Adaptive Spill-Receive for Robust High-Per for mance Cachingin CMPs

Moinuddin K. Qureshi
IBM Research
T. J. Watson Research Center, Yorktown Heights NY
mkquresh@us.ibm.com

Abstract delays. Second, private caches inherently provide perfor-

In a Chip Multi-Processor (CMP) with private caches, Mance isolation so that a badly behaving application cannot
the last level cache is statically partitioned betweenladi t ~ hurt the performance of other concurrently executing appli
cores. This prevents such CMPs from sharing cache capac-cations. Third, private caches allow for a tiled architeetu
ity in response to the requirement of individual cores. Ca- @S the tag-store and data-store of L2 cache are contained in
pacity sharing can be provided in private caches by spilling the same design unit as the core which allows for a scalable
a line evicted from one cache to another cache. However,design and facilitates power optimizations. Finally, ptes
naively allowing all caches to spill evicted lines to other Caches simplify the on-chip interconnect as only the misses
caches have limited performance benefit as such spillingin the last level cache access the shared interconnect fab-
does not take into account which cores benefit from extra fic- Shared caches, on the other hand, can provide capacity
capacity and which cores can provide extra capacity. sharing but requires a high bandwidth on-chip interconnect

This paper proposeBynamic Spill-Receive (DSRYor as all access to the last level cache have to use the inter-

efficient capacity sharing. In a DSR architecture, each connect. For example, Niagara-1 [7] uses a crossbar to in-
cache uses Set Dueling to learn whether it should act terconnect all the 8-cores to the shared L2 cache. A recent

as a “spiller cache” or “receiver cache” for best over- study [8] has argued that the area and latency overhead of
all performance. We evaluate DSR for a Quad-core sys- the shared on-chip interconnect can often offset most of the
tem with 1MB private caches using 495 multi-programmed CaPacity sharing advantage of the shared cache.
workloads. DSR improves average throughput by 18%

(weighted-speedup by 13% and harmonic-mean fairness ToiMemory To Memory

Simple [Interconnect

metric by 36%) compared to no spilling. DSR requires a

total storage overhead of less than two bytes per core, doeq SHARED L2 CACHE I] I
not require any changes to the existing cqche structure, and| g Bandwidth | Interconnect | | Racae | lcache
is scalable to a large number of cores (16 in our evaluation).

Furthermore, we propose a simple extension of DSR that o s EE EE
provides Quality of Service (QoS) by guaranteeing that the| Feorel Feore| |'core| | cone
worst-case performance of each application remains simi-
lar to that with no spilling, while still providing an averag @) (b)
throughput improvement of 17.5%.

CORE CORE CORE

Figure 1. A four-core CMP design with a (a)
_ shared L2 cache (b) private L2 cache.
1. Introduction

Chip Multi-Processors (CMP) have become a standard The main disadvantage of private caches is that the cache
design point for industry. One of the key design decisions capacity is statically partitioned equally among all theeso
in architecting a CMP is to organize the last level cache asThis prevents such a cache organization from sharing cache
either a private cache or a shared cache. Figure 1 shows @apacity in response to the requirement of individual cores
four-core CMP with (a) shared cache and (b) private cache.Therefore, private caches typically incur more misses than
A private cache is an attractive design option as it offees th a shared cache. Recent studies on efficient private caches,
following advantages over a shared cache. First, reducechamely Cooperative Caching (CC) [3], use second chance
cache access latency compared to a shared cache as therwarding [5] for capacity sharing. When a cache line
cache is located physically closer to the core, reducing wir is evicted from one of the private caches, CC can store it

in another private cache. This transfer of evicted line from We evaluate DSR on a Quad-core system with 1MB pri-
one cache to another is callegilling. We call the cache vate L2 cache with each core. We use 12 SPEC bench-
that spilled the line asspiller cache” and the cache that marks, run all the possible 495 four-threaded combinations
received the spilled lin&eceiver cache”. The basic prob- and measure system performance on all the three metrics:
lem with CC is that it performs spilling without knowing if throughput, weighted-speedup, and hmean-based fairness.
spilling helps or hurts cache performance. All caches act aswWe show that DSR improves average throughput by 18%,
spiller cache, even if some of the applications do not ben-weighted speedup by 13% and hmean-based fairness met-
efit from extra capacity. Similarly, all caches can receive ric by 36%. DSR requires a total storage overhead of less
evicted lines spilled from other cache, even if some of the than two bytes per core, does not require changes to existing
caches do not have spare capacity. Therefore, the capacitgache structure, and is scalable to a large number of cores.
sharing of CC has limited performance improvement. The DSR provides more than double the performance improve-
objective of this paper is to design a practical, low-ovathe ment than Cooperative Caching (CC), while obviating the
spilling mechanism for providing robust high-performance design changes of having extra spill bits required by CC.
capacity sharing for private caches by taking into account For all the 1980 applications examined (495x4), DSR
the cache requirement of each core. Given that every desigrhas an IPC degradation of more than 5% compared to no
changes and added structure requires design effort, verifispilling for 1% of the applications. In Section 6, we show
cation effort, and testing effort, we would ideally like our that a simple extension of DSR can provide Quality of Ser-
mechanism to have no extra structures or design changesyice (QoS) by guaranteeing that the worst-case performance
while still being scalable to a large number of cores. of each concurrently executing application remains simi-

The difference in this work compared to CC is the key lar to that with no spilling, while still providing an averag
insight that a given private cache should either be allowed throughput improvement of 17.5%.
to get more capacity or be allowed to give away excess ca-
pacity but not both at the same time. If the cache can spill 2. M otivation and Background
as well as receive then the cache tries to get more cache ata |, this work, we assume each core in the CMP executes
remote location by spilling while at the same time provide one gpplication. In a CMP, different cores can execute
its own local capacity to store lines of some other caches. gjerse applications concurrently, each application mgwi
Therefore, our design restricts each cache to be either &ittarent memory behavior and varying cache requirement.

spiller or a receiver but not both. We propose Bgill- A private cache statically divides the total cache into équa
Receive Architecturi which each cache is appended with ;6 cache units and associates one cache unit with each
one bit: S/R. When the S/R bit associated with a cache is e Thus, all cores have uniform cache capacity, albeit

1, the cache acts as a spiller cache and when the S/R bit ig; 5 faster access latency and reduce interconnect require-
0, the cache acts as a receiver cache. With the right config+,ent than a shared cache. However, applications vary in
uration of S/R bits, it is straight-forward to design a rabus arms of benefit obtained from cache.

high-performance capacity sharing mechanism. Figure 2 shows the misses per 1000 instructions (MPKI)

Whether a cache should be a spiller or a receiver dependsnd Cycles Per Instructions (CPI) for 12 SPEC benchmarks
not only the given application but also on the other appli- used in our studies. The horizontal axis shows the number
cations concurrently executing in the CMP. For the same of ways allocated from a 32-way 2MB L2 cache. The pri-
application, the best overall performance is obtained whenvate L2 cache used in our baseline is 1MB 16-way which is
the cache acts as a spiller for some workload mixes and asndicated by the Grey dotted line. The benchmarks shown
receivers for others. Therefore, the decision about whichin the top row of Figure 2 have excess cache capacity in
caches should be spillers and which should be receiverghe baseline 1MB cache. Their CPI and MPKI do not in-
must be determined at runtime. We prop8&samamic Spill- crease significantly when the cache size is halved. Eon and
Receive (DSREache architecture, in which each cache crafty have a small working set, fma3d and equake are sen-
learns using Set Dueling [10] whether it should act as sitive to cache capacity only up t}ih MB, and applu and
spiller or receiver for best overall performance. DSR dedi- lucas are streaming workloads. These applications can pro-
cates a few sets (32 in our studies) of the cache to “always-vide their extra cache capacity to other applications that ¢
spill” and another few to “always-receive” and uses the pol- benefit from more cache capacity. We call these applica-
icy that gives fewest misses for the remaining sets of thetions “Giver” applications. The benchmarks in the second
cache. Each cache learns the spill-receive decision imdepe row of Figure 2 continue to benefit from cache space. Their
dently using a separate Set Dueling mechanism. We showCPIl and MPKI decrease considerably when the cache size is
that Set-Dueling based DSR performs similar to apriori increased from 1MB to 2MB. These applications can bene-
knowing the best spill-receive decisions for a given work- fit by using extra cache capacity. We term these applications
load using oracle information. as “Taker” applications.

20 10 20 1574 . | 301% 20
16 — {MPKI 8 16 12 24 | 16
—{CPI 4\‘ il
12 6 12 9 18 12
8 4 81 6 12 8
?l\ \
4 2 AL 3 6 4
Ob 4 8 1216 20 24 28 32 07074 8 12 16 20 24 28 32 00 4 8 1216 20 24 28 32 00 4 8 1216 20 24 28 32 00 4 8 1216 20 24 28 32 00 4 8 1216 20 24 28 32
crafty eon fma3d applu equake lucas
50 ‘%: 15 10 ‘?\ 25 25 20
40 g\ 12 8 200 20 ‘k 16 ‘\
30 9% 61 15% 15 12 \%
20 6 4 10 10 8
—_— 3
10 L 3 S 2 . s i 54 4]
00 4 8 1216 20 24 28 32 00 4 8 12 .:lG 20 24 28 32 00 4 8 12 :II.6 20 24 28 32 00 4 8 1216 20 24 28 32 O0 4 8 12 I16 2024 28 32 00 4 8 1216 20 24 28 32
art ammp bzip2 galgel twolf vpr

Figure 2. MPKI and CPI for SPEC benchmarks as the cache size is varied. The horizontal axis shows
the number of ways allocated from a 32-way 2MB cache (the rema ining ways are turned off). The
baseline cache is 1MB 16-way: benchmarks in the top row can pr ovide cache capacity and bench-
marks in the bottom row benefit significantly from cache capac ity more than 1MB.

If all applications in the system are Giver applications well as receive then the cache tries to get more cache at a
then private caches work well. However, when some ap- remote location by spilling while at the same time provide
plications in the system are Takers and other are Giversits own local capacity to store lines of some other caches.
then cache performance and overall system performanceTherefore, our design restricts each cache to be either a
can be improved if the excess cache capacity of Giver ap-spiller or a receiver but not both. Given the information
plications are provided to the Taker applications. Thus, ca about whether a cache is spiller or receiver, it is straight f
pacity sharing is important to improve the performance of ward to design an efficient cache sharing scheme for private
private caches. Recent studies on efficient private cachesgaches: caches designated as spiller-caches are allowed to
namely Cooperative Caching (CC) [3], use second chancespill their evicted lines to receiver-cache. Evicted lifresn
forwarding for capacity sharing. When a line is evicted receiver caches are not spilled to any of the on-chip caches.
from one of the private cache, CC can retain that line in However, the decision about which cache should be spiller
another private cache on the same chip. This transfer ofand which should be receiver must be done judiciously oth-
evicted line from one cache to another is calkgalling. erwise overall system performance can degrade compared
We call the cache that spilled the line ‘&piller cache” to the base case of no spilling. The next section describes
and the cache that received the spilled line trexeiver our proposed spill-receive architecture and a runtime mech
cache”. A line can be spilled until it has exceeded a pre- anism to lean the best spill-receive decision for each cache
determined number of spills. The basic problem with CC
is that it performs spilling without knowing if spilling hes : . . .
or hurts cache performance. For example, both Taker and3' Design of Dynamic Spill-Receive

Giver applications are allowed to spill their evicted lites ~ 3.1. Spill-Receive Architecture
neighboring caches. This can be particularly harmful when e propose Spill-Receive Architecturi which each
cache lines of streaming applications (such as applu and lu¢ache is appended with one bit: S/R. When the S/R bit as-
cas) are spilled into caches of Taker applications (say vprsociated with a cache is 1, the cache acts as a spiller cache
and bzip2). The cache of streaming applications will not ang when the S/R bit is 0, the cache acts as a receiver cache.
benefit from spilling because of poor reuse but receiving Thys, the S/R bit classifies each cache in the system as ei-
the spilled line can hurt performance of applications such {her g spiller or a receiver but not both. This is important be
as vpr and bzip2. Therefore, the capacity sharing as donecayse if the cache is trying to spill the line and get higher la
in CC has limited performance improvement, and in Some tency cache space then it should first retain its lower-taten
cases spilling can in-fact hurt performance. space. Similarly, if the cache is willing to give cache space
A key difference in this work compared to CC is the in- to other applications, then it should not try to get higher-
sight that a given private cache should either be allowed tolatency cache space some where else in the system. Fig-
get more capacity or be allowed to give away excess capacure 3 shows an example of the Spill-Receive architecture
ity but not both at the same time. If the cache can spill as for a Quad-core system with private L2 caches. The S/R

bit of caches A and C are set to 1 indicating that these twoa scheme can have the latency and bandwidth advantages
caches act as spiller caches. Conversely, caches B and D adif private caches and capacity sharing advantages of shared
as receiver caches. caches. And, it can do so while incurring a negligible hard-
ware overhead (one bit per cache). A vital piece of infor-
___________________ mation in the Spill-Receive architecture is the S/R bit as-
sociated with each cache. As the spill-receive decision for
an application varies with input set, machine configuration

T \ 1 /A ! 1 ' and behavior of other competing applications, obtainiigy th
Ly ! Vyy information using profiling may be impractical or even im-
possible. Therefore, we obtain the spill-receive decigibn
L2 CACHE L2 CACHE runtime using the recently proposed Set-Dueling [10] tech-
c D nique. We briefly describe Set-Dueling next.
SIR=1 SIR=0 SIR=1 SIR=0 .
(Spiller) (Receiver) (Spiller) (Receiver) 3.2. Set Dueling

Set Dueling is a general mechanism that can choose be-

Figure 3. A Spill-Receive architecture for a tween competing policies while incurring negligible over-
four-core CMP. Cache A and C spill evicted head. Set Dueling leverages the fact that the last-level
lines randomly to either cache B or D. caches typically have large number (more than thousand) of

sets and cache performance can be estimated by sampling

When a core accesses a cache line, it first checks for thea few sets. Figure 4 describes the Set Dueling mechanism
cache line in the local cache associated with the core. Ifto select between two policies PO and P1. The mechanism
there is a miss in the local cache, all the other caches inuses Set Dueling Monitors (SDM) to estimate the cache per-
the system are snooped (this is required in the baseline agormance of each of the two policies. A few sets of the
well for coherence). If there is a hit in any of the remote cache are dedicated to always use policy PO, thereby form-
caches, the cache line is brought to the local cache and théng SDM-PO. Similarly, another few sets of the cache are
line evicted from the local cache is transferred to the remot dedicated to always use policy P1, thereby forming SDM-
cache. If there is a miss in all the remote caches as well,P1. The remaining sets are called follower sets, and they
the line is fetched from memory and installed in the local follow the better performing policy between PO and P1. A
cache. This line can cause an eviction of another cache linesaturating counter (PSEL) tracks which of the two SDMs
from the local cache. If the local cache is a spiller cache have fewer misses: misses in SDM-PO increments PSEL
(A and C), the evicted line is spilled to one of the receiver and misses in SDM-P1 decrements PSEL. Follower sets of
caches in the system. If there are more than one receivethe cache use PO if the Most Significant Bit (MSB) of PSEL
caches in the system then a receiver cache is chosen raris 0 and P1 otherwise.
domly! This ensures that some of the lines evicted from A
are spilled to B and some to D, ensuring good load balanc-
ing between receiver caches. Similarly, evicted lines from
C are spilled to either B or D. When a line is evicted from
any of the receiver caches (B and D) it is simply discarded
without trying to spill to any of the caches. Thus, our archi- SDM'PO{ Miss in SDM-PO
tecture automatically discards unused spilled lines witho Miss in SDM-P1
the need for any spill bit in the tag-store entry of each cache
as required by CC [3]. When all caches in the system are
spiller caches then spilled lines cannot be received in any =
of the caches, which implicitly disables spilling. Simliar
when all caches in the system are receiver caches then none SDM—Pl{ @
will spill an evicted line, which explicitly disables spiilg.

Given the right configuration of S/R bits for each of the
cache, the Spill-Receive architecture can implement an ef-
ficient cache sharing mechanism for private caches. Such

CACHE

If MSB=0, follower sets use Policy PO
else follower sets use Policy P1

IFurther optimization of the scheme can be done by tuning What
tion of the spilled lines from a particular spiller cachegget a particular Figure 4. Set Dueling based selection be-

receiver cache. Or, restricting spills only to nearest niedy to reduce tween two p0|iCiES' PO and P1
interconnect latency. We do not consider such optimizatiorthis paper. ’

CACHE A CACHE B CACHEC CACHED

som-a-spil{ SETQ 9 9 9
2 2 2 2
3 3 3 3
4 Qs 4 4
(Legend for Sets 0-31) g § g g
9 9 9 9
m 1 £ £ £
Always spill % %% % %%
S 14 14 14 14
P) 15 15 15 15
Always receive %9 %g %9 %g
18 18 18 18
— 19 19 19 %
Spill-receive 51 21 21 21
decided by PSEL %% %% %% %%
\ J 24 24 24 24
25 25 25 25
26 26 26 26
27 27 27 21
28 28 28 28
: : : :
SDM—A—Recewe{ 31 31 31 31
Miss in Set 0 or Set 1 Miss in Set 4.5
of any cache (A,B,C,D) S :
P =
Miss in Set 30 or Set 31
of any cache (A,B,C,D) Miss in Set 26,27 Miss in Set 22,23 Miss in Set 18,19

If MSB=0, cache A receives

else cache A spills MSB decides S/R for B MSB decides S/R for C MSB decides S/R for D

Figure 5. Dynamic Spill-Receive using Set Dueling

3.3. Dynamic Spill-Receive Architecture cache miss rate into account instead of just local cache miss

We proposeDynamic Spill-Receive (DSR)chitecture rate. The_ most significant.b.it (MSB) of PSEL-A then inc_ji-
that uses Set Dueling to implement efficient cache shar-Cates which of the two policies (spill/receive) when applie
ing in private caches. In DSR, each cache learns whethefor cache A minimizes overall misses. This policy is used
it should act as a “spiller cache” or “receiver cache” in fOr the remaining 28 sets of cache A.
order to minimize overall cache misses. Figure 5 shows 1hus, the S/R bit for cache A is O for sets 30 and 31,
the DSR architecture for a system containing four private IS 1 for sets 0 and 1, and is equal to the MSB of PSEL-A
caches (cache A to D). For simplicity, we assume eachfor all other sets. Slmllarly,. other lthree gaches (B,C,D)_ in
cache consists of 32 sets. Each cache dedicates two sets {§€ System learn which policy (spill/receive) when applied
estimate the cache performance when it spills and anothef© the cache minimizes overall misses usiljg their individ-
two sets to estimate the cache performance when it receive&@ PSEL counters. The storage overhead incurred by DSR
spilled lines from other applications. For example, cache IS On€ PSEL counters per cache. We use a 10 bit PSEL
A dedicates Set 0 and Set 1 to form SDM-Spill and these counter in our studies. The last level cache (L2 cache) in
sets “always spill” their evicted lines. Cache A also ded- OUr baseline contains 1024 sets. We dedicate 32 sets from
icates Sets 30 and 31 to form SDM-Receive and these sefach cache to SDM-Spill and another 32-Sets to SDM-Spill.
can “always receive” spilled lines from other applications
A saturating counter (PSEL-A) keeps track of which of the 3.4. Selection of Dedicated Sets
two policies (spill or receive) when applied to cache Amin- A set dedicated to one of the SDM must not be dedicated
imizes overall cache misses. A miss in Set 0 or Setdngf to any other SDM of the same cache or any other cache
of the cache decrements PSEL-A, whereas, a miss in Set 30n the system. Therefore, the sets dedicated to SDM-Spill
or Set 31 ofanyof the cache increments PSEL-A. Note that and SDM-Receive for all the caches must be selected in a
the benefit of spilling is obtained only when there is a hit non-overlapping manner. The sets for SDM can be selected
in the remote cache, therefore, it is important to take dloba randomly and a separate storage structure can track which

sets belong to SDM-Spill and which sets belong to SDM- Taple 2. Benchmarks Classification (Based
Receive for each of the cache. The storage structure can be gn CPI Normalized to 1MB)

obviated if the sets dedicated to SDM are selected based on "Giver' (G) Applications

a hash function of the set index of the cache [10][6]. CPI [crafty | eon | fma3d | applu | equake]| lucas

%MB 1.02 1.0 1.0 1.0 1.0 1.0
Type of Set for CachelD[1:0] 1MB 1.0 1.0 1.0 1.0 1.0 1.0
SDM-Spill 2M B 0.998 1.0 0.997 | 0.995 | 0.986 1.0

Setindex[9:5] —a
CachelD[1:0]

“Taker” (T) Applications
. — Follower Set
Setindex(4:0] < w CPI art ammp | bzip2 | galgel | twolf vpr
CachelD[1:0] ~a SDM-Receive %MB 1.28 1.55 1.33 1.79 1.72 1.73

1MB 1.0 1.0 1.0 1.0 1.0 1.0

Setindex[9:5] —
etindex[9:5] 2MB | 024 | 0.64 0.74 | 054 0.55 | 0.66

NumCaches(4)
Figure 6. Logic for selecting dedicated sets

We form a four-threaded workload by combining four

The baseline cache contains 1024 sets (indexed byseparate benchmarks. We run all possible four-threaded
Setindex[9:0]). Figure 6 describes the logic circuit for se combinations of 12 benchmarks, nam&g, = 495 work-
lecting 32 sets each for both SDM-Spill and SDM-Receive loads. To provide insights in our evaluation, we clas-
for each of the four caches. All caches use a separate circuitify these workloads into five categories depending on how
each driven with corresponding value of CachelD[1:0]. many “Giver” applications (G) and how many “Taker” ap-
plications (T) are present in the workload. Table 3 deseribe
this classification. The workloads G470 category are
unlikely to improve performance with cache sharing since
4.1. Configuration none of the applications in the workload benefit from in-

We use an in-house CMP simulator for our studies. The creased cache capacity. Workload€i07'4 category have
baseline configuration is a four-core CMP with the parame- Very high cache contention and need robust cache sharing.
ters given in Table 1. We use a simple in-order core model

4. Experimental Methodology

so that we can evaluate our proposal within a reasonable Table 3. Workload Summary
simulation time. Unless otherwise specified, the L2 cache [Type | Description of Workload [Total workloads |
in the system is 1MB private per core with a 10 cycle hit GATO | Four Givers + zero Takery °C4 - 6Cg = 15
latency to the local L2 cache. Cache hits in other L2 caches G3T1 | Three Givers + one Takers °Cs - °Cy =120

G2T2 | Two Givers + two Takers | 6C, - 6C, =225

incur an addltlongl Iatency (_)f 40 cycles. All caches in the G173 | One Givers + thiee Takerd °C. G, =120

baseline use a uniform linesize of 64B and use LRU replace- GOT4 | Zero Givers + four Takers| Cg - °C, =15

ment policy. Memory is 300 cycles away. AL | Allofthe above | > —495 |
- Table 1. Bgsel(i:ne %('\)Ar;figuration All workloads are simulated till each application in

ystem our Core _ H :
Processor Core single issue in-order, five stage pipeline the workload exepgtes at, least 250_M mSthtlonS' V\,/h_en
[T caches (Private) 1and D : 16KB, 64B line-size, 4-way a faster thread finishes its 250M instruction, then it is
L2 cache (Private) | 1MB, 64B line-size, 16-way LRU repl. restarted so that it continues to compete for cache capac-
10-cycle local-hits, 40-cycle remote hits ity. However, statistics are collected for only the first B50
Memory 300-cycle access latency minimum ; ; At
Off-chip Bus 16B-wide split-transaction, 4:1 speed ratjo instruction for each application.
4.3. Metrics

4.2. Workloads The three metrics commonly used to quantify the aggre-
Table 2 shows the 12 SPEC CPU2000 benchmarks usedjate performance of a system in which multiple applications
in our studies. A representative slice of 250M instructions execute concurrently are: Throughput, Weighted Speedup,
was obtained for each benchmark using a tool that we de-and Hmean-Fairness. THehroughput metric indicates
veloped using the SimPoint methodology. The benchmarksthe utilization of the system but it can be unfair to a low
broadly belong to one of the two categories. The first six IPC application. ThéMeighted Speedumetric indicates
benchmarks are callgdiver applications as their CPI does reduction in execution time. Thidmean-Fairnessnetric
not increases significantly when the cache size is halvedbalances both fairness and performance [9]. We will use all
from 1MB to %MB. The other six applications are termed three metrics for key performance comparisons. We also
Takerapplications because their CPI decreases significantlyevaluate DSR with regards to Quality-of-Service (QoS) in
if the cache size is doubled from 1MB to 2MB. Section 6. We defer the discussion of QoS to that section.

o 1.45

5. Resultsand Analysis 2 1.40

We compare the performance of the baseline withoutg 135 7
spilling to three other configurations: Shared cache of 4AMB & ; 55 —
size, DSR, and Cooperative Caching (CC). The shared{E 1.20 //
cache is 4-way banked with 10 cycle latency for local- § 115 __———"
bank and 20 cycle latency for remote-bank. A high- £ o5l ="
bandwidth crossbar interconnect is assumed for the shared 100=— 00 150 200 %50 300 380 400 450 " 500
cache without penalizing it for the area overhead. The per- Workloads (total: 495)
forman_c.e of CC is highly dependent on the paramspél- Figure 8. S-Curve for throughput improve-
probablh_ty [1].' Therefore, for eagh Wo_rkload, we evaluate ment of DSR over baseline (no spilling)
five configurations of CC, each with spill probability of 0%,
25%, 50%, 75% and 100% respectively, an_d selected the5_2_ Performance on Weighted Speedup
one that gives the best performance for the given workload. S .

We call thisCC(Best). In our evaluation, the numbers re- 1 n€ throughput metric gives more weightage to the ap-

ported for a suite are the geometric mean averages measure%{'cat'on W't,h h!gher IPC, therefore it can be unfair to thg
for all of the workloads in a given workload suite. Slower appllca'u.ons. The We|ghtegl Speedup (WS) metric

gives equal weightage to the relative speedup of each ap-
plication. Figure 9 shows the weighted speedup of shared
cache, baseline, DSR, and CC(Best).

S,

5.1. Performance on Throughput Metric

Figure 7 shows the throughput of shared cache, DSR,
and CC(Best) normalized to the baseline (no spilling). The 40

: . 8 =a Shared cache

geometric-mean average for each of the five workload cate-_ 35/ — Baseline (NoSpill)

. S :
gories and all 495 workloads are shown. § 34 — Baseline + DSR

-3 2(2) Baseline + CC(Best
Z 130 £ 2el —
@& ;e | [= Shared cache > g_g, i
Z 120l = Baseline + DSR 2 54l |
3 11511~ Baseline + CC(Bes 2.2 -
= 110 2.0 —
£ 105] G4TO G3T1 G2T2 GIT3 GOT4 All(495)
S 1.004 — . .
;251 0.954 — Figure 9. Weighted Speedup of shared cache,
S oe) u baseline, DSR, and CC(Best).
£ o.80]]
GATO G3TL G2T2 GIT3 GOT4 All(495)
Figure 7. Throughput of shared cache, DSR, For the workload in G4TO category, all private cache
and CC over baseline. configurations (baseline, DSR, and CC(Best)) achieve

close to ideal weighted speedup, while the higher latency of
)] shared cache causes a degradation. As the number of Taker
G4TO0 contains workloads that do not benefit from ex- gppjications in the workload increases, the contention for
tra capacity so the increased .Iatency of shared qache hurtg ache capacity increases as well and weighted speedup of
throughput. As cache capacity becomes more important,g|| scheme starts to decrease. However, DSR consistently
shared cache has better throughput than the baseline. DSRs the best performance in all categories that has at-least
outperforms baseline by 11.8% for G3T1, 20.4% for G2T2, 1 Taker applications. For the workloads in the GOT4 cate-
and 22.1% for G1T3. Workloads in GOT4 need more capac-qgory, the weighted speedup of the baseline is almost half
ity for all applications, still, doing spill-receive intedently of the ideal value of 4. DSR tries to minimize overall
improves the throughput by 18.6%. On average, DSR im- yisses thereby increasing the weighted speedup from 2.07
proves throughput by 18% across all 495 workloads. Com-4 2 5. On average, over all 495 workloads, DSR improves
paratively, CC(Best) — even with the best-offline spill pa- weighted speedup by 13.4% over baseline, and CC(Best)
rameter — improves throughput by only 7% on average. improves weighted speedup by 6%.
Although DSR has 18% more throughput than baseline, \ye also evaluate the caching schemes usingRhg”
it is important that this does not come at the expense OfSpeedup(FS) metric proposed in [2] and found that DSR
significant degradation in throughput of some workloads. improves FS by 18% over the baseline. Comparatively,
To that end, Figure 8 shows tiSeCurvé of the throughput CC(Best) improves average FS by 9%. Although FS uses
improvement of DSR over baseline for all 495 workloads. harmonic mearto penalize slowdowns harshly than WS,
2An S-curve is plotted by sorting the data from lowest to high&ach FS uses a much weaker reference for measuring speedups
point on the graph then represents one data-point from ohidlist. (1MB per core) compared to the 4MB per core used in WS.

5.3. Performance on Hmean Fairness DSR is a low overhead, practical, runtime mechanism, it

The Harmonic-mean based performance metric [9] hasSti” provides 90% of the performance benefit (179% VS.
been shown to balances both performance and fairness. Figl9.8%) of the impractical Best-Offline scheme. The dif-
ure 10 shows this metric for shared cache, baseline, DSRference is because DSR tries to minimize misses and Best-
and CC(Best). For G4TO all three private caching schemesOffline explicitly chooses maximum throughput.
have close to ideal value of 1. Shared cache has lower value
than 1 because it has higher latency than the 4MB 10-cycle5.5. Scalability of DSR to Larger Systems
cache used as reference in computing the metric. Partition- e also evaluate DSR for an 8-core and a 16-core sys-
ing the caches equally does not result in fair allocation-com tem. We form 100 workloads for each system by randomly
pared to the reference of 4MB used in evaluation, therefore,combining from the 12 SPEC benchmarks. Figure 12 shows
the dynamic allocation of shared cache allows it to outper- the improvement in throughput of DSR compared to that

form baseline for all other categories. On average, for all with no spill for the 8-core and 16-core system respectively
the 495 workloads, DSR has a value of 0.77, compared to

i i - 1.35
0.57 for t_he_b_aselme. Thus, DSR not only_lmproves perfor: %3 - - 8 core system |
mance significantly but it also balances fairness well. EDp - 16 core system
2 Bl
2 1.0 k5 mossgaraacnsi IO
5 =2 Shared cache %’ 120---;;;;;;;;;;;;;a;;; uuuuuuuuuuu aesses
= 09 = Baseline (NoSpill) £ LIS et
@ 0.8 ——— == Baseline + DSR B L10pA
3 0.7] Baseline + CC(Bes | T 105 :
§ 0.6 — S 1.00 : : : : ‘ ‘ ‘ ‘ ‘
£ 0 10 20 30 40 50 60 70 80 90 100
2 057 — Workloads (total: 100)
=}
£ 0.44 -)
8 ol Figure 12. DSR on 8-core and 16-core CMPs

G4T0
Figure 10. Hmean-Fairness metric

3 etz eirs GOT4 Al495) DSR improves throughput on average by 19.7% for the

8-core system and by 19% for the 16-core system, while

never degrading the throughput of any of the 200 workloads.

5.4. Comparison with Best-Offline Policy Thus, DSR is a scalable, robust, and practical mechanism,
DSR is a runtime technique that tries to converge to the given that the improved performance is still obtained with

spill-receive policy that gives the fewest misses. We com- the storage overhead of only one 10-bit counter per core

pare DSR to an offline scheme that executes the workloadeven for the 8-core and 16-core systems.

for all 16 combinations of spill-receive for a four-core sys

tem and choose the one that gives best performance. We cal.6. Effect on IPC of Each Application

this policy Best-Offline Best-Offline may not be practical Thus far, we have used metrics that indicate aggregate

to use given the extensive offline analysis or even impossi-performance of the workload. We now show the effect of

ble when different applications form a workload at runtime. DSR on the performance of individual app“cation within

Nonetheless, it gives us a reference for comparison. the workload. Figure 14 shows the normalized IPCs of each

of the 1980 applications (4x495 workloads) compared to the

1.25

§ — DSR baseline. For 20 out of 1980 applications, DSR has slow-
g 120 B est-Offline down of more than 5%. Thus, for 99% of the applications,
2115 DSR retains the performance isolation of private caches.
IS
% 1.101 38
g, 5 :
2 1% 230 f
-E 1.00+ 2 26 /
G4T0 G3T1 G2T2 G1T3 GO0T4 All(495) E 22 /
Figure 11. DSR vs. Best-Offline policy T s .
i . <} 1.4 /
Figure 11 compares the throughput improvement of DSRS |, —
. . a
and Best-Offline (for maximum throughput). Although = o6

0 200 400 600 B0OO 1000 1200 '1400 1600 1800 2000
495 wor kloads x 4 applications/workload = 1980 applications

3We also studied another best-offline policy that chooses fi8-way
decision for each core: spill-receive-neither. We exetutk3? = 81 Figure 13. S-Curves for IPC with DSR normal-
combinations for each worl_doad and selet_:ted the one tha_ﬁ gm/pest ized to the baseline
performance. The average improvement with the 3-way bifisteopolicy
is similar to that obtained with the binary (spill-receitmst-offline policy.

6. Quality-of-Service Aware DSR Where) is a constant (256 in our studies). We calculate
Thus far, we have tried to improve overall performance, Q0SPenaltyFactor once every 5 Million cycles, store it in
even if this means reducing the performance of one of @ QoSPenaltyFactor Register, and use it for the next 5
the application if it provides huge improvement in per- Million cycles. QoS-Aware DSR requires a per-core storage
formance Of Other app”cations in the WOfk'oad_ How- overhead as follows: 3 byteS for MiSSlnSpillerSetS, 3 byteS
ever, in some scenarios, such as interactive applicationd0r MissInDSR, 1 byte for QoSPenaltyFactor Register (6.2
and service level agreements, there is a certain level offixed point format), and 12 bits for PSEL (10.2 fixed point
guaranteed performance required. Such scenarios requiréormat). A cycle counter of 4 bytes is shared between all
“Quality of Service (Q0S)’ which means that the worst- the cores. Thus, the total overhead of enforcing QoS within
case performance of the applications remains similar tothe DSR architecture is less than 10 bytes per core. If the
(or better than) the baseline case of private caches. Withcycle counter or any of the miss counters overflow, the cycle
DSR, we reduce the IPC of about 1% of the applications counter and all the miss counters are halved.
by more than 5%. In some cases this may be unaccept-.
able. DSR must try to improve overall performance while 3 O 1.25
retaining the worst-case performance similar to the base-g 1.20
line. We propose an extension of DSR architecture that¥
facilitates such QoS guarantees. We call QisS-Aware
DSR To implement QoS, we must know the increase in
misses with DSR compared to the baseline. We Ieverage= 1.05
the fact that the spiller sets for each cache do not recelvez

== DSR
= Qo0S-Aware DSR

1.15

1.104

put Normali

lines from any other cache. Therefore, we can track the” "TGa0 GaTL G2tz GIT3 | GOTA Al495)
misses in spiller setéMissInSpillerSets) and use it to Figure 14. Throughput of QoS-Aware DSR

estimate the misses in the baseline system with no spilling

(MissesWithBaseline) using Equation 1. Figure 14 shows the improvement in throughput with

DSR and QoS-Aware DSR. For GOT4 category, QoS con-
straints reduce throughput improvement form 18% to 15%.
On average, the two scheme performs similarly, with DSR
providing 18% and QoS-Aware DSR with 17.5%. As GOT4
AMissesWithDSR = MissesWithDSR—MissesWithBaseline is the category with the most QoS violations, we show the
@ normalized IPC of each application in this category for DSR
ACyelesWithDSR = AvgMemLatency - AMissesWithDSR and QoS-Aware DSR i_n Fig_ure 15 (for other categories the
®) two curves are almost identical). QoS-Aware DSR success-
' fully removes the IPC degradation of DSR and all appli-
QoS PenaltyFactor = mag(0, 2CYCLesWHhDSR =)\ cations have a worst-case IPC similar to the baseline. For
TotalCycles all 1980 applications evaluated, 20 out of 1980 application
had an IPC degradation of more than 5% for DSR, whereas,
not a single application had that amount of degradation with

for each cache can be measured at runtime using a counter.
The change in misses with DSR MissesWithDSR) is QoS -Aware DSR. Thus, the DSR architecture can success-
fully optimize for both QoS and performance.

given by Equation 2. The change in execution time because
of DSR (ACyclesWithDSR) can then be calculated by

multiplying the A misses with average memory latency (we z 2'59 - DSA

use a static number for our system but for out-of-order sys-z Z'Oz = QoS-Aware DSA
tems a method similar to the one used in [11] can be em-3 8 175
ployed). We calculat€)oS Penalty Factor as percentage < s evepaaRis

increase in execution time due to DSR, which can be cal-g 15f e 8550°°°

NumSetsInCache - MissInSpillerSets
NumSetsDedicatedT oSpillerSets
@

MissesWithBaseline =

The number of misses with DSR/issesWithDSR)

DDDDDDDDDDD

.o o
DDDDDDDDDDDDD

culated using equation 4, given that a cycle counter registe £ 1.00 rrmrrrrrrevesiaseses

can track theT'otalCycles. Then, instead of increment = TSyt 1 54 30 36 42 28 54 60

ing/decrementing the PSEL counters by 1 on each miss, we GOT4 (15 workloads x 4 applications/workload = 60 applications)
give more weightage to the misses of an application {say . _
that has higher QoSPenaltyFactor using Equation 5. Figure 15. S-Curve of IPC for apps in GOT4

workloads with DSR and QoS-Aware DSR
WeightOfMiss; = 1 4+ X - QoS PenaltyFactor; 5)

7. Related Work 8. Summary

M anaging Private Caches: When cache lines are con- CMPs with private last-level cache suffer from the inabil-
currently accessed by multiple cores, replication cangedu Ity t0 share cache capacity between cores when the cache
cache access latency at the expense of reducing the num&duirement of each core varies. Capacity sharing can be
ber of unique lines that can be stored on-chip. Several pro-mPlemented in private caches by spilling an evicted line
posals [4][3] have tried to balance this latency vs. cagacit [Tom one cache to another cache. However, previous pro-
trade-off. These schemes contain a replication control pa-P0sals do spilling without taking into account the cache re-
rameter that determines the percentage of lines that can b&uirement of each core, which limits the performance im-
replicated. Adaptive Selective Replication [1] is a dynami Provement obtained with spilling. The goal of this paper is
mechanism that learns the best replication parameter at runt© €nable efficient high-performance capacity sharingiin pr
time using large tagged structures. The reduced-capacity/ate caches by using a practical spill mechanism that takes
vs. improved-latency trade-off solved by these proposals i cache requirement of different cores into account. To that
orthogonal to the capacity sharing problem solved by DSR. €Nd; this paper makes the following contributions:

Managing Shared Caches: LRU-managed shared 1. We propose th&pill-Receivarchitecture, where each
cache allocates capacity between competing applications o cache is allowed to either spill evicted lines or receive
a demand basis. Cache performance can be improved if spilled lines but not both. This prevents spiller caches
cache space allocated to streaming applications can be min- from giving their local capacity while they are trying
imized. TADIP [6] is a simple high-performance scheme to gain more cache capacity remotely and vice-versa.

that uses Set Dueling and Adaptive Insertion [10] to re-))))
duce harmful cache interference in shared caches. However, 2- e propose th®ynamic Spill-Receive (DSRychi-
tecture that learns the best spill-receive decision for

TADIP is applicable to only shared caches and does not) ’
each cache at runtime. We show that DSR improves

solve the problem of increased latency and high-bandwidth)
interconnect requirement of a shared cache. Figure 16 average throughputby 18%, weighted speedup by 13%
and Hmean fairness by 36% for a 4-core CMP.

shows the throughput improvement of shared cache with
TADIP and private cache with DSR. On average, TADIP 3. We propose a simple extension of DSR that guarantees

improves throughput by 15% and DSR by 18%. DSR can Quiality of Service while retaining high performance.
also be implemented on a cache that uses DIP [10] for

demand lines (spilled lines are always inserted in MRU Acknowledgments

position). DSR+DIP improves throughput by 23% over

NoSpill+LRU and by 17% over NoSpill+DIP (not shown). The author thanks William Starke, Ravi Nair, Viji Srini-
vasan, and Trey Cain for their comments and feedback.

1.30

§ 1.25Hw= Shared+LRU References

o 1.201 == Shared+TADIF =

§ 1151|= DSR —

5 1101~ DSR+DIP] [1] B. M. Beckmann et al. ASR: Adaptive selective replicatio

S Tol N for CMP caches. IIMICRO-2006 o

< 005l B [2] J. Chang and G. S. Sohi. Cooperative cache partitiorong f
£ 090 — chip multiprocessors. IICS-2007

S 0.851 — [3] J. Chang and G. S. Sohi. Cooperative caching for chipimult
FO%TG4T0 G3TL G2T2 | GIT3 GOT4 Al(495) processors. IISCA-2006

[4] Z. Chishti et al. Optimizing replication, communicaticand

capacity allocation in CMPs. IIBCA-2005 _
[5] M. D. Dahlin et al. Cooperative caching: using remoteiati

Fairness and Quality-of-Service: Cooperative Cache memory to improve file system performance.Q8DI-1994
Partitioning (CCP) [2] tries to optimize both fairness and [6] A. Jaleel et al. Adaptive insertion policies for managin
quality of service using time-sharing of cache partitions. ISDI.’]?Lendggﬁsgiia%(i:;ég?g:SA 32-way multithreaded SPAR
MTP needs cache requirement curves for each application. processorlEEE Micro, 25(2):21-29, 2005.

Obtaining such information using profiling may be imprac- [8] R.Kumar, V. Zyuban, and D. M. Tullsen. Interconnectiams
tical and using time-sampling requires huge training time. multi-core architectures: Understanding mechanisms-ove
Furthermore, even if MTP has such information, it still re- heads and scaling. ISCA-2005

. o . : K. Luo, J. Gummaraju, and M. Franklin. Balancing through
quires 2 bits/line (storage: 16KB) to measure cache capac put and faimess in SMT processors.|8PASS-2001

ity given to each application. Unlike CCP, DSR does not [10] ‘M. K. Qureshi et al. Adaptive insertion policies for hig
require time sampling and design changes, and can stillen- performance caching. ISCA-2007
force QoS. A practical version of MTP can always use DSR [11] M. K. Qureshi et al. A case for MLP-aware cache replace-

(instead of CC) to improve both performance and fairness. ment. InISCA-2006

Figure 16. Throughput: TADIP vs. DSR.

