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Memory costs dominate both large-
memory servers and expansive-computation
server environments, such as those operating
in today’s data centers and compute farms.
These costs are both financial and physical
(for example, the volume, power, and perfor-
mance associated with memory system imple-
mentation). They often add up to a cost
constraint that the IT professional must trade
off against computation goals.

The computer industry uses data compres-
sion techniques widely to increase the cost effi-
ciency of storage and communication media.
Despite some experimental work,1,2 however,
the industry has not exploited system main-
memory compression to its potential. IBM’s
Memory Expansion Technology (MXT)3 con-
fronts the memory cost issue with a new
memory system architecture that more than
doubles the installed main memory’s effective
capacity without significant added cost.

Engineers from IBM and ServerWorks have
jointly developed Pinnacle, a low-cost, single-
chip memory controller (or north bridge)
using MXT. This Intel Pentium III and Xeon
bus-compatible chip is the first commercially

available memory controller that employs real-
time main-memory compression at a perfor-
mance level competitive with the market’s best
products. The Pinnacle chip is ServerWorks’
flagship product for the commercial server
market.
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PINNACLE: IBM MXT IN A
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MXT architecture
In the typical architecture 

of conventional commodity
computer systems, a memory
controller chip set connects a
collection of processors to a
common synchronous dynam-
ic RAM (SDRAM)-based
main memory. In contrast,
MXT uses the two-level main-
memory architecture4 shown
in Figure 1, consisting of a
large shared cache coupled
with a typical main-memory
array. The high-speed cache,
which contains frequently ref-
erenced processor data, archi-
tecturally insulates system
performance from main-mem-
ory access latency. Thus, MXT
opens opportunities to trade
off increased memory-access
latency for greater functional-
ity. For example, system
designers can incorporate
remote, distributed, very large,
or highly reliable features with-
out adversely affecting system
performance.

IBM engineers combined
the shared-cache architecture
with high-density 0.25-
micron and smaller applica-
tion-specific integrated circuit
(ASIC) technology in the
compressed main-memory
architecture. Special logic-intensive hardware
engines simultaneously compress and decom-
press data as it moves between the shared
cache and main memory. The compressor
encodes 1-Kbyte data blocks into as compact
a result as the algorithm permits. A sophisti-
cated memory-management architecture per-
mits storing the variable-size compressed data
units in main memory, while mitigating frag-
mentation effects and avoiding garbage col-
lection schemes. The new architecture halves
the main-memory cost, without significant
degradation in system performance.

Pinnacle chip
The Pinnacle host bridge controller con-

nects dual Pentium III or quad Xeon proces-

sors; a 32-Mbyte, double-data-rate SDRAM
shared-cache memory; a main memory; and
up to two independent, remote peripheral-
component interconnect bridge chips. We
optimized the low-cost single-chip controller
for a wide range of high-performance server
system applications. The full-featured chip
(see the “Pinnacle features” box on page 67)
can be used in either of the two primary mem-
ory configurations shown in Figure 2.

Figure 3 (next page) shows Pinnacle’s internal
structure. All primary internal dataflow is 128
bits wide, pipelined, and full duplex. The cache
and intermodule bus (IMB) interface operate
at double the chip clock rate. Any processor or
I/O memory references are directed to the cache
controller, which uses cache directory lookup

57MARCH–APRIL 2001

SMB SMB SMB SMB

DIMMDIMM

PIII processor

Pinnacle
memory
controller

(525 signal,
731 EPBGA)

134
1 Gbyte/s 18

500 Mbyte/s

91
2 Gbyte/s

168
2 Gbyte/s

32-Mbyte cache
(5 × 4M × 16

DDR SDRAMs)

168
2 Gbyte/s

64 bits

18
500 Mbyte/s 64 bits

PCI buses

PIII processor

64-Mbyte to 8-Gbyte memory
(6 single/double-density SDRAM

DIMMs populated in pairs)

128-Mbyte to 8-Gbyte memory
(1 or 2 cards @ 16 DIMMs each
populated in quad DIMM groups)

CIOB
dual PCI bridge

(256 PBGA)

18
500 Mbyte/s 64 bits

18
500 Mbyte/s 64 bits

CIOB
dual PCI bridge

(256 PBGA)

(a)

(b)

CIOB
DDR

DIMM
EPBGA

PCI
SDRAM

SMB

Champion I/O Bridge
Double data rate
Dual in-line memory module
Enhanced plastic ball grid array
Peripheral component interconnect
Synchronous dynamic RAM
Synchronous memory buffer

Figure 2. Pinnacle chip (second CIOB optional) with DIMM card configuration (a); alternate
directly attached DIMM configuration (b).



to determine whether the cache contains the
address. The cache controller services cached
references directly from the cache; it defers cache
read misses, and it selects the least recently used
(LRU) cache line for replacement with the new
cache line containing the requested address. The
cache controller issues a request for the new
cache line from the main-memory controller,
while writing back the old cache line to the
write-back buffer if the old cache line contains
modified data.

To service the new cache line fetch, the
memory controller first reads a small address-
translation-table entry from memory to locate
the requested data. Then it starts reading the
requested data. Data streams either around the
decompressor when uncompressed or through
the decompressor when compressed. In either
case, the data then streams through the elastic
buffer to the cache. The memory controller
provides seven-cycle advance notification of

when the requested 32-byte
data will be in the critical-
word buffer. This lets the
processor bus controller arbi-
trate for a deferred read reply
and deliver data without
delay.

The chip processes cache
write-back activity in parallel
with read activity. Once an
entire cache line is queued in
the write-back buffer, com-
pression begins and runs
uninterrupted until it is com-
plete, 256 cycles later. Then,
if a spatial advantage exists,
the memory controller stores
the compressed data; other-
wise, it stores the write-back
data directly from the write-
back buffer. In either case, to
allocate the appropriate stor-
age, the memory controller
must first read and update
the translation-table entry 
for the write-back address,
before writing it back to
memory. The memory con-
troller then writes the data
itself to memory, within the
allocated sectors.

Shared-cache subsystem
The shared cache provides low-latency

processor and I/O subsystem access to fre-
quently accessed uncompressed data. The
data-, code-, and I/O-unified cache content
is always uncompressed and accessed at 32-
byte granularity. Write accesses smaller than
32 bytes require the cache controller to per-
form a read-modify-write operation for the
requesting agent.

The cache consists of four banks of 8K
(8,192) × 1,024-byte lines, or 8K sets of four
lines each. Cache lines within a set are replaced
according to the LRU policy. We chose the
cache line size to minimize the on-chip cache
directory’s size and to match the compression
algorithm block size.

The shared-cache directory contains a
unique 17-bit entry, organized as shown in Fig-
ure 4, for each of the 32K (32,768) cache lines.
The tag address bits permit caching of the low-
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order 16 Gbytes of real-address space. We
implemented the directory on chip as an 8K ×
76-bit dual-port (one read and one write)
SRAM. The cache controller accesses the four
entries associated with a set concurrently with
associated LRU state and parity bits.

The relatively long (1-Kbyte) cache line
merits special design consideration. For exam-
ple, the processor reference bits mitigate extra-
neous cache coherency snoop traffic on the
processor bus. These 4 bits indicate when any
processor has referenced one or more quarter
cache-line (256-byte) segments. When a cache
line is evicted, only referenced cache-line seg-
ments, not the entire line, must be invalidat-
ed on the processor bus.

Shuttling the wide lines in and out of the
cache during cache-line replacement requires
at least 64 system clock cycles, or 32 accesses
for each write-back and line-fill operation. To
alleviate processor access stalls during the
lengthy replacement, the cache controller per-
mits two logical cache lines to coexist within
one physical cache line. This mechanism per-
mits the cache line to be written back,
reloaded, and referenced simultaneously.

During replacement, the cache controller
maintains a state vector to indicate old, new, or
invalid state for each of the 32 subcache lines
within the physical line. As 32-byte subcache
lines are invalidated or moved from the cache
to the write-back buffer, they are marked
invalid, indicating that the associated new sub-
cache line can be written into the cache. Each
time the cache controller loads a new subcache
line, it updates the associated state as new, indi-
cating that processors and I/O can access the
new subcache-line address. When the associ-
ated subcache lines are marked old, processors
and I/O can access the old subcache-line
addresses. The cache controller always opti-
mally fetches and fills cache lines; that is, the
subcache line write-back follows the same sub-
cache line order to maximize the amount of
valid cache line available at all times.

The cache controller can support up to two
concurrent cache-line replacements. The two
independent 1-Kbyte write-back buffers facil-
itate a store-and-forward pipeline to the main
memory, and the 1-Kbyte elastic buffer
queues line-fill data when the cache is unavail-
able for access. A write-back buffer must con-
tain the entire cache line before the

main-memory compressor can begin its oper-
ation. Conversely, the line-fill data stream goes
directly to the cache as soon as the buffer con-
tains a minimum 32-byte data granule. The
two independent 32-byte critical-word buffers
capture the data associated with cache misses
for direct processor bus access.

Main-memory subsystem
The main-memory subsystem stores and

retrieves 1-Kbyte cache lines in response to
shared-cache write-back (write) and line-fill
(read) requests. It stores data in a 64-Mbyte
to 16-Gbyte array of industry-standard
PC100 and PC133 SDRAM dual in-line
memory modules (DIMMs). The memory
controller supports either of two DIMM con-
figurations for optimal large- and small-serv-
er product implementations. The large
memory configuration (Figure 2a) supports
one or two cards with synchronous memory
buffer (SMB) chips and 16 DIMMs each,
populated in quad-DIMM groups. The
directly attached configuration (Figure 2b)
supports two, four, or six single- or double-
density DIMMs connected to the Pinnacle
chip without any glue logic.

In either configuration, the memory con-
troller accesses the array via a 144-bit (16 bytes
+ error-correcting code) data interface with
32-byte to 256-byte access granularity. For
minimal latency, uncompressed data refer-
ences are always retrieved with the critical 32
bytes first and the 256-byte address wrapped
as shown in Figure 5.

Users can configure the main-memory sub-
system to operate with compression disabled,
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enabled for specific address ranges, or com-
pletely enabled. In disabled-compression
mode, the physical-memory-address space
maps directly to the real-address space as in
conventional memory systems. Otherwise, the
memory controller provides real-to-physical
address translation to dynamically allocate
storage for the variable-size data associated
with compressed 1-Kbyte lines. The memory
controller carries out the additional level of
address translation completely in hardware,
using a translation table apportioned from the
main memory.

The physical memory consists of two
regions, or, optionally, three if uncompressed
memory is configured. As Figure 6 shows, the
memory contains two primary data structures:
the sector translation table (STT) and the sec-

tored memory. The STT con-
sists of an array of 16-byte
entries, each entry directly
mapped to a corresponding
1-Kbyte real address. There-
fore, the number of STT
entries is directly proportion-
al (1/64) to the size of the
real-address space declared for
a given system. We define the
real-address space to the oper-
ating environment through a
hardware register. The basic
I/O system (BIOS) firmware
initializes the register with a
value based on the quantity
and type of DIMMs installed
in a system. If compression is
enabled, the BIOS doubles
this value to indicate a real-
address space twice as large as
that populated with DIMMs.

Each STT entry describes
the attributes of the data
stored in the physical memo-
ry and associated with the
corresponding 1-Kbyte real
address. Data can exist in one
of three conditions: com-
pressed to ≤ 120 bits, com-
pressed to > 120 bits, or
uncompressed.

If a 1-Kbyte data block is
compressible to ≤ 120 bits, the
data is stored directly in the

STT entry, together with the control field, yield-
ing a maximum compressibility of 64:1. Oth-
erwise, the data is stored outside the entry in
one to four 256-byte sectors, with the sector
pointers contained in the STT entry. If the data
block is uncompressed, it uses four sectors, and
the STT entry control field indicates the
uncompressed attribute. If unused sector-mem-
ory fragments exist in a 4-Kbyte real page, any
new storage activity in the same page can share
a partially used sector in 32-byte increments. A
maximum of two 1-Kbyte blocks in a page can
share a sector. This simple two-way sharing
scheme typically improves compression effi-
ciency by 15 percent, nearly all the potential
gain attainable from combining fragments by
any degree of sharing.5

The sectored memory consists of a “sea” of
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256-byte storage sectors allocated from a
“heap” of unused or free sectors available in
the sectored memory region. The heap is orga-
nized as a linked list of unused sector address-
es, with the list head maintained in a hardware
register. The free-sector list itself is stored in
the free sectors, so sector use oscillates between
holding the list and holding data. As Figure 7
shows, each node of the free-sector list con-
tains pointers to 63 free 256-byte sectors and
one pointer to the next 256-byte node in the
list. Since the node is itself a free or unused
256-byte sector, the free-sector list effectively
requires no additional storage.

A small hardware cache contains the lead-
ing two nodes (shaded in Figure 7) of the free-

sector list, for rapid access during allocation
and deallocation of sectors associated with
data storage requests.

Unsectored memory regions are areas in a
compressed memory’s real-address space in
which data is never compressed. The Pinna-
cle chip supports up to four such regions, each
configurable as a 32-Kbyte to 256-Mbyte
range and aligned on a 32-Kbyte address. The
memory controller apportions and direct-
maps these regions from the real-address space
to the top of the sectored memory, as shown
in Figure 8. The access latency to these regions
is minimal because data is directly addressable
without the intermediate step of referencing
an STT entry. The memory controller fetch-
es the data with the requested 32 bytes first, as
is always the case for uncompressed data.

STT regions that contain entries for
addresses in unsectored regions are never ref-
erenced. To prevent wasting them, the Pin-
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nacle makes these holes in the STT available
as additional sectored storage by incorporat-
ing them in the free-sector list.

Page operations
A beneficial side effect of virtualizing the

main memory through a translation table is
that a simple alteration of a table entry can
logically relocate or clear data associated with
the entry. We capitalized on this by imple-
menting a user-programmed control mecha-
nism to enable real-memory page (4 Kbytes)
manipulation, at speeds from 0.1 to 3.0
microseconds, depending on the amount of
processor-bus coherency traffic required. We
also provided Pinnacle with a programmed
page-tagging mechanism, using a class code

field in an STT entry reserved for this pur-
pose. Special hardware counters count the
allocated sectors by class. This scheme enables
software to establish metrics supporting mem-
ory-use optimization algorithms. Pinnacle
supports page-swap, clear, invalidate, flush-
invalidate, and set-class-code operations.

Compression and decompression
The compression and decompression

mechanism is the cornerstone of MXT. Com-
pression, as applied in the main-memory
dataflow application, requires low latency and
high bandwidth in the read path, and it must
be nonlossy. Although many compression
algorithms exist, none met our architectural
criteria. We chose to leverage high-density
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(0.25-micron) CMOS ASIC technology by
implementing a gate-intensive, parallelized
derivative6 of the popular Ziv-Lempel (LZ77
version) adaptive dictionary approach. This
scheme partitions the unencoded data block
into n equal parts, each operated on by an
independent compression engine, with shared
dictionaries. Experiments have shown that
parallel compressors with cooperatively con-
structed dictionaries have a compression effi-
ciency essentially equivalent to that of the
sequential LZ77 method.

The Pinnacle embodiment, diagrammed in
Figure 9, contains four compression engines,
each operating on 256 bytes (one quarter of
the 1-Kbyte uncompressed data block), at 1
byte per cycle, yielding a 4-byte-per-cycle
aggregate compression rate. Each engine con-
tains a dictionary (a history buffer) consisting
of a 255-byte content-addressable memory
(CAM) that functions as a shift register. 

Attached to each dictionary are four 255-
byte comparators for locating the incoming
reference byte in the entire dictionary struc-
ture. Each clock cycle, one byte from each
256-byte source data block (read from the
shared-cache write-back buffer) is simultane-
ously shifted into a respective dictionary and
compared with the accumulated (valid) dic-
tionary bytes. The longest match of two or
more bytes constitutes a working string; the
copy in the dictionary is the reference string.
If a single-byte match or no match is found,
as may be the case for random data, the refer-
ence byte is a raw character.

Compression occurs when location and
length encoding to the dictionary reference
strings replaces working strings in the com-
pare data stream. However, the encoding
scheme, shown in Table 1, may cause a 256-
byte uncompressed data stream to expand to
288 bytes for a given engine. Therefore, we
use special logic to detect that the accumulat-
ed aggregate compressed output exceeds 1
Kbyte (or a programmed threshold), causing
compression to abort and the uncompressed
data block to be stored in memory.

Once one of the 255 detectors detects
strings in any one of the four dictionaries, it
ignores future potential strings until it detects
the end of the current string. The detector cal-
culates the length and position of the longest
working string or, in the case of multiple

strings of the same length, the string starting
nearest the beginning of the dictionary. The
length field encoding the number of bytes in
the working string ranges from 2 to 12 bits,
using a Huffman coding scheme. The posi-
tion field encoding the starting address of the
reference string ranges from 2 to 10 bits.
Merge logic packs the variable-length bit
stream into a word-addressable buffer.

The much simpler decompressor consists
of four engines that cooperatively decode the
encoded compressed data block. Each engine
can produce 2 bytes per cycle, yielding an
aggregate 8 bytes per cycle when single
clocked or 16 bytes per cycle when double
clocked as in Pinnacle.

Reliability, availability, and serviceability
The importance customers place on relia-

bility, availability, and serviceability compels
manufacturers of server-class computers to
attain these characteristics at the highest cost-
effective level. Main-memory compression
adds a new facet to this endeavor,7 with the
primary goal of detecting data corruption in
the system. To that end, the Pinnacle chip
includes the following features, with appro-
priate logging and programmable interrupt
control:

• shared-cache error-correcting code
(ECC),

• shared-cache-directory parity checking
and programmable hardware-assisted test,

• main-memory ECC with programmable
scrub,

• I/O channel dead-man timer time-out
recovery,

• hardware configuration/control register
write protection with service processor
override via inter-integrated circuit (I2C)
bus,

• processor, cache, and I/O interface pro-
tocol checking,

• STT-entry parity checking,
• free-sector-list parity checking,
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Table 1. Compressed data encoding.

Compressed data type Encoded vector

Raw character 0, data byte
String 1, primary length, position, secondary length



• sector-out-of-range checking,
• sectored-memory overrun detection,
• sectors-used threshold detection (two),
• compressor/decompressor validity check-

ing, and
• compressed-memory cyclic-redundancy-

code (CRC) protection.

Since the compression and decompression
functions effectively encode and decode sys-
tem data, any malfunction during the process-
es can produce seemingly correct, yet
corrupted, output. Further, the hardware
function implementation requires a prodi-
gious quantity (about 1 million) of logic gates.
Although the compression and decompres-
sion hardware includes special fault detection
mechanisms, they cannot provide complete
fault coverage. Consequently, data corruption
induced by a logic upset is likely to survive
undetected. Therefore, we needed an
improved data-integrity-protection method.

We use a standard 32-bit CRC computa-
tion over the 1-Kbyte uncompressed data
block as it streams into the compressor. When
compression is complete, and the data is to be
stored in the compressed format, the check
code is appended to the compressed data
block, and the associated block size increases
by 4 bytes. (Data is stored in the compressed
format if a spatial advantage exists over stor-

ing it in the uncompressed format.) Informa-
tion stored in the uncompressed format
bypasses the compressor and decompressor
functions and hence is not covered by the
CRC protection.

Servicing a compressed memory-read
request results in decompression of the com-
pressed block and concurrent recomputation
of the CRC over the uncompressed data
stream from the decompressor. Upon com-
pletion of the decompression, the hardware
compares the appended CRC with the recom-
puted CRC. If the two are not equal, an
uncorrectable-error signal alerts the operating
system to the event.

Operating system software
All commercial computer operating system

software environments manage the hardware
memory as a shared resource for multiple
processes. If the memory resource becomes lim-
ited (that is, processes request more memory
than is physically available), the operating sys-
tem can take steps for continued system oper-
ation. Typically, it moves underused memory
pages to disk and then reallocates the memory
to the requesting processes. In this scheme, the
main memory acts like a cache backed by a
large disk-based storage. The scheme works
well because the operating system knows the
absolute amount of memory. The algorithm
applies to MXT-based systems as well.

Although current shrink-wrapped operat-
ing system software can run on an MXT
machine, it cannot yet distinguish an MXT-
based machine from a conventional memory-
hardware environment. This poses a problem
because the amount of memory known to the
operating system is twice what actually exists
in an MXT machine. Further, the operating
system has no notion of compression ratio.
Therefore, it cannot detect conditions in
which the physical memory might be
overused (that is, too few unused or free sec-
tors remain in the sectored memory). So it
doesn’t invoke the page management software
to handle the situation, which may lead to sys-
tem failure. This condition can occur when
the operating system has fully allocated the
available memory and the overall compression
ratio has fallen below 2:1.

Fortunately, minor changes in its kernel vir-
tual-memory manager are sufficient to make
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the operating system “MXT aware,”8 and these
changes are under way in most commercial
operating systems. MXT awareness can also be
accomplished outside the kernel—for exam-
ple, by a device driver and service—albeit less
efficiently. We currently have Pinnacle-based
machines in beta deployment running Linux
and Microsoft Windows 2000 and NT 4.0.

Performance
MXT compression performance ranges

between 1:0.98 (1:1) and 64:1, including
translation table memory overhead. Figure 10
shows a representative sampling of the many
memory-content-compressibility measure-
ments we took from various machines. We
can take measurements either directly on an
MXT machine, indirectly via a monitor pro-
gram running on a non-MXT machine, or by
postanalysis of memory dumps. Compress-
ibility drops below 2:1 only in the rare case
that most of the system memory contains ran-
dom or precompressed data.

We observed that a given machine’s com-
pression ratio remains relatively constant
throughout the operation of an application
suite. For example, our monitoring of three
IBM Internet online-ordering Web servers for
16 hours found an average compression ratio
of 2.15:1 ± 2 percent (from 1 August 2000 at
6:00 p.m. EST through 2 August 2000 at
10:00 a.m. EST; http://www.pc.ibm.com/
ibm_us/). Further, Figure 11 shows that the
distribution of compressibility over the mea-
surement period is normal. Each bar of the
histogram represents the degree of compress-
ibility; the rightmost bar is incompressible
(1:1), and the leftmost bar is maximally com-
pressed (64:1). The line in the lower half of
the graph represents the degree of change in
compressibility over the measurement period.

We can evaluate MXT system performance
from two main perspectives: intrinsic perfor-
mance measured independently of memory
consumption, and as a function of cost ver-
sus performance in memory-starved applica-
tions. MXT systems stand out in the
performance benefits that additional memo-
ry provides for memory-intensive applica-
tions—customers typically experience system
throughput improvements of from 50 to 100
percent. For example, one customer operat-
ing a compute farm with several thousand

dual-processor servers, each containing 1
Gbyte of memory, ran one job per unit time
on each machine. When the customer substi-
tuted an equivalent (dual-processor and 1-
Gbyte memory) MXT machine, two jobs
could run concurrently over the same period
because MXT expansion effectively doubled
the 1 Gbyte.

We observed similar memory-dependent
performance with the SPECweb99 bench-
mark. Increasing memory from 256 Mbytes
to 512 Mbytes yielded a 45 percent perfor-
mance improvement. Beyond 512 Mbytes,
the benefit diminished.

We expect equally significant MXT cost-
performance advantages for large, commer-
cial database applications. We compared
performance results published by the Trans-
action Processing Council as a function of
memory size (4 Gbytes versus 8 Gbytes) for
similarly configured systems. These included
the Microsoft Windows 2000 Server Edition
and the Microsoft Internet Information Serv-
er 5.0 running on quad Xeon processors with
2 Mbytes of cache. Our comparison suggests
a 30 to 40 percent MXT advantage for either
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Figure 11. Web server compression distribution.



a price or performance metric.9

We began the MXT project with the pri-
mary goal of doubling the effective system
memory at a negligible cost without degrad-
ing system performance. We based our mea-
surement of the Pinnacle chip’s performance
on the intrinsic chip reaction times listed in
Table 2, as well as the shared-cache hit rate.

The shared-cache hit rate is application
dependent, and we usually measure the cache
hit rate at roughly 98 percent on most appli-
cations. However, the cache hit rate for large
database applications such as TPC-C, SAP,
and particularly Lotus Notes can range from
as low as 94 percent, as measured by quad
processor trace-driven performance models.
These applications reference some database

records infrequently, resulting in a prefetch
advantage with the long cache line, but little
reuse of data within the line.

In our comparison of an MXT system with
a high-performance contemporary system, the
two systems had essentially equivalent (within
one point) performance for the SPECint2000
benchmark. Both machines were 512-Mbyte
IBM 1U commercial servers with Intel 733-
MHz PIII processors, executing program code
from the same disk drive. The two systems dif-
fered only in their memory controllers: the
MXT system used the Pinnacle chip; the other
used the ServerWorks CNB30LE chip.

Figure 12 illustrates the
degree of MXT’s system cost
leverage with a case in point.
The figure shows how the cost-
performance metric for con-
ventional machines (dashed
line) dramatically improves
when we factor in the benefits
of MXT (solid line). For a rep-
resentative product, we con-
figured a ProLiant DL360
commercial server on Com-
paq’s retail-equipment sales
Web site (http://www5.com-
paq.com/products/servers/
platforms). This server was
priced at $9,759. Then we
configured a hypothetical
MXT-equivalent system, with
half the memory and an esti-
mated $150 MXT cost premi-
um, achieving a near 30

percent savings at $6,904. Finally, we config-
ured a higher-performance hypothetical MXT
system at a cost ($9,702) commensurate with
that of the reference machine. Either way, the
MXT system cost-performance metric com-
pares favorably with any conventional system.

Alogical step in the growth of compression
technologies, MXT, in products like Pin-

nacle, empowers customers to gain full advan-
tage of their memory investment. IT
professionals can routinely save thousands of
dollars on systems ranging from high-density
servers to large-memory enterprise servers. We
expect MXT to extend its presence to other
processor memory controllers, as well as other
memory-intensive system applications includ-
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Table 2. Pinnacle chip reaction times.

Latency

Processor request (bus clock cycles) for first

(with respect to shared-cache hit/miss) and subsequent data transfers

Write 6, 1, 1, 1
Read, hit (SDRAM row open and row hit) 8, 1, 1, 1
Read, hit (SDRAM row open and row miss) 14, 1, 1, 1
Read, hit (SDRAM row closed) 14, 1, 1, 1
Read, hit (SDRAM autoprecharge mode) 12, 1, 1, 1
Read, miss compressed (average) 69, 1, 1, 1
Read, miss not compressed 24, 1, 1, 1
Read, miss compression off 16, 1, 1, 1

System cost

With MXT

Without MXT
$9,702
  2,048-Mbyte effective memory (1,024 physical)
  Two 933-MHz PIII processors
  One 18.2-Gbyte SCSI drive
  Two 10/100 Ethernet ports
  1-Gbit Ethernet port
  $150 MXT premium

$6,904
  1,792-Mbyte effective memory (896 physical)
  One 866-MHz PIII processor
  One 9.1-Gbyte SCSI drive
  Two 10/100 Ethernet ports
  $150 MXT premium $9,759

  1,664-Mbyte memory
   One 866-MHz PIII processor
  One 9.1-Gbyte SCSI drive
  Two 10/100 Ethernet ports

S
ys
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Figure 12. System cost-performance comparison.



ing disk storage controllers, laptop comput-
ers, and information appliances. MICRO
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