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Problems in Multi-core Caching 

• Managing individual blocks 

– Demand-fetched blocks 

– Prefetched blocks 

– Dirty blocks 

• Application awareness 

– High system performance 

– High fairness 
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Part 1 
Managing Demand-fetched Blocks 
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Cache Management Policy 

MRU LRU 

Replacement policy 

? 
Insertion Policy 
(cache miss) 

Promotion Policy 
(cache hit) 

? 
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Traditional LRU Policy 

• Insertion Policy 

– Insert at MRU 

– Rationale: Access => More access 

 

 

• Promotion Policy 

– Promote to MRU 

– Rationale: Reuse => More reuse 
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Problem with LRU’s Insertion Policy 

• Cache pollution 

– Blocks may be accessed only once 

– Example: Scans 

 

• Cache thrashing 

– Lot of blocks may be reused 

– Example: Large working sets 
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Addressing Cache Pollution 

Miss Missed-block 

High reuse 

Low reuse 

? 

Keep track of the reuse behavior of every cache 
block in the system. Impractical. 

High Reuse: Insert at MRU 
Low Reuse: Insert at LRU 
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Work on Reuse Prediction 

Use program counter or memory region information. 

B A T S 

PC 1 PC 2 

B A T S 

PC 1 PC 2 PC 1 

PC 2 

C C 

U U 

1. Group Blocks 
2. Learn group 

behavior 
3. Predict reuse 

Run-time Bypassing (RTB) – Johnson+ ISCA’97 

Single-usage Block Prediction (SU) – Piquet+ ACSAC’07 

Signature-based Hit Prediction (SHIP) – Wu+ MICRO’11 
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Evicted-Address Filters: Idea 

Use recency of eviction to predict reuse 

A 

Time 

Time of eviction 

A 

Accessed soon 
after eviction 

S 

Time 

S 

Accessed long time 
after eviction 
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Evicted-Address Filter (EAF) 

Cache 

EAF 
(Addresses of recently evicted blocks) 

Evicted-block address 

Miss Missed-block address 

In EAF? 
Yes No 

MRU LRU 

High Reuse  Low Reuse  
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Addressing Cache Thrashing 

Bimodal Insertion Policy 
Insert at MRU with low probability 
Insert at LRU with high probability 

A fraction of the working set retained in the cache 

TA-DIP – Qureshi+ ISCA’07, Jaleel+ PACT’08 

TA-DRRIP – Jaleel+ ISCA’10 
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Addressing Pollution and Thrashing 

• Combine the two approaches? 

 

• Problems? 

 

• Ideas? 

 

• EAF using a Bloom filter 
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Y 

Bloom Filter 

Compact representation of a set 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 

1. Bit vector 

2. Set of hash functions 

H1 H2 

H1 H2 

X 

1 1 1 

Insert Test 

Z W 

Remove 

X Y 

May remove 
multiple addresses Clear   False positive 
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EAF using a Bloom Filter 

EAF 

Insert 

Test 

Evicted-block 
address 

Remove 
FIFO address  

Missed-block address 

Bloom Filter 

Remove 
If present 

 when full 

Clear 

  

 

 1 

2 
 when full 
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Large Working Set: 2 Cases 

Cache EAF 

A E K J I H G F L C B D 

Cache EAF 

R Q P O N M L S J I H G F E D K C B A 

1 

2 

Cache < Working set < Cache + EAF 

Cache + EAF < Working Set 
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Large Working Set: Case 1 

Cache EAF 

A E K J I H G F L C B D 

  

B F L K J I H G A D C E C G A L K J I H B E D F 

 

A L K J I H G B E D F C 

            

A Sequence: B C D E F G H I J K L A B C 

EAF Naive: 

D 

 

A B C 

Cache < Working set < Cache + EAF 
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Large Working Set: Case 1 

Cache EAF 

E A K J I H G F L C B D 

A Sequence: B C D E F G H I J K L A B C A B 

EAF BF:         

A 

      

EAF Naive:                

A L K J I H G B E D C A B F A L K J I H G B E D F C A B 

D 

H G B E D F C A A L K J I B C D 

D 

 
 

Not removed 

Not  present in the EAF 

Bloom-filter based EAF mitigates thrashing 

H 

 

G F E I 

Cache < Working set < Cache + EAF 
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Large Working Set: Case 2 

Cache EAF 

R Q P O N M L S J I H G F E D K C B A 

Problem:  All blocks are predicted to have low reuse 

Use Bimodal Insertion Policy for low reuse 
blocks. Insert few of them at the MRU position 

 Allow a fraction of the working set to stay in the 
cache 

Cache + EAF < Working Set 
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Results – Summary 
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Part 2 
Managing Prefetched Blocks 

Hopefully in a future course! 
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Part 2 
Managing Dirty Blocks 

Hopefully in a future course! 
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Part 2 
Application Awareness 
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Cache Partitioning 

• Goals 

– High performance 

– High fairness 

– Both? 

• Partitioning Algorithm/Policy 

– Determine how to partition the cache 

• Partitioning Enforcement 

– Enforce the partitioning policy 
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Utility-based Cache Partitioning 

• Way-based partitioning 

• More benefit/utility => More cache space 

• Problems 

– # Cores > # ways 

– Need core ID with each tag 
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Promotion-Insertion Pseudo Partitioning 

• Partitioning Algorithm 

– Same as UCP 

 

• Partitioning Enforcement 

– Modify cache insertion policy 

– Probabilistic promotion 

Promotion Insertion Pseudo Partitioning – Xie+ ISCA’09 
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Software-based Partitioning 

• Cho and Jin, “Managing Distributed, Shared L2 
Caches through OS-Level Page Allocation,” 
MICRO 2006. 

• Lin et al., “Gaining Insights into Multi-Core 
Cache Partitioning: Bridging the Gap between 
Simulation and Real Systems,” HPCA 2008 
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Page Coloring 

Virtual Address 

Physical Address 

Cache Address Tag 

Page offset 

Virtual page number 

Physical page number 

Block offset 

Cache index 27 
Color bits 



OS-based Partitioning 

• Enforcing Partition 

– Colors partition the cache 

– Assign colors to each application 

– Application’s pages are allocated in the assigned 
colors 

– Number of colors => amount of cache space 

• Partitioning algorithm 

– Use hardware counters 

– # Cache misses 
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Set Imbalance 

• Problem 
– Some sets may have lot of conflict misses 

– Others may be under-utilized 

 

• Solution approaches 
– Randomize index 

• Not good for cache coherence. Why? 

– Set balancing cache 
• Pair an under-utilized set with one that has frequent  

 conflict misses 
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That’s it! 
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