
18-742 Fall 2012

Parallel Computer Architecture

Lecture 6: Exploiting Asymmetry

Prof. Onur Mutlu

Carnegie Mellon University

9/19/2012

Reminder: Review Assignments

 Due: Friday, September 21, 11:59pm.

 Smith, “Architecture and applications of the HEP multiprocessor
computer system,” SPIE 1981.

 Tullsen et al., “Exploiting Choice: Instruction Fetch and Issue on
an Implementable Simultaneous Multithreading Processor,” ISCA
1996.

 Chappell et al., “Simultaneous Subordinate Microthreading
(SSMT),” ISCA 1999.

 Reinhardt and Mukherjee, “Transient Fault Detection via
Simultaneous Multithreading,” ISCA 2000.

2

Other Recommended Papers

 Ipek et al., “Core fusion: accommodating software diversity
in chip multiprocessors,” ISCA 2007.

 Ausavarugnirun et al., “Staged memory scheduling:
Achieving high performance and scalability in
heterogeneous systems,” ISCA 2012.

3

Last Lecture

 An Early History of Multi-Core

 Homogeneous Multi-Core Evolution

 From Symmetry to Asymmetry

4

Today

 More on Asymmetric Multi-Core

 And, Asymmetry in General

5

Asymmetric Multi-Core

6

Review: Can We Get the Best of Both Worlds?

 Tile Large

 + High performance on single thread, serial code sections (2
units)

 - Low throughput on parallel program portions (8 units)

 Tile Small

 + High throughput on the parallel part (16 units)

 - Low performance on the serial part, single thread (1 unit),
reduced single-thread performance compared to existing single
thread processors

 Idea: Have both large and small on the same chip

Performance asymmetry

 7

Review: Asymmetric Chip Multiprocessor (ACMP)

 Provide one large core and many small cores

+ Accelerate serial part using the large core (2 units)

+ Execute parallel part on all cores for high throughput (14
units)

8

Small

core

Small

core

Small

core

Small

core

Small

core

Small

core

Small

core

Small

core

Small

core

Small

core

Small

core

Small

core

Large

core

ACMP

Small

core

Small

core

Small

core

Small

core

Small

core

Small

core

Small

core

Small

core

Small

core

Small

core

Small

core

Small

core

Small

core

Small

core

Small

core

Small

core

“Tile-Small”

Large

core

Large

core

Large

core

Large

core

“Tile-Large”

Review: EPI Throttling

 Goal: Minimize execution time of parallel programs while
keeping power within a fixed budget

 For best scalar and throughput performance, vary energy
expended per instruction (EPI) based on available
parallelism

 P = EPI •IPS

 P = fixed power budget

 EPI = energy per instruction

 IPS = aggregate instructions retired per second

 Idea: For a fixed power budget

 Run sequential phases on high-EPI processor

 Run parallel phases on multiple low-EPI processors

9

Review: EPI Throttling via DVFS

 DVFS: Dynamic voltage frequency scaling

 In phases of low thread parallelism

 Run a few cores at high supply voltage and high frequency

 In phases of high thread parallelism

 Run many cores at low supply voltage and low frequency

10

EPI Throttling (Annavaram et al., ISCA’05)

 Static AMP

 Duty cycles set once prior to program run

 Parallel phases run on 3P/1.25GHz

 Sequential phases run on 1P/2GHz

 Affinity guarantees sequential on 1P and parallel on 3

 Benchmarks that rapidly transition between sequential and
parallel phases

 Dynamic AMP

 Duty cycle changes during program run

 Parallel phases run on all or a subset of four processors

 Sequential phases of execution on 1P/2GHz

 Benchmarks with long sequential and parallel phases

11

EPI Throttling (Annavaram et al., ISCA’05)

 Evaluation on Base SMP: 4 Base SMP: 4-way 2GHz Xeon,
2MB L3, 4GB Memory

 Hand-modified programs

 OMP threads set to 3 for static AMP

 Calls to set affinity in each thread for static AMP

 Calls to change duty cycle and to set affinity in dynamic AMP

12

EPI Throttling (Annavaram et al., ISCA’05)

 Frequency boosting AMP improves performance compared
to 4-way SMP for many applications

13

EPI Throttling

 Why does Frequency Boosting (FB) AMP not always
improve performance?

 Loss of throughput in static AMP (only 3 processors in
parallel portion)

 Is this really the best way of using FB-AMP?

 Rapid transitions between serial and parallel phases

 Data/thread migration and throttling overhead

 Boosting frequency does not help memory-bound phases

14

Review So Far

 Symmetric Multicore

 Evolution of Sun’s and IBM’s Multicore systems and design
choices

 Niagara, Niagara 2, ROCK

 IBM POWERx

 Asymmetric multicore

 Motivation

 Functional vs. Performance Asymmetry

 Static vs. Dynamic Asymmetry

 EPI Throttling

15

Design Tradeoffs in ACMP (I)

 Hardware Design Effort vs. Programmer Effort

- ACMP requires more design effort

+ Performance becomes less dependent on length of the serial part

+ Can reduce programmer effort: Serial portions are not as bad for
performance with ACMP

 Migration Overhead vs. Accelerated Serial Bottleneck

+ Performance gain from faster execution of serial portion

- Performance loss when architectural state is migrated/switched
in when the master changes
 Can be alleviated with multithreading and hidden by long serial portion

- Serial portion incurs cache misses when it needs data
generated by the parallel portion

- Parallel portion incurs cache misses when it needs data
generated by the serial portion

16

Design Tradeoffs in ACMP (II)

 Fewer threads vs. accelerated serial bottleneck

+ Performance gain from accelerated serial portion

- Performance loss due to unavailability of L threads in parallel
portion

 This need not be the case Large core can implement

Multithreading to improve parallel throughput

 As the number of cores (threads) on chip increases, fractional
loss in parallel performance decreases

17

Uses of Asymmetry

 So far:

 Improvement in serial performance (sequential bottleneck)

 What else can we do with asymmetry?

 Energy reduction?

 Energy/performance tradeoff?

 Improvement in parallel portion?

18

Use of Asymmetry for Energy Efficiency

 Kumar et al., “Single-ISA Heterogeneous Multi-Core Architectures: The
Potential for Processor Power Reduction,” MICRO 2003.

 Idea:

 Implement multiple types of cores on chip

 Monitor characteristics of the running thread (e.g., sample energy/perf
on each core periodically)

 Dynamically pick the core that provides the best energy/performance
tradeoff for a given phase

 “Best core” Depends on optimization metric

19

Use of Asymmetry for Energy Efficiency

20

Use of Asymmetry for Energy Efficiency

 Advantages

+ More flexibility in energy-performance tradeoff

+ Can execute computation to the core that is best suited for it (in terms of
energy)

 Disadvantages/issues

- Incorrect predictions/sampling wrong core reduced performance or

increased energy

- Overhead of core switching

- Disadvantages of asymmetric CMP (e.g., design multiple cores)

- Need phase monitoring and matching algorithms

 - What characteristics should be monitored?

 - Once characteristics known, how do you pick the core?

21

Use of ACMP to Improve Parallel Portion Performance

 Mutual Exclusion:

 Threads are not allowed to update shared data concurrently

 Accesses to shared data are encapsulated inside
critical sections

 Only one thread can execute a critical section at
a given time

 Idea: Ship critical sections to a large core

 Suleman et al., “Accelerating Critical Section Execution with
Asymmetric Multi-Core Architectures,” ASPLOS 2009, IEEE
Micro Top Picks 2010.

22

Use of ACMP to Improve Parallel Portion Performance

 Suleman et al., “Accelerating Critical Section Execution with
Asymmetric Multi-Core Architectures,” ASPLOS 2009, IEEE
Micro Top Picks 2010.

 Joao et al., “Bottleneck Identification and Scheduling,”
ASPLOS 2012.

23

Asymmetry Everywhere

24

The Setting

 Hardware resources are shared among many threads/apps
in a many-core system

 Cores, caches, interconnects, memory, disks, power, lifetime,
…

 Management of these resources is a very difficult task

 When optimizing parallel/multiprogrammed workloads

 Threads interact unpredictably/unfairly in shared resources

 Power/energy consumption is arguably the most valuable
shared resource

 Main limiter to efficiency and performance

25

Shield the Programmer from Shared Resources

 Writing even sequential software is hard enough

 Optimizing code for a complex shared-resource parallel system
will be a nightmare for most programmers

 Programmer should not worry about
(hardware) resource management

 What should be executed where with what resources

 Future computer architectures should be designed to

 Minimize programmer effort to optimize (parallel) programs

 Maximize runtime system’s effectiveness in automatic
shared resource management

 26

Shared Resource Management: Goals

 Future many-core systems should manage power and
performance automatically across threads/applications

 Minimize energy/power consumption

 While satisfying performance/SLA requirements

 Provide predictability and Quality of Service

 Minimize programmer effort

 In creating optimized parallel programs

 Asymmetry and configurability in system resources essential
to achieve these goals

27

Asymmetry Enables Customization

 Symmetric: One size fits all

 Energy and performance suboptimal for different phase behaviors

 Asymmetric: Enables tradeoffs and customization

 Processing requirements vary across applications and phases

 Execute code on best-fit resources (minimal energy, adequate perf.)

28

C4 C4

C5 C5

C4 C4

C5 C5

C2

C3

C1

Asymmetric

C C

C C

C C

C C

C C

C C

C C

C C

Symmetric

Thought Experiment: Asymmetry Everywhere

 Design each hardware resource with asymmetric, (re-
)configurable, partitionable components

 Different power/performance/reliability characteristics

 To fit different computation/access/communication patterns

29

Thought Experiment: Asymmetry Everywhere

 Design the runtime system (HW & SW) to automatically choose
the best-fit components for each phase

 Satisfy performance/SLA with minimal energy

 Dynamically stitch together the “best-fit” chip for each phase

30

Thought Experiment: Asymmetry Everywhere

 Morph software components to match asymmetric HW
components

 Multiple versions for different resource characteristics

31

Thought Experiment: Asymmetry Everywhere

 Design each hardware resource with asymmetric, (re-
)configurable, partitionable components

 Design the runtime system (HW & SW) to automatically
choose the best-fit components for each phase

 Morph software components to match asymmetric HW
components

32

Many Research and Design Questions

 How to design asymmetric components?

 Fixed, partitionable, reconfigurable components?

 What types of asymmetry? Access patterns, technologies?

 What monitoring to perform cooperatively in HW/SW?

 To characterize a phase and match it to best-fit components

 Automatically discover phase/task requirements

 How to design feedback/control loop between components and
runtime system software?

 How to design the runtime to automatically manage resources?

 Track task behavior, pick “best-fit” components for the entire workload

33

Summary of the Thought Experiment
 Need to minimize energy while satisfying performance requirements

 While also minimizing programmer effort

 Asymmetry key to energy/performance/reliability tradeoffs

 Design systems with many asymmetric/partitionable components

 Many types of cores, memories, interconnects, …

 Partitionable/configurable components, customized accelerators on chip

 Provide all-automatic resource management

 Impose structure: HW and SW cooperatively map phases to components

 Dynamically stitch together the system that best fits the running tasks

 Programmer does not need to worry about complex resource sharing

34

Outline

 How Do We Get There: Examples

 Accelerated Critical Sections (ACS)

 Bottleneck Identification and Scheduling (BIS)

 Staged Execution and Data Marshaling

 Asymmetry in Memory

 Thread Cluster Memory Scheduling

 Heterogeneous DRAM+NVM Main Memory

35

Exploiting Asymmetry: Simple Examples

36

 Execute critical/serial sections on high-power, high-performance
cores/resources [Suleman+ ASPLOS’09, ISCA’10, Top Picks’10’11, Joao+ ASPLOS’12]

 Programmer can write less optimized, but more likely correct programs

Exploiting Asymmetry: Simple Examples

37

 Execute streaming “memory phases” on streaming-optimized
cores and memory hierarchies

 More efficient and higher performance than general purpose hierarchy

Exploiting Asymmetry: Simple Examples

38

 Partition memory controller and on-chip network bandwidth
asymmetrically among threads [Kim+ HPCA 2010, MICRO 2010, Top Picks

2011] [Nychis+ HotNets 2010] [Das+ MICRO 2009, ISCA 2010, Top Picks 2011]

 Higher performance and energy-efficiency than symmetric/free-for-all

Exploiting Asymmetry: Simple Examples

39

 Have multiple different memory scheduling policies apply them to

different sets of threads based on thread behavior [Kim+ MICRO

2010, Top Picks 2011] [Ausavarungnirun, ISCA 2012]

 Higher performance and fairness than a homogeneous policy

Exploiting Asymmetry: Simple Examples

40

 Build main memory with different technologies with different
characteristics (energy, latency, wear, bandwidth) [Meza+ IEEE CAL’12]

 Map pages/applications to the best-fit memory resource

Outline

 How Do We Get There: Examples

 Accelerated Critical Sections (ACS)

 Bottleneck Identification and Scheduling (BIS)

 Staged Execution and Data Marshaling

 Asymmetry in Memory

 Thread Cluster Memory Scheduling

 Heterogeneous DRAM+NVM Main Memory

41

Serialized Code Sections in Parallel Applications

 Multithreaded applications:

 Programs split into threads

 Threads execute concurrently on multiple cores

 Many programs cannot be parallelized completely

 Serialized code sections:

 Reduce performance

 Limit scalability

 Waste energy

42

Causes of Serialized Code Sections

 Sequential portions (Amdahl’s “serial part”)

 Critical sections

 Barriers

 Limiter stages in pipelined programs

43

Bottlenecks in Multithreaded Applications

Definition: any code segment for which threads contend (i.e. wait)

Examples:

 Amdahl’s serial portions
 Only one thread exists on the critical path

 Critical sections
 Ensure mutual exclusion likely to be on the critical path if contended

 Barriers
 Ensure all threads reach a point before continuing the latest thread arriving

is on the critical path

 Pipeline stages

 Different stages of a loop iteration may execute on different threads,
slowest stage makes other stages wait on the critical path

44

Critical Sections

 Threads are not allowed to update shared data concurrently

 For correctness (mutual exclusion principle)

 Accesses to shared data are encapsulated inside
critical sections

 Only one thread can execute a critical section at
a given time

45

Example from MySQL

46

Open database tables

Perform the operations
….

Critical

Section

Parallel

Access Open Tables Cache

Contention for Critical Sections

47

0

Critical

Section

Parallel

Idle

12 iterations, 33% instructions inside the critical section

P = 1

P = 3

P = 2

P = 4

1 2 3 4 5 6 7 8 9 10 11 12

33% in critical section

Contention for Critical Sections

48

0

Critical

Section

Parallel

Idle

12 iterations, 33% instructions inside the critical section

P = 1

P = 3

P = 2

P = 4

1 2 3 4 5 6 7 8 9 10 11 12

Accelerating critical sections
increases performance and scalability

Critical

Section

Accelerated

by 2x

Impact of Critical Sections on Scalability

 Contention for critical sections leads to serial execution
(serialization) of threads in the parallel program portion

 Contention for critical sections increases with the number of
threads and limits scalability

49

MySQL (oltp-1)

0

1

2

3

4

5

6

7

8

0 8 16 24 32
0

1

2

3

4

5

6

7

8

0 8 16 24 32

Chip Area (cores)

S
p

e
e

d
u

p

A Case for Asymmetry

 Execution time of sequential kernels, critical sections, and
limiter stages must be short

 It is difficult for the programmer to shorten these
serialized sections

 Insufficient domain-specific knowledge

 Variation in hardware platforms

 Limited resources

 Goal: A mechanism to shorten serial bottlenecks without
requiring programmer effort

 Idea: Accelerate serialized code sections by shipping them
to powerful cores in an asymmetric multi-core (ACMP)

50

ACMP

 Provide one large core and many small cores

 Execute parallel part on small cores for high throughput

 Accelerate serialized sections using the large core

 Baseline: Amdahl’s serial part accelerated [Morad+ CAL 2006,

Suleman+, UT-TR 2007]

 51

Small
core

Small
core

Small
core

Small
core

Small
core

Small
core

Small
core

Small
core

Small
core

Small
core

Small
core

Small
core

Large
core

ACMP

Conventional ACMP

52

EnterCS()

PriorityQ.insert(…)

LeaveCS()

On-chip

Interconnect

1. P2 encounters a Critical Section

2. Sends a request for the lock

3. Acquires the lock

4. Executes Critical Section

5. Releases the lock

Core executing

critical section

P1
P2 P3 P4

Accelerated Critical Sections (ACS)

 Accelerate Amdahl’s serial part and critical sections
using the large core

 Suleman et al., “Accelerating Critical Section Execution with
Asymmetric Multi-Core Architectures,” ASPLOS 2009, IEEE
Micro Top Picks 2010.

53

Small
core

Small
core

Small
core

Small
core

Small
core

Small
core

Small
core

Small
core

Small
core

Small
core

Small
core

Small
core

Large
core

ACMP

Critical Section

Request Buffer

(CSRB)

Accelerated Critical Sections (ACS)

54

EnterCS()

PriorityQ.insert(…)

LeaveCS()

Onchip-

Interconnect

Critical Section

Request Buffer

(CSRB)

1. P2 encounters a critical section (CSCALL)

2. P2 sends CSCALL Request to CSRB

3. P1 executes Critical Section

4. P1 sends CSDONE signal

Core executing

critical section

P4 P3 P2
P1

ACS Architecture Overview

 ISA extensions
 CSCALL LOCK_ADDR, TARGET_PC
 CSRET LOCK_ADDR

 Compiler/Library inserts CSCALL/CSRET

 On a CSCALL, the small core:
 Sends a CSCALL request to the large core

 Arguments: Lock address, Target PC, Stack Pointer, Core ID

 Stalls and waits for CSDONE

 Large Core

 Critical Section Request Buffer (CSRB)
 Executes the critical section and sends CSDONE to the requesting

core

55

Accelerated Critical Sections (ACS)

56

A = compute()

LOCK X

 result = CS(A)

UNLOCK X

print result

Small Core Small Core Large Core

A = compute()

CSDONE Response

CSCALL Request

Send X, TPC,
STACK_PTR, CORE_ID

PUSH A

CSCALL X, Target PC
…

…

…
Acquire X

POP A

result = CS(A)

PUSH result

Release X

CSRET X

TPC:

POP result

print result

…

…

…

…

…

…

…

Waiting in
Critical Section
Request Buffer

(CSRB)

False Serialization

 ACS can serialize independent critical sections

 Selective Acceleration of Critical Sections (SEL)

 Saturating counters to track false serialization

57

CSCALL (A)

CSCALL (A)

CSCALL (B)

Critical Section

Request Buffer

(CSRB)

4

4

A

B

3 2

5

To large core

From small cores

ACS Performance Tradeoffs

 Pluses

+ Faster critical section execution

+ Shared locks stay in one place: better lock locality

+ Shared data stays in large core’s (large) caches: better shared
data locality, less ping-ponging

 Minuses

- Large core dedicated for critical sections: reduced parallel
throughput

- CSCALL and CSDONE control transfer overhead

- Thread-private data needs to be transferred to large core: worse
private data locality

58

ACS Performance Tradeoffs

 Fewer parallel threads vs. accelerated critical sections
 Accelerating critical sections offsets loss in throughput

 As the number of cores (threads) on chip increase:
 Fractional loss in parallel performance decreases

 Increased contention for critical sections
makes acceleration more beneficial

 Overhead of CSCALL/CSDONE vs. better lock locality
 ACS avoids “ping-ponging” of locks among caches by keeping them at

the large core

 More cache misses for private data vs. fewer misses
for shared data

59

Cache Misses for Private Data

60

Private Data:

NewSubProblems

Shared Data:

The priority heap

PriorityHeap.insert(NewSubProblems)

Puzzle Benchmark

ACS Performance Tradeoffs

 Fewer parallel threads vs. accelerated critical sections
 Accelerating critical sections offsets loss in throughput

 As the number of cores (threads) on chip increase:
 Fractional loss in parallel performance decreases

 Increased contention for critical sections
makes acceleration more beneficial

 Overhead of CSCALL/CSDONE vs. better lock locality
 ACS avoids “ping-ponging” of locks among caches by keeping them at

the large core

 More cache misses for private data vs. fewer misses
for shared data
 Cache misses reduce if shared data > private data

61

We will get back to this

ACS Comparison Points

 Conventional
locking

62

Small
core

Small
core

Small
core

Small
core

Small
core

Small
core

Small
core

Small
core

Small
core

Small
core

Small
core

Small
core

Large
core

ACMP

Small
core

Small
core

Small
core

Small
core

Small
core

Small
core

Small
core

Small
core

Small
core

Small
core

Small
core

Small
core

Large
core

ACS

Small
core

Small
core

Small
core

Small
core

Small
core

Small
core

Small
core

Small
core

Small
core

Small
core

Small
core

Small
core

Small
core

Small
core

Small
core

Small
core

SCMP

 Conventional
locking

 Large core executes
Amdahl’s serial part

 Large core executes
Amdahl’s serial part
and critical sections

Accelerated Critical Sections: Methodology

 Workloads: 12 critical section intensive applications

 Data mining kernels, sorting, database, web, networking

 Multi-core x86 simulator

 1 large and 28 small cores

 Aggressive stream prefetcher employed at each core

 Details:

 Large core: 2GHz, out-of-order, 128-entry ROB, 4-wide, 12-stage

 Small core: 2GHz, in-order, 2-wide, 5-stage

 Private 32 KB L1, private 256KB L2, 8MB shared L3

 On-chip interconnect: Bi-directional ring, 5-cycle hop latency

63

ACS Performance

64

0

20

40

60

80

100

120

140

160

pagem
in

e

puzz
le

qsort

sq
lit

e

ts
p

ip
lo

oku
p

oltp
-1

oltp
-2

sp
ec

jb
b

w
eb

cac
he

hm
ea

n

S
p

e
e
d

u
p

 o
v
e
r

S
C

M
P

Accelerating Sequential Kernels

Accelerating Critical Sections

Equal-area comparison

Number of threads = Best threads

Chip Area = 32 small cores
SCMP = 32 small cores

ACMP = 1 large and 28 small cores

 269 180 185

Coarse-grain locks Fine-grain locks

Equal-Area Comparisons

65

0

0.5

1

1.5

2

2.5

3

3.5

0 8 16 24 32
0

0.5

1

1.5

2

2.5

3

0 8 16 24 32
0

1

2

3

4

5

0 8 16 24 32
0

1

2

3

4

5

6

7

0 8 16 24 32
0

0.5

1

1.5

2

2.5

3

3.5

0 8 16 24 32
0

2

4

6

8

10

12

14

0 8 16 24 32

0

1

2

3

4

5

6

0 8 16 24 32
0

2

4

6

8

10

0 8 16 24 32
0

2

4

6

8

0 8 16 24 32
0

2

4

6

8

10

12

0 8 16 24 32
0

0.5

1

1.5

2

2.5

3

0 8 16 24 32
0

2

4

6

8

10

12

0 8 16 24 32

S
p

e
e

d
u

p
 o

v
e

r
a

 s
m

a
ll

 c
o

re

Chip Area (small cores)

(a) ep (b) is (c) pagemine (d) puzzle (e) qsort (f) tsp

(i) oltp-1 (i) oltp-2 (h) iplookup (k) specjbb (l) webcache (g) sqlite

Number of threads = No. of cores

------ SCMP
------ ACMP
------ ACS

ACS Summary

 Critical sections reduce performance and limit scalability

 Accelerate critical sections by executing them on a powerful
core

 ACS reduces average execution time by:

 34% compared to an equal-area SCMP

 23% compared to an equal-area ACMP

 ACS improves scalability of 7 of the 12 workloads

 Generalizing the idea: Accelerate all bottlenecks (“critical
paths”) by executing them on a powerful core

 66

Outline

 How Do We Get There: Examples

 Accelerated Critical Sections (ACS)

 Bottleneck Identification and Scheduling (BIS)

 Staged Execution and Data Marshaling

 Asymmetry in Memory

 Thread Cluster Memory Scheduling

 Heterogeneous DRAM+NVM Main Memory

67

BIS Summary
 Problem: Performance and scalability of multithreaded applications

are limited by serializing bottlenecks

 different types: critical sections, barriers, slow pipeline stages

 importance (criticality) of a bottleneck can change over time

 Our Goal: Dynamically identify the most important bottlenecks and
accelerate them

 How to identify the most critical bottlenecks

 How to efficiently accelerate them

 Solution: Bottleneck Identification and Scheduling (BIS)

 Software: annotate bottlenecks (BottleneckCall, BottleneckReturn) and
implement waiting for bottlenecks with a special instruction (BottleneckWait)

 Hardware: identify bottlenecks that cause the most thread waiting and
accelerate those bottlenecks on large cores of an asymmetric multi-core system

 Improves multithreaded application performance and scalability,
outperforms previous work, and performance improves with more cores

 68

Bottlenecks in Multithreaded Applications

Definition: any code segment for which threads contend (i.e. wait)

Examples:

 Amdahl’s serial portions
 Only one thread exists on the critical path

 Critical sections
 Ensure mutual exclusion likely to be on the critical path if contended

 Barriers
 Ensure all threads reach a point before continuing the latest thread arriving

is on the critical path

 Pipeline stages

 Different stages of a loop iteration may execute on different threads,
slowest stage makes other stages wait on the critical path

69

Observation: Limiting Bottlenecks Change Over Time

A=full linked list; B=empty linked list

repeat

 Lock A

 Traverse list A

 Remove X from A

 Unlock A

 Compute on X

 Lock B

 Traverse list B

 Insert X into B

 Unlock B

until A is empty

70

Lock A is limiter
Lock B is limiter

32 threads

Limiting Bottlenecks Do Change on Real Applications

71

MySQL running Sysbench queries, 16 threads

Previous Work on Bottleneck Acceleration

 Asymmetric CMP (ACMP) proposals [Annavaram+, ISCA’05]

[Morad+, Comp. Arch. Letters’06] [Suleman+, Tech. Report’07]

 Accelerate only the Amdahl’s bottleneck

 Accelerated Critical Sections (ACS) [Suleman+, ASPLOS’09]

 Accelerate only critical sections

 Does not take into account importance of critical sections

 Feedback-Directed Pipelining (FDP) [Suleman+, PACT’10 and PhD thesis’11]

 Accelerate only stages with lowest throughput

 Slow to adapt to phase changes (software based library)

No previous work can accelerate all three types of bottlenecks or
quickly adapts to fine-grain changes in the importance of bottlenecks

Our goal: general mechanism to identify performance-limiting bottlenecks of
any type and accelerate them on an ACMP

72

73

Bottleneck Identification and Scheduling (BIS)

 Key insight:

 Thread waiting reduces parallelism and
is likely to reduce performance

 Code causing the most thread waiting
 likely critical path

 Key idea:

 Dynamically identify bottlenecks that cause
the most thread waiting

 Accelerate them (using powerful cores in an ACMP)

1. Annotate
bottleneck code

2. Implement waiting
 for bottlenecks

1. Measure thread

waiting cycles (TWC)

for each bottleneck

2. Accelerate bottleneck(s)

with the highest TWC

Binary containing

 BIS instructions

Compiler/Library/Programmer Hardware

74

Bottleneck Identification and Scheduling (BIS)

 while cannot acquire lock

 Wait loop for watch_addr

 acquire lock

 …

 release lock

Critical Sections: Code Modifications

 …

 BottleneckCall bid, targetPC

 …

targetPC: while cannot acquire lock

 Wait loop for watch_addr

 acquire lock

 …

 release lock

 BottleneckReturn bid

75

 BottleneckWait bid, watch_addr

 …

 …
Used to keep track of

waiting cycles

Used to enable
acceleration

76

Barriers: Code Modifications

 …

 BottleneckCall bid, targetPC

 enter barrier

 while not all threads in barrier

 BottleneckWait bid, watch_addr

 exit barrier

 …

targetPC: code running for the barrier

 …

 BottleneckReturn bid

77

Pipeline Stages: Code Modifications

 BottleneckCall bid, targetPC

 …

targetPC: while not done

 while empty queue

 BottleneckWait prev_bid

 dequeue work

 do the work …

 while full queue

 BottleneckWait next_bid

 enqueue next work

 BottleneckReturn bid

1. Annotate
bottleneck code

2. Implements waiting
 for bottlenecks

1. Measure thread

waiting cycles (TWC)

for each bottleneck

2. Accelerate bottleneck(s)

with the highest TWC

Binary containing

 BIS instructions

Compiler/Library/Programmer Hardware

78

Bottleneck Identification and Scheduling (BIS)

We did not cover the following slides in lecture.

These are for your preparation for the next lecture.

BIS: Hardware Overview

 Performance-limiting bottleneck identification and
acceleration are independent tasks

 Acceleration can be accomplished in multiple ways

 Increasing core frequency/voltage

 Prioritization in shared resources [Ebrahimi+, MICRO’11]

 Migration to faster cores in an Asymmetric CMP

80

Large core

Small

 core

Small

 core

Small

 core

Small

 core

Small

 core

Small

 core

Small

 core

Small

 core

Small

 core

Small

 core
Small

 core

Small

 core

1. Annotate
bottleneck code

2. Implements waiting
 for bottlenecks

1. Measure thread

waiting cycles (TWC)

for each bottleneck

2. Accelerate bottleneck(s)

with the highest TWC

Binary containing

 BIS instructions

Compiler/Library/Programmer Hardware

81

Bottleneck Identification and Scheduling (BIS)

Determining Thread Waiting Cycles for Each Bottleneck

82

Small Core 1 Large Core 0

Small Core 2

Bottleneck

Table (BT)

…

BottleneckWait x4500

bid=x4500, waiters=1, twc = 0 bid=x4500, waiters=1, twc = 1 bid=x4500, waiters=1, twc = 2

BottleneckWait x4500

bid=x4500, waiters=2, twc = 5 bid=x4500, waiters=2, twc = 7 bid=x4500, waiters=2, twc = 9 bid=x4500, waiters=1, twc = 9 bid=x4500, waiters=1, twc = 10 bid=x4500, waiters=1, twc = 11 bid=x4500, waiters=0, twc = 11 bid=x4500, waiters=1, twc = 3 bid=x4500, waiters=1, twc = 4 bid=x4500, waiters=1, twc = 5

1. Annotate
bottleneck code

2. Implements waiting
 for bottlenecks

1. Measure thread

waiting cycles (TWC)

for each bottleneck

2. Accelerate bottleneck(s)

with the highest TWC

Binary containing

 BIS instructions

Compiler/Library/Programmer Hardware

83

Bottleneck Identification and Scheduling (BIS)

Bottleneck Acceleration

84

Small Core 1 Large Core 0

Small Core 2

Bottleneck

Table (BT)

…

Scheduling Buffer (SB)

bid=x4700, pc, sp, core1

Acceleration

Index Table (AIT)

BottleneckCall x4600

Execute locally

BottleneckCall x4700

bid=x4700 , large core 0

Execute remotely

AIT

bid=x4600, twc=100

bid=x4700, twc=10000

BottleneckReturn x4700

bid=x4700 , large core 0

bid=x4700, pc, sp, core1

 twc < Threshold

 twc > Threshold

Execute locally Execute remotely

BIS Mechanisms

 Basic mechanisms for BIS:

 Determining Thread Waiting Cycles

 Accelerating Bottlenecks

 Mechanisms to improve performance and generality of BIS:

 Dealing with false serialization

 Preemptive acceleration

 Support for multiple large cores

85

False Serialization and Starvation

 Observation: Bottlenecks are picked from Scheduling Buffer
in Thread Waiting Cycles order

 Problem: An independent bottleneck that is ready to execute
has to wait for another bottleneck that has higher thread
waiting cycles False serialization

 Starvation: Extreme false serialization

 Solution: Large core detects when a bottleneck is ready to
execute in the Scheduling Buffer but it cannot sends the

bottleneck back to the small core

86

Preemptive Acceleration

 Observation: A bottleneck executing on a small core can
become the bottleneck with the highest thread waiting cycles

 Problem: This bottleneck should really be accelerated (i.e.,
executed on the large core)

 Solution: The Bottleneck Table detects the situation and
sends a preemption signal to the small core. Small core:

 saves register state on stack, ships the bottleneck to the large core

 Main acceleration mechanism for barriers and pipeline stages

87

Support for Multiple Large Cores

 Objective: to accelerate independent bottlenecks

 Each large core has its own Scheduling Buffer
(shared by all of its SMT threads)

 Bottleneck Table assigns each bottleneck to
a fixed large core context to

 preserve cache locality

 avoid busy waiting

 Preemptive acceleration extended to send multiple
instances of a bottleneck to different large core contexts

88

Hardware Cost

 Main structures:

 Bottleneck Table (BT): global 32-entry associative cache,
minimum-Thread-Waiting-Cycle replacement

 Scheduling Buffers (SB): one table per large core,
as many entries as small cores

 Acceleration Index Tables (AIT): one 32-entry table
per small core

 Off the critical path

 Total storage cost for 56-small-cores, 2-large-cores < 19 KB

89

BIS Performance Trade-offs
 Bottleneck identification:

 Small cost: BottleneckWait instruction and Bottleneck Table

 Bottleneck acceleration on an ACMP (execution migration):

 Faster bottleneck execution vs. fewer parallel threads

 Acceleration offsets loss of parallel throughput with large core counts

 Better shared data locality vs. worse private data locality

 Shared data stays on large core (good)

 Private data migrates to large core (bad, but latency hidden with
Data Marshaling [Suleman+, ISCA’10])

 Benefit of acceleration vs. migration latency

 Migration latency usually hidden by waiting (good)

 Unless bottleneck not contended (bad, but likely to not be on critical path)

90

Methodology

 Workloads: 8 critical section intensive, 2 barrier intensive
and 2 pipeline-parallel applications

 Data mining kernels, scientific, database, web, networking, specjbb

 Cycle-level multi-core x86 simulator

 8 to 64 small-core-equivalent area, 0 to 3 large cores, SMT

 1 large core is area-equivalent to 4 small cores

 Details:

 Large core: 4GHz, out-of-order, 128-entry ROB, 4-wide, 12-stage

 Small core: 4GHz, in-order, 2-wide, 5-stage

 Private 32KB L1, private 256KB L2, shared 8MB L3

 On-chip interconnect: Bi-directional ring, 2-cycle hop latency

91

BIS Comparison Points (Area-Equivalent)

 SCMP (Symmetric CMP)

 All small cores

 Results in the paper

 ACMP (Asymmetric CMP)

 Accelerates only Amdahl’s serial portions

 Our baseline

 ACS (Accelerated Critical Sections)

 Accelerates only critical sections and Amdahl’s serial portions

 Applicable to multithreaded workloads
(iplookup, mysql, specjbb, sqlite, tsp, webcache, mg, ft)

 FDP (Feedback-Directed Pipelining)

 Accelerates only slowest pipeline stages

 Applicable to pipeline-parallel workloads (rank, pagemine)

92

BIS Performance Improvement

93

Optimal number of threads, 28 small cores, 1 large core

 BIS outperforms ACS/FDP by 15% and ACMP by 32%

 BIS improves scalability on 4 of the benchmarks

barriers, which ACS

cannot accelerate
limiting bottlenecks change over time

ACS FDP

Why Does BIS Work?

94

 Coverage: fraction of program critical path that is actually identified as bottlenecks

 39% (ACS/FDP) to 59% (BIS)

 Accuracy: identified bottlenecks on the critical path over total identified bottlenecks

 72% (ACS/FDP) to 73.5% (BIS)

Fraction of execution time spent on predicted-important bottlenecks

Actually critical

BIS Scaling Results

95

Performance increases with:

1) More small cores

 Contention due to bottlenecks
increases

 Loss of parallel throughput due
to large core reduces

2) More large cores

 Can accelerate
independent bottlenecks

 Without reducing parallel
throughput (enough cores)

2.4%
6.2%

15% 19%

BIS Summary

 Serializing bottlenecks of different types limit performance of
multithreaded applications: Importance changes over time

 BIS is a hardware/software cooperative solution:

 Dynamically identifies bottlenecks that cause the most thread waiting
and accelerates them on large cores of an ACMP

 Applicable to critical sections, barriers, pipeline stages

 BIS improves application performance and scalability:

 15% speedup over ACS/FDP

 Can accelerate multiple independent critical bottlenecks

 Performance benefits increase with more cores

 Provides comprehensive fine-grained bottleneck acceleration
for future ACMPs with little or no programmer effort

96

