
&Electrical Computer

ENGINEERING

Team SSDMSE06: SuDuelKu
18-749: Fault-Tolerant Distributed Systems

Saul Jaspan, Lucia de Lascurain, Luis Rios, Yudi Nagata, &
Christopher Nelson

 2

Team Members

Saul Jaspan
Saul.Jaspan@gmail.com

Luis Rios
Jriostre@andrew.cmu.edu

Yudi Nagata
ynagata@andrew.cmu.edu

http://www.ece.cmu.edu/~ece749/teams-06/team1/html/index.html

Christopher Nelson
crnelson@cs.cmu.edu

Lucia de Lascurain
ldelascu@andrew.cmu.edu

 3

Baseline Application
 A real-time, fault-tolerant, high performance game where two or more

SuDoKu players can pit their intelligence against each other.
 Su - Duel - Ku
 Configuration

– EJB
– Linux
– MySQL
– Jboss

 Tools
– Eclipse
– LOMBOZ
– xDoclet
– Ant

 Architectural Elements
– Client(s)
– Game Server

–Session Bean
–Entity Beans

– Database

 4

Baseline Architecture

Client 1

Client N

…

SuDuelKu
Server
Bean

MySQL

joinGameRoom()

listGames()

listG
ames()

Legend

Client Session Bean Database

a b

a calls bEntity Bean

Game

Game
Room

Square

Player

joinGame()

getPlayerLocal()
listSquares()

SuDuelKu Server

Server Boundary

CMP call
CMP call

CMP call

CMP call

 5

Fault-Tolerance Goals

 Stateless Replicated SuDuelKu Server (each on their own machine)
 Stateless Replicated Global Naming Server (each on their own machine)
 Sacred Machine with

– Stateful Recovery Manager
– Stateful Fault-Injector
– Stateful Database ;-)
– JMS Server

 Fault-Tolerant Framework
– Global Recovery Manager

• Fault Detection
• Replica Creation
• Replica Destruction

– Global Fault Injector

 6

Mechanisms for Fail-Over

 The client asks the global naming server for the primary server
 If the game server goes down, the client gets a SuduelkuException.
 After getting an exception, the client waits for a configurable amount of

time.
 Meanwhile, the recovery manager tries to execute isAlive on the crashed

server and gets a CommunicationException.
 The recovery manager notifies the naming server that the server is down

and sets a new primary server.
 The recovery manager attempts to start the crashed server.
 When the client’s waiting time is over, it asks the global naming server for

the primary server again.

 7

FT-Baseline Architecture 1

Client 1

Client N

…

Name Server

SuDuelKu
Server

(primary)

MySQL

SuDuelKu
Server

(backup) Recovery
Manager

Fault
Injector

Legend

Client Replicated Server Database

a b

a calls bFT Framework Global Naming

getPrim
ary ()

getPrim
ary ()

joinGame()

joinGame()

setPrimary()

isAlive()

isAlive()

Kill -9

Kill
-9

CMP

CMP

joinGame()joinGame()

 8

FT-Baseline Architecture 2

Name
Server

SuDuelKuClient

EJBClient

Waiting EJBClient

void setCommandRate(…)

FaultInjector

void killServer(…)

SuDuelKu Server
bool isAlive(…)

Recovery Manager
void startNewServer(…)

primary

primary

primary

backup

backup backup

 9

 Latency vs. Size of Reply

 Latency is independent of size of reply – the network isn’t the bottleneck

Fault-Tolerance Experimentation

 10

Fault-Tolerance Experimentation

 Latency vs. 3 Sigma Outliers per Experiment

 Number of clients is the major cause of latency

 11

Fail-Over Measurements

 Pie chart break-down of failover time

 Fault-Detection is the culprit!

< 1% < 1%

99%

 12

More-FT Architecture 1

Client 1

Name Server

Primary
Server

Game
Database

Backup
Server

Recovery
Manager

Fault
Injector

Legend

Client Server Database

a b
a calls bFT Framework Global Naming

Name
Database

JMS

JMS

isAlive

isAlive

isAlive

getPrimary

CMP

CMP

kill -9

kill -9

onMessage

publish

enterAnswer

 13

More-FT Architecture 2

Name Server

SuDuelKuClient

EJBClient

Waiting EJBClient

void setCommandRate(…)

FaultInjector
void killServer(…)
void killPrimary() SuDuelKu Server

bool isAlive(…)

Recovery Manager
void startGameServer(…)
void startNameServer(…)
void blackListServer(…)
void gameServerDown(…)
void gameServerBackUp(…)
void nameServerDown(…)
void nameServerBackUp(…)

List getNamingServer()
List getGamingServers()
Server getPrimary()
bool isAlive()

JMS

void publish(…)

List availableServers
List currentServers
List blackListedServers

 14

Other Features

 Fault-Tolerant Naming Server
– Adds significant complexity to the Recovery Manager state machine

 Callback via JMS
– JBoss implementation of JMS was good enough
– Durable subscriptions allowed for clients to be stateless
– JBoss JMX console helps debugging messaging code

 #1 Recovery Manager - Blacklist problematic servers
– Good recovery design supports smart recovery tactics

 CLI & GUI !!!
– Middleware supports clean separation of concerns - Client/Server
– CLI supports easy scripting of clients
– GUI supports easy game play!

 Eclipse & Lomboz
– Tools can have a steep learning curve, but once learned can save time

 15

Insights from Measurements
 Scripting the clients can create unrealistic usage of the system

– Implementing a usable system with probes will allow for data collection under
true system usage

 Stateless servers increase database bottleneck
– There is a tradeoff between fast data access and failover-time (complexity)

 Reply size did not dramatically impact latency, but request rate did
– For our application, we may consider sending more data per message to reduce

the number of sent messages - thus promoting scalability.
 Running experiments was not as simple as we thought

– Kerberos authentication expired
– Ran out of disk space
– Had trouble keeping multiple clients up
– Coordination between multiple components: JBoss, database, clients

 Getting representative data is near impossible
– Expectation management

 16

Open Issues

 Strange behavior after recovering from multiple faults
– JBoss sporadically reports communication errors when beans are

communicating via local interfaces
– Possibly addressed by using separate JBoss configuration directories - one for

our FT Naming Servers and one for our FT Game servers
 Messaging Issues

– Detect finished games to purge unused topics and subscriptions
– Identify the exceptions generated by JMS server failure

 Still to come…
– Fault-Tolerant callbacks
– Improved server startup time to increase tolerable failure rate
– Improve scalability to support expected growth in the user community ;-)
– Calculating player scores
– Purging complete games from the database
– Algorithm for game generation

 17

Conclusions (1)

 Enlightenment
– Middleware does not remove all complexity, it just moves the complexity into a

new layer
– Middleware decisions place constraints on software architecture that must be

addressed during design
– Fault-Tolerance, Real-Time, and High-Performance all involve tradeoffs that

must be understood and be made explicitly
 Why we are Team #1 (read #1 Team)

– Dueling SuDoKu game
– Fault-Tolerant game server
– Fault-Tolerant global naming server
– Callbacks (soon to be FT) within a Fault-Tolerant application
– An awesome GUI

 18

Conclusions (2)

 New approaches for next time
– Naming conventions
– Coding conventions
– Start implementing probes early
– Start gathering data early
– Design for probes
– Design for a scriptable client
– Start thinking about transactions early
– Be aware of concurrency issues

 19

Demo

 20

Questions

 21

Additional thoughts

 How would active replication help?
 What would be the impact of the active replication? Can we keep state in

the database?
 How complex would it be to keep server with state? Could there be a mixed

style?

 Some more lessons
– CMP is handy but very complex
– CMP has limitations with database design (no referential integrity allowed)
– Experimentation is a laborious process
– Debugging the server is not as easy as the client
– JNI works differently on solaris than linux
– Output to indicate progress of experiments effects the results, but without it,

debugging experiments is non-trivial
– Use a mechanism for disabling debug/probe output

