21.1

The Design and Use of SimplePower: A Cycle-Accurate
Energy Estimation Tool

W. Ye, N. Vijaykrishnan, M. Kandemir, and M. J. Irwin
Microsystems Design Lab
The Pennsylvania State University
University Park, PA 16802

(wye,vijay,kandemir,mji) @cse.psu.edu

ABSTRACT

In this paper, we present the design and use of a compre-
hensive framework, SimplePower, for evaluating the effect of
high-level algorithmic, architectural, and compilation trade-
offs on energy. An execution-driven, cycle-accurate RT level
energy estimation tool that uses transition sensitive energy
models forms the cornerstone of this framework. Simple-
Power also provides the energy consumed in the memory
system and on-chip buses using analytical energy models.

We present the use of SimplePower to evaluate the impact
of a new selective gated pipeline register optimization, a
high-level data transformation and a power-conscious post
compilation optimization (register relabeling) on the datap-
ath, memory and on-chip bus energy, respectively. We find
that these three optimizations reduce the energy by 18-36%
in the datapath, 62% in the memory system and 12% in the
instruction cache data bus, respectively.

1. INTRODUCTION

Power® consumption has become a critical issue in processor
design, especially in embedded environments. When design-
ing high-performance, low-power processors, designers need
to experiment with software and architectural level tradeoffs
and evaluate various power optimization techniques. Archi-
tectural level power estimation tools are becoming increas-
ingly important with the growing complexity of current de-
signs (Systems-on-a-Chip) to provide fast estimates of the
energy consumption early in the design cycle. By the time
the design of today’s large and complex processors have been
specified to the circuit or gate level, it may be too late or too

*(This work was sponsored in part by grants from NSF
(MIP-9705128), Sun Microsystems, and Intel)

!Throughout this paper, we often use the terms power and
energy interchangeably. However, power savings and energy
savings do not necessarily go hand-in-hand. The choice of
metric used will depend on the application constraints.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distrib-
uted for profit or commercial advantage and that copies bear this notice and the full
citation on the first page. To copy otherwise, to republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee.

DAC 2000, Los Angeles, California

©2000 ACM 1-58113-187-9/00/0006..85.00

340

expensive to go back and deal with excess power consump-
tion problems. Further, software is becoming an important
aspect of emerging embedded systems and the study of the
integrated impact of software and hardware optimizations
should be supported by such tools.

In this paper, we present the design of an execution-driven,
cycle-accurate, RT level power estimation tool, SimplePower,
and its use in evaluating algorithmic, architectural and com-
piler optimizations. Most research in architectural level
power estimation is based on empirical methods that mea-
sure the power consumption of existing implementations
and produce models from those measurements. This is in
contrast to approaches that rely on information theoretic
measures of activity to estimate power [12; 16]. Measure-
ment based approaches for estimating the power consump-
tion of datapath functional units can be divided into three
sub-categories. The first technique, introduced by Powell
and Chau [15], is a fixed-activity macro-modeling strategy
called the Power Factor Approximation (PFA) method. The
energy models are parameterized in terms of complexity
parameters and a PFA proportionality constant. Similar
schemes were also proposed by Kumar et. al. in [8] and
Liu and Svensson in [11]. This approach assumes that the
inputs do not affect the switching activity of a hardware
block. To remedy this problem, activity-sensitive empirical
energy models were developed. These schemes are based on
predictable input signal statistics; an example is the method
proposed by Landman and Rabaey [9]. Although the indi-
vidual models built in this way are relatively accurate (a 10%
- 15% error rate), overall accuracy may be sacrificed due to
incorrect input statistics or the inability to model the inter-
actions correctly. The third empirical technique, transition-
sensitive energy models, is based on input transitions rather
than input statistics. The method, proposed by Mehta, Ir-
win, and Owens [13], assumes an energy model is provided
for each functional unit - a table containing the power con-
sumed for each input transition. Closely related input tran-
sitions and energy patterns can be collapsed into clusters,
thereby reducing the size of the table. Other researchers
have also proposed similar macro-model based power esti-
mation approaches [22; 1].

The SimplePower energy simulator was developed based on
transition-sensitive energy models and is an execution-driven,
cycle-accurate RT level tool. It simulates the integer sub-
set of the instruction set of Simplescalar, which is a suite

of publicly available tools to simulate modern microproces-
sors [2]. Our simulation flow uses the Simplescalar compiler
toolset to convert the C source benchmarks to SimplePower
executables. SimplePower simulates these executables pro-
viding cycle-by-cycle energy estimates and the switch ca-
pacitance statistics for the processor datapath, memory and
on-chip buses. Currently, SimplePower does not capture the
energy consumed by the control unit of the processor and
the clock generation and distribution network.

The rest of this paper consists of four sections. Section 2
presents the design of SimplePower. The effectiveness of a
selectively gated pipeline register optimization on the pro-
cessor datapath power is evaluated in Section 3. Section 4
discusses the effectiveness of compiler optimizations on the
energy consumed by the system components. Finally, Sec-
tion 5 draws the conclusions.

2. DESIGN OF SIMPLEPOWER

SimplePower is based on the architecture of a five-stage
pipelined datapath and consists of the fetch stage IF, the
instruction decode stage ID, the execution stage EXE, the
memory access stage MEM, and the write-back stage WB.
The instruction set architecture of simulated machine is
a subset of the instruction set (the integer part) of Sim-
plescalar, which is a suite of publicly available tools to sim-
ulate modern microprocessors [2]. The major components
of SimplePower are: SimplePower core, RTL power estima-
tion interface, technology dependent switch capacitance ta-
bles, cache/bus simulator, and loader.

At each clock cycle, the SimplePower Core simulates the
execution of all active instructions and calls corresponding
power estimation interfaces for all activated functional units.
It continues the simulation until the program halt instruc-
tion is fetched. Once the simulator fetches the halt instruc-
tion, it continues executing all the instructions left in the
pipeline and then presents the output. In order to keep the
simulator technology independent, a RTL power estimation
interface - a set of C routines - has been developed for all the
architectural level functional units. The parameters of each
interface module are the same as the inputs of the standard
functional unit. If the architecture of a functional unit is
changed, only the power table(s) or its interface implemen-
tation needs to be replaced while the simulator core does not
need any modification. Technology dependent switch capaci-
tance tables have been developed for the different functional
units such as adders, ALU, multipliers, shifter, controllers,
register file, pipeline registers, and multiplexors. The cache
stmulator simulates the status of the instruction cache and
data cache. It is called by SimplePower Core when either
cache (I-Cache or D-Cache) is accessed. The cache simula-
tor was built by modifying the DinerollI cache simulator [4]
and integrated with the memory energy model proposed in
[18]. This analytical model has been validated to be accu-
rate (within 2.4% error) for conventional cache systems [5;
18]. The bus simulator snoops the instruction cache address
bus, the instruction cache data bus, the data cache address
bus, and the data cache data bus. It records the total num-
ber of accesses and the number of transitions on those buses.
Those statistics are combined with our interconnect power
model [23] to compute the switch capacitances of the on-chip
buses.

341

SimplePower core accesses a table (through the interface)
containing the switch capacitance for each input transition
of the functional unit exercised. Table 1 shows the structure
of such a table for a n-input functional unit.

Index Switch
previous current Capacitance

input vector input vector (pF)
0;..0, 0:...0, capo
0;...0, 01...1, capy
01...0n, 03..10, capz
0;..0, 01..11, caps

17..1, 1;.10, capon _o

1.1, 1;..11, capon —1

Table 1: Switch Capacitance Table

The construction of these tables is based on the structure
of the functional units. Each functional unit can be divided
into one of the following classes: bit-independent functional
units or bit-dependent functional units. In a bit-independent
functional unit, the operation for each bit slice does not
depend on the values of other bit slices. In this case, the
only switch capacitance table we need is a small table for
a one-bit slice. The total energy consumed by the module
can be calculated by summing the energy consumed by each
bit transition. Examples of bit-independent functional units
include pipeline registers, the logic unit in the ALU, latches
and buses.

In a bit-dependent functional unit, the operation in one bit
slice depends on the values of other bit slices (for example,
a 32-bit adder). Their energy characterization is based on
a table lookup consisting of a full energy transition matrix
where the row address is the previous input vector, the col-
umn address is the present input vector, and the matrix
value is the switch capacitance (as shown in Table 1). Un-
fortunately, the size of this table grows exponentially with
the size of the inputs. A clustering algorithm helps with
this problem [13] while bounding the loss in accuracy. Al-
though this algorithm can compress the table for a 16-bit
ripple carry adder (with 232 entries) to a table with only 97
entries, it is very difficult to compress the table for a 32-
bit adder with acceptable accuracy. Lin et. al. proposed a
power modeling and characterization method for functional
units (called macrocells in their paper) using structure in-
formation [10]. However, their technique was more suitable
for circuits with small input size. For instance, it took 29.3
hours to simulate a 4-bit fast adder (9 inputs) with a re-
duced number of entries (26,244). Two solutions have been
used in our work to address this problem:

e If the structure of a module is too complicated (or
large), analytical (transition independent) modeling
can be used to estimate the power consumed in this
module. In this case, the simulator only needs to
record the necessary parameters. Currently, we use
an analytical memory system power model.

o If a functional unit can be partitioned into smaller sub-
modules, we can build the tables for the sub-modules
first and then use these tables to estimate the to-
tal switched capacitance of the entire functional unit.

We have applied this technique to model adders, sub-
tracters, shifters, multipliers, register files, decoders,
and multiplexors.

Figure 1 shows the estimated power consumption using the
functional partitioning approach (X-axis) versus the actual
circuit level simulation results (Y-axis) from HSPICE for a
5-port register file. The accuracy of our technique is de-
termined by comparing the HSPICE simulation results and
the estimated power consumption from our simulator for
15 randomly chosen input transitions. The average error of
our approach from the HSPICE simulations was found to be
13%. Figure 1 also shows that our method underestimated
the power consumed by each input transition and that all
the points are distributed linearly. A constant multiplicative
factor based on the technology (between 1.1 and 1.2) can be
used to improve the accuracy. For the 32x32 5-port regis-
ter file, our power estimation approach took much less than
0.1 sec for each input transition as opposed to the 556.42
sec required for circuit level simulation using HSPICE. The
machine running the HSPICE simulation and our simulator
is a SUN ULTRA-10 with 640 MBytes memory.

15 T T

Power Consumption in HSPICE (mw)

10
Estimated Power Consumption (mw)

Figure 1: 5-port register file: Estimated power con-
sumption vs. HSPICE results. Ideally, all points
should fall on the straight line.

‘We have designed the shifter, adders, multipliers and divider
energy models using an approach similar to that of the reg-
ister file. The average error from HSPICE evaluations was
found to be within 15% for all the units. In the following sec-
tions, we describe the use of SimplePower for analyzing the
effectiveness of tradeoffs in algorithms, architectural design
and compiler optimizations.

3. GATING PIPELINE REGISTERS

SimplePower was used to study different architectural op-
timizations using a set of benchmarks listed in Table 2.
The SimplePower simulation flow used for estimating the
energy of these applications is given below. First, the C
source benchmark is compiled by the SimpleScalar version
of gcc, which generates SimpleScalar assembly codes. The
SimpleScalar assembler gas and loader (linker) gld produce
SimplePower executables that can then be loaded into Sim-
plePower’s main memory and executed by Simple Power core.
Users can specify options to configure the caches, to output
the pipeline trace cycle-by-cycle and to dump the memory

342

[Name Brief Description # of Cycles
acker.c ﬁa(cul?te Ackermann’s Function | 5,339,731
A(3,6
bubble.c | bubble sort 100 random numbers 391,386
heap.c heap sort the same 100 numbers 105,368
quick.c [quick sort the same 100 numbers 67,531
bsrch.c {))mary search the same 100 num- 373
ers
anoi.c Tower of Hanot for 1 to 10 disks 220,806
h.C find Fibonacct Number Fio 47,426,259
matm.c | 4x4 matrix multiplication 3,994
perm.c permutation of 7 numbers 751,777
queens.c | ind all the solution for 10- 468,446
Queens Problem
sieve.c using an 8KB array to find some 689,284
prime numbers by using Sieve of
Eratosthenes

Table 2: Benchmark Set

image. Besides the optional outputs, SimplePower provides
the register file final status, the total number of cycles in
execution, the number of transitions in the buses, switch
capacitance statistics for each pipeline stage, switch capac-
itance statistics for different functional units, and the total
switch capacitance.

We obtained energy results using SimplePower and observed
that most of the power in the processor core is spent in the
gated pipeline registers (around 40% of datapath power us-
ing 0.35u) for the unoptimized pipeline (nongated). Thus,
the selective gated pipeline register optimization focuses on
reducing the power consumption of the pipeline registers. In
a pipelined datapath, the multiple stages are separated by
different pipeline registers with large width. Those pipeline
registers unconditionally latch their inputs to their outputs
when the pipeline is active. As a result, those pipeline reg-
isters consume a large amount of energy. Thus, we propose
a simple technique to reduce the pipeline register switching
activity by using the control signals of the datapath for se-
lectively gating subsets of the pipeline registers. To evaluate
the effectiveness of this scheme, the simulator was modified
to get the total pipeline register switch capacitance with and
without selectively gated pipeline registers.

Pipeline registers latch their data inputs to their outputs un-
conditionally when the evaluating clock edge arrives. Usu-
ally, each pipeline register contains two types of inputs: con-
trol and data. The behavior of the functional units following
a pipeline register is controlled by the corresponding control
signals. If the control signals are not active for a functional
unit, the latchings of the data inputs of that functional unit
are not necessary since the data will not be used. Thus, we
can gate the data portion of the pipeline register by using
the corresponding control signals. The advantage is that no
extra logic is needed to generate the signals that are used to
gate the clock signal and only the clock gating logic needs
to be added. At the same time, since all the data bits can
share the same gated clock, the control overhead is small.
For pipeline register MEM/WB shown in Figure 2, fields
MemData (32 bits), AluOut (32 bits), RtData (32 bits) and
Writereg0 (5 bits) can be gated by the control signal Reg-
write0 (1 bit) contained in the control field wb_cntl. These

Instruction Example: SW $r1, 0($r2)

EXE/MEM MEMWB
"" memvwb_cntl wb_entl
L‘ MemData
Address
- D-Cache ool
RtData RiData
— [Data
AluOut ' AluOut
__ writereqo] writerego
Regwrited!
u MEM Gated_ok ws
ok

Figure 2: Selectively Gated Clock for MemData, Ri-
Data, AluOut, and Writereg0

data fields can be gated because Regwrite0 is set based on
whether the executed instruction writes back into the regis-
ter file. Since Regwrite0 is active high, the gated clock for
these fields can be implemented as shown in Figure 2. Be-
cause the clock gating logic is shared by all the D flip-flops
in those fields, its power overhead is found to be insignifi-
cant. Many similar cases of selective gating of data fields in
the various pipeline registers occur.

It was observed that 23-36% (18-33%) energy reduction is
possible in the processor datapath using this scheme for the
various benchmarks. Also, we observed that the energy con-
sumed by the pipeline registers is reduced by more than 50%.
Further, the register file power decreases by up to 46% due
to the elimination of spurious transitions that occur on the
decoder inputs and write data drivers. However, the func-
tional units do not show a significant improvement, because
they already had latches present on their individual inputs
to support data forwarding. Similar architectural alterna-
tives can be investigated using SimplePower to make early
energy-conscious design choices.

4. MEMORY/BUS OPTIMIZATIONS

In this section, the effect of traditional performance-oriented
and new power-aware complier optimizations on energy con-
sumption is evaluated using SimplePower. In particular, we
study two optimizations that focus on the energy consumed
by the memory system and the instruction cache (Icache)
bus. An optimizing compiler framework to perform both
high-level source-to-source transformations and low-level op-
timizations was built over the existing Simplescalar tools
and interfaced with SimplePower. This is a powerful frame-
work for analyzing the impact of a spectrum of compiler
optimizations on each individual component of the system
and the system as a whole. Among various high-level loop
and data transformations that have been evaluated using
SimplePower [7], we present the results of data transforma-
tions on the memory system, in particular, and the system
(core+memory) as a whole. SimplePower can also evaluate
the influence of low-level transformations such as instruc-
tion scheduling, operand re-ordering, register assignment
and code motion on system energy. Here, we also present the
application of a power-aware post compilation optimization
that reduces the Icache data bus power. A new register re-
labeling algorithm is proposed for minimizing the transition
on the Icache data bus and evaluated using SimplePower.

343

W diect
R vansform-~direct
. 2w

ay
transtorm~2way

4wy
EZ] tanstorm~away
3 pway

transform-8way

Memory System Energy {Joules)

2K cache.

Figure 4: Memory System Energy Optimization Using
Data Transformation

4.1 Memory System Power Optimization
Recently, data transformations have been proposed to im-
prove spatial locality in situations where loop transforma-
tions are not effective [6]. These transformations, instead
of changing the loop execution order, modify the underlying
memory layouts of multidimensional arrays. Since these lay-
out modifications, in a sense, correspond to variable-renaming
operations, they are always legal provided that they are ap-
plied globally (i.e., program-wide). This is in contrast with
loop transformations where data dependences must be main-
tained. As an example, we consider the matrix multiplica-
tion code shown in Figure 3(a). In this code, array a has
spatial locality, array ¢ has temporal locality, and b has no
locality in the innermost loop. A data transformation frame-
work converts the layout of the array b from row-major (the
default layout used by C) to column-major to exploit spa-
tial reuse (stride-one accesses) for that array. The resulting
transformed code is shown in Figure 3(b).

The original and transformed codes were then simulated us-
ing SimplePower for different data cache configurations and
a main memory size of 2Mbits. The other configuration pa-
rameters for all the simulations were a cache line size of 32
bytes and 0.8y, 3.3V technology. Figure 4 shows the results
of memory system energy consumption before and after ap-
plying the data transformation. The increased spatial local-
ity provided by the high-level compiler transformation pro-
duces significant energy savings for smaller cache sizes (e.g.,
1K and 2K) and associativities (direct, 2-way). However,
the data cache locality is not as much of a concern when the
data cache size is relatively large. The applied data trans-
formation does not affect the processor core consumption
(except for stall cycle power which is negligible) as it just
manipulates the data layouts. The energy consumed by the
core was 0.03 Joules for both these codes. While the data
transformation presented for matrix multiplication is very
effective in reducing the energy consumed in the memory
system, we observed that some other data transformations
generate very complex array subscript functions which, in
turn, increases the core energy.

4.2 Bus Power Optimization
Many prior efforts have focused on encoding techniques for
data buses such as gray code, bus invert code, sign magni-

for(i=0;i<N;i++)
for(j=0; j<N; j++)
{m= c[i][j];
for(k=0;k<N;k++)
m=m+ (alillk] * b[k1[3j1);
clil[3) = m;

(a)

for(i=0;i<N;i++)
for(j=0; j<N; j++)
{m= c[i1[j];
for (k=0;k<N;k++)
m=m+ (ali] k] * b[j1[k]);
}c[i] (] = m;

(b)

Figure 3: (a) Original Code (b) Code after applying data transformation on array b[1[]

tude and have reported 18 to 40% savings in energy [17].
However, these encodings are applied to address (instruc-
tion and data cache) buses and data cache data buses as
opposed to the instruction encoding proposed in this work.
There have also been various efforts at reducing the over-
all power dissipation between consecutive instructions using
low-level compiler techniques. Towards this goal, Su and
Despain [19] proposed a technique that combines Gray code
addressing and instruction scheduling. Based on basic-block
list scheduling, their approach uses a greedy algorithm to
re-order the instructions to minimize power consumption.
Tiwari, Malik, and Wolfe [20] proposed another scheduling
technique which also tries to select instructions more judi-
ciously to minimize power. Toburen et al. [21] presented
a method for instruction scheduling which limits the num-
ber of instructions that can be scheduled in a given cycle
depending on the power constraints.

In this section, we focus on reducing the switching activ-
ity on the Icache data bus (between the processor core and
Icache) by relabeling the register fields of the compiler gen-
erated instructions. Sample traces are used to record the
transition frequencies between register labels (encodings) in
the instructions executed in consecutive cycles using Simple-
Power. This information is then used to obtain new encod-
ings for the registers such that the switching activity (and
consequently the energy consumption) in the Icache data
bus is reduced. The technique is applicable to any system
where switching activity imposed by register labels has an
impact on overall energy consumption. The encoding of in-
structions using relabeling can be considered similar to data
encoding techniques investigated for data.

To illustrate the idea, let us consider two consecutive add
instructions in the SimplePower assembly language:

add s;,8;,3k
add S;,Sm,Sn

In this simple sequence, there are three switching activi-
ties between registers: (1) from s; to s; in the destination-
register slot, (2) from s; to s, in the first source-register
slot, and (3) from sx to s, in the second source-register slot.
Depending on the encodings of the registers involved, the
impact of these switching activities can be quite significant.
These register transitions can also occur between different
types of instructions.

It should be clear that for register fields that have frequent
transitions, we need to use register numbers whose Hamming
distance is minimum. The problem is that register assign-

344

ments are done by the compiler using sophisticated algo-
rithms and considering a number of other important issues
such as minimizing register spills and maximizing register
reuse [14]. Therefore, we cannot arbitrarily change the reg-
ister numbers, just to minimize power consumption. Such
modifications, among other things, can also violate data de-
pendences across instructions, thereby changing the seman-
tics of the program being optimized. On the other hand,
other alternatives, namely, determining a near-optimal reg-
ister assignment considering both power and performance is
very difficult.

‘We developed a post-pass, polynomial-time algorithm that
relabels the registers after global register allocation per-
formed by the compiler back-end. Relabeling registers is
always legal as long as it is performed throughout the code.
For example, if we decide to relabel s; as s;, all the occur-
rences of s; should be changed to s;. Also, if we are to per-
form relabeling for multiple pairs, this should be done simul-
taneously for all pairs. Informally, our post-pass algorithm
takes a compiler-generated register assignment (register al-
location) as input and generates an alternative assignment
that reduces the power, maintaining the same performance
as the original assignment.

The register relabeling optimization was incorporated in the
SimiplePower compilation framework by modifying the Sim-
plescalar toolset. Table 3 shows the energy reduction of
the instruction cache (Icache) data bus for 0.35um technol-
ogy. For Icache data bus between the processor core and
the Icache, the wire switch capacitance is estimated to be
0.7105pF per bit transition for 0.35um using the intercon-
nect model proposed in [23]. We observe a 12% reduction in
the total energy reduction in the Icache data bus using the
register relabeling optimization. With the growing number
of VLIW designs, we expect the savings on the Icache data
bus to be a significant portion of the system energy. In such
designs, the instructions are fed to multiple processing unit
on the same chip, resulting in a larger capacitive load on
the Icache data bus. Further, these VLIW processors use a
larger number of register fields in their instructions. Hence,
a larger portion of the Icache data bus can benefit from the
proposed optimization.

5. CONCLUSIONS

In this paper, the design and use of a comprehensive frame-
work, SimplePower, for evaluating the effect of high level
algorithmic, architectural, and compilation trade-offs on en-
ergy was presented. Design issues in the development of
the transition sensitive energy macro-models used by Sim-
plePower were presented and validated using the register

Benchmark Original | Relabeled | Reduction
(nF) (nF) (nF)

acker.c 17,742.8 | 15,7845 11.04%
bsrch.c 0.936 0.843 9.94%
bubble.c 1,033.8 870.5 15.79%
fib.c 166,117.1 | 146,017.5 | 12.10%
hanoi.c 690.9 600.7 13.05%
heap.c 338.6 302.7 10.61%
matm.c 10.075 8.372 16.90%
perm.c 2,459.6 2,284.5 7.12%
queens.c 1,398.7 1,306.0 6.62%
quick.c 194.8 168.6 13.47%
sieve.c 1,902.2 1,659.5 12.76%
Average - - 11.76%
Std.Deviation - - 3.04%

Table 3: ICache Data Bus Switch Capacitance Re-
duction (0.35um)

file as an example. As its applications, we use SimplePower
in evaluating the impact of an architectural modification,
a data transformation applied on a simple benchmark and
a back-end compiler (register relabeling) optimization on
the datapath, memory and on-chip bus energy, respectively.
We proposed a simple, selective gated pipeline optimization
technique which can reduce the datapath switch capacitance
up to 36% for the tested applications. A high-level data
transformation is used to reduce the memory system power
to a third. In contrast to other works, SimplePower is useful
in optimizing the energy of the system as a whole and can
capture the memory energy savings against that of the dat-
apath. This capability is important when applying certain
high-level transforms such as loop tiling that increase dat-
apath energy. Finally, we propose a new energy-conscious
register relabeling optimization and find that it reduces the
energy consumed by the instruction cache data buses by
12%.

6. REFERENCES

L. Benini, A. Bogoliolo, M. Favalli, and G. D. Micheli.
Regression models for behavioral power estimates. In
Proceedings of International Workshop on Power, Timing,
Modeling, Optimization and Simulation, page 179, September
1996.

(1)

12

D. Burger and T. Austin. The simplescalar tool set, version
2.0. Technical report, Computer Sciences Department,
University of Wisconsin, June, 1997.

[3] M. Cierniak and W. Li. Unifying data and control
transformations for distributed shared memory machines. In
Proceedings of SIGPLAN’95 Conference on Programming

Language Design and Implementation, June 1995.

M. D. Hill, J. R. Larus, A. R. Lebeck, M. Talluri, and D. A.
Wood. Wisconsin architectural research tool set (warts).
Computer Architecture News (CAN), August 1993,

M. Kamble and K. Ghose. Analytical energy dissipation
models for low power caches. In Proceedings of International
Symposium on Low Power Electronics and Design, page 143,
August 1997.

M. Kandemir, A. Choudhary, J. Ramanujam, and P. Banerjee.
Improving locality using loop and data transformations in an
integrated framework. In Proceedings of MICRO-31, Dallas,
TX, December, 1998.

M. Kandemir, N. Vijaykrishnan, M. J. Irwin, and W. Ye.
Influence of compiler optimization on system power. In
Proceedings of the 37th Design Automation Conference, 2000.
N. Kumar, S. Katkoori, L. Rader, and R. Vemuri.
Profile-driven behavioral synthesis for low power vlsi systems.
IEEE Design and Test Magazine, page 70, Fall 1995.

(4]

(5]

6]

[7

(8

345

(9]

(10]

(11]

[12]

(13]

[14)

(18]

(16]

[17]

(18]

[19]

(20]

(21]

(22]

[23]

P. Landman and J. Rabaey. Activity-sensitive architectural
power analysis. IEEE Transaction on CAD, TCAD-15(6),
page 571, June 1996.

J. Lin, W. Shen, and J. Jou. A power modeling and
characterization method for macrocells using structure
information. In International Conf. on Computer Aided
Design, page 502, November 1997.

D. Liu and C. Svensson. Power consumption estimation in
cmos visi chips. IEEE Journal of Solid-State Circuits, page
663, June 1994.

D. Marculescu, R. Marculescu, and M. Pedram. Information
theoretic measures of energy consumption at register transfer
level. In Proceedings of 1995 International Symposium on
Low-Power Design, page 81, April 1995.

H. Mehta, R. M. . Owens, and M. J. Irwin. Energy
characterization based on clustering. In Proceedings of the
33rd Design Automation Conference, page 702, June 1996.

S. S. Muchnick. Advanced Compiler Design Implementation.
Morgan Kaufmann Publishers, San Francisco, California, 1997.

S. Powell and P. Chau. Estimating power dissipation of vlsi
signal processing chips: the pfa technique. In VLSI Signal
Processing, IV, page 250, 1990.

J. M. Rabaey and M. Pedram. Low Power Design
Methodologies. Kluwer Academic Publishers, Inc., 1996.

J. Sacha and M. J. Irwin. Number representation for reducing
data bus power dissipation. In Proceedings of the 33rd
Asilomar Conference on Signals, Systems, and Computers,
November 1998.

W.-T. Shiue and C. Chakrabarti. Memory exploration for low
power, embedded systems, clpe-tr-9-1999-20. Technical report,
Arizona State University, 1999.

C. Su and A. Despain. Cache design trade-offs for power and
performance optimization: A case study. In Proceedings of
International Symposium on Low Power Electronics and
Design, page 63, 1995.

V. Tiwari, S. Malik, A. Wolfe, and T. Lee. Instruction level
power analysis and optimization of software. Journal of VLSI
Signal Processing Systems, Vol. 13, No. 2, August 1996.

M. C. Toburen, T. M. Conte, and M. Reilly. Instruction
scheduling for low power dissipation in high performance
processors. In Proceedings of the Power Driven
Micro-architecture Workshop in conjunction with the
ISCA’98, June 1998.

Q. Wu, Q. Qiu, M. Pedram, and C.-S. Ding. Cycle-accurate
macro-models for rt-level power analysis. JEEE Transactions
on VLSI Systems, 6(4), page 520, December 1998.

Y. Zhang, R. Y. Chen, W. Ye, and M. J. Irwin. System level

interconnect power modeling. In Proceedings of the 11th
International ASIC Conference, page 289, September 1998.

