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Baseline Application
 A real-time, fault-tolerant, high performance game where two or more

SuDoKu players can pit their intelligence against each other.
 Su - Duel - Ku
 Configuration

– EJB
– Linux
– MySQL
– Jboss

 Tools
– Eclipse
– LOMBOZ
– xDoclet
– Ant

 Architectural Elements
– Client(s)
– Game Server

–Session Bean
–Entity Beans

– Database
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Baseline Architecture
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Fault-Tolerance Goals

 Stateless Replicated SuDuelKu Server (each on their own machine)
 Stateless Replicated Global Naming Server (each on their own machine)
 Sacred Machine with

– Stateful Recovery Manager
– Stateful Fault-Injector
– Stateful Database ;-)
– JMS Server

 Fault-Tolerant Framework
– Global Recovery Manager

• Fault Detection
• Replica Creation
• Replica Destruction

– Global Fault Injector
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Mechanisms for Fail-Over

 The client asks the global naming server for the primary server
 If the game server goes down, the client gets a SuduelkuException.
 After getting an exception, the client waits for a configurable amount of

time.
 Meanwhile, the recovery manager tries to execute isAlive on the crashed

server and gets a CommunicationException.
 The recovery manager notifies the naming server that the server is down

and sets a new primary server.
 The recovery manager attempts to start the crashed server.
 When the client’s waiting time is over, it asks the global naming server for

the primary server again.
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FT-Baseline Architecture 1
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FT-Baseline Architecture 2
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 Latency vs. Size of Reply

 Latency is independent of size of reply – the network isn’t the bottleneck

Fault-Tolerance Experimentation
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Fault-Tolerance Experimentation

 Latency vs. 3 Sigma Outliers per Experiment

 Number of clients is the major cause of latency
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Fail-Over Measurements

 Pie chart break-down of failover time

 Fault-Detection is the culprit!

< 1% < 1%

99%
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More-FT Architecture 1
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More-FT Architecture 2
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Other Features

 Fault-Tolerant Naming Server
– Adds significant complexity to the Recovery Manager state machine

 Callback via JMS
– JBoss implementation of JMS was good enough
– Durable subscriptions allowed for clients to be stateless
– JBoss JMX console helps debugging messaging code

 #1 Recovery Manager - Blacklist problematic servers
– Good recovery design supports smart recovery tactics

 CLI & GUI !!!
– Middleware supports clean separation of concerns - Client/Server
– CLI supports easy scripting of clients
– GUI supports easy game play!

 Eclipse & Lomboz
– Tools can have a steep learning curve, but once learned can save time
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Insights from Measurements
 Scripting the clients can create unrealistic usage of the system

– Implementing a usable system with probes will allow for data collection under
true system usage

 Stateless servers increase database bottleneck
– There is a tradeoff between fast data access and failover-time (complexity)

 Reply size did not dramatically impact latency, but request rate did
– For our application, we may consider sending more data per message to reduce

the number of sent messages - thus promoting scalability.
 Running experiments was not as simple as we thought

– Kerberos authentication expired
– Ran out of disk space
– Had trouble keeping multiple clients up
– Coordination between multiple components: JBoss, database, clients

 Getting representative data is near impossible
– Expectation management
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Open Issues

 Strange behavior after recovering from multiple faults
– JBoss sporadically reports communication errors when beans are

communicating via local interfaces
– Possibly addressed by using separate JBoss configuration directories - one for

our FT Naming Servers and one for our FT Game servers
 Messaging Issues

– Detect finished games to purge unused topics and subscriptions
– Identify the exceptions generated by JMS server failure

 Still to come…
– Fault-Tolerant callbacks
– Improved server startup time to increase tolerable failure rate
– Improve scalability to support expected growth in the user community ;-)
– Calculating player scores
– Purging complete games from the database
– Algorithm for game generation
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Conclusions (1)

 Enlightenment
– Middleware does not remove all complexity, it just moves the complexity into a

new layer
– Middleware decisions place constraints on software architecture that must be

addressed during design
– Fault-Tolerance, Real-Time, and High-Performance all involve tradeoffs that

must be understood and be made explicitly
 Why we are Team #1 (read #1 Team)

– Dueling SuDoKu game
– Fault-Tolerant game server
– Fault-Tolerant global naming server
– Callbacks (soon to be FT) within a Fault-Tolerant application
– An awesome GUI
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Conclusions (2)

 New approaches for next time
– Naming conventions
– Coding conventions
– Start implementing probes early
– Start gathering data early
– Design for probes
– Design for a scriptable client
– Start thinking about transactions early
– Be aware of concurrency issues
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Demo
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Questions
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Additional thoughts

 How would active replication help?
 What would be the impact of the active replication? Can we keep state in

the database?
 How complex would it be to keep server with state? Could there be a mixed

style?

 Some more lessons
– CMP is handy but very complex
– CMP has limitations with database design (no referential integrity allowed)
– Experimentation is a laborious process
– Debugging the server is not as easy as the client
– JNI works differently on solaris than linux
– Output to indicate progress of experiments effects the results, but without it,

debugging experiments is non-trivial
– Use a mechanism for disabling debug/probe output


