
18-742 Fall 2012

Parallel Computer Architecture

Lecture 8: More Asymmetry

Prof. Onur Mutlu

Carnegie Mellon University

9/24/2012

Past Due: Review Assignments

 Due: Friday, September 21, 11:59pm.

 Smith, “Architecture and applications of the HEP multiprocessor
computer system,” SPIE 1981.

 Tullsen et al., “Exploiting Choice: Instruction Fetch and Issue on
an Implementable Simultaneous Multithreading Processor,” ISCA
1996.

 Chappell et al., “Simultaneous Subordinate Microthreading
(SSMT),” ISCA 1999.

 Reinhardt and Mukherjee, “Transient Fault Detection via
Simultaneous Multithreading,” ISCA 2000.

2

Reminder: Project Proposals

 Due: Tuesday, September 25, 11:59pm.

 What?

 A clear, insightful writeup

 Problem

 Why is it important?

 Your goal

 Your solution idea

 What have others done to solve the problem?

 What are the advantages/disadvantages of your solution idea?

 Your research and evaluation plan

 Clear goals for Milestones I, II, and final report

3

New Review Assignments

 Due: Sunday, September 30, 11:59pm.

 Mutlu, “Some Ideas and Principles for Achieving Higher System
Energy Efficiency,” NSF Position Paper and Presentation 2012.

 Ebrahimi et al., “Parallel Application Memory Scheduling,” MICRO
2011.

 Seshadri et al., “The Evicted-Address Filter: A Unified Mechanism
to Address Both Cache Pollution and Thrashing,” PACT 2012.

 Pekhimenko et al., “Linearly Compressed Pages: A Main Memory
Compression Framework with Low Complexity and Low Latency,”
CMU SAFARI Technical Report 2012.

 4

Last Lecture

 Major Trends Affecting Main Memory

 Requirements from an Ideal Main Memory System

 Opportunity: Emerging Memory Technologies

5

Today

 More Asymmetric Multi-Core

 Staged Execution

 Asymmetry in Memory Scheduling

6

More Asymmetric Multi-Core

7

Outline

 How Do We Get There: Examples

 Accelerated Critical Sections (ACS)

 Bottleneck Identification and Scheduling (BIS)

 Staged Execution and Data Marshaling

 Asymmetry in Memory

 Thread Cluster Memory Scheduling

 Heterogeneous DRAM+NVM Main Memory

8

BIS Summary
 Problem: Performance and scalability of multithreaded applications

are limited by serializing bottlenecks

 different types: critical sections, barriers, slow pipeline stages

 importance (criticality) of a bottleneck can change over time

 Our Goal: Dynamically identify the most important bottlenecks and
accelerate them

 How to identify the most critical bottlenecks

 How to efficiently accelerate them

 Solution: Bottleneck Identification and Scheduling (BIS)

 Software: annotate bottlenecks (BottleneckCall, BottleneckReturn) and
implement waiting for bottlenecks with a special instruction (BottleneckWait)

 Hardware: identify bottlenecks that cause the most thread waiting and
accelerate those bottlenecks on large cores of an asymmetric multi-core system

 Improves multithreaded application performance and scalability,
outperforms previous work, and performance improves with more cores

 9

Bottlenecks in Multithreaded Applications

Definition: any code segment for which threads contend (i.e. wait)

Examples:

 Amdahl’s serial portions
 Only one thread exists  on the critical path

 Critical sections
 Ensure mutual exclusion  likely to be on the critical path if contended

 Barriers
 Ensure all threads reach a point before continuing  the latest thread arriving

is on the critical path

 Pipeline stages

 Different stages of a loop iteration may execute on different threads,
slowest stage makes other stages wait  on the critical path

10

11

Bottleneck Identification and Scheduling (BIS)

 Key insight:

 Thread waiting reduces parallelism and
is likely to reduce performance

 Code causing the most thread waiting
 likely critical path

 Key idea:

 Dynamically identify bottlenecks that cause
the most thread waiting

 Accelerate them (using powerful cores in an ACMP)

1. Annotate
bottleneck code

2. Implement waiting
 for bottlenecks

1. Measure thread

waiting cycles (TWC)

for each bottleneck

2. Accelerate bottleneck(s)

with the highest TWC

Binary containing

 BIS instructions

Compiler/Library/Programmer Hardware

12

Bottleneck Identification and Scheduling (BIS)

 while cannot acquire lock

 Wait loop for watch_addr

 acquire lock

 …

 release lock

Critical Sections: Code Modifications

 …

 BottleneckCall bid, targetPC

 …

targetPC: while cannot acquire lock

 Wait loop for watch_addr

 acquire lock

 …

 release lock

 BottleneckReturn bid

13

 BottleneckWait bid, watch_addr

 …

 …
Used to keep track of

waiting cycles

Used to enable
acceleration

14

Barriers: Code Modifications

 …

 BottleneckCall bid, targetPC

 enter barrier

 while not all threads in barrier

 BottleneckWait bid, watch_addr

 exit barrier

 …

targetPC: code running for the barrier

 …

 BottleneckReturn bid

15

Pipeline Stages: Code Modifications

 BottleneckCall bid, targetPC

 …

targetPC: while not done

 while empty queue

 BottleneckWait prev_bid

 dequeue work

 do the work …

 while full queue

 BottleneckWait next_bid

 enqueue next work

 BottleneckReturn bid

1. Annotate
bottleneck code

2. Implements waiting
 for bottlenecks

1. Measure thread

waiting cycles (TWC)

for each bottleneck

2. Accelerate bottleneck(s)

with the highest TWC

Binary containing

 BIS instructions

Compiler/Library/Programmer Hardware

16

Bottleneck Identification and Scheduling (BIS)

BIS: Hardware Overview

 Performance-limiting bottleneck identification and
acceleration are independent tasks

 Acceleration can be accomplished in multiple ways

 Increasing core frequency/voltage

 Prioritization in shared resources [Ebrahimi+, MICRO’11]

 Migration to faster cores in an Asymmetric CMP

17

Large core

Small

 core

Small

 core

Small

 core

Small

 core

Small

 core

Small

 core

Small

 core

Small

 core

Small

 core

Small

 core
Small

 core

Small

 core

1. Annotate
bottleneck code

2. Implements waiting
 for bottlenecks

1. Measure thread

waiting cycles (TWC)

for each bottleneck

2. Accelerate bottleneck(s)

with the highest TWC

Binary containing

 BIS instructions

Compiler/Library/Programmer Hardware

18

Bottleneck Identification and Scheduling (BIS)

Determining Thread Waiting Cycles for Each Bottleneck

19

Small Core 1 Large Core 0

Small Core 2

Bottleneck

Table (BT)

…

BottleneckWait x4500

bid=x4500, waiters=1, twc = 0 bid=x4500, waiters=1, twc = 1 bid=x4500, waiters=1, twc = 2

BottleneckWait x4500

bid=x4500, waiters=2, twc = 5 bid=x4500, waiters=2, twc = 7 bid=x4500, waiters=2, twc = 9 bid=x4500, waiters=1, twc = 9 bid=x4500, waiters=1, twc = 10 bid=x4500, waiters=1, twc = 11 bid=x4500, waiters=0, twc = 11 bid=x4500, waiters=1, twc = 3 bid=x4500, waiters=1, twc = 4 bid=x4500, waiters=1, twc = 5

1. Annotate
bottleneck code

2. Implements waiting
 for bottlenecks

1. Measure thread

waiting cycles (TWC)

for each bottleneck

2. Accelerate bottleneck(s)

with the highest TWC

Binary containing

 BIS instructions

Compiler/Library/Programmer Hardware

20

Bottleneck Identification and Scheduling (BIS)

Bottleneck Acceleration

21

Small Core 1 Large Core 0

Small Core 2

Bottleneck

Table (BT)

…

Scheduling Buffer (SB)

bid=x4700, pc, sp, core1

Acceleration

Index Table (AIT)

BottleneckCall x4600

Execute locally

BottleneckCall x4700

bid=x4700 , large core 0

Execute remotely

AIT

bid=x4600, twc=100

bid=x4700, twc=10000

BottleneckReturn x4700

bid=x4700 , large core 0

bid=x4700, pc, sp, core1

 twc < Threshold

 twc > Threshold

Execute locally Execute remotely

BIS Mechanisms

 Basic mechanisms for BIS:

 Determining Thread Waiting Cycles 

 Accelerating Bottlenecks 

 Mechanisms to improve performance and generality of BIS:

 Dealing with false serialization

 Preemptive acceleration

 Support for multiple large cores

22

False Serialization and Starvation

 Observation: Bottlenecks are picked from Scheduling Buffer
in Thread Waiting Cycles order

 Problem: An independent bottleneck that is ready to execute
has to wait for another bottleneck that has higher thread
waiting cycles  False serialization

 Starvation: Extreme false serialization

 Solution: Large core detects when a bottleneck is ready to
execute in the Scheduling Buffer but it cannot  sends the

bottleneck back to the small core

23

Preemptive Acceleration

 Observation: A bottleneck executing on a small core can
become the bottleneck with the highest thread waiting cycles

 Problem: This bottleneck should really be accelerated (i.e.,
executed on the large core)

 Solution: The Bottleneck Table detects the situation and
sends a preemption signal to the small core. Small core:

 saves register state on stack, ships the bottleneck to the large core

 Main acceleration mechanism for barriers and pipeline stages

24

Support for Multiple Large Cores

 Objective: to accelerate independent bottlenecks

 Each large core has its own Scheduling Buffer
(shared by all of its SMT threads)

 Bottleneck Table assigns each bottleneck to
a fixed large core context to

 preserve cache locality

 avoid busy waiting

 Preemptive acceleration extended to send multiple
instances of a bottleneck to different large core contexts

25

Hardware Cost

 Main structures:

 Bottleneck Table (BT): global 32-entry associative cache,
minimum-Thread-Waiting-Cycle replacement

 Scheduling Buffers (SB): one table per large core,
as many entries as small cores

 Acceleration Index Tables (AIT): one 32-entry table
per small core

 Off the critical path

 Total storage cost for 56-small-cores, 2-large-cores < 19 KB

26

BIS Performance Trade-offs
 Bottleneck identification:

 Small cost: BottleneckWait instruction and Bottleneck Table

 Bottleneck acceleration on an ACMP (execution migration):

 Faster bottleneck execution vs. fewer parallel threads

 Acceleration offsets loss of parallel throughput with large core counts

 Better shared data locality vs. worse private data locality

 Shared data stays on large core (good)

 Private data migrates to large core (bad, but latency hidden with
Data Marshaling [Suleman+, ISCA’10])

 Benefit of acceleration vs. migration latency

 Migration latency usually hidden by waiting (good)

 Unless bottleneck not contended (bad, but likely to not be on critical path)

27

Methodology

 Workloads: 8 critical section intensive, 2 barrier intensive
and 2 pipeline-parallel applications

 Data mining kernels, scientific, database, web, networking, specjbb

 Cycle-level multi-core x86 simulator

 8 to 64 small-core-equivalent area, 0 to 3 large cores, SMT

 1 large core is area-equivalent to 4 small cores

 Details:

 Large core: 4GHz, out-of-order, 128-entry ROB, 4-wide, 12-stage

 Small core: 4GHz, in-order, 2-wide, 5-stage

 Private 32KB L1, private 256KB L2, shared 8MB L3

 On-chip interconnect: Bi-directional ring, 2-cycle hop latency

28

BIS Comparison Points (Area-Equivalent)

 SCMP (Symmetric CMP)

 All small cores

 Results in the paper

 ACMP (Asymmetric CMP)

 Accelerates only Amdahl’s serial portions

 Our baseline

 ACS (Accelerated Critical Sections)

 Accelerates only critical sections and Amdahl’s serial portions

 Applicable to multithreaded workloads
(iplookup, mysql, specjbb, sqlite, tsp, webcache, mg, ft)

 FDP (Feedback-Directed Pipelining)

 Accelerates only slowest pipeline stages

 Applicable to pipeline-parallel workloads (rank, pagemine)

29

BIS Performance Improvement

30

Optimal number of threads, 28 small cores, 1 large core

 BIS outperforms ACS/FDP by 15% and ACMP by 32%

 BIS improves scalability on 4 of the benchmarks

barriers, which ACS

cannot accelerate
limiting bottlenecks change over time

ACS FDP

Why Does BIS Work?

31

 Coverage: fraction of program critical path that is actually identified as bottlenecks

 39% (ACS/FDP) to 59% (BIS)

 Accuracy: identified bottlenecks on the critical path over total identified bottlenecks

 72% (ACS/FDP) to 73.5% (BIS)

Fraction of execution time spent on predicted-important bottlenecks

Actually critical

BIS Scaling Results

32

Performance increases with:

1) More small cores

 Contention due to bottlenecks
increases

 Loss of parallel throughput due
to large core reduces

2) More large cores

 Can accelerate
independent bottlenecks

 Without reducing parallel
throughput (enough cores)

2.4%
6.2%

15% 19%

BIS Summary

 Serializing bottlenecks of different types limit performance of
multithreaded applications: Importance changes over time

 BIS is a hardware/software cooperative solution:

 Dynamically identifies bottlenecks that cause the most thread waiting
and accelerates them on large cores of an ACMP

 Applicable to critical sections, barriers, pipeline stages

 BIS improves application performance and scalability:

 15% speedup over ACS/FDP

 Can accelerate multiple independent critical bottlenecks

 Performance benefits increase with more cores

 Provides comprehensive fine-grained bottleneck acceleration
for future ACMPs with little or no programmer effort

33

Outline

 How Do We Get There: Examples

 Accelerated Critical Sections (ACS)

 Bottleneck Identification and Scheduling (BIS)

 Staged Execution and Data Marshaling

 Asymmetry in Memory

 Thread Cluster Memory Scheduling

 Heterogeneous DRAM+NVM Main Memory

34

Staged Execution Model (I)

 Goal: speed up a program by dividing it up into pieces

 Idea

 Split program code into segments

 Run each segment on the core best-suited to run it

 Each core assigned a work-queue, storing segments to be run

 Benefits

 Accelerates segments/critical-paths using specialized/heterogeneous cores

 Exploits inter-segment parallelism

 Improves locality of within-segment data

 Examples

 Accelerated critical sections, Bottleneck identification and scheduling

 Producer-consumer pipeline parallelism

 Task parallelism (Cilk, Intel TBB, Apple Grand Central Dispatch)

 Special-purpose cores and functional units

35

36

Staged Execution Model (II)

LOAD X
STORE Y
STORE Y

LOAD Y

….
STORE Z

LOAD Z

….

37

Staged Execution Model (III)

LOAD X
STORE Y
STORE Y

LOAD Y
….

STORE Z

LOAD Z
….

Segment S0

Segment S1

Segment S2

Split code into segments

38

Staged Execution Model (IV)

Core 0 Core 1 Core 2

Work-queues

Instances

 of S0

Instances

 of S1

Instances

 of S2

39

LOAD X
STORE Y
STORE Y

LOAD Y
….

STORE Z

LOAD Z
….

Core 0 Core 1 Core 2

S0

S1

S2

Staged Execution Model: Segment Spawning

Staged Execution Model: Two Examples

 Accelerated Critical Sections [Suleman et al., ASPLOS 2009]

 Idea: Ship critical sections to a large core in an asymmetric CMP

 Segment 0: Non-critical section

 Segment 1: Critical section

 Benefit: Faster execution of critical section, reduced serialization,
improved lock and shared data locality

 Producer-Consumer Pipeline Parallelism

 Idea: Split a loop iteration into multiple “pipeline stages” where
one stage consumes data produced by the next stage  each

stage runs on a different core

 Segment N: Stage N

 Benefit: Stage-level parallelism, better locality  faster execution

40

41

Problem: Locality of Inter-segment Data

LOAD X
STORE Y
STORE Y

LOAD Y
….

STORE Z

LOAD Z
….

Transfer Y

Transfer Z

S0

S1

S2

Core 0 Core 1 Core 2

Cache Miss

Cache Miss

Problem: Locality of Inter-segment Data

 Accelerated Critical Sections [Suleman et al., ASPLOS 2009]

 Idea: Ship critical sections to a large core in an ACMP

 Problem: Critical section incurs a cache miss when it touches data
produced in the non-critical section (i.e., thread private data)

 Producer-Consumer Pipeline Parallelism

 Idea: Split a loop iteration into multiple “pipeline stages”  each
stage runs on a different core

 Problem: A stage incurs a cache miss when it touches data
produced by the previous stage

 Performance of Staged Execution limited by inter-segment
cache misses

42

43

What if We Eliminated All Inter-segment Misses?

Outline

 How Do We Get There: Examples

 Accelerated Critical Sections (ACS)

 Bottleneck Identification and Scheduling (BIS)

 Staged Execution and Data Marshaling

 Asymmetry in Memory

 Thread Cluster Memory Scheduling

 Heterogeneous DRAM+NVM Main Memory

44

45

Terminology

LOAD X
STORE Y
STORE Y

LOAD Y
….

STORE Z

LOAD Z
….

Transfer Y

Transfer Z

S0

S1

S2

Inter-segment data: Cache

block written by one segment

and consumed by the next

segment

Generator instruction:

The last instruction to write to an

inter-segment cache block in a segment

Core 0 Core 1 Core 2

Key Observation and Idea

 Observation: Set of generator instructions is stable over
execution time and across input sets

 Idea:

 Identify the generator instructions

 Record cache blocks produced by generator instructions

 Proactively send such cache blocks to the next segment’s
core before initiating the next segment

 Suleman et al., “Data Marshaling for Multi-Core
Architectures,” ISCA 2010, IEEE Micro Top Picks 2011.

46

Data Marshaling

1. Identify generator

instructions

2. Insert marshal

instructions

1. Record generator-

 produced addresses

2. Marshal recorded

 blocks to next core Binary containing

generator prefixes &

marshal Instructions

Compiler/Profiler Hardware

47

Data Marshaling

1. Identify generator

instructions

2. Insert marshal

instructions

1. Record generator-

 produced addresses

2. Marshal recorded

 blocks to next core Binary containing

generator prefixes &

marshal Instructions

Hardware

48

Compiler/Profiler

49

Profiling Algorithm

LOAD X
STORE Y
STORE Y

LOAD Y
 ….

STORE Z

LOAD Z
 ….

Mark as Generator

Instruction

Inter-segment data

50

Marshal Instructions

 LOAD X
 STORE Y
G: STORE Y
 MARSHAL C1

 LOAD Y
 ….
G:STORE Z
 MARSHAL C2

0x5: LOAD Z
 ….

When to send (Marshal)

Where to send (C1)

DM Support/Cost

 Profiler/Compiler: Generators, marshal instructions

 ISA: Generator prefix, marshal instructions

 Library/Hardware: Bind next segment ID to a physical core

 Hardware

 Marshal Buffer

 Stores physical addresses of cache blocks to be marshaled

 16 entries enough for almost all workloads  96 bytes per core

 Ability to execute generator prefixes and marshal instructions

 Ability to push data to another cache

51

DM: Advantages, Disadvantages

 Advantages

 Timely data transfer: Push data to core before needed

 Can marshal any arbitrary sequence of lines: Identifies
generators, not patterns

 Low hardware cost: Profiler marks generators, no need for
hardware to find them

 Disadvantages

 Requires profiler and ISA support

 Not always accurate (generator set is conservative): Pollution
at remote core, wasted bandwidth on interconnect

 Not a large problem as number of inter-segment blocks is small

52

53

Accelerated Critical Sections with DM

Small Core 0

Marshal

Buffer

Large Core

 LOAD X
 STORE Y
G: STORE Y
 CSCALL

 LOAD Y
 ….
G:STORE Z
 CSRET

Cache Hit!

L2
Cache

L2
Cache Data Y

Addr Y

Critical

Section

Accelerated Critical Sections: Methodology

 Workloads: 12 critical section intensive applications

 Data mining kernels, sorting, database, web, networking

 Different training and simulation input sets

 Multi-core x86 simulator

 1 large and 28 small cores

 Aggressive stream prefetcher employed at each core

 Details:

 Large core: 2GHz, out-of-order, 128-entry ROB, 4-wide, 12-stage

 Small core: 2GHz, in-order, 2-wide, 5-stage

 Private 32 KB L1, private 256KB L2, 8MB shared L3

 On-chip interconnect: Bi-directional ring, 5-cycle hop latency

54

55

DM on Accelerated Critical Sections: Results

0

20

40

60

80

100

120

140

is

pag
em

in
e

puzz
le

qso
rt

ts
p

m
az

e

nque
en

sq
lit

e

ip
lo

oku
p

m
ys

ql-1

m
ys

ql-2

w
eb

ca
ch

e

hm
ea

n

S
p

e
e

d
u

p
 o

v
e

r
A

C
S

DM

Ideal

 168 170

8.7%

56

Pipeline Parallelism

Core 0

Marshal

Buffer

Core 1

 LOAD X
 STORE Y
G: STORE Y
 MARSHAL C1

 LOAD Y
 ….
G:STORE Z
 MARSHAL C2

0x5: LOAD Z
 ….

Cache Hit!

L2
Cache

L2
Cache Data Y

Addr Y

S0

S1

S2

Pipeline Parallelism: Methodology

 Workloads: 9 applications with pipeline parallelism

 Financial, compression, multimedia, encoding/decoding

 Different training and simulation input sets

 Multi-core x86 simulator

 32-core CMP: 2GHz, in-order, 2-wide, 5-stage

 Aggressive stream prefetcher employed at each core

 Private 32 KB L1, private 256KB L2, 8MB shared L3

 On-chip interconnect: Bi-directional ring, 5-cycle hop latency

57

58

DM on Pipeline Parallelism: Results

0

20

40

60

80

100

120

140

160

bla
ck

co
m

pre
ss

dedupD

dedupE

fe
rr

et

im
ag

e

m
tw

is
t

ra
nk

si
gn

hm
ea

n
 S

p
e
e
d

u
p

 o
v
e
r

B
a
s
e
li

n
e

 DM
 Ideal

16%

DM Coverage, Accuracy, Timeliness

 High coverage of inter-segment misses in a timely manner

 Medium accuracy does not impact performance

 Only 5.0 and 6.8 cache blocks marshaled for average segment

59

0

10

20

30

40

50

60

70

80

90

100

ACS Pipeline

P
e

rc
e

n
ta

g
e

Coverage

Accuracy

Timeliness

Scaling Results

 DM performance improvement increases with

 More cores

 Higher interconnect latency

 Larger private L2 caches

 Why? Inter-segment data misses become a larger bottleneck

 More cores  More communication

 Higher latency  Longer stalls due to communication

 Larger L2 cache  Communication misses remain

60

61

Other Applications of Data Marshaling

 Can be applied to other Staged Execution models

 Task parallelism models

 Cilk, Intel TBB, Apple Grand Central Dispatch

 Special-purpose remote functional units

 Computation spreading [Chakraborty et al., ASPLOS’06]

 Thread motion/migration [e.g., Rangan et al., ISCA’09]

 Can be an enabler for more aggressive SE models

 Lowers the cost of data migration

 an important overhead in remote execution of code segments

 Remote execution of finer-grained tasks can become more
feasible  finer-grained parallelization in multi-cores

Data Marshaling Summary

 Inter-segment data transfers between cores limit the benefit
of promising Staged Execution (SE) models

 Data Marshaling is a hardware/software cooperative solution:
detect inter-segment data generator instructions and push
their data to next segment’s core

 Significantly reduces cache misses for inter-segment data

 Low cost, high-coverage, timely for arbitrary address sequences

 Achieves most of the potential of eliminating such misses

 Applicable to several existing Staged Execution models

 Accelerated Critical Sections: 9% performance benefit

 Pipeline Parallelism: 16% performance benefit

 Can enable new models very fine-grained remote execution

62

Outline

 How Do We Get There: Examples

 Accelerated Critical Sections (ACS)

 Bottleneck Identification and Scheduling (BIS)

 Staged Execution and Data Marshaling

 Asymmetry in Memory

 Thread Cluster Memory Scheduling

 Heterogeneous DRAM+NVM Main Memory

63

We did not cover the following slides in lecture.

These are for your preparation for the next lecture.

Motivation

• Memory is a shared resource

• Threads’ requests contend for memory

– Degradation in single thread performance

– Can even lead to starvation

• How to schedule memory requests to increase
both system throughput and fairness?

 65

Core Core

Core Core
Memory

Previous Scheduling Algorithms are Biased

66

System throughput
bias

Fairness
bias

No previous memory scheduling algorithm provides
both the best fairness and system throughput

Better system throughput

B
et

te
r

fa
ir

n
e

ss

Take turns accessing memory

Why do Previous Algorithms Fail?

67

Fairness biased approach

thread C

thread B

thread A

less memory
intensive

higher
priority

Prioritize less memory-intensive threads

Throughput biased approach

Good for throughput

starvation  unfairness

thread C thread B thread A

Does not starve

not prioritized 
reduced throughput

Single policy for all threads is insufficient

Insight: Achieving Best of Both Worlds

68

thread

thread

higher
priority

thread

thread

thread

thread

thread

thread

Prioritize memory-non-intensive threads

For Throughput

Unfairness caused by memory-intensive
being prioritized over each other
• Shuffle threads

Memory-intensive threads have
different vulnerability to interference
• Shuffle asymmetrically

For Fairness

thread

thread

thread

thread

Overview: Thread Cluster Memory Scheduling

1. Group threads into two clusters
2. Prioritize non-intensive cluster
3. Different policies for each cluster

69

thread

Threads in the system

thread

thread

thread

thread

thread

thread

Non-intensive
cluster

Intensive cluster

thread

thread

thread

Memory-non-intensive

Memory-intensive

Prioritized

higher
priority

higher
priority

Throughput

Fairness

Prioritize threads according to MPKI

•Increases system throughput

– Least intensive thread has the greatest potential
for making progress in the processor

Non-Intensive Cluster

70

thread

thread

thread

thread

higher
priority lowest MPKI

highest MPKI

Periodically shuffle the priority of threads

• Is treating all threads equally good enough?

• BUT: Equal turns ≠ Same slowdown

Intensive Cluster

71

thread

thread

thread

Increases fairness

Most prioritized higher
priority

thread

thread

thread

Results: Fairness vs. Throughput

72

Better system throughput

B
et

te
r

fa
ir

n
e

ss

5%

39%

8%

5%

TCM provides best fairness and system throughput

Averaged over 96 workloads

Results: Fairness-Throughput Tradeoff

73

When configuration parameter is varied…

Adjusting
ClusterThreshold

TCM allows robust fairness-throughput tradeoff

STFM
PAR-BS

ATLAS

TCM

Better system throughput

B
et

te
r

fa
ir

n
e

ss
 FRFCFS

TCM Summary

74

• No previous memory scheduling algorithm provides
both high system throughput and fairness

– Problem: They use a single policy for all threads

• TCM is a heterogeneous scheduling policy

1.Prioritize non-intensive cluster  throughput

2.Shuffle priorities in intensive cluster  fairness

3.Shuffling should favor nice threads  fairness

• Heterogeneity in memory scheduling provides the
best system throughput and fairness

More Details on TCM

• Kim et al., “Thread Cluster Memory Scheduling:
Exploiting Differences in Memory Access Behavior,”
MICRO 2010, Top Picks 2011.

75

Memory Control in CPU-GPU Systems

 Observation: Heterogeneous CPU-GPU systems require

memory schedulers with large request buffers

 Problem: Existing monolithic application-aware memory

scheduler designs are hard to scale to large request buffer sizes

 Solution: Staged Memory Scheduling (SMS)

decomposes the memory controller into three simple stages:

1) Batch formation: maintains row buffer locality

2) Batch scheduler: reduces interference between applications

3) DRAM command scheduler: issues requests to DRAM

 Compared to state-of-the-art memory schedulers:

 SMS is significantly simpler and more scalable

 SMS provides higher performance and fairness

 76 Ausavarungnirun et al., “Staged Memory Scheduling,” ISCA 2012.

file://localhost/Users/omutlu/Documents/presentations/CMU/Samsung%20Memory%20June%2021%202012/Previous%20Presentations/rachata_isca12_talk.pptx

Asymmetric Memory QoS in a Parallel Application

 Threads in a multithreaded application are inter-dependent

 Some threads can be on the critical path of execution due
to synchronization; some threads are not

 How do we schedule requests of inter-dependent threads
to maximize multithreaded application performance?

 Idea: Estimate limiter threads likely to be on the critical path and
prioritize their requests; shuffle priorities of non-limiter threads
to reduce memory interference among them [Ebrahimi+, MICRO’11]

 Hardware/software cooperative limiter thread estimation:

 Thread executing the most contended critical section

 Thread that is falling behind the most in a parallel for loop

 77 Ebrahimi et al., “Parallel Application Memory Scheduling,” MICRO 2011.

file://localhost/Users/omutlu/Documents/presentations/CMU/Samsung%20Memory%20June%2021%202012/Previous%20Presentations/ebrahimi_micro2011_talk.pptx

Outline

 How Do We Get There: Examples

 Accelerated Critical Sections (ACS)

 Bottleneck Identification and Scheduling (BIS)

 Staged Execution and Data Marshaling

 Asymmetry in Memory

 Thread Cluster Memory Scheduling

 Heterogeneous DRAM+NVM Main Memory

78

Heterogeneous Memory Systems

Meza, Chang, Yoon, Mutlu, Ranganathan, “Enabling Efficient and Scalable Hybrid Memories,”

IEEE Comp. Arch. Letters, 2012.

CPU
DRA
MCtrl

Fast, durable
Small,

leaky, volatile,
high-cost

Large, non-volatile, low-cost
Slow, wears out, high active energy

PCM
Ctrl DRAM Phase Change Memory (or Tech. X)

Hardware/software manage data allocation and movement
to achieve the best of multiple technologies

One Option: DRAM as a Cache for PCM

 PCM is main memory; DRAM caches memory rows/blocks

 Benefits: Reduced latency on DRAM cache hit; write filtering

 Memory controller hardware manages the DRAM cache

 Benefit: Eliminates system software overhead

 Three issues:

 What data should be placed in DRAM versus kept in PCM?

 What is the granularity of data movement?

 How to design a low-cost hardware-managed DRAM cache?

 Two idea directions:

 Locality-aware data placement [Yoon+ , ICCD 2012]

 Cheap tag stores and dynamic granularity [Meza+, IEEE CAL 2012]

 80

Summary
 Applications and phases have varying performance requirements

 Designs evaluated on multiple metrics/constraints: energy,
performance, reliability, fairness, …

 One-size-fits-all design cannot satisfy all requirements and metrics:
cannot get the best of all worlds

 Asymmetry enables tradeoffs: can get the best of all worlds

 Asymmetry in core microarch.  Accelerated Critical Sections, BIS, DM
 Good parallel performance + Good serialized performance

 Asymmetry in memory scheduling  Thread Cluster Memory Scheduling
 Good throughput + good fairness

 Asymmetry in main memory  Data Management for DRAM-PCM
Hybrid Memory  Good performance + good efficiency

 Simple asymmetric designs can be effective and low-cost

81

