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Abstract

Simultaneous multithreading (SMT) increases processor
throughput by multiplexing resources among several threads.
Despite the commercial availability of SMT processors, several
aspects of this resource sharing are not well understood. For
example, academic SMT studies typically assume that
resources are shared dynamically, while industrial designs
tend to divide resources statically among threads.

This study seeks to quantify the performance impact of
resource partitioning policies in SMT machines, focusing on
the execution portion of the pipeline. We find that for storage
resources, such as the instruction queue and reorder buffer;
statically allocating an equal portion to each thread provides
good performance, in part by avoiding starvation. The
enforced fairness provided by this partitioning obviates sophis-
ticated fetch policies to a large extent. SMT'’s potential ability
to allocate storage resources dynamically across threads does
not appear to be of significant benefit.

In contrast, static division of issue bandwidth has a nega-
tive impact on throughput. SMT'’s ability to multiplex bursty
execution streams dynamically onto shared function units con-
tributes to its overall throughput.

Finally, we apply these insights to SMT support in clus-
tered architectures. Assigning threads to separate clusters
eliminates inter-cluster communication; however, in some cir-
cumstances, the resulting partitioning of issue bandwidth can-
cels out the performance benefit of eliminating communication.

1. Introduction

Multithreading increases processor throughput by multi-
plexing several execution threads onto a common set of pipe-
line resources. Because individual threads rarely saturate the
peak execution capacity of a modern CPU, each of n threads
sharing a pipeline typically achieves more than 1/nth of its
stand-alone performance, resulting in a net throughput gain.

A key aspect of multithreaded processor design is the divi-
sion of shared pipeline resources among threads. Early multi-
threaded processors [1, 2, 28, 31] were built on single-issue, in-

order pipelines. In these machines, at most one instruction can
occupy a pipe stage at one time, so inter-thread resource shar-
ing is limited to an interleaving of instructions from different
threads. With the advent of simultaneous multithreading
(SMT) [7, 21, 34, 35] on superscalar, out-of-order machines,
the possible dimensions for inter-thread resource sharing
increase significantly. The set of instructions processed in a
single cycle by a particular pipe stage need not all be from the
same thread. (That is, the pipeline may be shared ‘“horizon-
tally” as well as “vertically” [34].) Buffers such as the instruc-
tion queue, reorder buffer, and store queue generally contain
instructions from multiple threads simultaneously.

Meanwhile, wire delay constraints are forcing designers of
aggressive single-threaded processors to divide pipeline
resources into clusters to improve physical communication
locality [11, 17, 18, 23]. These designs trade increased inter-
cluster communication latency for a higher clock rate. When
adding SMT to such a design, it seems natural to map these
physical divisions to the conceptual division of resources
among threads. When multiple independent threads are active,
assigning them to separate physical partitions can simplify the
design and mitigate inter-cluster communication penalties.
However, SMT’s efficiency comes from the processor’s ability
to share execution resources dynamically across threads. Intu-
itively, the flexibility of dynamic resource allocation provides
the potential for higher efficiency than static partitioning.

This paper explores the impact of resource partitioning on
SMT processor efficiency. The goal of this paper is to deter-
mine the extent to which dynamic sharing of particular proces-
sor resources among threads is important to SMT efficiency.
Resources for which sharing is less critical can be partitioned
statically among active threads without a significant perfor-
mance penalty. (As in prior SMT designs, we assume that all
resources can be dedicated to a single thread to maximize its
performance in the absence of other threads; we are concerned
in this paper only with allocation of resources when multiple
threads are active.)

In this paper, we focus our attention on the execution and
retirement portions of the processor pipeline, and examine the
impact of partitioning the instruction queue, the reorder buffer,
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execution bandwidth, and commit bandwidth. We find that
static thread-based partitioning of storage resources (the
instruction queue and the reorder buffer) has a surprisingly
modest—and often positive—impact on performance, while
partitioning of bandwidth resources (at execution and at com-
mit) can degrade SMT efficiency.

This difference arises in part because storage resources are
more susceptible to starvation, where one or a few threads
acquire and hold on to a majority of a structure’s elements,
leaving insufficient resources for other threads. For storage
resources, the benefits due to static partitioning’s elimination
of starvation generally outweigh any losses due to suboptimal
division of resources among threads. In contrast, bandwidth
resources are reallocated typically every cycle, making it sim-
ple to avoid starving a thread over the course of multiple
cycles.

We further find that the elimination of starvation through
partitioning significantly reduces the benefit of the well-known
instruction count (IC) fetch policy [32] relative to a round
robin (RR) scheme. IC fetches from the thread with the fewest
instructions in the execution pipeline, maintaining a roughly
equal allocation of storage resources among threads. While IC
provides a decided performance advantage over RR for fully
shared pipelines [32], we show that this advantage stems pri-
marily from IC’s ability to avoid starvation. Using partitioning
to eliminate starvation achieves nearly the same benefit, allow-
ing the simpler RR scheme to perform within 1% of the IC pol-
icy on a fully shared pipeline for two-thread workloads.
Although IC maintains a more significant advantage for four-
thread workloads on small IQs, RR pulls within 5% for IQs of
64 or more entries. Thus designers may choose the simple RR
policy on a simple statically partitioned IQ without foregoing
any significant performance opportunity.

We also apply our insights to the design of SMT proces-
sors with clustered execution resources. In our simulated archi-
tecture, assigning independent threads to distinct clusters
eliminates inter-cluster communication, but divides execution
bandwidth statically among threads. Allowing threads to share
clusters—and thus execution bandwidth—dynamically can
provide higher throughput, in spite of the communication
delays induced within each thread.

The remainder of the paper begins with a brief discussion
of related work. Section 3 describes our experimental method-
ology. Section 4 analyzes the impact of partitioning of various
pipeline structures in isolation. Section 5 applies these results
to the design of multithreaded clustered architectures. We con-
clude in Section 6.

2. Related work

Resource allocation among threads has always been an
issue in multithreaded systems, but its manifestation depends

strongly on the style of multithreading. As mentioned above,
early multithreaded processor designs [1, 2, 19, 22, 28, 31]
employed single-issue, in-order pipelines. Once a fetch slot is
given to a particular thread, the resulting instruction occupies
the corresponding slot in each pipe stage through the rest of the
pipeline. Resource partitioning for these machines thus corre-
sponds to the interleaving of threads at fetch. In fact, the granu-
larity of thread interleaving was one of the primary
differentiators among these early designs. (The Tera [2] has a
multi-operation (VLIW) instruction format, but the principle is
the same.)

Some later designs [15, 12, 34] added per-thread instruc-
tion issue buffers, decoupling the execution-stage thread inter-
leaving from the fetch-stage interleaving. However,
instructions within a single thread still execute with little or no
deviation from program order. In these designs, threads do not
benefit from buffering more instructions than can be issued in
one cycle; small, statically partitioned instruction buffers are
thus adequate. Tullsen et al. [34] and the M-Machine [12]
explored execution-unit clustering in this context.

Most recent designs feature full out-of-order execution
both within and across threads. Among these, academic
designs [7, 32, 35] share the instruction queue and reorder
buffer dynamically, while commercial designs (the Intel Xeon
[21] and Compaq EV 8 [24]) partition these structures statically
among active threads.! This paper is, to our knowledge, the
first to compare the performance of these two approaches in
this context.

Although Tullsen et al.’s later work [32] assumes dynamic
sharing in the instruction queue and reorder buffer, they do
experiment with the effects of partitioning the fetch stage. We
believe that modern designs, as exemplified by the Intel Pen-
tium 4 [14] and Compaq EVS8 [24], demonstrate that wide,
pipelined fetch engines can deliver significant instruction
bandwidth, and are limited primarily by branch prediction
accuracy rather than wire delay, making them unsuitable for
physical partitioning. Our focus is on the impact of resource
partitions that are likely to arise in the pursuit of single-thread
performance.

Gongalves et al. [13] compared the performance of parti-
tioned and shared instruction queues. Our results corroborate
theirs: a partitioned IQ provides higher throughput by avoiding
starvation. We extend their work by studying intermediate allo-
cation policies and the influence of fetch policy, by examining
partitioning of the reorder buffer and of issue and commit
bandwidths, and by analyzing the implications of these results
on multithreading clustered processors.

1. The EVS design supports four thread contexts, and guarantees each thread
one fourth of the IQ. When four threads are active, this policy is equivalent to a
static partition. With fewer threads, the unallocated quarters are shared dynam-
ically among the active threads [10].
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Lo et al. [20] compare the performance of an SMT proces-
sor with a chip multiprocessor (CMP)—the apex of resource
partitioning—for explicitly parallel programs. Our study inves-
tigates the impact of partitioning only selected resources on
multiprogrammed workloads. Nevertheless, their results indi-
cate that issue bandwidth partitioning is a greater source of
inefficiency for the CMP than IQ partitioning (see Fig. 5 of
[20]).

Tullsen and Brown [33] propose flushing a thread that is
suffering a long-latency cache miss from the pipeline. This pol-
icy not only limits starvation, but frees up additional resources
for unblocked threads. They compare their approach with a
“pseudo static” scheme that limits the usage of each thread to
at most 63% of the IQ slots, and find (as we do) that such a cap
provides a speedup over full dynamic sharing. Their flushing
scheme provides even higher speedups on most (but not all) of
their workloads, albeit on a relatively short 8-stage pipeline.
Further study is required to determine whether the benefit of
their approach over a partitioned IQ justifies the additional
complexity of both dynamic IQ sharing and the thread flushing
mechanism even on a longer pipeline with its higher restart
latency.

Thread-based cache partitioning is another potentially
important topic [30], but represents a sizable and largely
orthogonal area of work beyond the scope of this paper.

3. Methodology

We perform our evaluations using a detailed, execution-
driven simultaneous multithreading processor simulator mod-
elling a 20-stage pipeline with separate instruction queue, reor-
der buffer, physical register resources, and a detailed event-
driven memory hierarchy [4]. As in SimpleScalar [5], memory
instructions are split into an effective-address calculation,
which is routed to the IQ, and a memory access, which is
stored in a separate load/store queue (LSQ). The simulator exe-
cutes Compaq Alpha binaries. Our base processor parameters
are listed in Table 1.

We use two policies to select the thread that will fetch dur-
ing each cycle: Round Robin (RR) and Instruction Count (IC)
[32]. The RR policy attempts to equalize the fetch opportuni-
ties of all threads by giving each thread an opportunity to fetch
in turn. The IC policy always gives the thread with the fewest
in-flight instructions the first opportunity to fetch.

Our default commit stage aggressively commits the eight
oldest committable instructions from the reorder buffer (ROB)
across all threads, regardless of their position in the structure.

Benchmark selection is a challenging problem for multi-
threaded machine studies. The 26 SPEC CPU2000 benchmarks
alone generate 351 possible two-thread workloads (including
symmetric pairs). We started by compiling all the CPU2000
benchmarks using Compaq’s GEM compiler with full optimi-

Table 1: Processor parameters

Parameter Value

Front-end 10 cycles fetch-to-decode,

pipeline 5 cycles decode-to-dispatch

Fetch Up to 8 instructions per cycle;

bandwidth max 3 branches per cycle

Branch Hybrid local/global (a la 21264);

predictor global: 13-bit history, 8K-entry PHT
local: 2K 11-bit history regs, 2K-entry PHT
choice: 13-bit global history, 8K-entry PHT

BTB 4K entries, 4-way set associative

Instr. Queue Unified int/FP; varied from 32 to 256 entries

Reorder Buffer

3X1Q size

Execution BW

Up to 8 insts / cycle (dispatch, issue, commit)

Function units

8 integer ALU, 4 integer mul, 4 FP add/sub,

4 FP mul/div/sqgrt, 4 data-cache rd/wr port

Latencies integer: mul 3, div 20, all others 1

FP: add/sub 2, mul 4, div 12, sqrt 24

all operations fully pipelined exc. divide & sqrt
L1 split I/D Both: 64 KB, 2-way set assoc., 64-byte lines
caches Instr: 1-cycle latency (to simplify fetch unit)

Data: 3-cycle latency, up to 32 simul. misses

L2 unified cache [1 MB, 4-way set associative, 64-byte lines,
10-cycle latency, up to 40 simul. misses,
64 bytes/cycle bandwidth to/from L1 caches

100-cycle latency, 8 bytes/cycle bandwidth

Main memory

zations, and simulated each benchmark as a single thread for
100 million instructions using the SimPoints specified by Sher-
wood et al. [27].1 We then ran each of the 351 two-thread
workloads using the same starting points. We run all our multi-
threaded workloads until all threads complete at least 100 mil-
lion instructions each, or until any one thread completes 300
million instructions.

Given these results, we selected a representative subset of
two-thread workloads by combining the quantitative workload
characterization described by Eeckhout et al. [9] with a cluster-
ing methodology borrowed from Sherwood et al. [27].

First, we chose a set of 13 statistics that capture interesting
aspects of each thread’s execution. For this work we used: per-
thread committed IPC, wrong-path IPC, IQ occupancy, ROB
occupancy, fetch rate, issue rate, load-issue rate, ready-rate, L1
data cache miss rate, L2 miss rate, function unit occupancy,
branch predictor accuracy, and the number of branches fetched
per cycle. Because we are primarily interested in selecting
workloads based on their impact on the behavior of other
threads, we normalized each statistic to the single-thread val-
ues for the same thread. We then scaled each of these statistics
to have a mean of zero and variance of one.

To eliminate the effects of correlation between statistics,
we employed principal components analysis [9] using

1. We used the “early single” SimPoints available at
www.cs.ucsd.edu/~calder/simpoint/points/early/early-single-sp.html.
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Table 2: Workloads

2 Threads 4 Threads

ammp / equake
ammp / facerec
applu / parser

ammp / eon / equake / equake
ammp / equake / gap / mcf
ammp / equake / mesa / sixtrack

art / equake ammp / equake / parser / mcf
bzip2 / vpr ammp / facerec / equake / wupwise
crafty / perlbmk applu / facerec / mcf / parser

eon / equake art / bzip2 / equake / vpr

equake / equake art / equake / fma3d / gap

facerec / mcf bzip2 / equake / equake / vpr
facerec / wupwise | bzip2 /fma3d / mgrid / vpr

fma3d / gap bzip2 / mesa / sixtrack / vpr

fma3d / mgrid eon / equake / equake / equake
galgel / gcc equake / equake / facerec / mcf

mesa /sixtrack
parser / mcf

facerec / fma3d / gap / wupwise
facerec / fma3d / mcf / mgrid
fma3d / gap / mesa / sixtrack

SAS/STAT [25]. We selected the first 10 principal components
for each benchmark. Each workload then maps to two points in
20-dimensional space, one for each ordering of the benchmarks
within the workload. To provide a consistent set of points for
the clustering algorithm, we choose the point for each work-
load that sorts the first coordinate of each benchmark in
increasing order.

Given the resulting set of points characterizing the work-
loads, we use linkage clustering to group similar workloads
into clusters. As in the work done by Sherwood [27], we calcu-
late the Bayesian Information Criterion (BIC) score for each
possible assignment scheme. The cluster assignment with the
largest BIC value is the best.

We found that simply minimizing the Euclidean distance
between points in a cluster resulted in heavily skewed cluster
sizes. Choosing a single representative from each cluster would
then result in a set of workloads of widely varying importance.
To address this issue, we biased the linkage clustering algo-
rithm to prefer more consistent cluster sizes. This modification
resulted in slightly higher BIC scores while decreasing the
maximum cluster size by 30%. From the set of resulting cluster
assignments, we then chose the smallest workload set that has
a BIC score within 12% of the best score.

Finally, we selected a representative workload for each
cluster by choosing the point with the smallest Euclidean dis-
tance to the centroid of the cluster. These two-thread work-
loads are given in the left column of Table 2.

To generate a representative set of four-thread workloads,
we repeated this procedure using all 120 order-insensitive pairs
of these 15 two-thread workloads as input. This process
resulted in the 16 four-thread workloads listed in the right col-
umn of Table 2.

Results are reported using weighted speedup [26, 29]. Raw
IPC values can be misleading for multithreaded workloads, as
they can be inflated by biasing execution toward high-IPC
threads, thus avoiding execution of more challenging low-IPC

/l\
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Figure 1. Partitioning Example.
In (a), 50% caps assign half the resource to each of two
threads, with no sharing. In (b), 75% caps guarantee 25% to
each of two threads, with 50% shared dynamically.

threads. The weighted speedup metric normalizes each thread’s
performance to the performance of the same program running
alone on the same hardware, resulting in that individual
thread’s “speedup” relative to an equivalent single-threaded
machine. (Of course, due to contention from other threads,
these values are almost always less than one.) The speedup for
a multi-threaded workload is calculated by summing the indi-
vidual thread speedup values, i.e., the contributions of the indi-
vidual threads are weighted by their single-thread performance.
The resulting value indicates the effective throughput of the
workload relative to running each thread alone. For example, if
each thread of a two-thread workload ran at 60% of its single-
thread performance, the weighted speedup would be 1.2.

4. Analysis of resource partitioning

In this section, we examine the impact of partitioning indi-
vidual processor resources on the throughput of our representa-
tive multithreaded workloads. We focus on the execution
portion of the pipeline, examining both storage resources (the
instruction queue and reorder buffer) and bandwidth resources
(issue and commit).

We explore a range of partitioning options. In a fully parti-
tioned resource, threads are assigned equal and non-overlap-
ping portions. Each of n threads is guaranteed one nth of the
resource, but cannot use more. At the other extreme, a fully
shared resource requires threads to compete dynamically for
their portion. There is no upper or lower bound on the fraction
of the total resource an individual thread can occupy. Between
these extremes is a spectrum where each thread is guaranteed
some minimum fraction of the resource, and all threads share
the remaining fraction.

We parameterize this space by expressing the partitioning
in terms of per-thread caps, the maximum percentage of a
resource available to a single thread. Once a thread reaches its
cap for any structure, no further instructions will be fetched for
that thread until its usage drops below the cap. For a two-
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Figure 2. Instruction queue partitioning using the Instruction Count (IC) fetch policy
The vertical bars report weighted speedup for various partitioning schemes, using the scale on the left. The line graphs report the
total IPC for the four 1Q sizes when the queue is fully shared, using the scale on the right.
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Figure 3. Instruction queue partitioning using the Round Robin (RR) fetch policy
The vertical bars report weighted speedup for various partitioning schemes, using the scale on the left. The line graphs report the
total IPC for the four IQ sizes when the queue is fully shared, using the scale on the right.

thread workload, 50% caps implement a fully partitioned
resource, i.e., no sharing. A fully shared resource corresponds
to 100% caps. We generate intermediate points by varying the
cap values between 1/n and 100%. For example, as illustrated
in Figure 1, 75% caps provide a partitioning scheme where
each thread is guaranteed 25% of the resource and the remain-
ing 50% of the resource is shared. For four threads, 30% caps
guarantee each thread a minimum 10% share, as any three
threads together could occupy at most 90% of the resource.

4.1. Partitioning the instruction queue

The bars in Figure 2 plot the average weighted speedup as
the instruction queue’s size and partitioning scheme are varied.
The left four sets of bars plot two-thread workloads, while the
right four sets plot four-thread workloads. These initial results
use the IC fetch policy.

One somewhat surprising result is that the weighted
speedup occasionally decreases with increasing queue size.

This effect arises because the weighted speedup compares the
performance of each thread in the workload with its standalone
performance on the same hardware. Thus the 32-entry IQ
results use a single-threaded 32-entry IQ machine as a baseline,
while the 64-entry 1Q speedups are based on a single-threaded
64-entry IQ machine. Several of the individual benchmarks
show substantial performance gains from increasing IQ size,
thanks to greater overlapping of cache misses. These perfor-
mance gains are smaller in the multi-thread case, as the sensi-
tive benchmarks benefit from only a fraction of the overall 1Q
growth. The overall speedup decreases when the increase in 1Q
size benefits single-thread performance more than multi-thread
performance. Nevertheless, absolute performance of the multi-
threaded workloads does increase with 1Q size, as expected;
the line graphs in Figure 2 plot absolute IPCs of the fully
shared configurations, with the scale on the right axis.

The primary result from Figure 2 is that, for a given 1Q
size, partitioning the IQ has almost no impact on SMT perfor-
mance. (For a fixed IQ size, the single-thread IPCs are fixed,
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Figure 4. Impact of biased IQ allocation.

so improvements in weighted speedup translate directly to
improvements in IPC.) Many of the results even show a slight
gain moving from a fully shared IQ to a partially partitioned
scheme, because the fully shared IQ does not prevent thread
starvation. Although we do not have space to show results for
individual workloads, the trend is representative: each specific
case shows either a small improvement or no change in perfor-
mance as the IQ is partitioned.

More surprisingly, with the exception of the four-thread
workloads on the small 32-entry 1Q, moving all the way to a
statically divided IQ has negligible impact. (In the worst case,
when four threads are constrained to a quarter of a small 32-
entry 1Q, we see a 2.2% drop in speedup.)

A key factor in this result is our use of the IC fetch policy
[32], which biases the fetch stage to drive pipeline occupancy
towards a uniform split. Static IQ partitioning simply enforces
this uniformity. Without IQ partitioning, however, IC has some
leeway to give a thread more than its share of resources. Our
results show that this flexibility is at best needless, and can
cause slight performance losses if no other mechanism to pre-
vent starvation is in place.

To factor out the impact of IC on IQ partitioning, we
repeated the previous experiments using the round-robin (RR)
fetch policy, and report the results in Figure 3. The relatively
poor performance of the fully shared IQ shows that RR is much
more susceptible to starvation than IC, particularly in the four-
thread case. When the instruction queue is fully partitioned,
though, the performance of RR is within 5% of IC in every
case. Thus most of the benefit of IC can be attained by parti-
tioning the 1Q, even with a simpler fetch policy. Designers may
opt to trade the small remaining performance difference for
avoiding the relative complexity of IC scheme.

Although the impact of static IQ partitioning is negligible
under IC, it is possible that some unknown future policy would
be capable of allocating IQ entries more intelligently, and
would be hampered by a static partitioning. We examine the

potential of such a policy by simulating a wide range of
unequal allocations using a modified IC fetch policy.

Our “biased IC” policy adds static bias values to the com-
puted instruction counts prior to thread selection. These biases
cause the fetch stage to select the thread with the smaller bias
value until the biased count values are equalized. For example,
if a bias value of 32 is applied to thread A, with no bias on
thread B, the processor will fetch from thread A only when
thread B has at least 32 more instructions than thread A in the
1Q. For a 256-entry IQ, this bias would tend to drive the per-
thread occupancies to 112 and 144, respectively.

Figure 4 shows the weighted speedup of biasing the
instruction counts for each thread across all our workloads,
normalized to that of unbiased IC. We see that, with only two
exceptions, allocating IQ entries differentially among threads
does not improve performance noticeably. We also see that an
inappropriately applied bias can degrade workload perfor-
mance to a much greater degree. Many of the workloads actu-
ally achieve their best performance with no bias (the 128/128
case).

The two exceptions to this trend are bzip2/vpr and
equake/equake. The bzip2/vpr workload is achieves up to a 9%
speedup if 1Q allocation is biased in favor of bzip2. For this
workload, the benefit from increased overlap in L2 misses seen
by bzip2 causes an increase in total speedup great enough to
offset the reduction in throughput seen by vpr. Note that the
downside for bzip2/vpr is even more significant, including
potential losses of over 30%. The symmetric equake/equake
workload is an unusual, and arguably artificial, case. With no
bias, the two threads are perfectly synchronized, leading to
inter-thread cache conflicts. A slight bias allows the threads to
diverge in time, reducing these conflicts.

Although these results certainly do not prove that no
worthwhile biased allocation policy exists, it appears to be
quite challenging for a fetch policy to provide significant, con-
sistent benefits from non-uniform IQ allocation. These results
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Figure 6. Issue bandwidth partitioning

thus support our argument that the benefits of flexible IQ shar-
ing are likely to be modest at best.

4.2, Partitioning the reorder buffer

The other primary storage resource in the execution por-
tion of the pipeline is the reorder buffer (ROB). The impact of
partitioning the reorder buffer is illustrated in Figure 5. Once
again, we see that in most cases there is very little performance
impact from partitioning this structure statically. The largest
performance loss is 1.4%, for two threads on a 384-entry ROB.
For the smaller machines, partitioning improves performance
by reducing thread starvation, by almost 5% for four threads on
the smallest ROB. Our implementation of IC, following the
original description [32], counts only instructions in the front
end of the pipe and in the IQ, not those in the ROB. Thus it is
somewhat less effective at avoiding ROB starvation than IQ
starvation in the fully shared case.

4.3. Partitioning issue bandwidth

In this section, we partition issue bandwidth by applying
caps to the number of instructions each thread is allowed to
issue in a single cycle. Figure 6 presents the results. Unlike the

situation with storage resources, performance uniformly
decreases when issue bandwidth is partitioned. The perfor-
mance drop from fully shared to fully partitioned is a modest
5% for the two-thread workloads, as each thread can still issue
four instructions per cycle. For the four-thread workloads, fully
partitioning the issue bandwidth limits each thread to only two
instructions per cycle, and performance drops by 9% to 13%,
depending on the 1Q size.

There are two factors which contribute to the different
impact partitioning has on bandwidth compared to storage.
First, allocating a storage resource to a particular thread typi-
cally commits that resource for an indeterminate number of
cycles. For example, once an instruction occupies an IQ slot, it
may remain in that slot for several cycles, until it issues or is
squashed. Overallocating resources to one thread—for exam-
ple, when other threads are underutilizing the pipeline due to
instruction cache misses—can starve these other threads, as
seen in the previous sections. In contrast, nearly all bandwidth
resources are reallocated every cycle (except for function units
that are not fully pipelined). An overallocation of bandwidth to
one thread in one cycle can be reversed in the following cycle,
so starvation is avoided easily.1
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The second factor differentiating storage partitioning from
bandwidth partitioning is the burstiness of demand. The time
derivative of a thread’s demand for IQ and ROB slots is limited
primarily by the system’s fetch and commit bandwidths. A
pipeline flush caused by a misprediction can cause a sudden
decrease in demand, but sudden increases are not possible. In
contrast, a thread’s cycle-by-cycle demand for issue bandwidth
is highly variable: a cache miss can induce several cycles in
which no instructions are ready, while the completion of an
instruction with a large fan-out can cause a sudden increase in
the number of ready instructions. An SMT machine’s ability to
reallocate issue bandwidth dynamically to meet these bursty
demands is a significant factor in its ability to provide
increased throughput; static partitioning of issue bandwidth
limits this ability.

4.4. Partitioning commit bandwidth

To maintain peak single-thread performance, an SMT pro-
cessor must be capable of dedicating its full commit bandwidth
to one thread. In addition, instructions must commit in program
order, requiring centralized control. Thus, unlike the issue
stage, we do not see a situation in which single-thread perfor-
mance considerations will lead to a design that naturally parti-
tions commit bandwidth within a single cycle.

A more challenging aspect of commit processing in SMT
machines is the identification of committable instructions
across multiple threads. A more likely partitioning of commit
bandwidth arises from restricting the complexity of the commit
logic by limiting the extent to which the processor can commit
instruction from multiple threads in a single cycle. In this sec-
tion, we examine the impact of partitioning commit bandwidth
along this dimension.

1. Dorai and Yeung [8] made similar observations about SMT bandwidth and
storage resources in a different context, studying architectural support for
background threads that have minimal impact on foreground thread perfor-
mance.

The commit logic in our base processor can commit com-
pleted instructions from one thread even when an older, unexe-
cuted instruction from a different thread occupies a later ROB
slot. This idealized logic examines instructions from oldest to
youngest; an unexecuted instruction makes only younger
instructions from the same thread ineligible to commit.

We compare our default scheme, which we label aggres-
sive, with two lower complexity commit models: round robin
and oldest ready. Both of these simpler schemes commit from
only one thread in each cycle. The round-robin model selects
the commit thread in a round-robin fashion. The oldest-ready
model identifies and commits instructions only from the thread
possessing the oldest committable instruction.

The results obtained from these commit models are given
in Figure 7. For two-thread runs, the various models provide
almost identical throughput. With only two threads, if the com-
mit stage does not commit from a particular thread on a given
cycle, it will likely commit from that thread soon. This short
delay does not greatly impact performance due to the buffering
effect of the ROB and the idle cycles caused by cache misses
and branch mis-predictions.

For the four-thread workloads, there is a small perfor-
mance degradation for the less-aggressive models when the
ROB size is relatively small. In this case, there are more
instructions eligible to be committed than in the two-thread
case, so the wasted commit slots have a larger relative impact.
The ROB becomes full less often as it becomes larger (the
ROB has 96 entries for the 64-entry 1Q), resulting in fewer dis-
patch stalls and almost no performance impact.

5. Application to clustering

In the previous section, we have shown that partitioning
storage resources has relatively little impact on SMT workload
performance, while partitioning execution bandwidth results in
a more significant performance degradation. We now apply
these results to design issues in multithreaded, clustered
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Figure 8. Performance of SMT workloads on a clustered machine
This diagram compares the performance of the modulo-4 instruction distribution scheme vs. the assigned-cluster scheme for (a) a

two clusters and (b) four clusters.

microarchitectures. In particular, we consider machines where
the execution stage is divided into n clusters, each containing
an nth of the IQ slots and function units. Instructions assigned
to an IQ slot in a given cluster execute only on function units
assigned to that cluster. We assume that each cluster has a full
copy of the register file, and result values are broadcast to all
clusters to keep these copies coherent. However, results are
available in the cluster where they are generated earlier than in
other clusters, reflecting the inter-cluster communication
latency. The Compaq Alpha 21264 [17] is a concrete example
of this type of clustered architecture, with two clusters and a
one-cycle inter-cluster latency.

Conceptually, the performance impact of clustering can be
reduced by minimizing inter-cluster communication. In a sin-
gle-threaded machine, this goal translates into assigning data-
dependent instructions to the same cluster. A variety of both
static and dynamic schemes have been proposed in the litera-
ture [3, 6, 11, 16, 18, 23].

A clustered SMT machine presents the opportunity to
reduce inter-cluster communication by assigning threads to
specific clusters. When the number of threads is at least equal
to the number of clusters, inter-cluster communication will be
eliminated completely. However, this policy has the effect of
statically partitioning both the overall IQ capacity and issue
bandwidth among the threads. As seen in the previous sections,
the former is not likely to be a performance problem, but the
latter may be.

We compare the performance of two different instruction
placement approaches: an “assigned cluster” scheme, which
binds threads to specific execution clusters; and a policy that
allows each thread to distribute its instructions across all clus-
ters. We use a “modulo-4” policy for the latter, which simply
assigns blocks of four consecutive instructions to execution
clusters in a round-robin fashion. A similar modulo-3 policy
was the most effective non-adaptive distribution policy studied

by Baniasadi and Moshovos [3]; we use modulo-4 as it repre-
sents a more likely implementation for our eight-wide pipeline.

Figure 8(a) compares these approaches for two- and four-
thread workloads on a two-cluster machine with a one-cycle
intercluster communication latency. The two approaches are
nearly identical in performance; any benefit the assigned-clus-
ter scheme derives from reducing communication is matched
by the penalty of partitioning issue bandwidth.

Figure 8(b) reports results for the same experiments for a
four-cluster machine with a single-cycle communication
latency. For the two-thread workloads in this configuration,
each thread is assigned to two clusters. Because the issue band-
width is partitioned even more finely, with only two issue slots
per cluster per cycle, binding threads to clusters is even more
constraining. For two threads, the performance of the assigned-
cluster scheme is reduced by an average of 25% compared to
the modulo-4 scheme. Four-thread performance for the
assigned-cluster policy is 5% lower than for the modulo-4 pol-
icy.

The importance of reducing inter-cluster communication
is naturally dependent on the communication latency. In
Figure 9, we plot the speedup of a two-cluster machine with
128 IQ entries running two- and four-thread workloads. We
vary the latency from 1 to 8 cycles. We see that for latencies of
up to four cycles, the choice of instruction-placement scheme
is not critical. As the communications latency increases beyond
four cycles, however, the penalty due to this latency increases
to the point where the benefit of eliminating it using the
assigned-cluster scheme outweighs the loss due to partitioned
issue bandwidth.

The performance of the assigned-cluster scheme on our
simulated machine drops slightly as the communication
latency increases because instructions do not become eligible
to commit until they have written back their results in all clus-
ters. Thus increased inter-cluster latency results in increased
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ROB pressure, which adversely effects all threads. If the ROB
entry was freed at the time of the initial local-cluster writeback,
the performance curve for the assigned-cluster scheme would
extend horizontally from the point corresponding to a one-
cycle latency.

Previous works [32] have studied the benefit of SMT ver-
sus conventional microprocessors. Our results allow us to com-
pare the benefit of adding SMT to a clustered architecture
versus a non-clustered architecture. Referring to Figure 2, we
see that SMT applied to a non-clustered architecture improves
throughput by an average of 56%, with individual configura-
tions ranging from 33% to 87% improvement.

The speedups reported in Figure 8 are relative to the per-
formance of the individual threads running on the same clus-
tered architecture, and indicate that adding SMT to a clustered
architecture improves total throughput an average of 70%, with
results ranging from 16% to 120% depending on the number of
threads, IQ size, and dispatch policy.

These results indicate that there is a slightly greater benefit
in adding SMT to a clustered architecture than to a non-clus-
tered architecture. This does not indicate, however, that the
clustered SMT machine will have the greatest throughput.
When the clustered throughput is calculated relative to the
same baseline used for the non-clustered SMT architecture, we
see an average improvement due to SMT of only 48%, with
individual configurations ranging from a 5% loss (two thread,
four cluster, using assigned-cluster policy) to an 82% improve-
ment (four thread, two cluster, using modulo-4 policy).

6. Conclusions

Simultaneous multithreading’s ability to improve through-
put is well known. Unlike previous forms of multithreading,

SMT enables flexible resource sharing both within and across
pipeline stages. However, the significance of dynamic vs. static
sharing for specific pipeline resources has not been widely
studied.

This paper shows that flexible, dynamic sharing of the
instruction queue and reorder buffer is not a significant con-
tributor to SMT efficiency. Designers who opt to simplify
implementation by dividing these resources statically among
active threads are not forgoing significant performance oppor-
tunities. In fact, static partitioning can increase performance by
avoiding starvation, and thus also reduces the need for sophis-
ticated fetch policies.

In contrast, dynamic allocation of issue bandwidth across
threads is a more significant component of SMT’s effective-
ness. Architectures with more restrictive policies, while sim-
pler, will be surrendering a performance opportunity.

These results have practical implications in the design of
clustered processors, which physically partition pipeline
resources to mitigate wire latencies. It seems natural for a clus-
tered multithreaded processor to exploit the absence of inter-
thread communication by assigning threads to separate clus-
ters. However, for small inter-cluster latencies, the loss in effi-
ciency from partitioning execution bandwidth can cancel out
the benefit of eliminating communication. Distributing threads
across clusters provides similar performance using a simple
policy; as researchers develop enhanced single-thread distribu-
tion policies, this approach to multithreading may prove supe-
rior.
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