
18-749: Fault-Tolerant Distributed
Systems

Phase III
Experiments

Team 1

Saul Jaspan
Lucia de Lascurain

Yudi Nagata
Christopher Nelson

Luis Rios

Apr 17th, 2006

Lessons Learned from the Experiments

Error identification takes time
We ran into situations where the experiments had been running for
hours just to realize at the end that we were having problems with the
experiments. We detected several errors in the scripts, and in the
system that cost us a considerable amount of time and effort. Most of
this time elapsed between the start of the experiments and the
identification of the problem.

Experimentation resulted in a good test tool
The experiments resulted in a very good tool for testing our system.
One of the obvious benefits was that the system was tested under new
conditions as for example the simultaneous interaction of several
clients. We detected a concurrency issue causing more than one client
to have the same client id and thus making the results of the
experiments useless.

Order of method calls matter
Given the restrictions on the environment on which the experiments
were executed, it was important to measure methods that could have
a similar latency each time they were invoked. As an example of a bad
method sequence we could cite our createGame method which creates
a new record in the database and then called our listGames method
which returns the existing games in the database. As the number of
games grew in the database, the execution of listGames turned into a
huge overhead for the experiments.

Be proactive in checking results
Just waiting for the experiments to finish may be counterproductive. If
we had waited for the experiments to be done we would have spent
much more time. We were able to have the experimentation done on
time in part because we realized at a good time that our
experimentation scripts were buggy, and that our system was not
ready for the experimentation. So, whenever the results were
contradictory or made no sense we attacked the problem as soon as
possible. Otherwise we would have wasted some precious time.

System Findings

Performance
Our system appears to scale well in regards to reply size. Within sets
of experiments where the number of clients was held constant, we did

not see much (if any) change in latency with an increase in reply
message size. However, our system does not scale quite as well with
an increase of clients. Compared to our one client case, our four,
seven, and ten client experiments had respective latency increases of
approximately 100%, 500%, and 700%.

Dependability
During the multiple executions of our experiments (we had to restart
our experiments a couple of times), our application only failed to
provide service due to situations that were outside of our control. One
service outage was caused by a disk quota over-run caused by the
multiple teams collecting data in a shared volume in the class' AFS
space. A second service outage was caused by a kerberos ticket that
expired while our experiments were running and kept our shell scripts
from being able to ssh into other machines in the clusters.

Additionally, our system showed a fairly constant maximum latency
(when taking away the outliers) regardless of the changes in the
number of clients, reply size, or inter-request time. However, the
outliers showed some large peaks in maximum latency – on the order
of 2000% increase in latency compared to the mean latency.

Robustness
While our system did show some large spikes in latency, the mean
latency throughout all the experiments stayed relatively constant.
Additionally, our runs with ten clients and no inter-request time
showed a max latency approximately equivalent to the max latency of
the runs with one, four, and seven clients with no inter-request time.

Hypothesis of non-expected results
We had many more outliers (using the 3 sigma approach) than we
expected. It also appears that the majority of the latency for outliers
comes from the server, rather than the middleware and network, and
the majority of the time server-side is likely the time to access the
database. We think the number of outliers and their component
breakdown show the effects of multiple teams demanding too much
from the same mysql installation at the same time.

Experiments for verifying hypothesis
To verify our hypothesis, we would need to add a couple more probes
to our server to determine what portion of the server-side time is logic
versus database access. We could also re-run the experiments against
an installation of mysql that is only available to our team to see if we
get similar outliers in quantity, component breakdown, and magnitude.

Magical 1% theory
When using the 3 sigma approach to outliers, we marked
approximately 190,000 data points as outliers. This is approximately
7% of our 2,640,000 data points. After we remove the 1% of the data
points that were the furthest from the mean, the max value line
follows the same curve as the mean value line, but it is
approximately .2 to .3 seconds higher on the y-axis (latency).

Graphs
Original images available at:
http://www.ece.cmu.edu/~ece749/teams-
06/team1/html/FaultTolerantApp/ft_baseline_eval_data/graphs/

Experimentation numbering in graphs

Experiment No. Number of Clients
Reply
size Inter request time

1 1 58 0
2 1 256 0
3 1 512 0
4 1 1024 0
5 4 58 0
6 4 256 0
7 4 512 0
8 4 1024 0
9 7 58 0

10 7 256 0
11 7 512 0
12 7 1024 0
13 10 58 0
14 10 256 0
15 10 512 0
16 10 1024 0
17 1 58 20000
18 1 256 20000
19 1 512 20000
20 1 1024 20000
21 4 58 20000
22 4 256 20000
23 4 512 20000
24 4 1024 20000
25 7 58 20000
26 7 256 20000
27 7 512 20000
28 7 1024 20000
29 10 58 20000
30 10 256 20000
31 10 512 20000
32 10 1024 20000
33 1 58 40000
34 1 256 40000
35 1 512 40000
36 1 1024 40000
37 4 58 40000
38 4 256 40000
39 4 512 40000
40 4 1024 40000
41 7 58 40000
42 7 256 40000
43 7 512 40000
44 7 1024 40000
45 10 58 40000
46 10 256 40000
47 10 512 40000
48 10 1024 40000

Line plots of latency for increasing number of clients and
different reply sizes (no pause)

Area plot of (mean,max) latency

Area plot of (mean,99%) latency

Latency component breakdown for outliers

Mean latency for outliers grouped by experiment to better
show component breakdown

Latency component breakdown for normal request

Reply size and request rate impact on max latency

Reply size and request rate impact on 99% latency

Latency vs. throughput

