
18742
Parallel Computer Architecture
Caching in Multi-core Systems

Vivek Seshadri

Carnegie Mellon University

Fall 2012 – 10/03

1

Problems in Multi-core Caching

• Managing individual blocks

– Demand-fetched blocks

– Prefetched blocks

– Dirty blocks

• Application awareness

– High system performance

– High fairness

2

Part 1
Managing Demand-fetched Blocks

3

Cache Management Policy

MRU LRU

Replacement policy

?
Insertion Policy
(cache miss)

Promotion Policy
(cache hit)

?

4

Traditional LRU Policy

• Insertion Policy

– Insert at MRU

– Rationale: Access => More access

• Promotion Policy

– Promote to MRU

– Rationale: Reuse => More reuse

5

Problem with LRU’s Insertion Policy

• Cache pollution

– Blocks may be accessed only once

– Example: Scans

• Cache thrashing

– Lot of blocks may be reused

– Example: Large working sets

6

Addressing Cache Pollution

Miss Missed-block

High reuse

Low reuse

?

Keep track of the reuse behavior of every cache
block in the system. Impractical.

High Reuse: Insert at MRU
Low Reuse: Insert at LRU

7

Work on Reuse Prediction

Use program counter or memory region information.

B A T S

PC 1 PC 2

B A T S

PC 1 PC 2 PC 1

PC 2

C C

U U

1. Group Blocks
2. Learn group

behavior
3. Predict reuse

Run-time Bypassing (RTB) – Johnson+ ISCA’97

Single-usage Block Prediction (SU) – Piquet+ ACSAC’07

Signature-based Hit Prediction (SHIP) – Wu+ MICRO’11
8

Evicted-Address Filters: Idea

Use recency of eviction to predict reuse

A

Time

Time of eviction

A

Accessed soon
after eviction

S

Time

S

Accessed long time
after eviction

9

Evicted-Address Filter (EAF)

Cache

EAF
(Addresses of recently evicted blocks)

Evicted-block address

Miss Missed-block address

In EAF?
Yes No

MRU LRU

High Reuse Low Reuse

10

Addressing Cache Thrashing

Bimodal Insertion Policy
Insert at MRU with low probability
Insert at LRU with high probability

A fraction of the working set retained in the cache

TA-DIP – Qureshi+ ISCA’07, Jaleel+ PACT’08

TA-DRRIP – Jaleel+ ISCA’10

11

Addressing Pollution and Thrashing

• Combine the two approaches?

• Problems?

• Ideas?

• EAF using a Bloom filter

12

Y

Bloom Filter

Compact representation of a set

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

1. Bit vector

2. Set of hash functions

H1 H2

H1 H2

X

1 1 1

Insert Test

Z W

Remove

X Y

May remove
multiple addresses Clear   False positive

13

Inserted Elements: X Y

EAF using a Bloom Filter

EAF

Insert

Test

Evicted-block
address

Remove
FIFO address

Missed-block address

Bloom Filter

Remove
If present

 when full

Clear

 



 1

2
 when full

14

Large Working Set: 2 Cases

Cache EAF

A E K J I H G F L C B D

Cache EAF

R Q P O N M L S J I H G F E D K C B A

1

2

Cache < Working set < Cache + EAF

Cache + EAF < Working Set

15

Large Working Set: Case 1

Cache EAF

A E K J I H G F L C B D

 

B F L K J I H G A D C E C G A L K J I H B E D F



A L K J I H G B E D F C

           

A Sequence: B C D E F G H I J K L A B C

EAF Naive:

D



A B C

Cache < Working set < Cache + EAF

16

Large Working Set: Case 1

Cache EAF

E A K J I H G F L C B D

A Sequence: B C D E F G H I J K L A B C A B

EAF BF:        

A

     

EAF Naive:               

A L K J I H G B E D C A B F A L K J I H G B E D F C A B

D

H G B E D F C A A L K J I B C D

D




Not removed

Not present in the EAF

Bloom-filter based EAF mitigates thrashing

H



G F E I

Cache < Working set < Cache + EAF

17

Large Working Set: Case 2

Cache EAF

R Q P O N M L S J I H G F E D K C B A

Problem: All blocks are predicted to have low reuse

Use Bimodal Insertion Policy for low reuse
blocks. Insert few of them at the MRU position

 Allow a fraction of the working set to stay in the
cache

Cache + EAF < Working Set

18

Results – Summary

0%

5%

10%

15%

20%

25%

1-Core 2-Core 4-Core

P
e

rf
o

rm
an

ce
 Im

p
ro

ve
m

e
n

t
o

ve
r

LR
U

TA-DIP TA-DRRIP RTB MCT

SHIP EAF D-EAF

19

Part 2
Managing Prefetched Blocks

Hopefully in a future course!

20

Part 2
Managing Dirty Blocks

Hopefully in a future course!

21

Part 2
Application Awareness

22

Cache Partitioning

• Goals

– High performance

– High fairness

– Both?

• Partitioning Algorithm/Policy

– Determine how to partition the cache

• Partitioning Enforcement

– Enforce the partitioning policy

23

Utility-based Cache Partitioning

• Way-based partitioning

• More benefit/utility => More cache space

• Problems

– # Cores > # ways

– Need core ID with each tag

24

Promotion-Insertion Pseudo Partitioning

• Partitioning Algorithm

– Same as UCP

• Partitioning Enforcement

– Modify cache insertion policy

– Probabilistic promotion

Promotion Insertion Pseudo Partitioning – Xie+ ISCA’09

25

Software-based Partitioning

• Cho and Jin, “Managing Distributed, Shared L2
Caches through OS-Level Page Allocation,”
MICRO 2006.

• Lin et al., “Gaining Insights into Multi-Core
Cache Partitioning: Bridging the Gap between
Simulation and Real Systems,” HPCA 2008

26

Page Coloring

Virtual Address

Physical Address

Cache Address Tag

Page offset

Virtual page number

Physical page number

Block offset

Cache index 27
Color bits

OS-based Partitioning

• Enforcing Partition

– Colors partition the cache

– Assign colors to each application

– Application’s pages are allocated in the assigned
colors

– Number of colors => amount of cache space

• Partitioning algorithm

– Use hardware counters

– # Cache misses

 28

Set Imbalance

• Problem
– Some sets may have lot of conflict misses

– Others may be under-utilized

• Solution approaches
– Randomize index

• Not good for cache coherence. Why?

– Set balancing cache
• Pair an under-utilized set with one that has frequent

 conflict misses

29

That’s it!

30

