Paper Discussion for 18-742

Kevin Hsieh
Sep 9, 2014

Carnegie Mellon

SAFARI

Paper to Discuss (1/3)

= Seshadri et al., "The Dirty-Block Index", ISCA 2014.
o Introducing a cache organization to achieve better performance and cost.

= Ausavarungnirun et al., "Staged Memory Scheduling: Achieving High
Performance and Scalability in Heterogeneous Systems", ISCA 2012.

o Introducing a memory controller which is simpler and works better in heterogeneous
system.

= Chang et al., "Improving DRAM Performance by Parallelizing Refreshes with
Accesses", HPCA 2014.

a Introducing a few parallelism schemes for refresh commands.

SAFARI 2

Background and Problem

Traditionally, the metadata of the cache is organized according to cache block
(or cache line)

o Each cache block has a corresponding cache metadata, which maintains all the
attributes for this cache block (valid, dirty, tag address, etc.)

o It's intuitive, simple, and scalable.

However, there are shortcomings
o All metadata query is relatively expensive

a It makes some cache improvement difficult to implement
DRAM-Aware Writeback [TR-HPS-2010-2]
Bypassing Cache Lookups [HPCA 2003, PACT 2012]

SAFARI

Block-Oriented Metadata Organization (Vivek’s Slide)

Sharing Status Replacement Policy
(Multi-cores) (Set-associative cache)
Block Address 'ﬁi 5?
Valid Bit Error Correction
(Reliability)
Dirty Bit
(Writeback cache)

SAFARI 4

DRAM-Aware Writeback (Vivek’s slide)

Virtual Write Queue [ISCA 2010], DRAM-Aware Writeback [TR-HPS-2010-2]

Last-Level

Cache

Write Buffer

1. Buffer writes and flush them in a burst

Row

Buffer

2. Row buffer hits are faster and more efficient than row misses

SAFARI

DRAM-Aware Writeback (Vivek’s slide)

Virtual Write Queue [ISCA 2010], DRAM-Aware Writeback [TR-HPS-2010-2]

__________ > Dirty Block

Last-Level Proactively write back
all other dirty blocks from

the same DRAM row Bma

Memory
Controller

Cache

Significantly increases the DRAM write row hit rate

Get all dirty blocks of DRAM row 'R’

SAFARI

Query to Tag Store for a DRAM row

A DRAM row can be
Address |FR0W offset4 distributed into a lot of sets.

_ Index = Offset It is very inefficient if we

want to query all cache
blocks for a certain DRAM

row
\\\
\
—
Q J
|- J
N jj
Tag Store

SAFARI /

The Dirty-Block Index

= Key Idea

a Decouple dirty bits from main tag store and indexed them by DRAM row. This
separated structure makes query for dirty bit (especially in terms of DRAM row) much
more efficient.

Tag Store
S N

[oo Do)

SAFARI - 8

Benefit of DBI

DRAM-aware writeback
o With DBI, a single query can know all the dirty block in a DRAM row
o No more tag store contention

Bypassing cache lookups

o The idea was to bypass cache lookup if it's very likely to miss. However it must not
bypass dirty cache block.

o With DBI, it can check the dirty status much faster to seamlessly enable this
optimization.

Reducing ECC overhead
o The idea was only dirty block requires error correction, others only requires detection.
o With DBI, it's much easier to track the error correction codes

SAFARI ?

Operation of DBI

SAFARI

Cache
@ Lookup tag store (\ Eviction
Read for hit/miss Check DBL
Access Writeback if
Tag dirty
(D] Insert/update block in e
] t t
Writeback ags 01‘e> DBI
Request

Insert/update metadata in DBI T

DBI Eviction

Generate writebacks for all dirty blocks @
marked by the evicted entry

Figure 2: Operation of a cache with DBI

10

Evaluated Mechanism

Baseline (LRU, Least Recently Used)

TA-DIP (Thread-aware dynamic insertion policy)
DAWB (DRAM aware writeback)

VWQ (Virtual write queue)

CLB (cache lookup bypass)

DBI

No optimization
+DAWB

+CLB
+AWB+DBI

o O 0O 0O

SAFARI

11

System Contfiguration

Processor 1-8 cores, 2.67 GHz, Single issue, Out-of-order, 128 entry instruction window
Private, 32KB, 2-way set-associative, tag store latency = 2 cycles, data store latency = 2 cycles, parallel tag and
L1 Cache ,
data lookup, LRU replacement policy, number of MSHRs = 32
L2 Cache Private, 256KB, 8-way set-associative, tag store latency = 12 cycles, data store latency = 14 cycles, parallel tag and
data lookup, LRU replacement policy
L3 Cache Shared, 2MB/core. 1/2/4/8-core, 16/32/32/32-way set-associative, tag store latency = 10/12/13/14 cycles, data store
latency = 24/29/31/33 cycles, serial tag and data lookup, LRU replacement policy
DBI Size (o) = 1/4, granularity = 64, associativity = 16, latency = 4 cycles, LRW replacement policy (Section 4.3)

DRAM Controller Open row, row interleaving, FR-FCFS scheduling policy [45, 60], 64-entry write buffer, drain when full policy [27]
DRAM and Bus DDR3-1066 MHz [20], 1 channel, 1 rank, 8 banks, 8B-wide data bus, burst length = 8, 8KB row buffer

SAFARI 12

Ettect on Writes and Tag Lookups (Vivek’s slide)

3.0 -

u DAWB = DBI+Both

Baseline

2.5

to

Nor

0.5 -

0.0

Memory Writes Write Row Hits Tag Lookups
SAFARI 13

System Performance (Vivek’s slide)

Baseline m DAWB m DBI+Both
4.0
035 28% 6%

1.0

7

6.0.5
0.0

SAFARI "

Area and Power

Bit cost reduction of cache

Without ECC With ECC
Tag Store Cache Tag Store Cache

DBI Size (o)

1/4 2% 0.1% 44%" 7%
1/5 1% 0.0% 26%" 4%

Power increase in cache (not including memory)
Cachesize 2MB 4MB 8MB 16MB

Static 0.12% 0.21% 0.21% 0.22%
Dynamic 4% 1% 1% 2%

SAFARI

15

DBI design consideration

Major design considerations
o DBI size (number of total blocks tracked by DBI, @, in ratio of total cache blocks)
o DBI granularity (number of blocks tracked by a single DBI entry)

o DBI replacement policy
5 policies evaluated, better policy gives better performance

Granularity 16 32 64 128

a=1/41 10% 12% 12% 13%
a=1/2 10% 12% 13% 14%

Size

SAFARI

16

Conclusion

Dirty-Block Index is a new cache organization, which decouples dirty bit
information from main tag store. All dirty bits are indexed by DRAM row at a
separate, much smaller store.

By doing so, it's much faster to

a Query all dirty bits for a DRAM row (makes AWB much easier)

o Query whether certain cache line is dirty (makes CLB much easier)
o Organize correction bits for dirty cache line (hybrid ECC)

Evaluation results showed
o 6% performance improvement over best previous mechanism
o 8% overall cache area reduction (with ECC)

SAFARI

17

Open Discussion

= What are the major strengths?
= What are the major weakness?

= Any other ideas from this paper?

SAFARI

18

My 2 cents - Strength

This paper proposed a novel cache organization which can improve both
performance and cost of cache at the same time.

The analysis of design consideration was comprehensive and solid. The authors
not only mentioned most of major considerations, but also rigorously evaluated
the sensitivity of them (granularity, size, replacement policy)

SAFARI 19

My 2 cents - Weakness

The DBI eviction induces some unnecessary write back traffics when handling

write request. The worst case is all DBI-associated cache lines have to be written
back.

The evaluation was done on a system with L1/L2/L3 caches and specific 2-core,
4-core, 8-core workloads. Some analysis should be done to prove it works on
different memory hierarchy and different workload/core combinations.

One of the major weakness of DBI is that its structure is limited to DRAM row
(though it can be adjusted by granularity). If the dirty lines are sparsely
distributed in different DRAM row, this structure will be inefficient and keep
thrashing DBI cache.

SAFARI 20

My 2 cents - Ideas

Investigate the possibility of moving other bits out of tag store, such as cache
coherency bits or even ECC bits.

Try if DRAM-oriented cache structure works better, not just dirty bits. We can
have smaller a and a vector to manage cache lines by DRAM row tag address.

Evaluate the density of DRAM rows in cache for various workloads. Also evaluate
DBI with different memory hierarchies to show whether it can be applied to
different systems.

SAFARI 21

Paper to Discuss (2/3)

s Seshadri et al., "The Dirty-Block Index", ISCA 2014.
a Introducing a cache organization to achieve better performance and cost.

= Ausavarungnirun et al., "Staged Memory Scheduling: Achieving High
Performance and Scalability in Heterogeneous Systems", ISCA 2012.

o Introducing a memory controller which is simpler and works better in heterogeneous
system.

= Chang et al., "Improving DRAM Performance by Parallelizing Refreshes with
Accesses", HPCA 2014.

o Introducing a few parallelism schemes for refresh commands.

SAFARI 22

Background and Problem

In multi-core CPU-GPU systems, the memory requests from GPUs can overwhelm
that from CPUs.

o The nature of GPU makes it be able to issue much more outstanding requests than
CPU

o GPU is much more (4x-20x) memory-intensive than CPU

The memory controller with centralized request buffer will become very complex
and costly for such system.

o Unless it has a lot of buffer, it can’t see enough pending requests from CPUs as
buffers are overwhelmed by those from GPU

o But a lot of buffer can make the design very complicated

SAFARI 23

Prior Memory Scheduling Schemes

o Totally memory throughput driven
o Can lead to serious fairness problem

= ATLAS (Adaptive per- ervice memory scheduling) [Kim+,
HPCA'10]
o Prioritizs
down significantly.
= TCRA Memory Scheduling) [Kim+, MICRO'10]
a C a\\ 2ads into high or low memory-intensity buckets and apply different

approaches

SAFARI 24

Introducing the GPU into the System (Rachata’s slide)

Core 1 Core 2 Core 3 Core 4 @
G G G G

To DRAM

= GPU occupies a significant portion of the request buffers

o Limits the MC’s visibility of the CPU applications’ differing memory behavior = can
lead to a poor scheduling decision

SAFARI

25

The performance of memory schedulers in CPU-GPU systems

Results showed it's highly dependent on buffer size

o B[67 w— 25 100
g7—128— ————————————— 2
S 6| 256 mmmmm »20 m9()-
= 384 == % ~
5 SprSl2Ee== g g S15 |- 2 80 |-
S 4 5 =
£ 3 EIO- 570_
EZ- S a 60 -
o lr &)
0 0 50
O R
% 4,720
«0‘%){ /9
Cope g

Figure 3. Performance and unfairness of different memory scheduling al-
gorithms with varying request buffer sizes, averaged over 35 workloads.

SAFARI 26

Problems with Large Monolithic Buffer (Rachata’s slide)

A More Complex Memory Scheduler

Q

Q

o Assign and enforce priorities

This leads-to-high-complexity,-high-power, large die area
SAFARI 27

Key Idea: Staged Memory Scheduler

Decouple the memory controller’s three major tasks into three significantly
simpler structures

Stage 1: Group requests by locality

o The requests to the same row from the same source are grouped as a batch
o No out-of-order batch

Stage 2: Prioritize inter-application requests

o Schedule batches based on SJF (shortest job first) or RR (round-robin)

o The probability of applying SJF is based on a configurable parameter p

o Always pick from the head of FIFO from each source

Stage 3: Schedule low-level DRAM commands

o Issue batches to DRAM, no reorder

SAFARI 28

SMS: Staged Memory Scheduling (Rachata’s slide)
Core 1 Core 2 Core 3 Core 4 GPU

Stage 1

| -
Batéh
For.@ati
O _

M=
DRAM [] 1]
Commahd — Bank1l _@_ ~ Bank4_____

Scheduler

To DRAM
SAFARI 29

Stage 1: Batch Formation Example (Rachata’s slide)

Stage 1

Batch
Formation

Next request goes to a different row

Core 1

Time window

expires /

Batch Boundary

Core 2

Core 3

Core 4

SAFARI

To Stage 2 (Batch Scheduling)

30

Stage 2: SJF vs RR

Aside from simplicity, SMS provided another major advantage: Configurable
probability p for SJF

SJF (Shortest Job First)

o Good for low memory intensive applications (mostly from CPUs)
o The price is overall system bandwidth

RR (Round Robin)

o Good for high memory intensive applications (mostly from GPUSs)
a The price is the fairness of low memory intensive applications

Make it as a configurable parameter provides flexibility. The system can adjust p
to reach best tradeoff between GPU performance and CPU fairness.

SAFARI ol

Putting Everything Together (Rachata’s slide)
-

Stage 1:
Batch
Formation

Core 1 Core 2

Core 3
4

Stage 3: DRAM
Command
Scheduler

SAFARI

Bank 1

Bank 2

Bank 3

Bank 4

RR

32

Evaluation

Power and Area (in 110nm, compared to FR-FCFS)
0 66% less area
0 46% less static power

Performance Metrics
o GPU Weight means how important GPU performance is for a system
o If it's important, SMS can use smaller p value to reach best overall performance

CGWS = CPUys + GPUspeeaup * GPUweigne

SAFARI

33

Results — CPU Speedup

SMS, 4 worked very well for low memory intensity applications, but not so well
for high ones.

SMS, performed inversely.

o 12 FR.ECES I CTCM

2 1ok - CFR-FCFS SMS,, =—=
Q ATLAS I SMS, ——

a gkl M oIm:m8é6n...._ ...
% 22.1%

S sk Jl . 69.9% l35.7%
': L

o0

= T

o 2

o

O 0

L ML ™M HL HML HM H Avg
SAFARI

Results — GPU frame rate

SMS, 4 was the worst in terms of GPU frame rate.
But SMS, gave a comparable GPU frame rate with FR-FCFS.

FR-FCFS I
CFR-FCFS I
ATLAS I
TCM [

SAFARI

L. ML

HL HML HM H Avg

120
105
90
75
60
45
30
15

GPU Frame Rate

Results — Combined CPU and GPU speed up

If sticking with a constant p, SMS may be good at some GPU weight but very

bad at the others

If choosing p wisely, SMS can reach best combined CPU+GPU speedup

1

0.9
0.8
0.7
0.6

0.5
0.4
0.3
0.2
0.1

0

Normalized CGWS

0.001

SAFARI

— —FR-FCFS
— - ATLAS

SMS0.05
—SMS0.02
—SMSO0

(@)

0.1

GPUweight

1000

Normalized CGWS

1

0.9
0.8
0.7
0.6

0.5
0.4
0.3
0.2
0.1

0

0.001

- ==FR-FCFS

= = ATLAS

(b)

0.1

10

GPUweight

1000

Unfairness

2> T=--Fr-FcFs
- ATLAS
20 ee= TCM ﬁ
_SMSMax
15 fewwwsesssswwsessesews r -------
10 0 T — e F """"
S
(€)
O T TTTTIT TTTTTIT TTTTIT
0.001 0.1 10 1000
GPUweight
36

Conclusion

Prior memory scheduling scheme can’t handle CPU-GPU systems effectively
because the memory intensity from GPU is much higher.

The proposed SMS (Stage Memory Scheduling) decouples the memory scheduler
into 3 stages

o Batch formation, batch scheduling, DRAM command scheduling

Evaluation result
o 66% less area
o 46% less static power

a Flexible parameter p to reach optimal tradeoff between fairness and system
throughput (or best combined CPU+GPU performance, according to system goal)

SAFARI 37

Open Discussion

= What are the major strengths?
= What are the major weakness?

= Any other ideas from this paper?

SAFARI

38

My 2 cents - Strength

Presented an important challenge to memory controller scheduling with very
good data analysis.

The discussion of SMS rationale was pretty thorough. It's the key to make the
mechanism much simpler than previous schedulers.

The experimental evaluation was pretty solid. It included a lot of metrics and
also evaluated on the sensitivity of parameters of SMS.

The proposed scheduler was simpler and more flexible than state-of-art ones.
The rigorous evaluation also showed that SMS had better potential to fulfill
different needs

SAFARI 3

My 2 cents - Weakness

The tunable parameter p provided a flexibility to fulfill different needs (either
fairness or performance). However that can be a problem as an incorrect
parameter can cause severe performance or fairness degradation.

This memory scheduler was very simple but gave up some important
optimization opportunity. For example, it gave up cross-source row buffer
locality. It didn't try to prevent row conflict either.

The workload used unrelated workloads between CPU and GPU for evaluation,
which may not represent the system performance goal very well.

SAFARI 4

My 2 cents - Ideas

Research on inter-dependent, state-of-art benchmark for CPU-GPU multicore
system. Use it to validate state-of-art memory controllers and maybe come out a
more efficient scheduling mechanism.

Research other mechanism which can do better tradeoff between performance
and fairness by considering more optimization opportunities. It shouldn't limit to
CPU-GPU only and should take more system configurations into account.

SAFARI “

Paper to Discuss (3/3)

= Seshadri et al., "The Dirty-Block Index", ISCA 2014.
a Introducing a cache organization to achieve better performance and cost.

= Ausavarungnirun et al., "Staged Memory Scheduling: Achieving High
Performance and Scalability in Heterogeneous Systems", ISCA 2012.

o Introducing a memory controller which is simpler and works better in heterogeneous
system.

= Chang et al., "Improving DRAM Performance by Parallelizing Refreshes with
Accesses", HPCA 2014.

o Introducing a few parallelism schemes for refresh commands.

SAFARI 42

Background — DRAM Retresh

DRAM stores data in capacitors, which leaks charge over time
o So all DRAM cells need to be refreshed for a certain period of time -

(tREFI)

CAP

Because all cells need to be refreshed, the time to do refresh
(tRFC) depends on the capacity of DRAM cells

tRefLatency (tRFC): Varies based on DRAM chip density (e.g., 350ns)

<>

Read/Write: roughly 50ns

iy

<
tRefPeriod (

i

tREFI): Remains constant

SAFARI

—> Timeline

*From Kevin'’s slide

43

Refresh Overhead: Performance

gg 77 8Gb 1 16Gb mmm 32Gb mmmm |
S~ 20
S8 15
o 10
S8 5
S= 0
= 0 25 50 75 100 Gmean

Percentage of Memory-intensive
Benchmarks in a Workload

SAFARI

Refresh Problem

During refresh, DRAM is not accessible
a All bank refresh (REF,,): all banks can’t be accessed
o Per bank refresh (REF,,): the refreshing bank can’t be accessed

As DRAM capacity grows, the refresh overhead will take too much time and makes

performance unacceptable
o Even with per bank refresh, it still takes too much time

o Besides, the total time spent on REF, is more than REF,,
tRFC,,*banknum > tRFC,,

That is because all bank refresh are done on multiple banks simultaneously.

SAFARI

S -

SRS

g

< 8

T - 8Gb 16Gb 32Gb
R DRAM Density

Figure 7. Performance loss due to REF,p and REFp.

45

Idea one - DARP

DARP - Dynamic Access Refresh Parallelization
o Currently, the order of per bank refresh is round-robin and controlled by DRAM chip.
a The key idea of DARP is to let memory controller fully control which bank to refresh

Out-of-Order Per-Bank Refresh
o Memory controller can do optimal scheduling based on the command queue

o It can schedule the refresh to the banks with least pending commands (within timing
constraint)

Write-refresh Parallelism

o Most memory controller will have burst write mode to save read-write turnaround
overhead

o Memory controller can schedule more refresh during burst write mode, as write
latency generally won't be at critical path of system performance.

SAFARI 46

1) Out-ot-Order Per-Bank Refresh (Kevin’s slide)

Reduces refresh penalty on demand requests by

refreshing idle banks first in a flexible order

2) Write-Refresh Parallelization (Kevin’s slide)

Avoids stalling latency-critical read requests by

refreshing with non-latency-critical writes

Idea two - SARP

SARP — Subarray Access Refresh Parallelization
o Each subarray has its own row buffer.

o With some modification, we can parallelize refresh and access of different subarrays
in the same bank

N N Loca‘ Global Bitlines
REF Row Row Ddc. | | |

Counter Jgg ? { Subarray]

* ‘Col.Sel T T BT
L

T o
(
/
(

)

)

Latch

(

(Global Row Dec
I

Row Buffer)
A Col. Se =

1— T 1
Subarray Cuhnrrny I_|_ I_|_ I_|_
Row Addr ID Global I/O Buffer)

SAFARI 49

Our Second Approach: SARP (Kevin’s slide)

= Subarray Access-Refresh Parallelization (SARP):

o Parallelizes refreshes and accesses within a bank

Bank 7 o

Bank 1

Bank I/0
Bank 0 L
_Bank1
:’Subarray 1 : >Timeline
| Subarray 0 ! >

Very modest DRAM modifications. 0./1%

die area overhead

SAFARI

Evaluation

Evaluated schemes

REF,, : All bank refresh (baseline)

REF,, : Per-bank refresh

Elastic : Try to schedule refresh when memory idle

DARP : The first idea, out-of-order per-bank refresh

SARP,, : The second idea, subarray level parallism and works on REF,
DSARP : The combination of DARP and SARP

No REF : Ideal case, no refresh required

o o 0o 0 0o o o

SAFARI

51

Results (1/3)

When memory capacity grows to 32Gb, the benefit of DARP is decreasing
o That is because the refresh time is too long and no way to hide it any more
But with SARP, the performance gain is increasing with memory capacity
o That is because SARP parallelize access and refresh to subarray level.

Max (%) RGmean (%)

Density Mechanism pp Fy, REFy, EF,, REF,
DARP 6.5 17.1 2.8 7.4
8Gb SARP, 7.4 17.3 3.3 7.9
DSARP 7.1 16.7 3.3 7.9
DARP 11.0 23.1 4.9 9.8
16Gb SARP, 11.0 23.3 6.7 11.7
DSARP 14.5 24.8 7.2 12.3
DARP 10.7 20.5 3.8 8.3
32Gb SARPy, 21.5 28.0 13.7 18.6
DSARP 27.0 36.6 15.2 20.2

fable-2:- Maximum-and-average-WS-improvement-due-to-otur mecha-
SAFARI nisms over REF,, and REF .

Results (2/3)

REFpb can’t improve too much when memory capacity grows
Surprisingly, DSARP can be almost as good as ideal no-refresh memory

30 71 REFpb C—1 SARPpb W |
25 | Elastic BBl DSARP BE&E3 b
20~ | DARPCTT NoREFmm e
15 4L SARPab =<1 | S

Y%

PIXA
S,

O DN
|
>
&
5
RS
Do %%

2\

8Gb 16Gb 32Gb
DRAM Density

WS Improvement (%)
=
|

Figure 13: Average system performance improvement over REF.

SAFARI >3

Results (3/3)

)
-

’?‘ REFab
% Elastic
< SARPab =<1
i DSARP =Xz
%‘3 10 No REF I
=

= &

0 3Gb 16Gb 32Gb
DRAM Density

Figure 14: Energy consumption. Value on top indicates percentage re-
duction of DSARP compared to REF.p.

SAFARI >

Conclusion

To mitigate the deteriorating DRAM refresh overhead, this paper proposed two
mechanisms to parallelize refresh with access

DARP enables memory controller to fully control the order and timing of per-bank
refresh

SARP enables memory controller to issue access and refresh to different subarrays in
the same bank

The performance improvement is significant and consistent, and close to ideal no-
refresh memory

o 7.9% for 8Gb DRAM
o 20.2% for 32Gb DRAM
o With only 0.71% DRAM die area cost

SAFARI >

Open Discussion

= What are the major strengths?
= What are the major weakness?

= Any other ideas from this paper?

SAFARI

56

My 2 cents - Strength

The statement of the refresh problem was very clear with a good background
introduction. The explanation of all-bank refresh and per-bank refresh gave
enough details to understand the optimizations.

The proposed mechanism tackled the refresh problem with several novel ideas
on DRAM architecture modification. The idea of parallelizing and fined-grained
control on refreshes provided promising direction to mitigate refresh overhead.

The evaluation mechanisms and results were solid. The best among them is the
comparison to ideal non-refresh case, which showed how good DARP and SARP
are. The sensitivity analysis on workloads, core count, timing, and DRAM
architecture was comprehensive, too.

SAFARI >

My 2 cents - Weakness

SARP can make the scheduling of refresh very complicated. This paper didn't
discuss how complicated it can be or how to do it efficiently.

This paper didn't discuss in detail about the scheduling policy of REF,, and REF.
Elastic refresh should be applied to REF,,, too. By considering this, the
performance improvement may not be that significant

The energy data didn't include memory controller, where significant complexity
was added by DARP and SARP. The algorithm of out-of-order per-bank refresh
may cost too much energy, as it has to make a complex decision on every cycle

SAFARI o8

My 2 cents - Ideas

As an extensive work, the energy of memory controller could be a concern. If it

is, it will be interesting to find a better algorithm to exploit DARP/SARP with
competitive power consumption.

o Or better refresh scheduling to achieve better performance.

Another idea is to research more aggressive parallelism.
o Is it possible to parallel REF,, with another REF,,?

o Is it possible to optimize the DRAM timing with more understand on its
limitation?

SAFARI >

