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Reminder: Review Assignments 

 Due: Friday, September 21, 11:59pm. 

 

 Smith, “Architecture and applications of the HEP multiprocessor 
computer system,” SPIE 1981. 

 

 Tullsen et al., “Exploiting Choice: Instruction Fetch and Issue on 
an Implementable Simultaneous Multithreading Processor,” ISCA 
1996. 

 

 Chappell et al., “Simultaneous Subordinate Microthreading 
(SSMT),” ISCA 1999. 

 

 Reinhardt and Mukherjee, “Transient Fault Detection via 
Simultaneous Multithreading,” ISCA 2000. 
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Other Recommended Papers 

 Ipek et al., “Core fusion: accommodating software diversity 
in chip multiprocessors,” ISCA 2007. 

 

 Ausavarugnirun et al., “Staged memory scheduling: 
Achieving high performance and scalability in 
heterogeneous systems,” ISCA 2012. 
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Last Lecture 

 An Early History of Multi-Core 

 

 Homogeneous Multi-Core Evolution 

 

 From Symmetry to Asymmetry 
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Today 

 More on Asymmetric Multi-Core 

 

 And, Asymmetry in General 
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Asymmetric Multi-Core 
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Review: Can We Get the Best of Both Worlds? 

 Tile Large 

 + High performance on single thread, serial code sections (2 
units) 

 - Low throughput on parallel program portions (8 units) 

 

 Tile Small 

 + High throughput on the parallel part (16 units) 

 - Low performance on the serial part, single thread (1 unit), 
reduced single-thread performance compared to existing single 
thread processors 

 

 Idea: Have both large and small on the same chip  

Performance asymmetry 
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Review: Asymmetric Chip Multiprocessor (ACMP) 

 

 

 

 

 

 

 

 

 Provide one large core and many small cores 

+ Accelerate serial part using the large core (2 units) 

+ Execute parallel part on all cores for high throughput (14 
units) 
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Review: EPI Throttling 

 Goal: Minimize execution time of parallel programs while 
keeping power within a fixed budget  

 For best scalar and throughput performance, vary energy 
expended per instruction (EPI) based on available 
parallelism  

 P = EPI •IPS  

 P = fixed power budget  

 EPI = energy per instruction  

 IPS = aggregate instructions retired per second  

 Idea: For a fixed power budget  

 Run sequential phases on high-EPI processor  

 Run parallel phases on multiple low-EPI processors 

9 



Review: EPI Throttling via DVFS 

 DVFS: Dynamic voltage frequency scaling 

 

 In phases of low thread parallelism 

 Run a few cores at high supply voltage and high frequency 

 

 In phases of high thread parallelism 

 Run many cores at low supply voltage and low frequency 
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EPI Throttling (Annavaram et al., ISCA’05) 

 Static AMP  

 Duty cycles set once prior to program run  

 Parallel phases run on 3P/1.25GHz  

 Sequential phases run on 1P/2GHz  

 Affinity guarantees sequential on 1P and parallel on 3 

 Benchmarks that rapidly transition between sequential and 
parallel phases  

 

 Dynamic AMP  

 Duty cycle changes during program run  

 Parallel phases run on all or a subset of four processors 

 Sequential phases of execution on 1P/2GHz  

 Benchmarks with long sequential and parallel phases 
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EPI Throttling (Annavaram et al., ISCA’05) 

 Evaluation on Base SMP: 4 Base SMP: 4-way 2GHz Xeon, 
2MB L3, 4GB Memory 

 

 Hand-modified programs  

 OMP threads set to 3 for static AMP  

 Calls to set affinity in each thread for static AMP  

 Calls to change duty cycle and to set affinity in dynamic AMP  
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EPI Throttling (Annavaram et al., ISCA’05) 

 

 

 

 

 

 

 

 

 

 

 Frequency boosting AMP improves performance compared 
to 4-way SMP for many applications 
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EPI Throttling 

 Why does Frequency Boosting (FB) AMP not always 
improve performance? 

 

 Loss of throughput in static AMP (only 3 processors in 
parallel portion) 

 Is this really the best way of using FB-AMP? 

 

 Rapid transitions between serial and parallel phases 

 Data/thread migration and throttling overhead  

 

 Boosting frequency does not help memory-bound phases 
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Review So Far 

 Symmetric Multicore 

 Evolution of Sun’s and IBM’s Multicore systems and design 
choices 

 Niagara, Niagara 2, ROCK 

 IBM POWERx  

 

 Asymmetric multicore 

 Motivation 

 Functional vs. Performance Asymmetry 

 Static vs. Dynamic Asymmetry 

 EPI Throttling 
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Design Tradeoffs in ACMP (I) 

 Hardware Design Effort vs. Programmer Effort 

- ACMP requires more design effort 

+ Performance becomes less dependent on length of the serial part 

+ Can reduce programmer effort: Serial portions are not as bad for 
performance with ACMP 

 

 Migration Overhead vs. Accelerated Serial Bottleneck 

+ Performance gain from faster execution of serial portion 

- Performance loss when architectural state is migrated/switched 
in when the master changes 
 Can be alleviated with multithreading and hidden by long serial portion 

- Serial portion incurs cache misses when it needs data 
generated by the parallel portion 

- Parallel portion incurs cache misses when it needs data 
generated by the serial portion 
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Design Tradeoffs in ACMP (II) 

 Fewer threads vs. accelerated serial bottleneck 

+ Performance gain from accelerated serial portion 

- Performance loss due to unavailability of L threads in parallel 
portion 

   

 This need not be the case  Large core can implement 

Multithreading to improve parallel throughput 

 As the number of cores (threads) on chip increases, fractional 
loss in parallel performance decreases 
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Uses of Asymmetry 

 So far: 

 Improvement in serial performance (sequential bottleneck) 

 

 What else can we do with asymmetry? 

 Energy reduction? 

 Energy/performance tradeoff?  

 Improvement in parallel portion? 
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Use of Asymmetry for Energy Efficiency 

 Kumar et al., “Single-ISA Heterogeneous Multi-Core Architectures: The 
Potential for Processor Power Reduction,” MICRO 2003. 

 

 Idea:  

 Implement multiple types of cores on chip 

 Monitor characteristics of the running thread (e.g., sample energy/perf 
on each core periodically) 

 Dynamically pick the core that provides the best energy/performance 
tradeoff for a given phase 

 “Best core”  Depends on optimization metric 
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Use of Asymmetry for Energy Efficiency 
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Use of Asymmetry for Energy Efficiency 

 Advantages  

+ More flexibility in energy-performance tradeoff 

+ Can execute computation to the core that is best suited for it (in terms of 
energy) 

 

 Disadvantages/issues 

- Incorrect predictions/sampling  wrong core  reduced performance or 

increased energy 

- Overhead of core switching 

- Disadvantages of asymmetric CMP (e.g., design multiple cores) 

- Need phase monitoring and matching algorithms 

 - What characteristics should be monitored? 

 - Once characteristics known, how do you pick the core?  
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Use of ACMP to Improve Parallel Portion Performance 

 Mutual Exclusion: 

 Threads are not allowed to update shared data concurrently 

 

 Accesses to shared data are encapsulated inside  
critical sections 

 

 Only one thread can execute a critical section at  
a given time 

 

 Idea: Ship critical sections to a large core 

 Suleman et al., “Accelerating Critical Section Execution with 
Asymmetric Multi-Core Architectures,” ASPLOS 2009, IEEE 
Micro Top Picks 2010.  
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Use of ACMP to Improve Parallel Portion Performance 

 Suleman et al., “Accelerating Critical Section Execution with 
Asymmetric Multi-Core Architectures,” ASPLOS 2009, IEEE 
Micro Top Picks 2010.  

 

 Joao et al., “Bottleneck Identification and Scheduling,” 
ASPLOS 2012. 
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Asymmetry Everywhere 
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The Setting 

 Hardware resources are shared among many threads/apps 
in a many-core system 

 Cores, caches, interconnects, memory, disks, power, lifetime, 
… 

 

 Management of these resources is a very difficult task 

 When optimizing parallel/multiprogrammed workloads 

 Threads interact unpredictably/unfairly in shared resources 

 

 Power/energy consumption is arguably the most valuable 
shared resource 

 Main limiter to efficiency and performance 
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Shield the Programmer from Shared Resources 

 Writing even sequential software is hard enough 

 Optimizing code for a complex shared-resource parallel system 
will be a nightmare for most programmers 

 

 Programmer should not worry about                   
(hardware) resource management 

 What should be executed where with what resources 

 

 Future computer architectures should be designed to 

 Minimize programmer effort to optimize (parallel) programs 

 Maximize runtime system’s effectiveness in automatic     
shared resource management 
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Shared Resource Management: Goals 

 Future many-core systems should manage power and 
performance automatically across threads/applications 

 

 Minimize energy/power consumption 

 While satisfying performance/SLA requirements 

 Provide predictability and Quality of Service 

 Minimize programmer effort 

 In creating optimized parallel programs 

 

 Asymmetry and configurability in system resources essential 
to achieve these goals  
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Asymmetry Enables Customization 

 

 

 

 

 

 

 

 Symmetric: One size fits all 

 Energy and performance suboptimal for different phase behaviors 

 Asymmetric: Enables tradeoffs and customization 

 Processing requirements vary across applications and phases 

 Execute code on best-fit resources (minimal energy, adequate perf.) 
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Thought Experiment: Asymmetry Everywhere 

 Design each hardware resource with asymmetric, (re-
)configurable, partitionable components 

 Different power/performance/reliability characteristics 

 To fit different computation/access/communication patterns 
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Thought Experiment: Asymmetry Everywhere 
 

 Design the runtime system (HW & SW) to automatically choose 
the best-fit components for each phase 

 Satisfy performance/SLA with minimal energy 

 Dynamically stitch together the “best-fit” chip for each phase  
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Thought Experiment: Asymmetry Everywhere 
 

 Morph software components to match asymmetric HW 
components  

 Multiple versions for different resource characteristics 
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Thought Experiment: Asymmetry Everywhere 

 Design each hardware resource with asymmetric, (re-
)configurable, partitionable components 

 

 

 

 Design the runtime system (HW & SW) to automatically 
choose the best-fit components for each phase 

 

 

 

 Morph software components to match asymmetric HW 
components  
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Many Research and Design Questions 

 How to design asymmetric components? 

 Fixed, partitionable, reconfigurable components? 

 What types of asymmetry? Access patterns, technologies? 

 

 What monitoring to perform cooperatively in HW/SW? 

 To characterize a phase and match it to best-fit components 

 Automatically discover phase/task requirements 

 

 How to design feedback/control loop between components and 
runtime system software? 

 

 How to design the runtime to automatically manage resources? 

 Track task behavior, pick “best-fit” components for the entire workload 
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Summary of the Thought Experiment 
 Need to minimize energy while satisfying performance requirements 

 While also minimizing programmer effort 

 

 Asymmetry key to energy/performance/reliability tradeoffs 

 

 Design systems with many asymmetric/partitionable components 

 Many types of cores, memories, interconnects, … 

 Partitionable/configurable components, customized accelerators on chip 

 

 Provide all-automatic resource management 

 Impose structure: HW and SW cooperatively map phases to components 

 Dynamically stitch together the system that best fits the running tasks 

 

 Programmer does not need to worry about complex resource sharing 
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Outline 

 How Do We Get There: Examples 

 

 Accelerated Critical Sections (ACS) 

 Bottleneck Identification and Scheduling (BIS) 

 Staged Execution and Data Marshaling 

 

 Asymmetry in Memory 

 Thread Cluster Memory Scheduling 

 Heterogeneous DRAM+NVM Main Memory 
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Exploiting Asymmetry: Simple Examples 
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 Execute critical/serial sections on high-power, high-performance 
cores/resources [Suleman+ ASPLOS’09, ISCA’10, Top Picks’10’11, Joao+ ASPLOS’12] 

 Programmer can write less optimized, but more likely correct programs  



Exploiting Asymmetry: Simple Examples 
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 Execute streaming “memory phases” on streaming-optimized 
cores and memory hierarchies 

 More efficient and higher performance than general purpose hierarchy 



Exploiting Asymmetry: Simple Examples 
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 Partition memory controller and on-chip network bandwidth 
asymmetrically among threads [Kim+ HPCA 2010, MICRO 2010, Top Picks 

2011] [Nychis+ HotNets 2010] [Das+ MICRO 2009, ISCA 2010, Top Picks 2011] 

 Higher performance and energy-efficiency than symmetric/free-for-all 



Exploiting Asymmetry: Simple Examples 
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 Have multiple different memory scheduling policies apply them to 

different sets of threads based on thread behavior [Kim+ MICRO 

2010, Top Picks 2011] [Ausavarungnirun, ISCA 2012] 

 Higher performance and fairness than a homogeneous policy 



Exploiting Asymmetry: Simple Examples 
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 Build main memory with different technologies with different 
characteristics (energy, latency, wear, bandwidth) [Meza+ IEEE CAL’12] 

 Map pages/applications to the best-fit memory resource 



Outline 

 How Do We Get There: Examples 

 

 Accelerated Critical Sections (ACS) 

 Bottleneck Identification and Scheduling (BIS) 

 Staged Execution and Data Marshaling 

 

 Asymmetry in Memory 

 Thread Cluster Memory Scheduling 

 Heterogeneous DRAM+NVM Main Memory 
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Serialized Code Sections in Parallel Applications 

 Multithreaded applications: 

 Programs split into threads 

 

 Threads execute concurrently on multiple cores 

 

 Many programs cannot be parallelized completely 

 

 Serialized code sections: 

 Reduce performance 

 Limit scalability 

 Waste energy 
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Causes of Serialized Code Sections 

 Sequential portions (Amdahl’s “serial part”) 

 Critical sections 

 Barriers 

 Limiter stages in pipelined programs 
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Bottlenecks in Multithreaded Applications 

Definition: any code segment for which threads contend (i.e. wait) 
 

Examples: 
 

 Amdahl’s serial portions 
 Only one thread exists  on the critical path 

 

 Critical sections 
 Ensure mutual exclusion  likely to be on the critical path if contended 

 

 Barriers 
 Ensure all threads reach a point before continuing  the latest thread arriving 

is on the critical path 
 

 Pipeline stages 

 Different stages of a loop iteration may execute on different threads,  
slowest stage makes other stages wait  on the critical path 
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Critical Sections 

 Threads are not allowed to update shared data concurrently 

 For correctness (mutual exclusion principle) 

 

 Accesses to shared data are encapsulated inside  
critical sections 

 

 Only one thread can execute a critical section at  
a given time 
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Example from MySQL 
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…. 
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Parallel 

Access Open Tables Cache 



Contention for Critical Sections 
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Contention for Critical Sections 
 

48 

0 

Critical 

Section 

Parallel 

Idle 

12 iterations, 33% instructions inside the critical section 

P = 1 

P = 3 

P = 2 

P = 4 

1 2 3 4 5 6 7 8 9 10 11 12 

Accelerating critical sections  
increases performance and scalability 

Critical  

Section 

Accelerated 

by 2x 
 



Impact of Critical Sections on Scalability 

 Contention for critical sections leads to serial execution 
(serialization) of threads in the parallel program portion 

 Contention for critical sections increases with the number of 
threads and limits scalability 
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A Case for Asymmetry 

 Execution time of sequential kernels, critical sections, and 
limiter stages must be short 
 

 It is difficult for the programmer to shorten these 
serialized sections 

 Insufficient domain-specific knowledge 

 Variation in hardware platforms  

 Limited resources 
 

 Goal: A mechanism to shorten serial bottlenecks without 
requiring programmer effort 
 

 Idea: Accelerate serialized code sections by shipping them 
to powerful cores in an asymmetric multi-core (ACMP) 
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ACMP 

 

 

 

 

 

 

 
 

 Provide one large core and many small cores 

 Execute parallel part on small cores for high throughput 

 Accelerate serialized sections using the large core 

 Baseline: Amdahl’s serial part accelerated [Morad+ CAL 2006, 

Suleman+, UT-TR 2007] 
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Conventional ACMP 
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Accelerated Critical Sections (ACS) 

 

 

 

 

 

 

 
 

 Accelerate Amdahl’s serial part and critical sections 
using the large core 

 Suleman et al., “Accelerating Critical Section Execution with 
Asymmetric Multi-Core Architectures,” ASPLOS 2009, IEEE 
Micro Top Picks 2010.  
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Accelerated Critical Sections (ACS) 
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ACS Architecture Overview 

 ISA extensions 
 CSCALL  LOCK_ADDR, TARGET_PC 
 CSRET   LOCK_ADDR 

 

 Compiler/Library inserts CSCALL/CSRET 
 

 On a CSCALL, the small core: 
 Sends a CSCALL request to the large core 

 Arguments: Lock address, Target PC, Stack Pointer, Core ID 

 Stalls and waits for CSDONE 

 
 Large Core 

 Critical Section Request Buffer (CSRB) 
 Executes the critical section and sends CSDONE to the requesting 

core 
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Accelerated Critical Sections (ACS) 
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A = compute() 

 

LOCK X 

      result = CS(A) 

UNLOCK X 

 

print result 
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STACK_PTR, CORE_ID 

PUSH A 
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… 

… 

… 
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result  = CS(A) 
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TPC:  

POP result 

print result 

… 

… 

… 

… 

… 

… 

… 
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False Serialization 

 ACS can serialize independent critical sections 
 

 Selective Acceleration of Critical Sections (SEL) 

 Saturating counters to track false serialization 
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ACS Performance Tradeoffs 

 Pluses 

+ Faster critical section execution 

+ Shared locks stay in one place: better lock locality 

+ Shared data stays in large core’s (large) caches: better shared 
data locality, less ping-ponging 

 

 Minuses 

- Large core dedicated for critical sections: reduced parallel 
throughput 

- CSCALL and CSDONE control transfer overhead 

- Thread-private data needs to be transferred to large core: worse 
private data locality 
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ACS Performance Tradeoffs 

 Fewer parallel threads vs. accelerated critical sections 
 Accelerating critical sections offsets loss in throughput 

 As the number of cores (threads) on chip increase: 
 Fractional loss in parallel performance decreases 

 Increased contention for critical sections  
makes acceleration more beneficial 

 

 Overhead of CSCALL/CSDONE vs. better lock locality 
 ACS avoids “ping-ponging” of locks among caches by keeping them at 

the large core 

 

 More cache misses for private data vs. fewer misses 
for shared data 

 

59 



Cache Misses for Private Data 
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Private Data: 

NewSubProblems 

Shared Data:   

The priority heap 

 
PriorityHeap.insert(NewSubProblems) 

 

Puzzle Benchmark 



ACS Performance Tradeoffs 

 Fewer parallel threads vs. accelerated critical sections 
 Accelerating critical sections offsets loss in throughput 

 As the number of cores (threads) on chip increase: 
 Fractional loss in parallel performance decreases 

 Increased contention for critical sections  
makes acceleration more beneficial 

 

 Overhead of CSCALL/CSDONE vs. better lock locality 
 ACS avoids “ping-ponging” of locks among caches by keeping them at 

the large core 

 

 More cache misses for private data vs. fewer misses 
for shared data 
 Cache misses reduce if shared data > private data 
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ACS Comparison Points 

 Conventional 
locking 
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Accelerated Critical Sections: Methodology 

 Workloads: 12 critical section intensive applications 

 Data mining kernels, sorting, database, web, networking 
 

 Multi-core x86 simulator 

 1 large and 28 small cores  

 Aggressive stream prefetcher employed at each core 
 

 Details: 

 Large core: 2GHz, out-of-order, 128-entry ROB, 4-wide, 12-stage 

 Small core: 2GHz, in-order, 2-wide, 5-stage 

 Private 32 KB L1, private 256KB L2, 8MB shared L3 

 On-chip interconnect: Bi-directional ring, 5-cycle hop latency 
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ACS Performance 
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Equal-Area Comparisons 
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ACS Summary 

 Critical sections reduce performance and limit scalability 

 

 Accelerate critical sections by executing them on a powerful 
core 

 

 ACS reduces average execution time by: 

 34% compared to an equal-area SCMP 

 23% compared to an equal-area ACMP 

 

 ACS improves scalability of 7 of the 12 workloads 

 

 Generalizing the idea: Accelerate all bottlenecks (“critical 
paths”) by executing them on a powerful core 
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Outline 

 How Do We Get There: Examples 

 

 Accelerated Critical Sections (ACS) 

 Bottleneck Identification and Scheduling (BIS) 

 Staged Execution and Data Marshaling 

 

 Asymmetry in Memory 

 Thread Cluster Memory Scheduling 

 Heterogeneous DRAM+NVM Main Memory 
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BIS Summary 
 Problem: Performance and scalability of multithreaded applications  

are limited by serializing bottlenecks 

 different types: critical sections, barriers, slow pipeline stages 

 importance (criticality) of a bottleneck can change over time 
 

 Our Goal: Dynamically identify the most important bottlenecks and  
accelerate them 

 How to identify the most critical bottlenecks 

 How to efficiently accelerate them 
 

 Solution: Bottleneck Identification and Scheduling (BIS) 

 Software: annotate bottlenecks (BottleneckCall, BottleneckReturn) and 
implement waiting for bottlenecks with a special instruction (BottleneckWait) 

 Hardware: identify bottlenecks that cause the most thread waiting and 
accelerate those bottlenecks on large cores of an asymmetric multi-core system 
 

 Improves multithreaded application performance and scalability, 
outperforms previous work, and performance improves with more cores 
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Bottlenecks in Multithreaded Applications 

Definition: any code segment for which threads contend (i.e. wait) 
 

Examples: 
 

 Amdahl’s serial portions 
 Only one thread exists  on the critical path 

 

 Critical sections 
 Ensure mutual exclusion  likely to be on the critical path if contended 

 

 Barriers 
 Ensure all threads reach a point before continuing  the latest thread arriving 

is on the critical path 
 

 Pipeline stages 

 Different stages of a loop iteration may execute on different threads,  
slowest stage makes other stages wait  on the critical path 
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Observation: Limiting Bottlenecks Change Over Time 

A=full linked list; B=empty linked list 

repeat 

 Lock A 

  Traverse list A 

  Remove X from A 

 Unlock A 

 Compute on X 

 Lock B 

  Traverse list B 

  Insert X into B 

 Unlock B 

until A is empty 
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Lock A is limiter 
Lock B is limiter 

32 threads 



Limiting Bottlenecks Do Change on Real Applications 
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MySQL running Sysbench queries, 16 threads 



Previous Work on Bottleneck Acceleration 

 Asymmetric CMP (ACMP) proposals [Annavaram+, ISCA’05]  

[Morad+, Comp. Arch. Letters’06] [Suleman+, Tech. Report’07] 

 Accelerate only the Amdahl’s bottleneck 
 

 Accelerated Critical Sections (ACS) [Suleman+, ASPLOS’09] 

 Accelerate only critical sections 

 Does not take into account importance of critical sections 
 

 Feedback-Directed Pipelining (FDP) [Suleman+, PACT’10 and PhD thesis’11] 

 Accelerate only stages with lowest throughput 

 Slow to adapt to phase changes (software based library) 

 

No previous work can accelerate all three types of bottlenecks or  
quickly adapts to fine-grain changes in the importance of bottlenecks 

 

Our goal: general mechanism to identify performance-limiting bottlenecks of 
any type and accelerate them on an ACMP 
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Bottleneck Identification and Scheduling (BIS) 

 Key insight: 

 Thread waiting reduces parallelism and  
is likely to reduce performance 

 Code causing the most thread waiting                             
 likely critical path 
 

 

 

 Key idea: 

 Dynamically identify bottlenecks that cause  
the most thread waiting 

 Accelerate them (using powerful cores in an ACMP) 



1. Annotate 
bottleneck code 

2. Implement waiting 
     for bottlenecks 

1. Measure thread  

waiting cycles (TWC) 

for each bottleneck 

2. Accelerate bottleneck(s) 

with the highest TWC 

Binary containing  

 BIS instructions 

Compiler/Library/Programmer Hardware 
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Bottleneck Identification and Scheduling (BIS) 



   while cannot acquire lock 

    Wait loop for watch_addr 

   acquire lock 

   … 

   release lock 

 

Critical Sections: Code Modifications 

   … 

   BottleneckCall bid, targetPC 

   … 

targetPC:  while cannot acquire lock 

    Wait loop for watch_addr 

   acquire lock 

   … 

   release lock 

   BottleneckReturn bid 
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 BottleneckWait bid, watch_addr 

   … 

 

 

 

 

 

   … 
Used to keep track of 

waiting cycles 

Used to enable 
acceleration 
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Barriers: Code Modifications 

   … 

   BottleneckCall bid, targetPC 

   enter barrier 

   while not all threads in barrier 

    BottleneckWait bid, watch_addr 

   exit barrier 

   … 

targetPC:  code running for the barrier 

   … 

   BottleneckReturn bid 
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Pipeline Stages: Code Modifications 

   BottleneckCall bid, targetPC 

   … 

targetPC: while not done 

    while empty queue 

     BottleneckWait prev_bid 

    dequeue work 

    do the work … 

    while full queue 

     BottleneckWait next_bid 

    enqueue next work 

   BottleneckReturn bid 

 



1. Annotate 
bottleneck code 

2. Implements waiting 
     for bottlenecks 

1. Measure thread  

waiting cycles (TWC) 

for each bottleneck 

2. Accelerate bottleneck(s) 

with the highest TWC 

Binary containing  

 BIS instructions 

Compiler/Library/Programmer Hardware 
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Bottleneck Identification and Scheduling (BIS) 



We did not cover the following slides in lecture. 

These are for your preparation for the next lecture.  



BIS: Hardware Overview 

 Performance-limiting bottleneck identification and 
acceleration are independent tasks 

 Acceleration can be accomplished in multiple ways 

 Increasing core frequency/voltage 

 Prioritization in shared resources [Ebrahimi+, MICRO’11] 

 Migration to faster cores in an Asymmetric CMP 
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Large core 

Small 

 core 

Small 

 core 

Small 

 core 

Small 

 core 

Small 

 core 

Small 

 core 

Small 

 core 

Small 

 core 

Small 

 core 

Small 

 core 
Small 

 core 

Small 

 core 



1. Annotate 
bottleneck code 

2. Implements waiting 
     for bottlenecks 

1. Measure thread  

waiting cycles (TWC) 

for each bottleneck 

2. Accelerate bottleneck(s) 

with the highest TWC 

Binary containing  

 BIS instructions 

Compiler/Library/Programmer Hardware 
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Bottleneck Identification and Scheduling (BIS) 



Determining Thread Waiting Cycles for Each Bottleneck 
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Small Core 1 Large Core 0 

Small Core 2 

Bottleneck 

Table (BT) 

… 

BottleneckWait x4500 

bid=x4500, waiters=1, twc = 0 bid=x4500, waiters=1, twc = 1 bid=x4500, waiters=1, twc = 2 

BottleneckWait x4500 

bid=x4500, waiters=2, twc = 5 bid=x4500, waiters=2, twc = 7 bid=x4500, waiters=2, twc = 9 bid=x4500, waiters=1, twc = 9 bid=x4500, waiters=1, twc = 10 bid=x4500, waiters=1, twc = 11 bid=x4500, waiters=0, twc = 11 bid=x4500, waiters=1, twc = 3 bid=x4500, waiters=1, twc = 4 bid=x4500, waiters=1, twc = 5 



1. Annotate 
bottleneck code 

2. Implements waiting 
     for bottlenecks 

1. Measure thread  

waiting cycles (TWC) 

for each bottleneck 

2. Accelerate bottleneck(s) 

with the highest TWC 

Binary containing  

 BIS instructions 

Compiler/Library/Programmer Hardware 
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Bottleneck Identification and Scheduling (BIS) 



Bottleneck Acceleration 
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Small Core 1 Large Core 0 

Small Core 2 

Bottleneck 

Table (BT) 

… 

Scheduling Buffer (SB) 

bid=x4700, pc, sp, core1 

Acceleration 

Index Table (AIT) 

BottleneckCall x4600 

Execute locally 

BottleneckCall x4700 

bid=x4700 , large core 0 

Execute remotely 

AIT 

bid=x4600, twc=100 

bid=x4700, twc=10000 

BottleneckReturn x4700 

bid=x4700 , large core 0 

bid=x4700, pc, sp, core1 

  twc < Threshold 

  twc > Threshold 

Execute locally Execute remotely 



BIS Mechanisms 

 Basic mechanisms for BIS: 

 Determining Thread Waiting Cycles   

 Accelerating Bottlenecks   

 

 Mechanisms to improve performance and generality of BIS: 

 Dealing with false serialization 

 Preemptive acceleration 

 Support for multiple large cores 
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False Serialization and Starvation 

 Observation: Bottlenecks are picked from Scheduling Buffer 
in Thread Waiting Cycles order 

 

 Problem: An independent bottleneck that is ready to execute  
has to wait for another bottleneck that has higher thread 
waiting cycles  False serialization 

 

 Starvation: Extreme false serialization 

 

 Solution: Large core detects when a bottleneck is ready to 
execute in the Scheduling Buffer but it cannot  sends the 

bottleneck back to the small core 
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Preemptive Acceleration 

 Observation: A bottleneck executing on a small core can 
become the bottleneck with the highest thread waiting cycles 

 
 

 Problem: This bottleneck should really be accelerated (i.e., 
executed on the large core) 

 
 

 Solution: The Bottleneck Table detects the situation and  
sends a preemption signal to the small core. Small core: 

 saves register state on stack, ships the bottleneck to the large core 
 

 

 

 Main acceleration mechanism for barriers and pipeline stages 
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Support for Multiple Large Cores 

 Objective: to accelerate independent bottlenecks 

 

 Each large core has its own Scheduling Buffer  
(shared by all of its SMT threads) 

 

 Bottleneck Table assigns each bottleneck to  
a fixed large core context to 

 preserve cache locality 

 avoid busy waiting 

 

 Preemptive acceleration extended to send multiple 
instances of a bottleneck to different large core contexts 
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Hardware Cost 

 Main structures: 
 

 Bottleneck Table (BT): global 32-entry associative cache, 
minimum-Thread-Waiting-Cycle replacement 

 

 Scheduling Buffers (SB): one table per large core,  
as many entries as small cores 
 

 Acceleration Index Tables (AIT): one 32-entry table 
per small core 
 

 

 

 

 Off the critical path 

 

 Total storage cost for 56-small-cores, 2-large-cores < 19 KB 
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BIS Performance Trade-offs 
 Bottleneck identification: 

 

 Small cost: BottleneckWait instruction and Bottleneck Table 
 

 

 Bottleneck acceleration on an ACMP (execution migration): 
 

 Faster bottleneck execution vs. fewer parallel threads 

 Acceleration offsets loss of parallel throughput with large core counts 
 

 Better shared data locality vs. worse private data locality 

 Shared data stays on large core (good) 

 Private data migrates to large core (bad, but latency hidden with  
Data Marshaling [Suleman+, ISCA’10]) 
 

 Benefit of acceleration vs. migration latency 

 Migration latency usually hidden by waiting (good) 

 Unless bottleneck not contended (bad, but likely to not be on critical path) 
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Methodology 

 Workloads: 8 critical section intensive, 2 barrier intensive 
and 2 pipeline-parallel applications 

 Data mining kernels, scientific, database, web, networking, specjbb 
 

 Cycle-level multi-core x86 simulator 

 8 to 64 small-core-equivalent area, 0 to 3 large cores, SMT 

 1 large core is area-equivalent to 4 small cores 
 

 Details: 

 Large core: 4GHz, out-of-order, 128-entry ROB, 4-wide, 12-stage 

 Small core: 4GHz, in-order, 2-wide, 5-stage 

 Private 32KB L1, private 256KB L2, shared 8MB L3 

 On-chip interconnect: Bi-directional ring, 2-cycle hop latency 
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BIS Comparison Points (Area-Equivalent) 

 SCMP (Symmetric CMP) 

 All small cores 

 Results in the paper 
 

 ACMP (Asymmetric CMP) 

 Accelerates only Amdahl’s serial portions 

 Our baseline 
 

 ACS (Accelerated Critical Sections) 

 Accelerates only critical sections and Amdahl’s serial portions 

 Applicable to multithreaded workloads  
(iplookup, mysql, specjbb, sqlite, tsp, webcache, mg, ft) 
 

 FDP (Feedback-Directed Pipelining) 

 Accelerates only slowest pipeline stages 

 Applicable to pipeline-parallel workloads (rank, pagemine) 
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BIS Performance Improvement 
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Optimal number of threads, 28 small cores, 1 large core 

 BIS outperforms ACS/FDP by 15% and ACMP by 32% 

 BIS improves scalability on 4 of the benchmarks 

 

barriers, which ACS  

cannot accelerate 
limiting bottlenecks change over time 

ACS FDP 



Why Does BIS Work? 
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 Coverage: fraction of program critical path that is actually identified as bottlenecks 

 39% (ACS/FDP) to 59% (BIS) 

 Accuracy: identified bottlenecks on the critical path over total identified bottlenecks 

 72% (ACS/FDP) to 73.5% (BIS) 

 

Fraction of execution time spent on predicted-important bottlenecks 

Actually critical 



BIS Scaling Results 
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Performance increases with: 

 

1) More small cores 

 Contention due to bottlenecks 
increases 

 Loss of parallel throughput due 
to large core reduces 

 

 

2) More large cores 

 Can accelerate  
independent bottlenecks 

 Without reducing parallel 
throughput (enough cores) 

2.4% 
6.2% 

15% 19% 



BIS Summary 

 Serializing bottlenecks of different types limit performance of 
multithreaded applications: Importance changes over time 
 

 BIS is a hardware/software cooperative solution:  

 Dynamically identifies bottlenecks that cause the most thread waiting 
and accelerates them on large cores of an ACMP 

 Applicable to critical sections, barriers, pipeline stages 
 

 BIS improves application performance and scalability: 

 15% speedup over ACS/FDP 

 Can accelerate multiple independent critical bottlenecks 

 Performance benefits increase with more cores 
 

 Provides comprehensive fine-grained bottleneck acceleration 
for future ACMPs with little or no programmer effort 
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