
Adaptive Spill-Receive for Robust High-Performance Caching in CMPs

Moinuddin K. Qureshi
IBM Research

T. J. Watson Research Center, Yorktown Heights NY
mkquresh@us.ibm.com

Abstract
In a Chip Multi-Processor (CMP) with private caches,

the last level cache is statically partitioned between all the
cores. This prevents such CMPs from sharing cache capac-
ity in response to the requirement of individual cores. Ca-
pacity sharing can be provided in private caches by spilling
a line evicted from one cache to another cache. However,
naively allowing all caches to spill evicted lines to other
caches have limited performance benefit as such spilling
does not take into account which cores benefit from extra
capacity and which cores can provide extra capacity.

This paper proposesDynamic Spill-Receive (DSR)for
efficient capacity sharing. In a DSR architecture, each
cache uses Set Dueling to learn whether it should act
as a “spiller cache” or “receiver cache” for best over-
all performance. We evaluate DSR for a Quad-core sys-
tem with 1MB private caches using 495 multi-programmed
workloads. DSR improves average throughput by 18%
(weighted-speedup by 13% and harmonic-mean fairness
metric by 36%) compared to no spilling. DSR requires a
total storage overhead of less than two bytes per core, does
not require any changes to the existing cache structure, and
is scalable to a large number of cores (16 in our evaluation).
Furthermore, we propose a simple extension of DSR that
provides Quality of Service (QoS) by guaranteeing that the
worst-case performance of each application remains simi-
lar to that with no spilling, while still providing an average
throughput improvement of 17.5%.

1. Introduction

Chip Multi-Processors (CMP) have become a standard
design point for industry. One of the key design decisions
in architecting a CMP is to organize the last level cache as
either a private cache or a shared cache. Figure 1 shows a
four-core CMP with (a) shared cache and (b) private cache.
A private cache is an attractive design option as it offers the
following advantages over a shared cache. First, reduced
cache access latency compared to a shared cache as the
cache is located physically closer to the core, reducing wire

delays. Second, private caches inherently provide perfor-
mance isolation so that a badly behaving application cannot
hurt the performance of other concurrently executing appli-
cations. Third, private caches allow for a tiled architecture
as the tag-store and data-store of L2 cache are contained in
the same design unit as the core which allows for a scalable
design and facilitates power optimizations. Finally, private
caches simplify the on-chip interconnect as only the misses
in the last level cache access the shared interconnect fab-
ric. Shared caches, on the other hand, can provide capacity
sharing but requires a high bandwidth on-chip interconnect
as all access to the last level cache have to use the inter-
connect. For example, Niagara-1 [7] uses a crossbar to in-
terconnect all the 8-cores to the shared L2 cache. A recent
study [8] has argued that the area and latency overhead of
the shared on-chip interconnect can often offset most of the
capacity sharing advantage of the shared cache.

CORE

 I$ D$

CORE

 I$ D$

CORE

 I$ D$

CORE

 I$ D$

L2
CACHE

L2
CACHE

L2
CACHE

L2
CACHE

CORE

 I$ D$

CORE

 I$ D$

CORE

 I$ D$

CORE

 I$ D$

To Memory

(b)

To Memory

SHARED L2 CACHE

(a)

Simple Interconnect

High Bandwidth Interconnect

Figure 1. A four-core CMP design with a (a)
shared L2 cache (b) private L2 cache.

The main disadvantage of private caches is that the cache
capacity is statically partitioned equally among all the cores.
This prevents such a cache organization from sharing cache
capacity in response to the requirement of individual cores.
Therefore, private caches typically incur more misses than
a shared cache. Recent studies on efficient private caches,
namely Cooperative Caching (CC) [3], use second chance
forwarding [5] for capacity sharing. When a cache line
is evicted from one of the private caches, CC can store it

in another private cache. This transfer of evicted line from
one cache to another is calledspilling. We call the cache
that spilled the line as“spiller cache” and the cache that
received the spilled line“receiver cache”. The basic prob-
lem with CC is that it performs spilling without knowing if
spilling helps or hurts cache performance. All caches act as
spiller cache, even if some of the applications do not ben-
efit from extra capacity. Similarly, all caches can receive
evicted lines spilled from other cache, even if some of the
caches do not have spare capacity. Therefore, the capacity
sharing of CC has limited performance improvement. The
objective of this paper is to design a practical, low-overhead
spilling mechanism for providing robust high-performance
capacity sharing for private caches by taking into account
the cache requirement of each core. Given that every design
changes and added structure requires design effort, verifi-
cation effort, and testing effort, we would ideally like our
mechanism to have no extra structures or design changes,
while still being scalable to a large number of cores.

The difference in this work compared to CC is the key
insight that a given private cache should either be allowed
to get more capacity or be allowed to give away excess ca-
pacity but not both at the same time. If the cache can spill
as well as receive then the cache tries to get more cache at a
remote location by spilling while at the same time provide
its own local capacity to store lines of some other caches.
Therefore, our design restricts each cache to be either a
spiller or a receiver but not both. We propose theSpill-
Receive Architecturein which each cache is appended with
one bit: S/R. When the S/R bit associated with a cache is
1, the cache acts as a spiller cache and when the S/R bit is
0, the cache acts as a receiver cache. With the right config-
uration of S/R bits, it is straight-forward to design a robust
high-performance capacity sharing mechanism.

Whether a cache should be a spiller or a receiver depends
not only the given application but also on the other appli-
cations concurrently executing in the CMP. For the same
application, the best overall performance is obtained when
the cache acts as a spiller for some workload mixes and as
receivers for others. Therefore, the decision about which
caches should be spillers and which should be receivers
must be determined at runtime. We proposeDynamic Spill-
Receive (DSR)cache architecture, in which each cache
learns using Set Dueling [10] whether it should act as
spiller or receiver for best overall performance. DSR dedi-
cates a few sets (32 in our studies) of the cache to “always-
spill” and another few to “always-receive” and uses the pol-
icy that gives fewest misses for the remaining sets of the
cache. Each cache learns the spill-receive decision indepen-
dently using a separate Set Dueling mechanism. We show
that Set-Dueling based DSR performs similar to apriori
knowing the best spill-receive decisions for a given work-
load using oracle information.

We evaluate DSR on a Quad-core system with 1MB pri-
vate L2 cache with each core. We use 12 SPEC bench-
marks, run all the possible 495 four-threaded combinations,
and measure system performance on all the three metrics:
throughput, weighted-speedup, and hmean-based fairness.
We show that DSR improves average throughput by 18%,
weighted speedup by 13% and hmean-based fairness met-
ric by 36%. DSR requires a total storage overhead of less
than two bytes per core, does not require changes to existing
cache structure, and is scalable to a large number of cores.
DSR provides more than double the performance improve-
ment than Cooperative Caching (CC), while obviating the
design changes of having extra spill bits required by CC.

For all the 1980 applications examined (495x4), DSR
has an IPC degradation of more than 5% compared to no
spilling for 1% of the applications. In Section 6, we show
that a simple extension of DSR can provide Quality of Ser-
vice (QoS) by guaranteeing that the worst-case performance
of each concurrently executing application remains simi-
lar to that with no spilling, while still providing an average
throughput improvement of 17.5%.

2. Motivation and Background
In this work, we assume each core in the CMP executes

one application. In a CMP, different cores can execute
diverse applications concurrently, each application having
different memory behavior and varying cache requirement.
A private cache statically divides the total cache into equal-
size cache units and associates one cache unit with each
core. Thus, all cores have uniform cache capacity, albeit
at a faster access latency and reduce interconnect require-
ment than a shared cache. However, applications vary in
terms of benefit obtained from cache.

Figure 2 shows the misses per 1000 instructions (MPKI)
and Cycles Per Instructions (CPI) for 12 SPEC benchmarks
used in our studies. The horizontal axis shows the number
of ways allocated from a 32-way 2MB L2 cache. The pri-
vate L2 cache used in our baseline is 1MB 16-way which is
indicated by the Grey dotted line. The benchmarks shown
in the top row of Figure 2 have excess cache capacity in
the baseline 1MB cache. Their CPI and MPKI do not in-
crease significantly when the cache size is halved. Eon and
crafty have a small working set, fma3d and equake are sen-
sitive to cache capacity only up to1

4
th MB, and applu and

lucas are streaming workloads. These applications can pro-
vide their extra cache capacity to other applications that can
benefit from more cache capacity. We call these applica-
tions “Giver” applications. The benchmarks in the second
row of Figure 2 continue to benefit from cache space. Their
CPI and MPKI decrease considerably when the cache size is
increased from 1MB to 2MB. These applications can bene-
fit by using extra cache capacity. We term these applications
as “Taker” applications.

0 4 8 12 16 20 24 28 32
0

4

8

12

16

20

crafty

 MPKI
 CPI

0 4 8 12 16 20 24 28 32
0

2

4

6

8

10

eon
0 4 8 12 16 20 24 28 32

0

4

8

12

16

20

fma3d
0 4 8 12 16 20 24 28 32

0

3

6

9

12

15

applu
0 4 8 12 16 20 24 28 32

0

6

12

18

24

30

equake
0 4 8 12 16 20 24 28 32

0

4

8

12

16

20

lucas

0 4 8 12 16 20 24 28 32
0

10

20

30

40

50

art
0 4 8 12 16 20 24 28 32

0

3

6

9

12

15

ammp
0 4 8 12 16 20 24 28 32

0

2

4

6

8

10

bzip2
0 4 8 12 16 20 24 28 32

0

5

10

15

20

25

galgel
0 4 8 12 16 20 24 28 32

0

5

10

15

20

25

twolf
0 4 8 12 16 20 24 28 32

0

4

8

12

16

20

vpr

Figure 2. MPKI and CPI for SPEC benchmarks as the cache size is varied. The horizontal axis shows
the number of ways allocated from a 32-way 2MB cache (the rema ining ways are turned off). The
baseline cache is 1MB 16-way: benchmarks in the top row can pr ovide cache capacity and bench-
marks in the bottom row benefit significantly from cache capac ity more than 1MB.

If all applications in the system are Giver applications
then private caches work well. However, when some ap-
plications in the system are Takers and other are Givers
then cache performance and overall system performance
can be improved if the excess cache capacity of Giver ap-
plications are provided to the Taker applications. Thus, ca-
pacity sharing is important to improve the performance of
private caches. Recent studies on efficient private caches,
namely Cooperative Caching (CC) [3], use second chance
forwarding for capacity sharing. When a line is evicted
from one of the private cache, CC can retain that line in
another private cache on the same chip. This transfer of
evicted line from one cache to another is calledspilling.
We call the cache that spilled the line as“spiller cache”
and the cache that received the spilled line the“receiver
cache”. A line can be spilled until it has exceeded a pre-
determined number of spills. The basic problem with CC
is that it performs spilling without knowing if spilling helps
or hurts cache performance. For example, both Taker and
Giver applications are allowed to spill their evicted linesto
neighboring caches. This can be particularly harmful when
cache lines of streaming applications (such as applu and lu-
cas) are spilled into caches of Taker applications (say vpr
and bzip2). The cache of streaming applications will not
benefit from spilling because of poor reuse but receiving
the spilled line can hurt performance of applications such
as vpr and bzip2. Therefore, the capacity sharing as done
in CC has limited performance improvement, and in some
cases spilling can in-fact hurt performance.

A key difference in this work compared to CC is the in-
sight that a given private cache should either be allowed to
get more capacity or be allowed to give away excess capac-
ity but not both at the same time. If the cache can spill as

well as receive then the cache tries to get more cache at a
remote location by spilling while at the same time provide
its own local capacity to store lines of some other caches.
Therefore, our design restricts each cache to be either a
spiller or a receiver but not both. Given the information
about whether a cache is spiller or receiver, it is straight for-
ward to design an efficient cache sharing scheme for private
caches: caches designated as spiller-caches are allowed to
spill their evicted lines to receiver-cache. Evicted linesfrom
receiver caches are not spilled to any of the on-chip caches.
However, the decision about which cache should be spiller
and which should be receiver must be done judiciously oth-
erwise overall system performance can degrade compared
to the base case of no spilling. The next section describes
our proposed spill-receive architecture and a runtime mech-
anism to lean the best spill-receive decision for each cache.

3. Design of Dynamic Spill-Receive
3.1. Spill-Receive Architecture

We propose aSpill-Receive Architecturein which each
cache is appended with one bit: S/R. When the S/R bit as-
sociated with a cache is 1, the cache acts as a spiller cache
and when the S/R bit is 0, the cache acts as a receiver cache.
Thus, the S/R bit classifies each cache in the system as ei-
ther a spiller or a receiver but not both. This is important be-
cause if the cache is trying to spill the line and get higher la-
tency cache space then it should first retain its lower-latency
space. Similarly, if the cache is willing to give cache space
to other applications, then it should not try to get higher-
latency cache space some where else in the system. Fig-
ure 3 shows an example of the Spill-Receive architecture
for a Quad-core system with private L2 caches. The S/R

bit of caches A and C are set to 1 indicating that these two
caches act as spiller caches. Conversely, caches B and D act
as receiver caches.

DCBA
L2 CACHEL2 CACHE L2 CACHE L2 CACHE

S/R = 1
(Spiller)

S/R = 0
(Spiller)
S/R = 1 S/R = 0

Evicted line from A Evicted line from C

(Receiver) (Receiver)

Figure 3. A Spill-Receive architecture for a
four-core CMP. Cache A and C spill evicted
lines randomly to either cache B or D.

When a core accesses a cache line, it first checks for the
cache line in the local cache associated with the core. If
there is a miss in the local cache, all the other caches in
the system are snooped (this is required in the baseline as
well for coherence). If there is a hit in any of the remote
caches, the cache line is brought to the local cache and the
line evicted from the local cache is transferred to the remote
cache. If there is a miss in all the remote caches as well,
the line is fetched from memory and installed in the local
cache. This line can cause an eviction of another cache line
from the local cache. If the local cache is a spiller cache
(A and C), the evicted line is spilled to one of the receiver
caches in the system. If there are more than one receiver
caches in the system then a receiver cache is chosen ran-
domly.1 This ensures that some of the lines evicted from A
are spilled to B and some to D, ensuring good load balanc-
ing between receiver caches. Similarly, evicted lines from
C are spilled to either B or D. When a line is evicted from
any of the receiver caches (B and D) it is simply discarded
without trying to spill to any of the caches. Thus, our archi-
tecture automatically discards unused spilled lines without
the need for any spill bit in the tag-store entry of each cache,
as required by CC [3]. When all caches in the system are
spiller caches then spilled lines cannot be received in any
of the caches, which implicitly disables spilling. Similarly,
when all caches in the system are receiver caches then none
will spill an evicted line, which explicitly disables spilling.

Given the right configuration of S/R bits for each of the
cache, the Spill-Receive architecture can implement an ef-
ficient cache sharing mechanism for private caches. Such

1Further optimization of the scheme can be done by tuning whatfrac-
tion of the spilled lines from a particular spiller cache gets to a particular
receiver cache. Or, restricting spills only to nearest neighbor to reduce
interconnect latency. We do not consider such optimizations in this paper.

a scheme can have the latency and bandwidth advantages
of private caches and capacity sharing advantages of shared
caches. And, it can do so while incurring a negligible hard-
ware overhead (one bit per cache). A vital piece of infor-
mation in the Spill-Receive architecture is the S/R bit as-
sociated with each cache. As the spill-receive decision for
an application varies with input set, machine configuration,
and behavior of other competing applications, obtaining this
information using profiling may be impractical or even im-
possible. Therefore, we obtain the spill-receive decisionat
runtime using the recently proposed Set-Dueling [10] tech-
nique. We briefly describe Set-Dueling next.

3.2. Set Dueling

Set Dueling is a general mechanism that can choose be-
tween competing policies while incurring negligible over-
head. Set Dueling leverages the fact that the last-level
caches typically have large number (more than thousand) of
sets and cache performance can be estimated by sampling
a few sets. Figure 4 describes the Set Dueling mechanism
to select between two policies P0 and P1. The mechanism
uses Set Dueling Monitors (SDM) to estimate the cache per-
formance of each of the two policies. A few sets of the
cache are dedicated to always use policy P0, thereby form-
ing SDM-P0. Similarly, another few sets of the cache are
dedicated to always use policy P1, thereby forming SDM-
P1. The remaining sets are called follower sets, and they
follow the better performing policy between P0 and P1. A
saturating counter (PSEL) tracks which of the two SDMs
have fewer misses: misses in SDM-P0 increments PSEL
and misses in SDM-P1 decrements PSEL. Follower sets of
the cache use P0 if the Most Significant Bit (MSB) of PSEL
is 0 and P1 otherwise.

+ −

������������

������������
������������

������������

PSEL

Miss in SDM−P0

Miss in SDM−P1

If MSB=0, follower sets use Policy P0
else follower sets use Policy P1

{

{

CACHE

SDM−P0

SDM−P1

Figure 4. Set Dueling based selection be-
tween two policies: P0 and P1

+
−

+
−

+
−

 SET 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31

������

�����
�����
�����
�����

�����
�����
�����
�����

����������
����������

����������

�����
�����
�����
�����

�����
�����
�����
�����

����������
�����
�����
�����
�����

����������
����������

�����
�����
�����
�����

����������

����������
�����
�����
�����
�����

����������

���
���
���
���

CACHE B CACHE C CACHE DCACHE A

 1
 2
 3
 4
 5
 6
 7
 8
 9

 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31

 1
 2
 3
 4
 5
 6
 7
 8
 9

 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31

 0 0

of any cache (A,B,C,D)
Miss in Set 30 or Set 31

of any cache (A,B,C,D)

B
PSEL

C
PSEL

D
PSEL

Miss in Set 4,5 Miss in Set 8,9

Miss in Set 22,23

Miss in Set 12,13

else cache A spills

Miss in Set 0 or Set 1

Miss in Set 26,27 Miss in Set 18,19

A
PSEL

If MSB=0, cache A receives

SDM−A−Spill

}

SDM−A−Receive

}

Always receive

Always spill

decided by PSEL

Legend for Sets 0−31

MSB decides S/R for B MSB decides S/R for C MSB decides S/R for D

Spill−receive

+
−

Figure 5. Dynamic Spill-Receive using Set Dueling

3.3. Dynamic Spill-Receive Architecture

We proposeDynamic Spill-Receive (DSR)architecture
that uses Set Dueling to implement efficient cache shar-
ing in private caches. In DSR, each cache learns whether
it should act as a “spiller cache” or “receiver cache” in
order to minimize overall cache misses. Figure 5 shows
the DSR architecture for a system containing four private
caches (cache A to D). For simplicity, we assume each
cache consists of 32 sets. Each cache dedicates two sets to
estimate the cache performance when it spills and another
two sets to estimate the cache performance when it receives
spilled lines from other applications. For example, cache
A dedicates Set 0 and Set 1 to form SDM-Spill and these
sets “always spill” their evicted lines. Cache A also ded-
icates Sets 30 and 31 to form SDM-Receive and these set
can “always receive” spilled lines from other applications.
A saturating counter (PSEL-A) keeps track of which of the
two policies (spill or receive) when applied to cache A min-
imizes overall cache misses. A miss in Set 0 or Set 1 ofany
of the cache decrements PSEL-A, whereas, a miss in Set 30
or Set 31 ofanyof the cache increments PSEL-A. Note that
the benefit of spilling is obtained only when there is a hit
in the remote cache, therefore, it is important to take global

cache miss rate into account instead of just local cache miss
rate. The most significant bit (MSB) of PSEL-A then indi-
cates which of the two policies (spill/receive) when applied
for cache A minimizes overall misses. This policy is used
for the remaining 28 sets of cache A.

Thus, the S/R bit for cache A is 0 for sets 30 and 31,
is 1 for sets 0 and 1, and is equal to the MSB of PSEL-A
for all other sets. Similarly, other three caches (B,C,D) in
the system learn which policy (spill/receive) when applied
to the cache minimizes overall misses using their individ-
ual PSEL counters. The storage overhead incurred by DSR
is one PSEL counters per cache. We use a 10 bit PSEL
counter in our studies. The last level cache (L2 cache) in
our baseline contains 1024 sets. We dedicate 32 sets from
each cache to SDM-Spill and another 32-Sets to SDM-Spill.

3.4. Selection of Dedicated Sets

A set dedicated to one of the SDM must not be dedicated
to any other SDM of the same cache or any other cache
in the system. Therefore, the sets dedicated to SDM-Spill
and SDM-Receive for all the caches must be selected in a
non-overlapping manner. The sets for SDM can be selected
randomly and a separate storage structure can track which

sets belong to SDM-Spill and which sets belong to SDM-
Receive for each of the cache. The storage structure can be
obviated if the sets dedicated to SDM are selected based on
a hash function of the set index of the cache [10][6].

Type of Set for CacheID[1:0]

+

+

CacheID[1:0]

CacheID[1:0]

SetIndex[9:5]

Follower Set

SDM−Spill

SDM−Receive

NumCaches(4)

SetIndex[4:0]

SetIndex[9:5]

Figure 6. Logic for selecting dedicated sets

The baseline cache contains 1024 sets (indexed by
SetIndex[9:0]). Figure 6 describes the logic circuit for se-
lecting 32 sets each for both SDM-Spill and SDM-Receive
for each of the four caches. All caches use a separate circuit
each driven with corresponding value of CacheID[1:0].

4. Experimental Methodology
4.1. Configuration

We use an in-house CMP simulator for our studies. The
baseline configuration is a four-core CMP with the parame-
ters given in Table 1. We use a simple in-order core model
so that we can evaluate our proposal within a reasonable
simulation time. Unless otherwise specified, the L2 cache
in the system is 1MB private per core with a 10 cycle hit
latency to the local L2 cache. Cache hits in other L2 caches
incur an additional latency of 40 cycles. All caches in the
baseline use a uniform linesize of 64B and use LRU replace-
ment policy. Memory is 300 cycles away.

Table 1. Baseline Configuration
System Four Core CMP
Processor Core single issue in-order, five stage pipeline
L1 caches (Private) I and D : 16KB, 64B line-size, 4-way
L2 cache (Private) 1MB, 64B line-size, 16-way LRU repl.

10-cycle local-hits, 40-cycle remote hits
Memory 300-cycle access latency minimum
Off-chip Bus 16B-wide split-transaction, 4:1 speed ratio

4.2. Workloads

Table 2 shows the 12 SPEC CPU2000 benchmarks used
in our studies. A representative slice of 250M instructions
was obtained for each benchmark using a tool that we de-
veloped using the SimPoint methodology. The benchmarks
broadly belong to one of the two categories. The first six
benchmarks are calledGiver applications as their CPI does
not increases significantly when the cache size is halved
from 1MB to 1

2
MB. The other six applications are termed

Takerapplications because their CPI decreases significantly
if the cache size is doubled from 1MB to 2MB.

Table 2. Benchmarks Classification (Based
on CPI Normalized to 1MB)

“Giver” (G) Applications
CPI crafty eon fma3d applu equake lucas

1

2
MB 1.02 1.0 1.0 1.0 1.0 1.0

1MB 1.0 1.0 1.0 1.0 1.0 1.0
2MB 0.998 1.0 0.997 0.995 0.986 1.0

“Taker” (T) Applications
CPI art ammp bzip2 galgel twolf vpr

1

2
MB 1.28 1.55 1.33 1.79 1.72 1.73

1MB 1.0 1.0 1.0 1.0 1.0 1.0
2MB 0.24 0.64 0.74 0.54 0.55 0.66

We form a four-threaded workload by combining four
separate benchmarks. We run all possible four-threaded
combinations of 12 benchmarks, namely12C4 = 495 work-
loads. To provide insights in our evaluation, we clas-
sify these workloads into five categories depending on how
many “Giver” applications (G) and how many “Taker” ap-
plications (T) are present in the workload. Table 3 describes
this classification. The workloads inG4T0 category are
unlikely to improve performance with cache sharing since
none of the applications in the workload benefit from in-
creased cache capacity. Workloads inG0T4 category have
very high cache contention and need robust cache sharing.

Table 3. Workload Summary
Type Description of Workload Total workloads

G4T0 Four Givers + zero Takers 6C4 ·
6C0 = 15

G3T1 Three Givers + one Takers 6C3 ·
6C1 = 120

G2T2 Two Givers + two Takers 6C2 ·
6C2 = 225

G1T3 One Givers + three Takers 6C1 ·
6C3 = 120

G0T4 Zero Givers + four Takers 6C0 ·
6C4 = 15

All All of the above
∑

= 495

All workloads are simulated till each application in
the workload executes at-least 250M instructions. When
a faster thread finishes its 250M instruction, then it is
restarted so that it continues to compete for cache capac-
ity. However, statistics are collected for only the first 250M
instruction for each application.

4.3. Metrics

The three metrics commonly used to quantify the aggre-
gate performance of a system in which multiple applications
execute concurrently are: Throughput, Weighted Speedup,
and Hmean-Fairness. TheThroughput metric indicates
the utilization of the system but it can be unfair to a low
IPC application. TheWeighted Speedupmetric indicates
reduction in execution time. TheHmean-Fairnessmetric
balances both fairness and performance [9]. We will use all
three metrics for key performance comparisons. We also
evaluate DSR with regards to Quality-of-Service (QoS) in
Section 6. We defer the discussion of QoS to that section.

5. Results and Analysis
We compare the performance of the baseline without

spilling to three other configurations: Shared cache of 4MB
size, DSR, and Cooperative Caching (CC). The shared
cache is 4-way banked with 10 cycle latency for local-
bank and 20 cycle latency for remote-bank. A high-
bandwidth crossbar interconnect is assumed for the shared
cache without penalizing it for the area overhead. The per-
formance of CC is highly dependent on the parameterspill-
probability [1]. Therefore, for each workload, we evaluate
five configurations of CC, each with spill probability of 0%,
25%, 50%, 75% and 100% respectively, and selected the
one that gives the best performance for the given workload.
We call thisCC(Best). In our evaluation, the numbers re-
ported for a suite are the geometric mean averages measured
for all of the workloads in a given workload suite.

5.1. Performance on Throughput Metric

Figure 7 shows the throughput of shared cache, DSR,
and CC(Best) normalized to the baseline (no spilling). The
geometric-mean average for each of the five workload cate-
gories and all 495 workloads are shown.

0.80
0.85
0.90
0.95
1.00
1.05
1.10
1.15
1.20
1.25
1.30

T
hr

ou
gh

pu
t

N
or

m
al

iz
ed

 t
o

N
oS

pi
ll

 Shared cache
 Baseline + DSR
 Baseline + CC(Best)

 G4T0 G3T1 G2T2 G1T3 G0T4 All(495)

Figure 7. Throughput of shared cache, DSR,
and CC over baseline.

G4T0 contains workloads that do not benefit from ex-
tra capacity so the increased latency of shared cache hurts
throughput. As cache capacity becomes more important,
shared cache has better throughput than the baseline. DSR
outperforms baseline by 11.8% for G3T1, 20.4% for G2T2,
and 22.1% for G1T3. Workloads in G0T4 need more capac-
ity for all applications, still, doing spill-receive intelligently
improves the throughput by 18.6%. On average, DSR im-
proves throughput by 18% across all 495 workloads. Com-
paratively, CC(Best) – even with the best-offline spill pa-
rameter – improves throughput by only 7% on average.

Although DSR has 18% more throughput than baseline,
it is important that this does not come at the expense of
significant degradation in throughput of some workloads.
To that end, Figure 8 shows theS-Curve2 of the throughput
improvement of DSR over baseline for all 495 workloads.

2An S-curve is plotted by sorting the data from lowest to highest. Each
point on the graph then represents one data-point from this sorted list.

0 50 100 150 200 250 300 350 400 450 500
Workloads (total: 495)

1.00
1.05
1.10
1.15
1.20
1.25
1.30
1.35
1.40
1.45

N
or

m
al

iz
ed

 T
hr

ou
gh

pu
t

of
 D

SR

Figure 8. S-Curve for throughput improve-
ment of DSR over baseline (no spilling)

5.2. Performance on Weighted Speedup

The throughput metric gives more weightage to the ap-
plication with higher IPC, therefore it can be unfair to the
slower applications. The Weighted Speedup (WS) metric
gives equal weightage to the relative speedup of each ap-
plication. Figure 9 shows the weighted speedup of shared
cache, baseline, DSR, and CC(Best).

2.0
2.2
2.4
2.6
2.8
3.0
3.2
3.4
3.6
3.8
4.0

W
ei

gh
te

d
Sp

ee
du

p
 Shared cache
 Baseline (NoSpill)
 Baseline + DSR
 Baseline + CC(Best)

 G4T0 G3T1 G2T2 G1T3 G0T4 All(495)

Figure 9. Weighted Speedup of shared cache,
baseline, DSR, and CC(Best).

For the workload in G4T0 category, all private cache
configurations (baseline, DSR, and CC(Best)) achieve
close to ideal weighted speedup, while the higher latency of
shared cache causes a degradation. As the number of Taker
applications in the workload increases, the contention for
cache capacity increases as well and weighted speedup of
all scheme starts to decrease. However, DSR consistently
has the best performance in all categories that has at-least
1 Taker applications. For the workloads in the G0T4 cate-
gory, the weighted speedup of the baseline is almost half
of the ideal value of 4. DSR tries to minimize overall
misses thereby increasing the weighted speedup from 2.07
to 2.5. On average, over all 495 workloads, DSR improves
weighted speedup by 13.4% over baseline, and CC(Best)
improves weighted speedup by 6%.

We also evaluate the caching schemes using the“Fair”
Speedup(FS) metric proposed in [2] and found that DSR
improves FS by 18% over the baseline. Comparatively,
CC(Best) improves average FS by 9%. Although FS uses
harmonic meanto penalize slowdowns harshly than WS,
FS uses a much weaker reference for measuring speedups
(1MB per core) compared to the 4MB per core used in WS.

5.3. Performance on Hmean Fairness

The Harmonic-mean based performance metric [9] has
been shown to balances both performance and fairness. Fig-
ure 10 shows this metric for shared cache, baseline, DSR,
and CC(Best). For G4T0 all three private caching schemes
have close to ideal value of 1. Shared cache has lower value
than 1 because it has higher latency than the 4MB 10-cycle
cache used as reference in computing the metric. Partition-
ing the caches equally does not result in fair allocation com-
pared to the reference of 4MB used in evaluation, therefore,
the dynamic allocation of shared cache allows it to outper-
form baseline for all other categories. On average, for all
the 495 workloads, DSR has a value of 0.77, compared to
0.57 for the baseline. Thus, DSR not only improves perfor-
mance significantly but it also balances fairness well.

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

H
ar

m
on

ic
-m

ea
n

F
ai

rn
es

s
M

et
ri

c

 Shared cache
 Baseline (NoSpill)
 Baseline + DSR
 Baseline + CC(Best)

 G4T0 G3T1 G2T2 G1T3 G0T4 All(495)

Figure 10. Hmean-Fairness metric

5.4. Comparison with Best-Offline Policy

DSR is a runtime technique that tries to converge to the
spill-receive policy that gives the fewest misses. We com-
pare DSR to an offline scheme that executes the workload
for all 16 combinations of spill-receive for a four-core sys-
tem and choose the one that gives best performance. We call
this policyBest-Offline.3 Best-Offline may not be practical
to use given the extensive offline analysis or even impossi-
ble when different applications form a workload at runtime.
Nonetheless, it gives us a reference for comparison.

1.00

1.05

1.10

1.15

1.20

1.25

T
hr

ou
gh

pu
t

N
or

m
al

iz
ed

 t
o

N
oS

pi
ll

 DSR
 Best-Offline

 G4T0 G3T1 G2T2 G1T3 G0T4 All(495)

Figure 11. DSR vs. Best-Offline policy

Figure 11 compares the throughput improvement of DSR
and Best-Offline (for maximum throughput). Although

3We also studied another best-offline policy that chooses from a 3-way
decision for each core: spill-receive-neither. We executed all 34 = 81
combinations for each workload and selected the one that gave the best
performance. The average improvement with the 3-way best-offline policy
is similar to that obtained with the binary (spill-receive)best-offline policy.

DSR is a low overhead, practical, runtime mechanism, it
still provides 90% of the performance benefit (17.9% vs.
19.8%) of the impractical Best-Offline scheme. The dif-
ference is because DSR tries to minimize misses and Best-
Offline explicitly chooses maximum throughput.

5.5. Scalability of DSR to Larger Systems

We also evaluate DSR for an 8-core and a 16-core sys-
tem. We form 100 workloads for each system by randomly
combining from the 12 SPEC benchmarks. Figure 12 shows
the improvement in throughput of DSR compared to that
with no spill for the 8-core and 16-core system respectively.

0 10 20 30 40 50 60 70 80 90 100
Workloads (total: 100)

1.00

1.05

1.10

1.15

1.20

1.25

1.30

1.35

N
or

m
al

iz
ed

 T
hr

ou
gh

pu
t

w
it

h
D

SR

 8 core system
 16 core system

Figure 12. DSR on 8-core and 16-core CMPs

DSR improves throughput on average by 19.7% for the
8-core system and by 19% for the 16-core system, while
never degrading the throughput of any of the 200 workloads.
Thus, DSR is a scalable, robust, and practical mechanism,
given that the improved performance is still obtained with
the storage overhead of only one 10-bit counter per core
even for the 8-core and 16-core systems.

5.6. Effect on IPC of Each Application

Thus far, we have used metrics that indicate aggregate
performance of the workload. We now show the effect of
DSR on the performance of individual application within
the workload. Figure 14 shows the normalized IPCs of each
of the 1980 applications (4x495 workloads) compared to the
baseline. For 20 out of 1980 applications, DSR has slow-
down of more than 5%. Thus, for 99% of the applications,
DSR retains the performance isolation of private caches.

0 200 400 600 800 1000 1200 1400 1600 1800 2000
 495 workloads x 4 applications/workload = 1980 applications

0.6

1.0

1.4

1.8

2.2

2.6

3.0

3.4

3.8

IP
C

 N
or

m
al

iz
ed

 t
o

N
oS

pi
ll

Figure 13. S-Curves for IPC with DSR normal-
ized to the baseline

6. Quality-of-Service Aware DSR
Thus far, we have tried to improve overall performance,

even if this means reducing the performance of one of
the application if it provides huge improvement in per-
formance of other applications in the workload. How-
ever, in some scenarios, such as interactive applications
and service level agreements, there is a certain level of
guaranteed performance required. Such scenarios require
“Quality of Service (QoS)”, which means that the worst-
case performance of the applications remains similar to
(or better than) the baseline case of private caches. With
DSR, we reduce the IPC of about 1% of the applications
by more than 5%. In some cases this may be unaccept-
able. DSR must try to improve overall performance while
retaining the worst-case performance similar to the base-
line. We propose an extension of DSR architecture that
facilitates such QoS guarantees. We call thisQoS-Aware
DSR. To implement QoS, we must know the increase in
misses with DSR compared to the baseline. We leverage
the fact that the spiller sets for each cache do not receive
lines from any other cache. Therefore, we can track the
misses in spiller sets(MissInSpillerSets) and use it to
estimate the misses in the baseline system with no spilling
(MissesWithBaseline) using Equation 1.

MissesWithBaseline =
NumSetsInCache · MissInSpillerSets

NumSetsDedicatedToSpillerSets
(1)

∆MissesWithDSR = MissesWithDSR−MissesWithBaseline

(2)

∆CyclesWithDSR = AvgMemLatency · ∆MissesWithDSR

(3)

QoSPenaltyFactor = max(0,
∆CyclesWithDSR

TotalCycles
) (4)

The number of misses with DSR(MissesWithDSR)
for each cache can be measured at runtime using a counter.
The change in misses with DSR(∆MissesWithDSR) is
given by Equation 2. The change in execution time because
of DSR (∆CyclesWithDSR) can then be calculated by
multiplying the∆ misses with average memory latency (we
use a static number for our system but for out-of-order sys-
tems a method similar to the one used in [11] can be em-
ployed). We calculateQoSPenaltyFactor as percentage
increase in execution time due to DSR, which can be cal-
culated using equation 4, given that a cycle counter register
can track theTotalCycles. Then, instead of increment-
ing/decrementing the PSEL counters by 1 on each miss, we
give more weightage to the misses of an application (sayi)
that has higher QoSPenaltyFactor using Equation 5.

WeightOfMissi = 1 + λ · QoSPenaltyFactori (5)

Whereλ is a constant (256 in our studies). We calculate
QoSPenaltyFactor once every 5 Million cycles, store it in
a QoSPenaltyFactorRegister, and use it for the next 5
Million cycles. QoS-Aware DSR requires a per-core storage
overhead as follows: 3 bytes for MissInSpillerSets, 3 bytes
for MissInDSR, 1 byte for QoSPenaltyFactor Register (6.2
fixed point format), and 12 bits for PSEL (10.2 fixed point
format). A cycle counter of 4 bytes is shared between all
the cores. Thus, the total overhead of enforcing QoS within
the DSR architecture is less than 10 bytes per core. If the
cycle counter or any of the miss counters overflow, the cycle
counter and all the miss counters are halved.

1.00

1.05

1.10

1.15

1.20

1.25

T
hr

ou
gh

pu
t

N
or

m
al

iz
ed

 t
o

N
oS

pi
ll

 DSR
 QoS-Aware DSR

 G4T0 G3T1 G2T2 G1T3 G0T4 All(495)

Figure 14. Throughput of QoS-Aware DSR

Figure 14 shows the improvement in throughput with
DSR and QoS-Aware DSR. For G0T4 category, QoS con-
straints reduce throughput improvement form 18% to 15%.
On average, the two scheme performs similarly, with DSR
providing 18% and QoS-Aware DSR with 17.5%. As G0T4
is the category with the most QoS violations, we show the
normalized IPC of each application in this category for DSR
and QoS-Aware DSR in Figure 15 (for other categories the
two curves are almost identical). QoS-Aware DSR success-
fully removes the IPC degradation of DSR and all appli-
cations have a worst-case IPC similar to the baseline. For
all 1980 applications evaluated, 20 out of 1980 applications
had an IPC degradation of more than 5% for DSR, whereas,
not a single application had that amount of degradation with
QoS-Aware DSR. Thus, the DSR architecture can success-
fully optimize for both QoS and performance.

0 6 12 18 24 30 36 42 48 54 60
0.75

1.00

1.25

1.50

1.75

2.00

2.25

2.50

IP
C

 N
or

m
al

iz
ed

 t
o

N
oS

pi
ll

G0T4 (15 workloads x 4 applications/workload = 60 applications)

 DSA
 QoS-Aware DSA

Figure 15. S-Curve of IPC for apps in G0T4
workloads with DSR and QoS-Aware DSR

7. Related Work
Managing Private Caches: When cache lines are con-

currently accessed by multiple cores, replication can reduce
cache access latency at the expense of reducing the num-
ber of unique lines that can be stored on-chip. Several pro-
posals [4][3] have tried to balance this latency vs. capacity
trade-off. These schemes contain a replication control pa-
rameter that determines the percentage of lines that can be
replicated. Adaptive Selective Replication [1] is a dynamic
mechanism that learns the best replication parameter at run-
time using large tagged structures. The reduced-capacity
vs. improved-latency trade-off solved by these proposals is
orthogonal to the capacity sharing problem solved by DSR.

Managing Shared Caches: LRU-managed shared
cache allocates capacity between competing applications on
a demand basis. Cache performance can be improved if
cache space allocated to streaming applications can be min-
imized. TADIP [6] is a simple high-performance scheme
that uses Set Dueling and Adaptive Insertion [10] to re-
duce harmful cache interference in shared caches. However,
TADIP is applicable to only shared caches and does not
solve the problem of increased latency and high-bandwidth
interconnect requirement of a shared cache. Figure 16
shows the throughput improvement of shared cache with
TADIP and private cache with DSR. On average, TADIP
improves throughput by 15% and DSR by 18%. DSR can
also be implemented on a cache that uses DIP [10] for
demand lines (spilled lines are always inserted in MRU
position). DSR+DIP improves throughput by 23% over
NoSpill+LRU and by 17% over NoSpill+DIP (not shown).

0.80
0.85
0.90
0.95
1.00
1.05
1.10
1.15
1.20
1.25
1.30

T
hr

ou
gh

pu
t

N
or

m
al

iz
ed

 t
o

N
oS

pi
ll

 Shared+LRU
 Shared+TADIP
 DSR
 DSR+DIP

 G4T0 G3T1 G2T2 G1T3 G0T4 All(495)

Figure 16. Throughput: TADIP vs. DSR.

Fairness and Quality-of-Service: Cooperative Cache
Partitioning (CCP) [2] tries to optimize both fairness and
quality of service using time-sharing of cache partitions.
MTP needs cache requirement curves for each application.
Obtaining such information using profiling may be imprac-
tical and using time-sampling requires huge training time.
Furthermore, even if MTP has such information, it still re-
quires 2 bits/line (storage: 16KB) to measure cache capac-
ity given to each application. Unlike CCP, DSR does not
require time sampling and design changes, and can still en-
force QoS. A practical version of MTP can always use DSR
(instead of CC) to improve both performance and fairness.

8. Summary
CMPs with private last-level cache suffer from the inabil-

ity to share cache capacity between cores when the cache
requirement of each core varies. Capacity sharing can be
implemented in private caches by spilling an evicted line
from one cache to another cache. However, previous pro-
posals do spilling without taking into account the cache re-
quirement of each core, which limits the performance im-
provement obtained with spilling. The goal of this paper is
to enable efficient high-performance capacity sharing in pri-
vate caches by using a practical spill mechanism that takes
cache requirement of different cores into account. To that
end, this paper makes the following contributions:

1. We propose theSpill-Receivearchitecture, where each
cache is allowed to either spill evicted lines or receive
spilled lines but not both. This prevents spiller caches
from giving their local capacity while they are trying
to gain more cache capacity remotely and vice-versa.

2. We propose theDynamic Spill-Receive (DSR)archi-
tecture that learns the best spill-receive decision for
each cache at runtime. We show that DSR improves
average throughput by 18%, weighted speedup by 13%
and Hmean fairness by 36% for a 4-core CMP.

3. We propose a simple extension of DSR that guarantees
Quality of Service while retaining high performance.

Acknowledgments

The author thanks William Starke, Ravi Nair, Viji Srini-
vasan, and Trey Cain for their comments and feedback.

References

[1] B. M. Beckmann et al. ASR: Adaptive selective replication
for CMP caches. InMICRO-2006.

[2] J. Chang and G. S. Sohi. Cooperative cache partitioning for
chip multiprocessors. InICS-2007.

[3] J. Chang and G. S. Sohi. Cooperative caching for chip multi-
processors. InISCA-2006.

[4] Z. Chishti et al. Optimizing replication, communication, and
capacity allocation in CMPs. InISCA-2005.

[5] M. D. Dahlin et al. Cooperative caching: using remote client
memory to improve file system performance. InOSDI-1994.

[6] A. Jaleel et al. Adaptive insertion policies for managing
shared caches. InPACT-2008.

[7] P. Kongetira et al. Niagara: A 32-way multithreaded SPARC
processor.IEEE Micro, 25(2):21–29, 2005.

[8] R. Kumar, V. Zyuban, and D. M. Tullsen. Interconnectionsin
multi-core architectures: Understanding mechanisms, over-
heads and scaling. InISCA-2005.

[9] K. Luo, J. Gummaraju, and M. Franklin. Balancing through-
put and fairness in SMT processors. InISPASS-2001.

[10] M. K. Qureshi et al. Adaptive insertion policies for high-
performance caching. InISCA-2007.

[11] M. K. Qureshi et al. A case for MLP-aware cache replace-
ment. InISCA-2006.

