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Reminder: Project Proposals 

 Due: Tuesday, September 25, 11:59pm. 

 

 What? 

 A clear, insightful writeup 

 Problem 

 Why is it important? 

 Your goal 

 Your solution idea 

 What have others done to solve the problem? 

 What are the advantages/disadvantages of your solution idea? 

 Your research and evaluation plan 

 Clear goals for Milestones I, II, and final report 
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New Review Assignments 

 Due: Sunday, September 30, 11:59pm. 

 

 Mutlu, “Some Ideas and Principles for Achieving Higher System 
Energy Efficiency,” NSF Position Paper and Presentation 2012. 

 

 Ebrahimi et al., “Parallel Application Memory Scheduling,” MICRO 
2011. 

 

 Seshadri et al., “The Evicted-Address Filter: A Unified Mechanism 
to Address Both Cache Pollution and Thrashing,” PACT 2012. 

 

 Pekhimenko et al., “Linearly Compressed Pages: A Main Memory 
Compression Framework with Low Complexity and Low Latency,” 
CMU SAFARI Technical Report 2012. 
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Last Lecture 

 Bottleneck Identification and Scheduling 

 

 Staged Execution 
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Today 

 Asymmetry in Memory Scheduling 

 

 Wrap up Asymmetry 

 

 Multithreading 
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More Asymmetric Multi-Core 
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Review: Data Marshaling Summary 

 Inter-segment data transfers between cores limit the benefit 
of promising Staged Execution (SE) models 
 

 Data Marshaling is a hardware/software cooperative solution: 
detect inter-segment data generator instructions and push 
their data to next segment’s core 

 Significantly reduces cache misses for inter-segment data 

 Low cost, high-coverage, timely for arbitrary address sequences 

 Achieves most of the potential of eliminating such misses 
 

 Applicable to several existing Staged Execution models 

 Accelerated Critical Sections: 9% performance benefit 

 Pipeline Parallelism: 16% performance benefit 

 Can enable new models very fine-grained remote execution 
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Outline 

 How Do We Get There: Examples 

 

 Accelerated Critical Sections (ACS) 

 Bottleneck Identification and Scheduling (BIS) 

 Staged Execution and Data Marshaling 

 

 Asymmetry in Memory 

 Thread Cluster Memory Scheduling 

 Heterogeneous DRAM+NVM Main Memory 
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Motivation 

• Memory is a shared resource 

 

 
 

• Threads’ requests contend for memory 

– Degradation in single thread performance 

– Can even lead to starvation 
 

• How to schedule memory requests to increase 
both system throughput and fairness? 
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Previous Scheduling Algorithms are Biased 
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System throughput  
bias 

Fairness  
bias 

No previous memory scheduling algorithm provides 
both the best fairness and system throughput 

Better system throughput 
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Take turns accessing memory 

Why do Previous Algorithms Fail? 
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Fairness biased approach 

thread C 

thread B 

thread A 

less memory  
intensive 

higher 
priority 

Prioritize less memory-intensive threads 

Throughput biased approach 

Good for throughput 

starvation  unfairness 

thread C thread B thread A 

Does not starve 

not prioritized   
reduced throughput 

Single policy for all threads is insufficient 



Insight: Achieving Best of Both Worlds 
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thread 

thread 
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priority 

thread 

thread 

thread  

thread 

thread 

thread 

Prioritize memory-non-intensive threads 

For Throughput 

Unfairness caused by memory-intensive 
being prioritized over each other  
• Shuffle threads 

 

Memory-intensive threads have  
different vulnerability to interference 
• Shuffle asymmetrically 

For Fairness 

thread 

thread 

thread 

thread 



Overview: Thread Cluster Memory Scheduling 

1. Group threads into two clusters 
2. Prioritize non-intensive cluster 
3. Different policies for each cluster 
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Threads in the system 

thread 

thread 

thread 

thread 
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Non-intensive  
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Prioritize threads according to MPKI 
 

 

 

 

 
 

 

•Increases system throughput 

– Least intensive thread has the greatest potential 
for making progress in the processor 

 

Non-Intensive Cluster 
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thread 

thread 

thread 

thread 

higher 
priority lowest MPKI 

highest MPKI 



Periodically shuffle the priority of threads 
 

 

 

 

 

 

 

• Is treating all threads equally good enough? 

• BUT: Equal turns ≠ Same slowdown 

Intensive Cluster 

15 

thread 

thread 

thread 

Increases fairness 

Most prioritized higher 
priority 

thread 

thread 
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Results: Fairness vs. Throughput 
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Better system throughput 
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5% 

39% 

8% 

5% 

TCM provides best fairness and system throughput 

Averaged over 96 workloads 



Results: Fairness-Throughput Tradeoff 
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When configuration parameter is varied… 

Adjusting  
ClusterThreshold 

TCM allows robust fairness-throughput tradeoff  

STFM 
PAR-BS 

ATLAS 

TCM 

Better system throughput 
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TCM Summary 
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• No previous memory scheduling algorithm provides 
both high system throughput and fairness 

– Problem: They use a single policy for all threads 
 

• TCM is a heterogeneous scheduling policy 

1.Prioritize non-intensive cluster  throughput 

2.Shuffle priorities in intensive cluster  fairness 

3.Shuffling should favor nice threads  fairness 

 

• Heterogeneity in memory scheduling provides the  
best system throughput and fairness 

 



More Details on TCM 

• Kim et al., “Thread Cluster Memory Scheduling: 
Exploiting Differences in Memory Access Behavior,” 
MICRO 2010, Top Picks 2011. 
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Memory Control in CPU-GPU Systems 

 Observation: Heterogeneous CPU-GPU systems require 

memory schedulers with large request buffers 
 

 Problem: Existing monolithic application-aware memory 

scheduler designs are hard to scale to large request buffer sizes 
 

 Solution: Staged Memory Scheduling (SMS)  

decomposes the memory controller into three simple stages: 

1) Batch formation: maintains row buffer locality 

2) Batch scheduler: reduces interference between applications 

3) DRAM command scheduler: issues requests to DRAM 
 

 Compared to state-of-the-art memory schedulers: 

 SMS is significantly simpler and more scalable 

 SMS provides higher performance and fairness 

 20 Ausavarungnirun et al., “Staged Memory Scheduling,” ISCA 2012. 

file://localhost/Users/omutlu/Documents/presentations/CMU/Samsung%20Memory%20June%2021%202012/Previous%20Presentations/rachata_isca12_talk.pptx


Asymmetric Memory QoS in a Parallel Application 

 Threads in a multithreaded application are inter-dependent 

 Some threads can be on the critical path of execution due 
to synchronization; some threads are not 

 How do we schedule requests of inter-dependent threads 
to maximize multithreaded application performance? 

 

 Idea: Estimate limiter threads likely to be on the critical path and 
prioritize their requests; shuffle priorities of non-limiter threads 
to reduce memory interference among them [Ebrahimi+, MICRO’11] 

 

 Hardware/software cooperative limiter thread estimation: 

 Thread executing the most contended critical section 

 Thread that is falling behind the most in a parallel for loop 

 

 21 Ebrahimi et al., “Parallel Application Memory Scheduling,” MICRO 2011. 

file://localhost/Users/omutlu/Documents/presentations/CMU/Samsung%20Memory%20June%2021%202012/Previous%20Presentations/ebrahimi_micro2011_talk.pptx


Outline 

 How Do We Get There: Examples 

 

 Accelerated Critical Sections (ACS) 

 Bottleneck Identification and Scheduling (BIS) 

 Staged Execution and Data Marshaling 

 

 Asymmetry in Memory 

 Thread Cluster Memory Scheduling 

 Heterogeneous DRAM+NVM Main Memory 

 

 

22 



Heterogeneous Memory Systems 

 

 

 

 

 

 

 

 

 

 

 
Meza, Chang, Yoon, Mutlu, Ranganathan, “Enabling Efficient and Scalable Hybrid Memories,” 

IEEE Comp. Arch. Letters, 2012. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CPU 
DRA
MCtrl 

Fast, durable 
Small,  

leaky, volatile,  
high-cost 

Large, non-volatile, low-cost 
Slow, wears out, high active energy 

PCM 
Ctrl DRAM Phase Change Memory (or Tech. X) 

Hardware/software manage data allocation and movement  
to achieve the best of multiple technologies 



One Option: DRAM as a Cache for PCM 

 PCM is main memory; DRAM caches memory rows/blocks 

 Benefits: Reduced latency on DRAM cache hit; write filtering 

 Memory controller hardware manages the DRAM cache 

 Benefit: Eliminates system software overhead 

 

 Three issues: 

 What data should be placed in DRAM versus kept in PCM? 

 What is the granularity of data movement? 

 How to design a low-cost hardware-managed DRAM cache? 

 

 Two idea directions: 

 Locality-aware data placement [Yoon+ , ICCD 2012] 

 Cheap tag stores and dynamic granularity [Meza+, IEEE CAL 2012] 
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Summary 
 Applications and phases have varying performance requirements 

 Designs evaluated on multiple metrics/constraints: energy, 
performance, reliability, fairness, …  

 

 One-size-fits-all design cannot satisfy all requirements and metrics: 
cannot get the best of all worlds 
 

 Asymmetry enables tradeoffs: can get the best of all worlds 

 Asymmetry in core microarch.  Accelerated Critical Sections, BIS, DM             
 Good parallel performance + Good serialized performance 

 Asymmetry in memory scheduling  Thread Cluster Memory Scheduling 
 Good throughput + good fairness 

 Asymmetry in main memory  Data Management for DRAM-PCM 
Hybrid Memory  Good performance + good efficiency 
 

 Simple asymmetric designs can be effective and low-cost 
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Multithreading 
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Readings: Multithreading 
 Required 

 Spracklen and Abraham, “Chip Multithreading: Opportunities and 
Challenges,” HPCA Industrial Session, 2005.  

 Kalla et al., “IBM Power5 Chip: A Dual-Core Multithreaded Processor,” IEEE 
Micro 2004. 

 Tullsen et al., “Exploiting choice: instruction fetch and issue on an 
implementable simultaneous multithreading processor,” ISCA 1996. 

 Eyerman and Eeckhout, “A Memory-Level Parallelism Aware Fetch Policy for 
SMT Processors,” HPCA 2007. 

 

 Recommended 

 Hirata et al., “An Elementary Processor Architecture with Simultaneous 
Instruction Issuing from Multiple Threads,” ISCA 1992 

 Smith, “A pipelined, shared resource MIMD computer,” ICPP 1978. 

 Gabor et al., “Fairness and Throughput in Switch on Event Multithreading,” 
MICRO 2006. 

 Agarwal et al., “APRIL: A Processor Architecture for Multiprocessing,” ISCA 
1990. 
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Multithreading (Outline) 

 Multiple hardware contexts 

 Purpose 

 Initial incarnations 

 CDC 6600 

 HEP 

 Tera 

 Levels of multithreading 

 Fine-grained (cycle-by-cycle) 

 Coarse grained (multitasking) 

 Switch-on-event 

 Simultaneous 

 Uses: traditional + creative (now that we have multiple 
contexts, why do we not do …) 
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Multithreading: Basics 

 Thread 

 Instruction stream with state (registers and memory) 

 Register state is also called “thread context” 

 

 Threads could be part of the same process (program) or 
from different programs 

 Threads in the same program share the same address space 
(shared memory model) 

 

 Traditionally, the processor keeps track of the context of a 
single thread 

 Multitasking: When a new thread needs to be executed, old 
thread’s context in hardware written back to memory and 
new thread’s context loaded 
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Hardware Multithreading 

 General idea: Have multiple thread contexts in a single 
processor 

 When the hardware executes from those hardware contexts 
determines the granularity of multithreading  

 

 Why? 

 To tolerate latency (initial motivation) 

 Latency of memory operations, dependent instructions, branch 
resolution 

 By utilizing processing resources more efficiently 

 To improve system throughput 

 By exploiting thread-level parallelism 

 By improving superscalar/OoO processor utilization 

 To reduce context switch penalty 
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Initial Motivations 

 Tolerate latency 

 When one thread encounters a long-latency operation, the 
processor can execute a useful operation from another thread 

 

 CDC 6600 peripheral processors 

 I/O latency: 10 cycles 

 10 I/O threads can be active to cover the latency 

 Pipeline with 100ns cycle time, memory with 1000ns latency 

 Idea: Each I/O “processor” executes one instruction every 10 
cycles on the same pipeline 

 Thornton, “Design of a Computer: The Control Data 6600,” 
1970.  

 Thornton, “Parallel Operation in the Control Data 6600,” 
AFIPS 1964. 
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Hardware Multithreading 

 Benefit 

+ Latency tolerance 

+ Better hardware utilization (when?) 

+ Reduced context switch penalty 

 

 Cost 

- Requires multiple thread contexts to be implemented in 
hardware (area, power, latency cost) 

- Usually reduced single-thread performance 

 - Resource sharing, contention 

    - Switching penalty (can be reduced with additional hardware)  
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Types of Multithreading 

 Fine-grained 

 Cycle by cycle 

 

 Coarse-grained 

 Switch on event (e.g., cache miss) 

 Switch on quantum/timeout 

 

 Simultaneous 

 Instructions from multiple threads executed concurrently in 
the same cycle 
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Fine-grained Multithreading 

 Idea: Switch to another thread every cycle such that no two 
instructions from the thread are in the pipeline concurrently 

 

 Improves pipeline utilization by taking advantage of multiple 
threads 

 Alternative way of looking at it: Tolerates the control and 
data dependency latencies by overlapping the latency with 
useful work from other threads 

 

 Thornton, “Parallel Operation in the Control Data 6600,” AFIPS 
1964. 

 Smith, “A pipelined, shared resource MIMD computer,” ICPP 1978. 
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Fine-grained Multithreading 

 CDC 6600’s peripheral processing unit is fine-grained 
multithreaded 

 Processor executes a different I/O thread every cycle 

 An operation from the same thread is executed every 10 
cycles 

 

 Denelcor HEP 
 Smith, “A pipelined, shared resource MIMD computer,” ICPP 1978. 

 120 threads/processor  

 50 user, 70 OS functions  

 available queue vs. unavailable (waiting) queue  

 each thread can only have 1 instruction in the processor pipeline; each 
thread independent  

 to each thread, processor looks like a sequential machine 

 throughput vs. single thread speed   
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Fine-grained Multithreading in HEP 

 Cycle time: 100ns 

 

 8 stages  800 ns to 

complete an 
instruction 

 assuming no memory 
access 

 

36 



Fine-grained Multithreading 

 Advantages 

+ No need for dependency checking between instructions 

    (only one instruction in pipeline from a single thread) 

+ No need for branch prediction logic 

+ Otherwise-bubble cycles used for executing useful instructions from 
different threads 

+ Improved system throughput, latency tolerance, utilization 

 

 Disadvantages 

- Extra hardware complexity: multiple hardware contexts, thread 
selection logic 

- Reduced single thread performance (one instruction fetched every N 
cycles)  

- Resource contention between threads in caches and memory 

- Dependency checking logic between threads remains (load/store) 
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Multithreaded Pipeline Example 

 

 

 

 

 

 

 

 

 

 

 Slide from Joel Emer 
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Sun Niagara Multithreaded Pipeline 
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Tera MTA Fine-grained Multithreading 

 256 processors, each with a 21-cycle pipeline 

 128 active threads 

 A thread can issue instructions every 21 cycles 

 Then, why 128 threads? 

 

 Memory latency: approximately 150 cycles 

 No data cache 

 Threads can be blocked waiting for memory 

 More threads  better ability to tolerate memory latency 

 

 Thread state per processor 

 128 x 32 general purpose registers 

 128 x 1 thread status registers 
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Tera MTA Pipeline 

 Threads move 
to/from different 
pools as an 
instruction 
executes 

 More accurately, 
thread IDs are 
kept in each 
pool 
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Coarse-grained Multithreading 

 Idea: When a thread is stalled due to some event, switch to 
a different hardware context 

 Switch-on-event multithreading 

 

 Possible stall events 

 Cache misses 

 Synchronization events (e.g., load an empty location) 

 FP operations 

 

 HEP, Tera combine fine-grained MT and coarse-grained MT 

 Thread waiting for memory becomes blocked (un-selectable) 

 Agarwal et al., “APRIL: A Processor Architecture for Multiprocessing,” 
ISCA 1990. 

 Explicit switch on event 
42 



Coarse-grained Multithreading in APRIL 

 Agarwal et al., “APRIL: A Processor Architecture for 
Multiprocessing,” ISCA 1990. 

 

 4 hardware thread contexts 

 Called “task frames” 

 

 Thread switch on 

 Cache miss 

 Network access 

 Synchronization fault 

 

 How? 

 Empty processor pipeline, change frame pointer (PC) 
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Fine-grained vs. Coarse-grained MT 

 Fine-grained advantages 

+ Simpler to implement, can eliminate dependency checking, 
branch prediction logic completely 

+ Switching need not have any performance overhead (i.e. dead 
cycles) 

 + Coarse-grained requires a pipeline flush or a lot of hardware   
  to save pipeline state  

   Higher performance overhead with deep pipelines and  

     large windows 

 

 Disadvantages 

- Low single thread performance: each thread gets 1/Nth of the 
bandwidth of the pipeline 
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IBM RS64-IV 

 4-way superscalar, in-order, 5-stage pipeline 

 Two hardware contexts 

 On an L2 cache miss 

 Flush pipeline 

 Switch to the other thread 

 

 Considerations 

 Memory latency vs. thread switch overhead 

 Short pipeline, in-order execution (small instruction window) 
reduces the overhead of switching 
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Intel Montecito 
 McNairy and Bhatia, “Montecito: A Dual-Core, Dual-Thread Itanium 

Processor,” IEEE Micro 2005. 

 

 

 

 

 

 

 Thread switch on 

 L3 cache miss/data return 

 Timeout – for fairness 

 Switch hint instruction 

 ALAT invalidation – synchronization fault 

 Transition to low power mode 

 <2% area overhead due to CGMT 
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Fairness in Coarse-grained Multithreading 

 Resource sharing in space and time always causes fairness 
considerations 

 Fairness: how much progress each thread makes  

 

 In CGMT, the time allocated to each thread affects both 
fairness and system throughput 

 When do we switch? 

 For how long do we switch? 

 When do we switch back? 

 How does the hardware scheduler interact with the software 
scheduler for fairness? 

 What is the switching overhead vs. benefit?  

 Where do we store the contexts? 
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We did not cover the following slides in lecture. 

These are for your preparation for the next lecture.  



Fairness in Coarse-grained Multithreading 

 Gabor et al., “Fairness and Throughput in Switch on Event Multithreading,” 
MICRO 2006. 

 How can you solve the below problem? 
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Fairness vs. Throughput 

 Switch not only on miss, but also on data return 

 

 Problem: Switching has performance overhead 

 Pipeline and window flush 

 Reduced locality and increased resource contention (frequent 
switches increase resource contention and reduce locality) 

 

 One possible solution 

 Estimate the slowdown of each thread compared to when run 
alone 

 Enforce switching when slowdowns become significantly 
unbalanced  

 Gabor et al., “Fairness and Throughput in Switch on Event 
Multithreading,” MICRO 2006. 
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Thread Switching Urgency in Montecito 

 Thread urgency levels 

 0-7 

 

 Nominal level 5: active progress 

 After timeout: set to 7 

 After ext. interrupt: set to 6 

 

 Reduce urgency level for each 
blocking operation 

 L3 miss 

 

 Switch if urgency of foreground 
lower than that of background 
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