
18-742 Fall 2012

Parallel Computer Architecture

Lecture 4: Multi-Core Processors

Prof. Onur Mutlu

Carnegie Mellon University

9/14/2012

Reminder: Reviews Due Sunday

 Sunday, September 16, 11:59pm.

 Suleman et al., “Accelerating Critical Section Execution with
Asymmetric Multi-Core Architectures,” ASPLOS 2009.

 Suleman et al., “Data Marshaling for Multi-core
Architectures,” ISCA 2010.

 Joao et al., “Bottleneck Identification and Scheduling in
Multithreaded Applications,” ASPLOS 2012.

2

Multi-Core Processors

3

Moore’s Law

4

Moore, “Cramming more components onto integrated circuits,”
Electronics, 1965.

5

Multi-Core

 Idea: Put multiple processors on the same die.

 Technology scaling (Moore’s Law) enables more transistors
to be placed on the same die area

 What else could you do with the die area you dedicate to
multiple processors?

 Have a bigger, more powerful core

 Have larger caches in the memory hierarchy

 Simultaneous multithreading

 Integrate platform components on chip (e.g., network
interface, memory controllers)

6

Why Multi-Core?

 Alternative: Bigger, more powerful single core

 Larger superscalar issue width, larger instruction window,
more execution units, large trace caches, large branch
predictors, etc

+ Improves single-thread performance transparently to
programmer, compiler

- Very difficult to design (Scalable algorithms for improving
single-thread performance elusive)

- Power hungry – many out-of-order execution structures
consume significant power/area when scaled. Why?

- Diminishing returns on performance

- Does not significantly help memory-bound application
performance (Scalable algorithms for this elusive)

 7

Large Superscalar vs. Multi-Core

 Olukotun et al., “The Case for a Single-Chip
Multiprocessor,” ASPLOS 1996.

8

Multi-Core vs. Large Superscalar

 Multi-core advantages

+ Simpler cores more power efficient, lower complexity,

easier to design and replicate, higher frequency (shorter
wires, smaller structures)

+ Higher system throughput on multiprogrammed workloads

reduced context switches

+ Higher system throughput in parallel applications

 Multi-core disadvantages

- Requires parallel tasks/threads to improve performance
(parallel programming)

- Resource sharing can reduce single-thread performance

- Shared hardware resources need to be managed

- Number of pins limits data supply for increased demand
9

Large Superscalar vs. Multi-Core

 Olukotun et al., “The Case for a Single-Chip
Multiprocessor,” ASPLOS 1996.

 Technology push

 Instruction issue queue size limits the cycle time of the
superscalar, OoO processor diminishing performance

 Quadratic increase in complexity with issue width

 Large, multi-ported register files to support large instruction
windows and issue widths reduced frequency or longer RF

access, diminishing performance

 Application pull

 Integer applications: little parallelism?

 FP applications: abundant loop-level parallelism

 Others (transaction proc., multiprogramming): CMP better fit

10

Comparison Points…

11

Why Multi-Core?

 Alternative: Bigger caches

+ Improves single-thread performance transparently to
programmer, compiler

+ Simple to design

- Diminishing single-thread performance returns from cache size.
Why?

- Multiple levels complicate memory hierarchy

12

Cache vs. Core

13

Time

N
u

m
b

e
r

o
f

T
ra

n
s
is

to
rs

Cache

Microprocessor

Why Multi-Core?
 Alternative: (Simultaneous) Multithreading

+ Exploits thread-level parallelism (just like multi-core)

+ Good single-thread performance with SMT

+ No need to have an entire core for another thread

+ Parallel performance aided by tight sharing of caches

- Scalability is limited: need bigger register files, larger issue
width (and associated costs) to have many threads

complex with many threads

- Parallel performance limited by shared fetch bandwidth

- Extensive resource sharing at the pipeline and memory system
reduces both single-thread and parallel application
performance

14

Why Multi-Core?

 Alternative: Integrate platform components on chip instead

+ Speeds up many system functions (e.g., network interface
cards, Ethernet controller, memory controller, I/O controller)

- Not all applications benefit (e.g., CPU intensive code sections)

15

Why Multi-Core?

 Alternative: More scalable superscalar, out-of-order engines

 Clustered superscalar processors (with multithreading)

+ Simpler to design than superscalar, more scalable than
simultaneous multithreading (less resource sharing)

+ Can improve both single-thread and parallel application
performance

- Diminishing performance returns on single thread: Clustering
reduces IPC performance compared to monolithic superscalar.
Why?

- Parallel performance limited by shared fetch bandwidth

- Difficult to design

16

Clustered Superscalar+OoO Processors

 Clustering (e.g., Alpha 21264 integer units)

 Divide the scheduling window (and register file) into multiple clusters

 Instructions steered into clusters (e.g. based on dependence)

 Clusters schedule instructions out-of-order, within cluster scheduling
can be in-order

 Inter-cluster communication happens via register files (no full bypass)

+ Smaller scheduling windows, simpler wakeup algorithms

+ Smaller ports into register files

+ Faster within-cluster bypass

-- Extra delay when instructions require across-cluster communication

17

Clustering (I)

 Scheduling within each cluster can be out of order

18

Clustering (II)

19

 Palacharla et al., “Complexity

Effective Superscalar
Processors,” ISCA 1997.

Clustering (III)

20

Each scheduler is a FIFO

+ Simpler

+ Can have N FIFOs

 (OoO w.r.t. each other)

+ Reduces scheduling

complexity

-- More dispatch stalls

Inter-cluster bypass: Results

produced by an FU in

Cluster 0 is not individually

forwarded to each FU in

another cluster.

Why Multi-Core?

 Alternative: Traditional symmetric multiprocessors

+ Smaller die size (for the same processing core)

+ More memory bandwidth (no pin bottleneck)

+ Fewer shared resources less contention between threads

- Long latencies between cores (need to go off chip) shared
data accesses limit performance parallel application

scalability is limited

- Worse resource efficiency due to less sharing worse

power/energy efficiency

21

Why Multi-Core?

 Other alternatives?

 Dataflow?

 Vector processors (SIMD)?

 Integrating DRAM on chip?

 Reconfigurable logic? (general purpose?)

22

Review: Multi-Core Alternatives

 Bigger, more powerful single core

 Bigger caches

 (Simultaneous) multithreading

 Integrate platform components on chip instead

 More scalable superscalar, out-of-order engines

 Traditional symmetric multiprocessors

 Dataflow?

 Vector processors (SIMD)?

 Integrating DRAM on chip?

 Reconfigurable logic? (general purpose?)

 Other alternatives?

23

