internal delays that compensate for the delays
imposed by differences in the propagation times from the source to the various sensors.
In addition, we showed that the weights of an adaptive array processor can be adapted to
cancel unwanted signals coming from multiple directions.

The systems described in Sec. 9.4 suffer from two serious limitations. First, they are
designed to produce the desired response only at a single frequency (or a narrow band of
frequencies). In addition, the actual directional response depends on a number of factors
such as the ratios of the power of the desired target signal, the undesired interfering
signals, and the level of internal noise. In this section we will describe several practical
systems that address these issues. All of these systems have two major design goals:

* We would like the system to maintain a fixed and undistorted response to signals
arriving from the direction of the target signal (which is commonly referred to as
the “look direction”),

* At the same time we would like the system to eliminate the response from the most
powerful interfering sources.

As we noted at the conclusion of Sec. 9.4, the narrowband constraint can be mitigated by
replacing the simple phase-shift-and-add processing in the reference channel by a general
FIR filter. In addition, the number of interfering sources that can be cancelled is equal to
the number of microphones in the reference channel, which is equal to the total number
of microphones minus one.

In the sections below we describe three different approaches to the problem of simulta-
neously guaranteeing an undistorted response in the look direction while cancelling the
interfering sources to the extent possible.

9.5.1 The Griffiths LMS algorithm

The Griffiths LMS beamformer is based on the LMS algorithm and exploits the fact that
with a typical microphone array system we have more a priori information about the
relevant statistics for the LMS algorithm than we normally would in the general case. As
we discussed in Sec. 8.6, the LMS algorithm can be expressed as

Wi = Wk+2kaek (915)

134 9.5. Broadband adaptive array algorithms

Receiving Beam-steering
array delays
A, R Y5
/
Array
,\ A, d output
= W/ Yk
A
Input Weights
> vector © W,
Xy ¥
N A, ’ A B
[/ J \‘J I
W, .1 =W, +2uP -y, X,) <

P 2E[d, X,

Figure 9.6: Bloick diagram of the Griffiths LMS algorithm. Note the absence of a “desired
signal” to the algorithm. From Woodrow and Stearns (1985).

Working this equation more or less in the reverse order from which it was derived, we
observe that

Wk+1 = Wk + 2Ple€k (916)
= Wi+ 2uXi(dy — p1) (9.17)
= Wk+2]ldek—2ykak (9.18)

We now replace the instantaneous expression d; X by its expected value E[d;X;] = P
While it may be recalled that a key step of the derivation of the LMS algorithm was the
replacement of P = [E[d;X}] by its instantaneous value, in this particular case we can
actually use the ensemble average P because it is determined by the array geometry, the
direction of arrival for the target signal, and the autocorrelation function of the target sig-
nal, all of which are assumed to be known in this case. (The array geometry and azimuth
of the target are generally a part of the system design, while the autocorrelation function
of the target is either known a priori ore estimated using the techniques discussed in
Chapter 5.) The use of the P constraint also causes an input signal arriving from the look
direction to be output without distortion.

For this algorithm we define the extended observation vector Xy and the extended weight
vector Wy by vertically concatenating the observation and weight vectors of the the K

Chapter 9. Introduction to Adaptive Array Processing 135

Sensors:
X00k Wook
X10k W10k
XL-1,0k Wr-1,0k
X = wy = 9.19
k X01k k wWo1k ()
X1-1,1k Wr-1,1k
X[-1,K-1,k Wr-1,K-1,k

and the associated observation vector Xj to be (as usual) the inputs to Wj. Using those
definitions we can write the weight update equation for the Griffiths LMS algorithm as

Wie1 = Wi+ 2puP = 2y X (9.20)
The resulting system is depicted in block diagram form in Fig. 9.6.

[FIX THIS GAP]

9.5.2 The Frost algorithm

As noted above, the general objectives of the broadband adaptive array algorithms de-
scribed here are: (1) to maintain an undistorted response with unity gain in the look
direction, and (2) to minimize the total amount of energy output from all directions,
thereby spprressing to the extent possible the contributions of noise components from
other directions of arrival. In the previous section we described the Griffiths LMS al-
gorithm, which achieves these objectives indirectly using “soft” constraints. In this sec-
tion we describe the Frost algorithm which establishes a “hard” constraint to maintain
the undistorted response in the look direction. In the following section we describe the
Griffiths-Jim algorithm, which reformulates the same problem but maintaining the target
signal free of distortion through a clever system architecture rather than through iterative
adaptive convergence. Finally, in Sec. 9.5.4, we describe the minimum variance distortion-
less response (MVDR) algorithm which in a popular modern algorithm that implements
the Griffiths-Jim architecture non-adaptively non-adaptively using the MMSE solution.
[MOVE THIS TO THE INTRO?]

Figure 9.7 is a block diagram of the major components that implement the Frost algo-
rithm. The figure depicts a linear array of N sensors, each feeding into an adaptive FIR
filter (or tapped delay line), each with L —1 delays as in Fig. 8.3. While this organization
is similar in principle to that of the Griffiths LMS algorithm, the adaptation algorithms of
the two algorithms are different.

Following a modified version of the notation used in Widrow and Stearns, we repre-
sent the adaptive weights of the FIR filters using the L x N matrix

136 9.5. Broadband adaptive array algorithms
Incoming
Wavefront /
\ >,.—> DL,
/
D—» TDL,

N i Array Output

D—» g DL,

Microphones

Steering . "
Delays Adaptive Filters
/ Equivalent Array Output
>—> AN.1 b2 m™mL, ————*

Figure 9.7: Upper panel: Block diagram of the Frost adaptive array algorithm. Lower
panel: Equivalent signal processor for the Frost array, with equal to the sum of the indi-
vidual filters in the upper panel. From Widrow and Stearns (1985).

Wok Wik W(L-1)k
Wrk W(L+1)k W2L-1)k

Wie=| woe woriik W(3L1)k (9.21)
| W(N-1)Lk WNLk |

Note that here we are depicting the weights of each individual adaptive filter as a row
vector rather than the column-vector notation that we had used up to now. As always, the
observation variables are the inputs to the adaptive weights, and they are represented by
the corresponding matrix

X0k X1k X(L-1)k
XLk X(L+1)k X(2L-1)k

Xp=| Xk Xors)k X(3L1)k (9.22)
| X(N-1)Lk XNLk |

Because the outputs of the N sensors are summed together, the response of the array is
equivalent to that of a single adaptive FIR filter with weights equal to the 1 x L vector CX
where

Cé[l 1 ... 1] (9.23)

Chapter 9. Introduction to Adaptive Array Processing 137

9.5.3 The Griffiths-Jim algorithm

9.5.4 The minimum-variance distortionless response (MVDR) formulation

138 9.5. Broadband adaptive array algorithms

Appendix. Working with Delta Functions

il =l
- &

—

In this Appendix we describe an analytical approach to solving all problems involving
delta functions in time or frequency.

The unit impulse function 6(t) has a long and honorable history in signal processing. In
its classic form the unit impulse function is used to represent pulse-like signals that are
very brief compared to any of the meaningful time constants of a realizable system. It is
much easier performing these computations using the idealized delta functions than with
the original brief signals, even though we must put up with some mathematical extremes.
We will begin by discussing three equivalent definitions of the delta function. Following
that we will comment on how to obtain results for computations that involve the delta
function.

9.6 Axiomatic definition of the delta function

In many engineering courses, the delta function is defined in the following fashion:

o(t)=0, fort=0 (9.24)

(o)
J o(tydt=1 (9.25)
—00

Since the delta function equals zero by definition for values of t other than zero, it must
have infinite amplitude at t = 0 in order for it to maintain an area of one at t = 0. So under
these circumstances we may think of the delta function as being infinitesimally wide but
infinitely tall, with unit area.

139

140 9.7. Limiting definitions of the delta function

9.7 Limiting definitions of the delta function

A 6T1 (t) 6T2 (t)
1/T 1T
>l >t
—T/2 'T/2 - T

Figure 9.8: Two functions that approach 6(¢) in the limiting case.

Consider a function 67(f) which has finite amplitude and width, but unit area. Two ex-
amples of such functions, ér,(t) and 67, (t), are depicted in the figure above. In either case,
we can express the delta function as the limit

5(1) = lim 57(t) (9.26)

where again, d7(t) can be any function of t that in the limit as T goes to zero has infinites-
imal width and infinite height with unit area. In practice, the shape of the function does
not matter, provided that the area remains constant independent of T as is the case with
the functions o7, (t) and 6r,(f) depicted above. It can easily be seen that this definition is
consistent with (and in fact is a generalization of) the first definition.

9.8 Implicit definition of the delta function

The most general definition of the delta function, which we encourage you to use always,
is the so-called distributional definition of the delta function. Specifically, let the function
¢(t) be any function of f that is continuous everywhere. The delta function is then defined
as

Jﬁéu—m¢amt:¢m) (9.27)

(o)

Please note that this is a different kind of definition for a function than you may be used
to: o(t) is not defined by what it is but rather by what it does when subjected to the very
specific operations of multiplication by a continuous “testing” function and then integra-
tion over all time. This type of definition is sometimes referred to as an implicit rather
than explicit definition. In our work with delta functions, we will only work with them
in the context of multiplication by a continuous function followed by subsequent integra-
tion. In our work, the integration operation will be in the context of either convolution or
Fourier transformation.

It is easy to see that this definition is consistent with Eqgs. (9.24) and (9.25). Specifically,
o(t) must equal O for (in this case) t # a because the result of the integral depends only on
the value of ¢(t) at t = a. Since we have no idea what ¢(t) is equal to (and in principle
it could be nonzero everywhere), the fact that f:o o(t—a)p(t)dt = ¢(a) implies that o(t)

Chapter 9. Introduction to Adaptive Array Processing 141

equals zero everywhere except for t = a. Equation (9.27) also reduces to Eq. (9.25) if we
let a=0and ¢(t) =1 forall t.

The delta function is also sometimes referred to as a “sifting function” because it extracts
the value of a continuous function at one point in time.

9.9 Computation with the delta function

We encourage you to approach the evaluation of all integrals involving the delta function
using the procedure implied by Eq. (9.27). Specifically, evaluate the integral by applying
three-step procedure:

1. Ask the question “What variable is being integrated?” [t in Eq. (9.27)]

2. Ask the question “What is the value of that variable that causes the argument of the
delta function to equal zero?” [t = a in Eq. (9.27)]

3. Then the result of the integration is the rest of the integrand evaluated at that value
of the variable that is being integrated. [¢(a) in Eq. (9.27)]

We will illustrate these principles in a few examples below.

Example 9.1

J‘oo x(t)o(t—Tt—a)dt (9.28)

—00
This is an equation that may come up in a convolution problem when the system
is an ideal delayer. The evaluation of the integral is straightforward following the
discussion above:

1. “What variable is being integrated?” [in Eq. (9.28)]

2. “What is the value of that variable that causes the argument of the delta func-
tion to equal zero?” [t =t —ain Eq. (9.28)]

3. The result of the integration is the rest of the integrand evaluated at that value
of the variable that is being integrated. [x(t —a) in Eq. (9.28)]

Example 9.2
1 [,
— 5(Q = Q)eftd0) 9.29
5 LO (0)e (9.29)

This is an example of an inverse continuous-time Fourier transform, but the evalu-
ation once again is straightforward:

1. “What variable is being integrated?” [Q) in Eq. (9.29)]

2. “What is the value of that variable that causes the argument of the delta func-
tion to equal zero?” [(Q = Qg in Eq. (9.29)]

142 9.10. The unit step function and derivatives of discontinuous functions

3. The result of the integration is the rest of the integrand evaluated at that value
of the variable that is being integrated. [5-¢/%%" in Eq. (9.29)]

Example 9.3

J o(2t)dt (9.30)
This integral, which illuminates a property of delta functions, is only slightly less
straightforward. In principle, we cannot evaluate this integral directly because Eq.
(9.27) is defined in terms of o(t) rather than 6(2t). Nevertheless, we can easily work
around this issue with a change of variables. Specifically, let " = 2t. Then dt’ = 2dt,
while t = t'/2 and dt = dt'/2. Hence we can write directly

foo o(2t)dt = foo o(t')dt'/2 = %Jm o(t')dt’ = 1

oo oo oo 2
This last result makes sense, as replacing the argument ¢ in the delta function by 2t
causes the delta function to be compressed by a factor of 2 in time. Consequently
the area of the delta function will be multiplied by a factor of 1/2. In general we
can state that

S(at) = l'%la(t)

Again, we restate that every integral involving delta functions can (and should!) be eval-
uated using the three-step procedure outlined above.

9.10 The unit step function and derivatives of discontinuous func-
tions

As you know, the continuous-time unit step function is defined as

0 t<0O,
u(t) = (9.31)
1 t>0

(We do not need to worry about the definition of u(0) for now or for that matter, ever).
The unit step function can be considered to be the integral of the delta function in that

u(t) = J:t o(t)dt (9.32)

While this may imply that (¢) is the derivative of u(t), this cannot be stated in the ordi-
nary sense because of the discontinuity of u(t) at t = 0. Nevertheless, we can use delta
functions to represent the derivatives of functions that are continuous except for a finite
number of points. For example, if x(¢) is continuous everywhere except for ¢t = a, and
x(a+) = x(a—) + k, then the derivative of x(¢) would be

Chapter 9. Introduction to Adaptive Array Processing 143

dx : :

2X in the ordinary sense for t = g,
dx _| @ Y (9.33)
dt ko(t—a)fort=a

In other words, if there are isolated discontinuities in an x(t) that is otherwise continuous,
the derivative of x(t) would be the ordinary derivative where x(t) is continuous, and there
would be delta functions at the locations along the t axis where the discontinuities are ob-
served. The areas of these delta functions would be equal to the size of the discontinuity
at that location.

For example, if

t2 t<3,
x(t) =
t2+2 t>3
then we would observe
dx(t)]
=2t+26(t-3
T +26(t - 3)
Similarly, if
0 t<0,
u(t) =
1 t>0
then we would observe
du(t
) _seey (9.34)

144 9.10. The unit step function and derivatives of discontinuous functions

