
18-742 Fall 2012

Parallel Computer Architecture

Lecture 9: Multithreading

Prof. Onur Mutlu

Carnegie Mellon University

9/26/2012

Reminder: Project Proposals

 Due: Tuesday, September 25, 11:59pm.

 What?

 A clear, insightful writeup

 Problem

 Why is it important?

 Your goal

 Your solution idea

 What have others done to solve the problem?

 What are the advantages/disadvantages of your solution idea?

 Your research and evaluation plan

 Clear goals for Milestones I, II, and final report

2

New Review Assignments

 Due: Sunday, September 30, 11:59pm.

 Mutlu, “Some Ideas and Principles for Achieving Higher System
Energy Efficiency,” NSF Position Paper and Presentation 2012.

 Ebrahimi et al., “Parallel Application Memory Scheduling,” MICRO
2011.

 Seshadri et al., “The Evicted-Address Filter: A Unified Mechanism
to Address Both Cache Pollution and Thrashing,” PACT 2012.

 Pekhimenko et al., “Linearly Compressed Pages: A Main Memory
Compression Framework with Low Complexity and Low Latency,”
CMU SAFARI Technical Report 2012.

 3

Last Lecture

 Bottleneck Identification and Scheduling

 Staged Execution

4

Today

 Asymmetry in Memory Scheduling

 Wrap up Asymmetry

 Multithreading

5

More Asymmetric Multi-Core

6

Review: Data Marshaling Summary

 Inter-segment data transfers between cores limit the benefit
of promising Staged Execution (SE) models

 Data Marshaling is a hardware/software cooperative solution:
detect inter-segment data generator instructions and push
their data to next segment’s core

 Significantly reduces cache misses for inter-segment data

 Low cost, high-coverage, timely for arbitrary address sequences

 Achieves most of the potential of eliminating such misses

 Applicable to several existing Staged Execution models

 Accelerated Critical Sections: 9% performance benefit

 Pipeline Parallelism: 16% performance benefit

 Can enable new models very fine-grained remote execution

7

Outline

 How Do We Get There: Examples

 Accelerated Critical Sections (ACS)

 Bottleneck Identification and Scheduling (BIS)

 Staged Execution and Data Marshaling

 Asymmetry in Memory

 Thread Cluster Memory Scheduling

 Heterogeneous DRAM+NVM Main Memory

8

Motivation

• Memory is a shared resource

• Threads’ requests contend for memory

– Degradation in single thread performance

– Can even lead to starvation

• How to schedule memory requests to increase
both system throughput and fairness?

 9

Core Core

Core Core
Memory

Previous Scheduling Algorithms are Biased

10

System throughput
bias

Fairness
bias

No previous memory scheduling algorithm provides
both the best fairness and system throughput

Better system throughput

B
et

te
r

fa
ir

n
e

ss

Take turns accessing memory

Why do Previous Algorithms Fail?

11

Fairness biased approach

thread C

thread B

thread A

less memory
intensive

higher
priority

Prioritize less memory-intensive threads

Throughput biased approach

Good for throughput

starvation unfairness

thread C thread B thread A

Does not starve

not prioritized
reduced throughput

Single policy for all threads is insufficient

Insight: Achieving Best of Both Worlds

12

thread

thread

higher
priority

thread

thread

thread

thread

thread

thread

Prioritize memory-non-intensive threads

For Throughput

Unfairness caused by memory-intensive
being prioritized over each other
• Shuffle threads

Memory-intensive threads have
different vulnerability to interference
• Shuffle asymmetrically

For Fairness

thread

thread

thread

thread

Overview: Thread Cluster Memory Scheduling

1. Group threads into two clusters
2. Prioritize non-intensive cluster
3. Different policies for each cluster

13

thread

Threads in the system

thread

thread

thread

thread

thread

thread

Non-intensive
cluster

Intensive cluster

thread

thread

thread

Memory-non-intensive

Memory-intensive

Prioritized

higher
priority

higher
priority

Throughput

Fairness

Prioritize threads according to MPKI

•Increases system throughput

– Least intensive thread has the greatest potential
for making progress in the processor

Non-Intensive Cluster

14

thread

thread

thread

thread

higher
priority lowest MPKI

highest MPKI

Periodically shuffle the priority of threads

• Is treating all threads equally good enough?

• BUT: Equal turns ≠ Same slowdown

Intensive Cluster

15

thread

thread

thread

Increases fairness

Most prioritized higher
priority

thread

thread

thread

Results: Fairness vs. Throughput

16

Better system throughput

B
et

te
r

fa
ir

n
e

ss

5%

39%

8%

5%

TCM provides best fairness and system throughput

Averaged over 96 workloads

Results: Fairness-Throughput Tradeoff

17

When configuration parameter is varied…

Adjusting
ClusterThreshold

TCM allows robust fairness-throughput tradeoff

STFM
PAR-BS

ATLAS

TCM

Better system throughput

B
et

te
r

fa
ir

n
e

ss
 FRFCFS

TCM Summary

18

• No previous memory scheduling algorithm provides
both high system throughput and fairness

– Problem: They use a single policy for all threads

• TCM is a heterogeneous scheduling policy

1.Prioritize non-intensive cluster throughput

2.Shuffle priorities in intensive cluster fairness

3.Shuffling should favor nice threads fairness

• Heterogeneity in memory scheduling provides the
best system throughput and fairness

More Details on TCM

• Kim et al., “Thread Cluster Memory Scheduling:
Exploiting Differences in Memory Access Behavior,”
MICRO 2010, Top Picks 2011.

19

Memory Control in CPU-GPU Systems

 Observation: Heterogeneous CPU-GPU systems require

memory schedulers with large request buffers

 Problem: Existing monolithic application-aware memory

scheduler designs are hard to scale to large request buffer sizes

 Solution: Staged Memory Scheduling (SMS)

decomposes the memory controller into three simple stages:

1) Batch formation: maintains row buffer locality

2) Batch scheduler: reduces interference between applications

3) DRAM command scheduler: issues requests to DRAM

 Compared to state-of-the-art memory schedulers:

 SMS is significantly simpler and more scalable

 SMS provides higher performance and fairness

 20 Ausavarungnirun et al., “Staged Memory Scheduling,” ISCA 2012.

file://localhost/Users/omutlu/Documents/presentations/CMU/Samsung%20Memory%20June%2021%202012/Previous%20Presentations/rachata_isca12_talk.pptx

Asymmetric Memory QoS in a Parallel Application

 Threads in a multithreaded application are inter-dependent

 Some threads can be on the critical path of execution due
to synchronization; some threads are not

 How do we schedule requests of inter-dependent threads
to maximize multithreaded application performance?

 Idea: Estimate limiter threads likely to be on the critical path and
prioritize their requests; shuffle priorities of non-limiter threads
to reduce memory interference among them [Ebrahimi+, MICRO’11]

 Hardware/software cooperative limiter thread estimation:

 Thread executing the most contended critical section

 Thread that is falling behind the most in a parallel for loop

 21 Ebrahimi et al., “Parallel Application Memory Scheduling,” MICRO 2011.

file://localhost/Users/omutlu/Documents/presentations/CMU/Samsung%20Memory%20June%2021%202012/Previous%20Presentations/ebrahimi_micro2011_talk.pptx

Outline

 How Do We Get There: Examples

 Accelerated Critical Sections (ACS)

 Bottleneck Identification and Scheduling (BIS)

 Staged Execution and Data Marshaling

 Asymmetry in Memory

 Thread Cluster Memory Scheduling

 Heterogeneous DRAM+NVM Main Memory

22

Heterogeneous Memory Systems

Meza, Chang, Yoon, Mutlu, Ranganathan, “Enabling Efficient and Scalable Hybrid Memories,”

IEEE Comp. Arch. Letters, 2012.

CPU
DRA
MCtrl

Fast, durable
Small,

leaky, volatile,
high-cost

Large, non-volatile, low-cost
Slow, wears out, high active energy

PCM
Ctrl DRAM Phase Change Memory (or Tech. X)

Hardware/software manage data allocation and movement
to achieve the best of multiple technologies

One Option: DRAM as a Cache for PCM

 PCM is main memory; DRAM caches memory rows/blocks

 Benefits: Reduced latency on DRAM cache hit; write filtering

 Memory controller hardware manages the DRAM cache

 Benefit: Eliminates system software overhead

 Three issues:

 What data should be placed in DRAM versus kept in PCM?

 What is the granularity of data movement?

 How to design a low-cost hardware-managed DRAM cache?

 Two idea directions:

 Locality-aware data placement [Yoon+ , ICCD 2012]

 Cheap tag stores and dynamic granularity [Meza+, IEEE CAL 2012]

 24

Summary
 Applications and phases have varying performance requirements

 Designs evaluated on multiple metrics/constraints: energy,
performance, reliability, fairness, …

 One-size-fits-all design cannot satisfy all requirements and metrics:
cannot get the best of all worlds

 Asymmetry enables tradeoffs: can get the best of all worlds

 Asymmetry in core microarch. Accelerated Critical Sections, BIS, DM
 Good parallel performance + Good serialized performance

 Asymmetry in memory scheduling Thread Cluster Memory Scheduling
 Good throughput + good fairness

 Asymmetry in main memory Data Management for DRAM-PCM
Hybrid Memory Good performance + good efficiency

 Simple asymmetric designs can be effective and low-cost

25

Multithreading

26

Readings: Multithreading
 Required

 Spracklen and Abraham, “Chip Multithreading: Opportunities and
Challenges,” HPCA Industrial Session, 2005.

 Kalla et al., “IBM Power5 Chip: A Dual-Core Multithreaded Processor,” IEEE
Micro 2004.

 Tullsen et al., “Exploiting choice: instruction fetch and issue on an
implementable simultaneous multithreading processor,” ISCA 1996.

 Eyerman and Eeckhout, “A Memory-Level Parallelism Aware Fetch Policy for
SMT Processors,” HPCA 2007.

 Recommended

 Hirata et al., “An Elementary Processor Architecture with Simultaneous
Instruction Issuing from Multiple Threads,” ISCA 1992

 Smith, “A pipelined, shared resource MIMD computer,” ICPP 1978.

 Gabor et al., “Fairness and Throughput in Switch on Event Multithreading,”
MICRO 2006.

 Agarwal et al., “APRIL: A Processor Architecture for Multiprocessing,” ISCA
1990.

27

Multithreading (Outline)

 Multiple hardware contexts

 Purpose

 Initial incarnations

 CDC 6600

 HEP

 Tera

 Levels of multithreading

 Fine-grained (cycle-by-cycle)

 Coarse grained (multitasking)

 Switch-on-event

 Simultaneous

 Uses: traditional + creative (now that we have multiple
contexts, why do we not do …)

28

Multithreading: Basics

 Thread

 Instruction stream with state (registers and memory)

 Register state is also called “thread context”

 Threads could be part of the same process (program) or
from different programs

 Threads in the same program share the same address space
(shared memory model)

 Traditionally, the processor keeps track of the context of a
single thread

 Multitasking: When a new thread needs to be executed, old
thread’s context in hardware written back to memory and
new thread’s context loaded

 29

Hardware Multithreading

 General idea: Have multiple thread contexts in a single
processor

 When the hardware executes from those hardware contexts
determines the granularity of multithreading

 Why?

 To tolerate latency (initial motivation)

 Latency of memory operations, dependent instructions, branch
resolution

 By utilizing processing resources more efficiently

 To improve system throughput

 By exploiting thread-level parallelism

 By improving superscalar/OoO processor utilization

 To reduce context switch penalty

30

Initial Motivations

 Tolerate latency

 When one thread encounters a long-latency operation, the
processor can execute a useful operation from another thread

 CDC 6600 peripheral processors

 I/O latency: 10 cycles

 10 I/O threads can be active to cover the latency

 Pipeline with 100ns cycle time, memory with 1000ns latency

 Idea: Each I/O “processor” executes one instruction every 10
cycles on the same pipeline

 Thornton, “Design of a Computer: The Control Data 6600,”
1970.

 Thornton, “Parallel Operation in the Control Data 6600,”
AFIPS 1964.

 31

Hardware Multithreading

 Benefit

+ Latency tolerance

+ Better hardware utilization (when?)

+ Reduced context switch penalty

 Cost

- Requires multiple thread contexts to be implemented in
hardware (area, power, latency cost)

- Usually reduced single-thread performance

 - Resource sharing, contention

 - Switching penalty (can be reduced with additional hardware)

32

Types of Multithreading

 Fine-grained

 Cycle by cycle

 Coarse-grained

 Switch on event (e.g., cache miss)

 Switch on quantum/timeout

 Simultaneous

 Instructions from multiple threads executed concurrently in
the same cycle

33

Fine-grained Multithreading

 Idea: Switch to another thread every cycle such that no two
instructions from the thread are in the pipeline concurrently

 Improves pipeline utilization by taking advantage of multiple
threads

 Alternative way of looking at it: Tolerates the control and
data dependency latencies by overlapping the latency with
useful work from other threads

 Thornton, “Parallel Operation in the Control Data 6600,” AFIPS
1964.

 Smith, “A pipelined, shared resource MIMD computer,” ICPP 1978.

34

Fine-grained Multithreading

 CDC 6600’s peripheral processing unit is fine-grained
multithreaded

 Processor executes a different I/O thread every cycle

 An operation from the same thread is executed every 10
cycles

 Denelcor HEP
 Smith, “A pipelined, shared resource MIMD computer,” ICPP 1978.

 120 threads/processor

 50 user, 70 OS functions

 available queue vs. unavailable (waiting) queue

 each thread can only have 1 instruction in the processor pipeline; each
thread independent

 to each thread, processor looks like a sequential machine

 throughput vs. single thread speed

35

Fine-grained Multithreading in HEP

 Cycle time: 100ns

 8 stages 800 ns to

complete an
instruction

 assuming no memory
access

36

Fine-grained Multithreading

 Advantages

+ No need for dependency checking between instructions

 (only one instruction in pipeline from a single thread)

+ No need for branch prediction logic

+ Otherwise-bubble cycles used for executing useful instructions from
different threads

+ Improved system throughput, latency tolerance, utilization

 Disadvantages

- Extra hardware complexity: multiple hardware contexts, thread
selection logic

- Reduced single thread performance (one instruction fetched every N
cycles)

- Resource contention between threads in caches and memory

- Dependency checking logic between threads remains (load/store)

37

Multithreaded Pipeline Example

 Slide from Joel Emer

38

Sun Niagara Multithreaded Pipeline

39

Tera MTA Fine-grained Multithreading

 256 processors, each with a 21-cycle pipeline

 128 active threads

 A thread can issue instructions every 21 cycles

 Then, why 128 threads?

 Memory latency: approximately 150 cycles

 No data cache

 Threads can be blocked waiting for memory

 More threads better ability to tolerate memory latency

 Thread state per processor

 128 x 32 general purpose registers

 128 x 1 thread status registers

 40

Tera MTA Pipeline

 Threads move
to/from different
pools as an
instruction
executes

 More accurately,
thread IDs are
kept in each
pool

41

Coarse-grained Multithreading

 Idea: When a thread is stalled due to some event, switch to
a different hardware context

 Switch-on-event multithreading

 Possible stall events

 Cache misses

 Synchronization events (e.g., load an empty location)

 FP operations

 HEP, Tera combine fine-grained MT and coarse-grained MT

 Thread waiting for memory becomes blocked (un-selectable)

 Agarwal et al., “APRIL: A Processor Architecture for Multiprocessing,”
ISCA 1990.

 Explicit switch on event
42

Coarse-grained Multithreading in APRIL

 Agarwal et al., “APRIL: A Processor Architecture for
Multiprocessing,” ISCA 1990.

 4 hardware thread contexts

 Called “task frames”

 Thread switch on

 Cache miss

 Network access

 Synchronization fault

 How?

 Empty processor pipeline, change frame pointer (PC)

 43

Fine-grained vs. Coarse-grained MT

 Fine-grained advantages

+ Simpler to implement, can eliminate dependency checking,
branch prediction logic completely

+ Switching need not have any performance overhead (i.e. dead
cycles)

 + Coarse-grained requires a pipeline flush or a lot of hardware
 to save pipeline state

 Higher performance overhead with deep pipelines and

 large windows

 Disadvantages

- Low single thread performance: each thread gets 1/Nth of the
bandwidth of the pipeline

 44

IBM RS64-IV

 4-way superscalar, in-order, 5-stage pipeline

 Two hardware contexts

 On an L2 cache miss

 Flush pipeline

 Switch to the other thread

 Considerations

 Memory latency vs. thread switch overhead

 Short pipeline, in-order execution (small instruction window)
reduces the overhead of switching

45

Intel Montecito
 McNairy and Bhatia, “Montecito: A Dual-Core, Dual-Thread Itanium

Processor,” IEEE Micro 2005.

 Thread switch on

 L3 cache miss/data return

 Timeout – for fairness

 Switch hint instruction

 ALAT invalidation – synchronization fault

 Transition to low power mode

 <2% area overhead due to CGMT

46

Fairness in Coarse-grained Multithreading

 Resource sharing in space and time always causes fairness
considerations

 Fairness: how much progress each thread makes

 In CGMT, the time allocated to each thread affects both
fairness and system throughput

 When do we switch?

 For how long do we switch?

 When do we switch back?

 How does the hardware scheduler interact with the software
scheduler for fairness?

 What is the switching overhead vs. benefit?

 Where do we store the contexts?

47

We did not cover the following slides in lecture.

These are for your preparation for the next lecture.

Fairness in Coarse-grained Multithreading

 Gabor et al., “Fairness and Throughput in Switch on Event Multithreading,”
MICRO 2006.

 How can you solve the below problem?

49

Fairness vs. Throughput

 Switch not only on miss, but also on data return

 Problem: Switching has performance overhead

 Pipeline and window flush

 Reduced locality and increased resource contention (frequent
switches increase resource contention and reduce locality)

 One possible solution

 Estimate the slowdown of each thread compared to when run
alone

 Enforce switching when slowdowns become significantly
unbalanced

 Gabor et al., “Fairness and Throughput in Switch on Event
Multithreading,” MICRO 2006.

 50

Thread Switching Urgency in Montecito

 Thread urgency levels

 0-7

 Nominal level 5: active progress

 After timeout: set to 7

 After ext. interrupt: set to 6

 Reduce urgency level for each
blocking operation

 L3 miss

 Switch if urgency of foreground
lower than that of background

51

