
18-742 Fall 2012

Parallel Computer Architecture

Lecture 25: Main Memory Management II

Prof. Onur Mutlu

Carnegie Mellon University

11/12/2012

Reminder: New Review Assignments

 Due: Tuesday, November 13, 11:59pm.

 Mutlu and Moscibroda, “Parallelism-Aware Batch Scheduling:
Enhancing both Performance and Fairness of Shared DRAM
Systems,” ISCA 2008.

 Kim et al., “Thread Cluster Memory Scheduling: Exploiting
Differences in Memory Access Behavior,” MICRO 2010.

 Due: Thursday, November 15, 11:59pm.

 Ebrahimi et al., “Fairness via Source Throttling: A Configurable
and High-Performance Fairness Substrate for Multi-Core Memory
Systems,” ASPLOS 2010.

 Muralidhara et al., “Reducing Memory Interference in
Multicore Systems via Application-Aware Memory Channel
Partitioning,” MICRO 2011.

2

Reminder: Literature Survey Process

 Done in groups: your research project group is likely ideal

 Step 1: Pick 3 or more research papers

 Broadly related to your research project

 Step 2: Send me the list of papers with links to pdf copies (by
Sunday, November 11)

 I need to approve the 3 papers

 We will iterate to ensure convergence on the list

 Step 3: Prepare a 2-page writeup on the 3 papers

 Step 3: Prepare a 15-minute presentation on the 3 papers

 Total time: 15-minute talk + 5-minute Q&A

 Talk should focus on insights and tradeoffs

 Step 4: Deliver the presentation in front of class (dates:
November 26-28 or December 3-7) and turn in your writeup
(due date: December 1)

3

Last Lecture

 Begin shared resource management

 Main memory as a shared resource

 QoS-aware memory systems

 Memory request scheduling

 Memory performance attacks

 STFM

 PAR-BS

 ATLAS

4

Today

 End QoS-aware Memory Request Scheduling

5

More on QoS-Aware

Memory Request Scheduling

Designing QoS-Aware Memory Systems: Approaches

 Smart resources: Design each shared resource to have a
configurable interference control/reduction mechanism

 QoS-aware memory controllers [Mutlu+ MICRO’07] [Moscibroda+, Usenix Security’07]

[Mutlu+ ISCA’08, Top Picks’09] [Kim+ HPCA’10] [Kim+ MICRO’10, Top Picks’11] [Ebrahimi+ ISCA’11,
MICRO’11] [Ausavarungnirun+, ISCA’12]

 QoS-aware interconnects [Das+ MICRO’09, ISCA’10, Top Picks ’11] [Grot+ MICRO’09,

ISCA’11, Top Picks ’12]

 QoS-aware caches

 Dumb resources: Keep each resource free-for-all, but
reduce/control interference by injection control or data
mapping

 Source throttling to control access to memory system [Ebrahimi+ ASPLOS’10,

ISCA’11, TOCS’12] [Ebrahimi+ MICRO’09] [Nychis+ HotNets’10]

 QoS-aware data mapping to memory controllers [Muralidhara+ MICRO’11]

 QoS-aware thread scheduling to cores

 7

QoS-Aware Memory Scheduling

 How to schedule requests to provide

 High system performance

 High fairness to applications

 Configurability to system software

 Memory controller needs to be aware of threads

8

Memory
Controller

Core Core

Core Core

Memory

Resolves memory contention
by scheduling requests

QoS-Aware Memory Scheduling: Evolution

 Stall-time fair memory scheduling [Mutlu+ MICRO’07]

 Idea: Estimate and balance thread slowdowns

 Takeaway: Proportional thread progress improves performance,
especially when threads are “heavy” (memory intensive)

 Parallelism-aware batch scheduling [Mutlu+ ISCA’08, Top Picks’09]

 Idea: Rank threads and service in rank order (to preserve bank
parallelism); batch requests to prevent starvation

 Takeaway: Preserving within-thread bank-parallelism improves
performance; request batching improves fairness

 ATLAS memory scheduler [Kim+ HPCA’10]

 Idea: Prioritize threads that have attained the least service from the
memory scheduler

 Takeaway: Prioritizing “light” threads improves performance

9

QoS-Aware Memory Scheduling: Evolution

 Thread cluster memory scheduling [Kim+ MICRO’10]

 Idea: Cluster threads into two groups (latency vs. bandwidth
sensitive); prioritize the latency-sensitive ones; employ a fairness
policy in the bandwidth sensitive group

 Takeaway: Heterogeneous scheduling policy that is different based
on thread behavior maximizes both performance and fairness

 Staged memory scheduling [Ausavarungnirun+ ISCA’12]

 Idea: Divide the functional tasks of an application-aware memory
scheduler into multiple distinct stages, where each stage is
significantly simpler than a monolithic scheduler

 Takeaway: Staging enables the design of a scalable and relatively
simpler application-aware memory scheduler that works on very
large request buffers

10

QoS-Aware Memory Scheduling: Evolution

 Parallel application memory scheduling [Ebrahimi+ MICRO’11]

 Idea: Identify and prioritize limiter threads of a multithreaded
application in the memory scheduler; provide fast and fair progress
to non-limiter threads

 Takeaway: Carefully prioritizing between limiter and non-limiter
threads of a parallel application improves performance

 Integrated Memory Channel Partitioning and Scheduling
[Muralidhara+ MICRO’11]

 Idea: Only prioritize very latency-sensitive threads in the scheduler;
mitigate all other applications’ interference via channel partitioning

 Takeaway: Intelligently ombining application-aware channel
partitioning and memory scheduling provides better performance
than either

11

QoS-Aware Memory Scheduling: Evolution

 Prefetch-aware shared resource management [Ebrahimi+

ISCA’12] [Ebrahimi+ MICRO’09] [Lee+ MICRO’08]

 Idea: Prioritize prefetches depending on how they affect system
performance; even accurate prefetches can degrade performance of
the system

 Takeaway: Carefully controlling and prioritizing prefetch requests
improves performance and fairness

12

Properties of ATLAS

 LAS-ranking

 Bank-level parallelism

 Row-buffer locality

 Very infrequent coordination

 Scale attained service with
thread weight (in paper)

 Low complexity: Attained
service requires a single
counter per thread in each MC

13

 Maximize system performance

 Scalable to large number of controllers

 Configurable by system software

Goals Properties of ATLAS

ATLAS Pros and Cons

 Upsides:

 Good at improving performance

 Low complexity

 Coordination among controllers happens infrequently

 Downsides:

 Lowest ranked threads get delayed significantly high

unfairness

14

TCM:

Thread Cluster Memory Scheduling

Yoongu Kim, Michael Papamichael, Onur Mutlu, and Mor Harchol-Balter,
"Thread Cluster Memory Scheduling:

Exploiting Differences in Memory Access Behavior"
43rd International Symposium on Microarchitecture (MICRO),
pages 65-76, Atlanta, GA, December 2010. Slides (pptx) (pdf)

TCM Micro 2010 Talk

http://users.ece.cmu.edu/~omutlu/pub/tcm_micro10.pdf
http://users.ece.cmu.edu/~omutlu/pub/tcm_micro10.pdf
http://users.ece.cmu.edu/~omutlu/pub/tcm_micro10.pdf
http://www.microarch.org/micro43/
http://users.ece.cmu.edu/~omutlu/pub/kim_micro10_talk.pptx
http://users.ece.cmu.edu/~omutlu/pub/kim_micro10_talk.pdf
file://localhost/Users/omutlu/Documents/presentations/CMU/SNU%20Lectures%20June%2018-20%202012/previous%20talks/kim_micro10_talk.pptx

No previous memory scheduling algorithm provides
both the best fairness and system throughput

16

System throughput bias

Fairness bias

Better system throughput

B
et

te
r

fa
ir

n
e

ss

24 cores, 4 memory controllers, 96 workloads

Throughput vs. Fairness

Take turns accessing memory

Throughput vs. Fairness

17

Fairness biased approach

thread C

thread B

thread A

less memory
intensive

higher
priority

Prioritize less memory-intensive threads

Throughput biased approach

Good for throughput

starvation unfairness

thread C thread B thread A

Does not starve

not prioritized
reduced throughput

Single policy for all threads is insufficient

Achieving the Best of Both Worlds

18

thread

thread

higher
priority

thread

thread

thread

thread

thread

thread

Prioritize memory-non-intensive threads

For Throughput

Unfairness caused by memory-intensive
being prioritized over each other

• Shuffle thread ranking

Memory-intensive threads have
different vulnerability to interference

• Shuffle asymmetrically

For Fairness

thread

thread

thread

thread

Thread Cluster Memory Scheduling [Kim+ MICRO’10]

1. Group threads into two clusters
2. Prioritize non-intensive cluster
3. Different policies for each cluster

19

thread

Threads in the system

thread

thread

thread

thread

thread

thread

Non-intensive
cluster

Intensive cluster

thread

thread

thread

Memory-non-intensive

Memory-intensive

Prioritized

higher
priority

higher
priority

Throughput

Fairness

Clustering Threads

Step1 Sort threads by MPKI (misses per kiloinstruction)

20

th
re

ad

th
re

ad

th
re

ad

th
re

ad

th
re

ad

th
re

ad
 higher

MPKI

T
α < 10%

ClusterThreshold

Intensive
cluster αT

Non-intensive
cluster

T = Total memory bandwidth usage

Step2 Memory bandwidth usage αT divides clusters

TCM: Quantum-Based Operation

21

Time

Previous quantum
(~1M cycles)

During quantum:
• Monitor thread behavior

1. Memory intensity
2. Bank-level parallelism
3. Row-buffer locality

Beginning of quantum:
• Perform clustering
• Compute niceness of

intensive threads

Current quantum
(~1M cycles)

Shuffle interval
(~1K cycles)

TCM: Scheduling Algorithm

1. Highest-rank: Requests from higher ranked threads prioritized

• Non-Intensive cluster > Intensive cluster

• Non-Intensive cluster: lower intensity higher rank

• Intensive cluster: rank shuffling

2. Row-hit: Row-buffer hit requests are prioritized

3. Oldest: Older requests are prioritized

22

TCM: Throughput and Fairness

23

Better system throughput

B
et

te
r

fa
ir

n
e

ss

24 cores, 4 memory controllers, 96 workloads

TCM, a heterogeneous scheduling policy,
provides best fairness and system throughput

TCM: Fairness-Throughput Tradeoff

24

When configuration parameter is varied…

Adjusting
ClusterThreshold

TCM allows robust fairness-throughput tradeoff

STFM
PAR-BS

ATLAS

TCM

Better system throughput

B
et

te
r

fa
ir

n
e

ss
 FRFCFS

TCM Pros and Cons

 Upsides:

 Provides both high fairness and high performance

 Downsides:

 Scalability to large buffer sizes?

 Effectiveness in a heterogeneous system?

25

Staged Memory Scheduling

Rachata Ausavarungnirun, Kevin Chang, Lavanya Subramanian, Gabriel Loh, and Onur Mutlu,

"Staged Memory Scheduling: Achieving High Performance
and Scalability in Heterogeneous Systems”

39th International Symposium on Computer Architecture (ISCA),
Portland, OR, June 2012.

SMS ISCA 2012 Talk

http://users.ece.cmu.edu/~omutlu/pub/staged-memory-scheduling_isca12.pdf
http://users.ece.cmu.edu/~omutlu/pub/staged-memory-scheduling_isca12.pdf
http://users.ece.cmu.edu/~omutlu/pub/staged-memory-scheduling_isca12.pdf
http://isca2012.ittc.ku.edu/
http://isca2012.ittc.ku.edu/
file://localhost/Users/omutlu/Documents/presentations/CMU/SNU%20Lectures%20June%2018-20%202012/previous%20talks/rachata_isca12_talk.pptx

Memory Control in CPU-GPU Systems

 Observation: Heterogeneous CPU-GPU systems require

memory schedulers with large request buffers

 Problem: Existing monolithic application-aware memory

scheduler designs are hard to scale to large request buffer sizes

 Solution: Staged Memory Scheduling (SMS)

decomposes the memory controller into three simple stages:

1) Batch formation: maintains row buffer locality

2) Batch scheduler: reduces interference between applications

3) DRAM command scheduler: issues requests to DRAM

 Compared to state-of-the-art memory schedulers:

 SMS is significantly simpler and more scalable

 SMS provides higher performance and fairness

 27 Ausavarungnirun et al., “Staged Memory Scheduling,” ISCA 2012.

file://localhost/Users/omutlu/Documents/presentations/CMU/Samsung%20Memory%20June%2021%202012/Previous%20Presentations/rachata_isca12_talk.pptx

Key Idea: Decouple Tasks into Stages

 Idea: Decouple the functional tasks of the memory controller

 Partition tasks across several simpler HW structures (stages)

1) Maximize row buffer hits

 Stage 1: Batch formation

 Within each application, groups requests to the same row into
batches

2) Manage contention between applications

 Stage 2: Batch scheduler

 Schedules batches from different applications

3) Satisfy DRAM timing constraints

 Stage 3: DRAM command scheduler

 Issues requests from the already-scheduled order to each bank

28

SMS: Staged Memory Scheduling

29

Memory Scheduler

Core 1 Core 2 Core 3 Core 4

To DRAM

GPU

Req

Req

Req

Req

Req

Req Req

Req Req Req

Req Req Req

Req Req

Req Req

Req Req Req

Req

Req Req

Req

Req

Req

Req

Req Req

Req Req Req

Req Req Req Req Req Req

Req

Req

Req Req

Batch Scheduler

Stage 1

Stage 2

Stage 3

Req

M
o
n
o
lit

h
ic

 S
ch

e
d
u
le

r

Batch
Formation

DRAM
Command
Scheduler

Bank 1 Bank 2 Bank 3 Bank 4

Stage 1

Stage 2

SMS: Staged Memory Scheduling

30

Core 1 Core 2 Core 3 Core 4

To DRAM

GPU

Req Req Batch Scheduler

Batch
Formation

Stage 3

DRAM
Command
Scheduler

Bank 1 Bank 2 Bank 3 Bank 4

Current Batch
Scheduling

Policy

SJF

Current Batch
Scheduling

Policy

RR

Batch Scheduler

Bank 1 Bank 2 Bank 3 Bank 4

SMS: Staged Memory Scheduling

31

Core 1 Core 2 Core 3 Core 4

Stage 1:
Batch
Formation

Stage 3:
DRAM
Command
Scheduler

GPU

Stage 2:

SMS Complexity

 Compared to a row hit first scheduler, SMS consumes*

 66% less area

 46% less static power

 Reduction comes from:

 Monolithic scheduler stages of simpler schedulers

 Each stage has a simpler scheduler (considers fewer
properties at a time to make the scheduling decision)

 Each stage has simpler buffers (FIFO instead of out-of-order)

 Each stage has a portion of the total buffer size (buffering is
distributed across stages)

32 * Based on a Verilog model using 180nm library

SMS Performance

33

0

0.2

0.4

0.6

0.8

1

0.001 0.1 10 1000

S
y
s
te

m
 P

e
rf

o
rm

a
n

c
e

GPUweight

Previous Best
Best Previous
Scheduler

ATLAS TCM FR-FCFS

 At every GPU weight, SMS outperforms the best previous
scheduling algorithm for that weight

SMS Performance

34

0

0.2

0.4

0.6

0.8

1

0.001 0.1 10 1000

S
y
s
te

m
 P

e
rf

o
rm

a
n

c
e

GPUweight

Previous Best

SMSSMS

Best Previous
Scheduler

Memory QoS in a Parallel Application

 Threads in a multithreaded application are inter-dependent

 Some threads can be on the critical path of execution due
to synchronization; some threads are not

 How do we schedule requests of inter-dependent threads
to maximize multithreaded application performance?

 Idea: Estimate limiter threads likely to be on the critical path and
prioritize their requests; shuffle priorities of non-limiter threads
to reduce memory interference among them [Ebrahimi+, MICRO’11]

 Hardware/software cooperative limiter thread estimation:

 Thread executing the most contended critical section

 Thread that is falling behind the most in a parallel for loop

 35 Ebrahimi et al., “Parallel Application Memory Scheduling,” MICRO 2011.

file://localhost/Users/omutlu/Documents/presentations/CMU/Samsung%20Memory%20June%2021%202012/Previous%20Presentations/ebrahimi_micro2011_talk.pptx

Designing QoS-Aware Memory Systems: Approaches

 Smart resources: Design each shared resource to have a
configurable interference control/reduction mechanism

 QoS-aware memory controllers [Mutlu+ MICRO’07] [Moscibroda+, Usenix Security’07]

[Mutlu+ ISCA’08, Top Picks’09] [Kim+ HPCA’10] [Kim+ MICRO’10, Top Picks’11] [Ebrahimi+ ISCA’11,
MICRO’11] [Ausavarungnirun+, ISCA’12]

 QoS-aware interconnects [Das+ MICRO’09, ISCA’10, Top Picks ’11] [Grot+ MICRO’09,

ISCA’11, Top Picks ’12]

 QoS-aware caches

 Dumb resources: Keep each resource free-for-all, but
reduce/control interference by injection control or data
mapping

 Source throttling to control access to memory system [Ebrahimi+ ASPLOS’10,

ISCA’11, TOCS’12] [Ebrahimi+ MICRO’09] [Nychis+ HotNets’10]

 QoS-aware data mapping to memory controllers [Muralidhara+ MICRO’11]

 QoS-aware thread scheduling to cores

 36

We did not cover the following slides in lecture.

These are for your preparation for the next lecture.

Self-Optimizing Memory Controllers

Engin Ipek, Onur Mutlu, José F. Martínez, and Rich Caruana,

"Self Optimizing Memory Controllers: A Reinforcement Learning Approach"

Proceedings of the 35th International Symposium on Computer Architecture (ISCA),

Beijing, China, June 2008.

http://users.ece.cmu.edu/~omutlu/pub/rlmc_isca08.pdf
http://isca2008.cs.princeton.edu/

Why are DRAM Controllers Difficult to Design?

 Need to obey DRAM timing constraints for correctness

 There are many (50+) timing constraints in DRAM

 tWTR: Minimum number of cycles to wait before issuing a
read command after a write command is issued

 tRC: Minimum number of cycles between the issuing of two
consecutive activate commands to the same bank

 …

 Need to keep track of many resources to prevent conflicts

 Channels, banks, ranks, data bus, address bus, row buffers

 Need to handle DRAM refresh

 Need to optimize for performance (in the presence of constraints)

 Reordering is not simple

 Predicting the future?

39

Why are DRAM Controllers Difficult to Design?

 From Lee et al., “DRAM-Aware Last-Level Cache Writeback: Reducing
Write-Caused Interference in Memory Systems,” HPS Technical Report,
April 2010.

40

Self-Optimizing DRAM Controllers

 Problem: DRAM controllers difficult to design It is difficult for

human designers to design a policy that can adapt itself very well
to different workloads and different system conditions

 Idea: Design a memory controller that adapts its scheduling
policy decisions to workload behavior and system conditions
using machine learning.

 Observation: Reinforcement learning maps nicely to memory
control.

 Design: Memory controller is a reinforcement learning agent that
dynamically and continuously learns and employs the best
scheduling policy.

41

Self-Optimizing DRAM Controllers

 Engin Ipek, Onur Mutlu, José F. Martínez, and Rich
Caruana,
"Self Optimizing Memory Controllers: A
Reinforcement Learning Approach"
Proceedings of the 35th International Symposium on
Computer Architecture (ISCA), pages 39-50, Beijing,
China, June 2008.

42

http://users.ece.cmu.edu/~omutlu/pub/rlmc_isca08.pdf
http://users.ece.cmu.edu/~omutlu/pub/rlmc_isca08.pdf
http://isca2008.cs.princeton.edu/
http://isca2008.cs.princeton.edu/

Self-Optimizing DRAM Controllers

 Engin Ipek, Onur Mutlu, José F. Martínez, and Rich Caruana,
"Self Optimizing Memory Controllers: A Reinforcement Learning
Approach"
Proceedings of the 35th International Symposium on Computer Architecture
(ISCA), pages 39-50, Beijing, China, June 2008.

43

http://users.ece.cmu.edu/~omutlu/pub/rlmc_isca08.pdf
http://users.ece.cmu.edu/~omutlu/pub/rlmc_isca08.pdf
http://isca2008.cs.princeton.edu/

Performance Results

44

DRAM-Aware Cache Design:

An Example of Resource Coordination

 Chang Joo Lee, Veynu Narasiman, Eiman Ebrahimi, Onur Mutlu, and Yale N. Patt,

"DRAM-Aware Last-Level Cache Writeback: Reducing Write-Caused Interference in Memory Systems"

HPS Technical Report, TR-HPS-2010-002, April 2010.

http://users.ece.cmu.edu/~omutlu/pub/dram-aware-caches-TR-HPS-2010-002.pdf
http://users.ece.cmu.edu/~omutlu/pub/dram-aware-caches-TR-HPS-2010-002.pdf
http://users.ece.cmu.edu/~omutlu/pub/dram-aware-caches-TR-HPS-2010-002.pdf
http://users.ece.cmu.edu/~omutlu/pub/dram-aware-caches-TR-HPS-2010-002.pdf
http://users.ece.cmu.edu/~omutlu/pub/dram-aware-caches-TR-HPS-2010-002.pdf
http://users.ece.cmu.edu/~omutlu/pub/dram-aware-caches-TR-HPS-2010-002.pdf
http://users.ece.cmu.edu/~omutlu/pub/dram-aware-caches-TR-HPS-2010-002.pdf

DRAM-Aware LLC Writeback

 Problem 1: Writebacks to DRAM interfere with reads and
cause additional performance penalty
 Write-to-read turnaround time in DRAM bus

 Write-recovery latency in DRAM bank

 Change of row buffer reduced row-buffer locality for read requests

 Problem 2: Writebacks that occur once in a while have low
row buffer locality

 Idea: When evicting a dirty cache block to a row,
proactively search the cache for other dirty blocks to the
same row evict them write to DRAM in a batch
 Improves row buffer locality

 Reduces write-to-read switching penalties on DRAM bus

 Improves performance on both single-core and multi-core systems
46

More Information

 Chang Joo Lee, Veynu Narasiman, Eiman Ebrahimi, Onur Mutlu, and Yale N.
Patt,
"DRAM-Aware Last-Level Cache Writeback: Reducing Write-Caused
Interference in Memory Systems"
HPS Technical Report, TR-HPS-2010-002, April 2010.

47

http://users.ece.cmu.edu/~omutlu/pub/dram-aware-caches-TR-HPS-2010-002.pdf
http://users.ece.cmu.edu/~omutlu/pub/dram-aware-caches-TR-HPS-2010-002.pdf
http://users.ece.cmu.edu/~omutlu/pub/dram-aware-caches-TR-HPS-2010-002.pdf
http://users.ece.cmu.edu/~omutlu/pub/dram-aware-caches-TR-HPS-2010-002.pdf
http://users.ece.cmu.edu/~omutlu/pub/dram-aware-caches-TR-HPS-2010-002.pdf
http://users.ece.cmu.edu/~omutlu/pub/dram-aware-caches-TR-HPS-2010-002.pdf
http://users.ece.cmu.edu/~omutlu/pub/dram-aware-caches-TR-HPS-2010-002.pdf
http://users.ece.cmu.edu/~omutlu/pub/dram-aware-caches-TR-HPS-2010-002.pdf

DRAM-aware Cache Design

 Coordination of cache policies with memory controllers

 Chang Joo Lee, Veynu Narasiman, Eiman Ebrahimi, Onur Mutlu, and
Yale N. Patt,
"DRAM-Aware Last-Level Cache Writeback: Reducing Write-
Caused Interference in Memory Systems"
HPS Technical Report, TR-HPS-2010-002, April 2010.

 Chang Joo Lee, Eiman Ebrahimi, Veynu Narasiman, Onur Mutlu, and
Yale N. Patt,
"DRAM-Aware Last-Level Cache Replacement"
HPS Technical Report, TR-HPS-2010-007, December 2010.

48

http://users.ece.cmu.edu/~omutlu/pub/dram-aware-caches-TR-HPS-2010-002.pdf
http://users.ece.cmu.edu/~omutlu/pub/dram-aware-caches-TR-HPS-2010-002.pdf
http://users.ece.cmu.edu/~omutlu/pub/dram-aware-caches-TR-HPS-2010-002.pdf
http://users.ece.cmu.edu/~omutlu/pub/dram-aware-caches-TR-HPS-2010-002.pdf
http://users.ece.cmu.edu/~omutlu/pub/dram-aware-caches-TR-HPS-2010-002.pdf
http://users.ece.cmu.edu/~omutlu/pub/dram-aware-caches-TR-HPS-2010-002.pdf
http://users.ece.cmu.edu/~omutlu/pub/dram-aware-caches-TR-HPS-2010-002.pdf
http://users.ece.cmu.edu/~omutlu/pub/dram-aware-replacement-TR-HPS-2010-007.pdf
http://users.ece.cmu.edu/~omutlu/pub/dram-aware-replacement-TR-HPS-2010-007.pdf
http://users.ece.cmu.edu/~omutlu/pub/dram-aware-replacement-TR-HPS-2010-007.pdf
http://users.ece.cmu.edu/~omutlu/pub/dram-aware-replacement-TR-HPS-2010-007.pdf
http://users.ece.cmu.edu/~omutlu/pub/dram-aware-replacement-TR-HPS-2010-007.pdf

11/12/2012

49

Write-Caused Interference:

Read-Write Switching

• Read-write switching penalty for requests to any bank

Data bus:

Idle (~10 processor cycles)

Data A

Idle (~85 processor cycles)

Data C

Frequent read-write switching incurs many idle cycles

Data B

Command:
Read A Write C Read B

Data bus:

Data A

Data B Command:
Read A Read B

• Row-hit read-to-read (write-to-write) to any bank:

back-to-back data transfer

11/12/2012

50

No precharge

(~60 processor cycles)

Write-Caused Interference:

Write-to-Row-Conflict
• Row-conflict after read (in the same bank)

Row-conflict after a write causes more idle cycles

Command:
Read A Precharge

Data bus:

Data A

Idle (~120 processor cycles)
Data B

Activate B Read or write B

Command:
Write A Precharge

Data bus:

Data A Data B

Activate B Read or write B

• Row-conflict after write (in the same bank)

Idle (~225 processor cycles)

Row-conflict

Row-conflict

11/12/2012

51

Write-Caused Interference

• Read-Write Switching

– Frequent read-write switching incurs many

idle cycles

• Write-to-Row-Conflict

– A row-conflict after a write causes more

idle cycles

Generating many row-hit writes rather than

row-conflict writes is preferred

11/12/2012

52

LRU vs. Interference-Aware

Replacement

Read A Write B

Row B

Row Buffer in Bank 0

DRAM

All requests are to the same cache set

DRAM

Controller

Read

buffer

Write

buffer

Dirty C Set X

 Conventional LRU:

Reading A

Row-conflict after write penalty

Writing B Writing C
Servicing

Write B (row-hit), Write C (row-conflict)

Clean

Clean A

Clean Dirty B

Write C

Last-level cache

Less recently used

11/12/2012

53

LRU vs. Interference-Aware

Replacement

Read A Write B

Row B

Row Buffer for writes

DRAM

All requests are to the same cache set

DRAM

Controller

Read

buffer

Write

buffer

Dirty C

Last-level cache

Set X

 Conventional LRU:

Less recently used

 Interference-aware:

Reading A

Row-conflict after write penalty

Writing B Writing C

Writing B

Reading A

Writing B

Reduced idle cycles

Servicing
Write B (row-hit), Write C (row-conflict)

Clean

Clean A

Clean Dirty B

Write B

Write B (row-hit), Write B (row-hit)

A simple policy can reduce write service time

11/12/2012

54

Performance of

DRAM-Aware Replacement

0

0.2

0.4

0.6

0.8

1

1.2

Base MLP DAC

P
e

rf
o

rm
a

n
c

e
 n

o
rm

a
li

z
e

d
 t

o
 b

a
s

e
li

n
e

12.3% 4-core 1-core 11.4%

0

0.2

0.4

0.6

0.8

1

1.2

Base MLP DAC

P
e

rf
o

rm
a

n
c

e
 n

o
rm

a
li

z
e

d
 t

o
 b

a
s

e
li

n
e

11/12/2012

55

Outline

• Problem

• Solutions

– Prefetch-Aware DRAM Controller

– BLP-Aware Request Issue Policies

– DRAM-Aware Cache Replacement

– DRAM-Aware Writeback

• Combination of Solutions

• Related Work

• Conclusion

11/12/2012

56

DRAM-Aware Writeback

• Write-caused interference-aware
replacement is not enough

– Row-hit writebacks are sent only when a
replacement occurs

• Lose opportunities to service more writes quickly

• To minimize write-caused interference,
proactively clean row-hit dirty lines
→ Reads are serviced without write-caused
interference for a longer period

11/12/2012

57

DRAM-Aware Writeback

1. When a dirty line is evicted for the last-level

cache, store its address

2. Using the stored address, search all possible

sets for row-hit dirty lines and clean them

whenever the cache bank is idle

• Many row-hit writes (up to the row size) are m

serviced quickly

– Reads can be serviced for a longer time without being

interfered with by writes

11/12/2012

58

Performance of

DRAM-Aware Writeback

0

0.2

0.4

0.6

0.8

1

1.2

Base Eager DAW

P
e

rf
o

rm
a

n
c

e
 n

o
rm

a
li

z
e

d
 t

o
 b

a
s

e
li

n
e

12.8% 4-core 1-core 7.1%

0

0.2

0.4

0.6

0.8

1

1.2

Base Eager DAW

P
e

rf
o

rm
a

n
c

e
 n

o
rm

a
li

z
e

d
 t

o
 b

a
s

e
li

n
e

Fairness via Source Throttling

Eiman Ebrahimi, Chang Joo Lee, Onur Mutlu, and Yale N. Patt,
"Fairness via Source Throttling: A Configurable and High-Performance

Fairness Substrate for Multi-Core Memory Systems"
15th Intl. Conf. on Architectural Support for Programming Languages and Operating Systems (ASPLOS),

pages 335-346, Pittsburgh, PA, March 2010. Slides (pdf)

FST ASPLOS 2010 Talk

http://users.ece.cmu.edu/~omutlu/pub/fst_asplos10.pdf
http://users.ece.cmu.edu/~omutlu/pub/fst_asplos10.pdf
http://users.ece.cmu.edu/~omutlu/pub/fst_asplos10.pdf
http://users.ece.cmu.edu/~omutlu/pub/fst_asplos10.pdf
http://users.ece.cmu.edu/~omutlu/pub/fst_asplos10.pdf
http://users.ece.cmu.edu/~omutlu/pub/fst_asplos10.pdf
http://users.ece.cmu.edu/~omutlu/pub/fst_asplos10.pdf
http://www.ece.cmu.edu/CALCM/asplos10/doku.php
http://users.ece.cmu.edu/~omutlu/pub/ebrahimi_asplos10_talk.pdf
file://localhost/Users/omutlu/Documents/presentations/CMU/SNU%20Lectures%20June%2018-20%202012/previous%20talks/ebrahimi_asplos10_talk.pdf

Many Shared Resources

Core 0 Core 1 Core 2 Core N

Shared Cache

Memory Controller

DRAM
Bank 0

DRAM
Bank 1

DRAM
Bank 2

... DRAM
Bank K

...

Shared Memory
Resources

Chip Boundary
On-chip

Off-chip

60

The Problem with “Smart Resources”

 Independent interference control mechanisms in
caches, interconnect, and memory can contradict
each other

 Explicitly coordinating mechanisms for different
resources requires complex implementation

 How do we enable fair sharing of the entire
memory system by controlling interference in a
coordinated manner?

61

An Alternative Approach: Source Throttling

 Manage inter-thread interference at the cores, not at the
shared resources

 Dynamically estimate unfairness in the memory system

 Feed back this information into a controller

 Throttle cores’ memory access rates accordingly

 Whom to throttle and by how much depends on performance
target (throughput, fairness, per-thread QoS, etc)

 E.g., if unfairness > system-software-specified target then
throttle down core causing unfairness &
throttle up core that was unfairly treated

 Ebrahimi et al., “Fairness via Source Throttling,” ASPLOS’10, TOCS’12.

62

A4

B1

A1

A2

A3

Oldest ⎧

⎪

⎪

⎩

Shared Memory

Resources

A: Compute
Stall on

A1

Stall on

A2

Stall on

A3

Stall on

A4

Compute Stall waiting for shared resources
Stall on

B1
B:

 Request Generation Order:

A1, A2, A3, A4, B1

Unmanage

d

Interference

Core A’s stall time

Core B’s stall time

A4

B1

A1

A2

A3

⎧

⎪

⎪

⎩

Shared Memory

Resources

A: Compute
Stall on

A1

Stall on

A2

Compute Stall wait.
Stall on

B1
B:

Dynamically detect application A’s interference

for application B and throttle down application A

Core A’s stall time

Core B’s stall time

Fair Source

Throttling

Stall wait.

Request Generation

Order
A1, A2, A3, A4, B1 B1, A2, A3, A4

queue of requests to

shared resources

queue of requests to

shared resources

Saved Cycles Core B
Oldest

Intensive application A generates many requests

and causes long stall times for less intensive

application B

Throttled

Requests

Stall on

A4

Stall on

A3
Extra Cycles

Core A

Fairness via Source Throttling (FST)

 Two components (interval-based)

 Run-time unfairness evaluation (in hardware)

 Dynamically estimates the unfairness in the memory system

 Estimates which application is slowing down which other

 Dynamic request throttling (hardware/software)

 Adjusts how aggressively each core makes requests to the
shared resources

 Throttles down request rates of cores causing unfairness

 Limit miss buffers, limit injection rate

64

65

Runtime

Unfairness

Evaluation

Dynamic

Request Throttling

1- Estimating system unfairness
2- Find app. with the highest
slowdown (App-slowest)
3- Find app. causing most
interference for App-slowest
(App-interfering)

if (Unfairness Estimate >Target)
{
 1-Throttle down App-interfering
 2-Throttle up App-slowest
}

FST

Unfairness Estimate

App-slowest

App-interfering

⎪

⎨

⎪

⎧

⎩

Slowdown

Estimation

Time
Interval 1 Interval 2 Interval 3

Runtime

Unfairness

Evaluation

Dynamic

Request Throttling

Fairness via Source Throttling (FST)

Runtime

Unfairness

Evaluation

Dynamic

Request Throttling

1- Estimating system unfairness
2- Find app. with the highest
slowdown (App-slowest)
3- Find app. causing most
interference for App-slowest
(App-interfering)

if (Unfairness Estimate >Target)
{
 1-Throttle down App-interfering
 2-Throttle up App-slowest
}

FST

Unfairness Estimate

App-slowest

App-interfering

66

Fairness via Source Throttling (FST)

Estimating System Unfairness

 Unfairness =

 Slowdown of application i =

 How can be estimated in shared mode?

 is the number of extra cycles it takes
application i to execute due to interference

67

Max{Slowdown i} over all applications i

Min{Slowdown i} over all applications i

Shared
Ti

Ti
Alone

Ti
Alone

Ti
Excess

Ti
Shared

= Ti
Alone

- Ti
Excess

Tracking Inter-Core Interference

68

0 0 0 0

Interference per core

bit vector

Core # 0 1 2 3

Core 0 Core 1 Core 2 Core 3

Bank 0 Bank 1 Bank 2 Bank 7
...

Memory Controller

Shared Cache

Three interference sources:
1. Shared Cache
2. DRAM bus and bank
3. DRAM row-buffers

FST hardware

Bank 2

Row

Row A

Tracking DRAM Row-Buffer Interference

69

Core 0 Core 1

Bank
0

Bank
1

Bank
2

Bank
7

…

Shadow Row Address Register

(SRAR) Core 1:

Shadow Row Address Register

(SRAR) Core 0:

Queue of requests to bank 2 0 0

Row B

Row A

Row A

Row B

Row B

Interference

per core bit vector
Row Conflict Row Hit

Interference

induced row conflict

1

Row A

Tracking Inter-Core Interference

70

0 0 0 0

Interference per core

bit vector

Core # 0 1 2 3

0

0

0

0

Excess Cycles

Counters per core

1

T Cycle Count T+1

1

T+2

2

FST hardware

1

T+3

3

1

Core 0 Core 1 Core 2 Core 3

Bank 0 Bank 1 Bank 2 Bank 7
...

Memory Controller

Shared Cache

Ti
Excess

⎪

⎪

Ti
Shared

= Ti
Alone

- Ti
Excess

Runtime

Unfairness

Evaluation

Dynamic

Request Throttling

1- Estimating system unfairness
2- Find app. with the highest
slowdown (App-slowest)
3- Find app. causing most
interference for App-slowest
(App-interfering)

if (Unfairness Estimate >Target)
{
 1-Throttle down App-interfering
 2-Throttle up App-slowest
}

FST

Unfairness Estimate

App-slowest

App-interfering

71

Fairness via Source Throttling (FST)

Tracking Inter-Core Interference

 To identify App-interfering, for each core i

 FST separately tracks interference caused by each core j
(j ≠ i)

72

Cnt 3 Cnt 2 Cnt 1 Cnt 0 0

0 0 0 -

Interference per core

bit vector

Core # 0 1 2 3
-

Cnt 1,0

Cnt 2,0

Cnt 3,0

Excess Cycles

Counters per core

0 0 - 0

0 - 0 0

- 0 0 0

⎪

⎨

⎪

⎧

⎩

⎪
⎨
⎪
⎧

⎩

Interfered with core

Interfering

core

Cnt 0,1

-

Cnt 2,1

Cnt 3,1

Cnt 0,2

Cnt 1,2

-

Cnt 3,2

Cnt 0,3

Cnt 1,3

Cnt 2,3

-

1
core 2

interfered

with

core 1

Cnt

2,1+

0
1
2
3

Row with largest count

determines App-interfering

App-slowest = 2

Pairwise interference

bit matrix

Pairwise excess cycles

matrix

Fairness via Source Throttling (FST)

73

Runtime

Unfairness

Evaluation

Dynamic

Request Throttling

1- Estimating system unfairness

2- Find app. with the highest slowdown

(App-slowest)

3- Find app. causing most interference

for App-slowest

(App-interfering)

if (Unfairness Estimate >Target)

{

 1-Throttle down App-interfering

 2-Throttle up App-slowest

}

FST

Unfairness Estimate

App-slowest

App-interfering

Dynamic Request Throttling

 Goal: Adjust how aggressively each core makes requests to

the shared memory system

 Mechanisms:

 Miss Status Holding Register (MSHR) quota

 Controls the number of concurrent requests accessing shared
resources from each application

 Request injection frequency

 Controls how often memory requests are issued to the last level
cache from the MSHRs

74

Dynamic Request Throttling

 Throttling level assigned to each core determines both

MSHR quota and request injection rate

75

Throttling level MSHR quota Request Injection Rate

100% 128 Every cycle

50% 64 Every other cycle

25% 32 Once every 4 cycles

10% 12 Once every 10 cycles

5% 6 Once every 20 cycles

4% 5 Once every 25 cycles

3% 3 Once every 30 cycles

2% 2 Once every 50 cycles Total # of

MSHRs: 128

FST at Work

76

Time
Interval i Interval i+1 Interval i+2

Runtime Unfairness

Evaluation

Dynamic

Request Throttling

FST

Unfairness Estimate

App-slowest

App-interfering

Throttling Levels

Core 0 Core 1 Core 3
50% 100% 10% 100%

25% 100% 25% 100%
25% 50% 50% 100%

Interval i

Interval i + 1
Interval i + 2

3

Core 2

Core 0

Core 0 Core 2

Throttle down Throttle up

2.5

Core 2

Core 1

Throttle down Throttle up

System software

fairness goal: 1.4

Slowdown

Estimation

⎪

⎨

⎪

⎧

⎩

Slowdown

Estimation

⎪

⎨

⎪

⎧

⎩

System Software Support

 Different fairness objectives can be configured by

system software

 Estimated Unfairness > Target Unfairness

 Keep maximum slowdown in check

 Estimated Max Slowdown < Target Max Slowdown

 Keep slowdown of particular applications in check to achieve a
particular performance target

 Estimated Slowdown(i) < Target Slowdown(i)

 Support for thread priorities

 Weighted Slowdown(i) =
 Estimated Slowdown(i) x Weight(i)

77

FST Hardware Cost

 Total storage cost required for 4 cores is ~12KB

 FST does not require any structures or logic that are on the
processor’s critical path

78

FST Evaluation Methodology

 x86 cycle accurate simulator

 Baseline processor configuration

 Per-core

 4-wide issue, out-of-order, 256 entry ROB

 Shared (4-core system)

 128 MSHRs

 2 MB, 16-way L2 cache

 Main Memory

 DDR3 1333 MHz

 Latency of 15ns per command (tRP, tRCD, CL)

 8B wide core to memory bus

79

FST: System Unfairness Results

80

44.4%

36%

FST: System Performance Results

81 81

25.6

%

14%

81

Source Throttling Results: Takeaways

 Source throttling alone provides better performance than a
combination of “smart” memory scheduling and fair caching

 Decisions made at the memory scheduler and the cache
sometimes contradict each other

 Neither source throttling alone nor “smart resources” alone
provides the best performance

 Combined approaches are even more powerful

 Source throttling and resource-based interference control

82

FST ASPLOS 2010 Talk

file://localhost/Users/omutlu/Documents/presentations/CMU/SNU%20Lectures%20June%2018-20%202012/previous%20talks/ebrahimi_asplos10_talk.pdf

Designing QoS-Aware Memory Systems: Approaches

 Smart resources: Design each shared resource to have a
configurable interference control/reduction mechanism

 QoS-aware memory controllers [Mutlu+ MICRO’07] [Moscibroda+, Usenix Security’07]

[Mutlu+ ISCA’08, Top Picks’09] [Kim+ HPCA’10] [Kim+ MICRO’10, Top Picks’11] [Ebrahimi+ ISCA’11,
MICRO’11] [Ausavarungnirun+, ISCA’12]

 QoS-aware interconnects [Das+ MICRO’09, ISCA’10, Top Picks ’11] [Grot+ MICRO’09,

ISCA’11, Top Picks ’12]

 QoS-aware caches

 Dumb resources: Keep each resource free-for-all, but
reduce/control interference by injection control or data
mapping

 Source throttling to control access to memory system [Ebrahimi+ ASPLOS’10,

ISCA’11, TOCS’12] [Ebrahimi+ MICRO’09] [Nychis+ HotNets’10]

 QoS-aware data mapping to memory controllers [Muralidhara+ MICRO’11]

 QoS-aware thread scheduling to cores

 83

Memory Channel Partitioning

Sai Prashanth Muralidhara, Lavanya Subramanian, Onur Mutlu, Mahmut Kandemir, and Thomas Moscibroda,

"Reducing Memory Interference in Multicore Systems via
Application-Aware Memory Channel Partitioning”

 44th International Symposium on Microarchitecture (MICRO),
Porto Alegre, Brazil, December 2011. Slides (pptx)

MCP Micro 2011 Talk

http://users.ece.cmu.edu/~omutlu/pub/memory-channel-partitioning-micro11.pdf
http://users.ece.cmu.edu/~omutlu/pub/memory-channel-partitioning-micro11.pdf
http://users.ece.cmu.edu/~omutlu/pub/memory-channel-partitioning-micro11.pdf
http://users.ece.cmu.edu/~omutlu/pub/memory-channel-partitioning-micro11.pdf
http://users.ece.cmu.edu/~omutlu/pub/memory-channel-partitioning-micro11.pdf
http://users.ece.cmu.edu/~omutlu/pub/memory-channel-partitioning-micro11.pdf
http://www.microarch.org/micro44/
http://users.ece.cmu.edu/~omutlu/pub/subramanian_micro11_talk.pptx
file://localhost/Users/omutlu/Documents/presentations/CMU/SNU%20Lectures%20June%2018-20%202012/previous%20talks/subramanian_micro11_talk.pptx

Outline

85

Goal:
Mitigate

Inter-Application Interference

Previous Approach:
Application-Aware Memory

Request Scheduling

Our First Approach:
Application-Aware Memory

Channel Partitioning

Our Second Approach:
Integrated Memory

Partitioning and Scheduling

Overview: Memory Channel Partitioning (MCP)

 Goal

 Eliminate harmful interference between applications

 Basic Idea

 Map the data of badly-interfering applications to different
channels

 Key Principles

 Separate low and high memory-intensity applications

 Separate low and high row-buffer locality applications

86

Key Insight 1: Separate by Memory Intensity

High memory-intensity applications interfere with low
memory-intensity applications in shared memory channels

87

Map data of low and high memory-intensity applications
to different channels

1 2 3 4 5
Channel 0

Bank 1

Channel 1

Bank 0

Conventional Page Mapping

Red
App

Blue
App

Time Units

Core

Core

Bank 1

Bank 0

Channel Partitioning

Red
App

Blue
App

Channel 0
Time Units

1 2 3 4 5

Channel 1

Core

Core

Bank 1

Bank 0

Bank 1

Bank 0

Saved Cycles

Saved Cycles

Key Insight 2: Separate by Row-Buffer Locality

88

High row-buffer locality applications interfere with low

row-buffer locality applications in shared memory channels

Conventional Page Mapping

Channel 0

Bank 1

Channel 1

Bank 0 R1

R0 R2 R3 R0

R4

Request Buffer
State

Bank 1

Bank 0

Channel 1

Channel 0

R0 R0

Service Order

1 2 3 4 5 6

R2 R3

R4

R1

Time
units

Bank 1

Bank 0

Bank 1

Bank 0

Channel 1

Channel 0

R0 R0

Service Order

1 2 3 4 5 6

R2 R3

R4 R1

Time
units

Bank 1

Bank 0

Bank 1

Bank 0

R0

Channel 0

R1

R2 R3

R0

R4

Request Buffer
State

Channel Partitioning

Bank 1

Bank 0

Bank 1

Bank 0

Channel 1

Saved
Cycles Map data of low and high row-buffer locality applications

to different channels

Memory Channel Partitioning (MCP) Mechanism

1. Profile applications

2. Classify applications into groups

3. Partition channels between application groups

4. Assign a preferred channel to each application

5. Allocate application pages to preferred channel

89

Hardware

System
Software

Integrating Partitioning and Scheduling

90

Previous Approach:
Application-Aware Memory

Request Scheduling

Our First Approach:
Application-Aware Memory

Channel Partitioning

Our Second Approach:
Integrated Memory

Partitioning and Scheduling

Goal:
Mitigate

Inter-Application Interference

Observations

 Applications with very low memory-intensity rarely
access memory
 Dedicating channels to them results in precious
memory bandwidth waste

 They have the most potential to keep their cores busy
 We would really like to prioritize them

 They interfere minimally with other applications
 Prioritizing them does not hurt others

91

Integrated Memory Partitioning and Scheduling (IMPS)

 Always prioritize very low memory-intensity
applications in the memory scheduler

 Use memory channel partitioning to mitigate
interference between other applications

92

Hardware Cost

 Memory Channel Partitioning (MCP)

 Only profiling counters in hardware

 No modifications to memory scheduling logic

 1.5 KB storage cost for a 24-core, 4-channel system

 Integrated Memory Partitioning and Scheduling (IMPS)

 A single bit per request

 Scheduler prioritizes based on this single bit

93

Comparison to Previous Scheduling Policies

94

1%

5%

0.9

0.95

1

1.05

1.1

1.15

N
o

rm
al

iz
e

d

Sy
st

e
m

 P
e

rf
o

rm
an

ce

FRFCFS

ATLAS

TCM

MCP

IMPS

7%

11%

Significant performance improvement over baseline FRFCFS
Better system performance than the best previous scheduler

at lower hardware cost

Averaged over 240 workloads

95

0.94

0.96

0.98

1

1.02

1.04

1.06

1.08

1.1

1.12

FRFCFS ATLAS TCM

N
o

rm
al

iz
e

d

Sy
st

e
m

 P
e

rf
o

rm
an

ce

No IMPS

IMPS

0.94

0.96

0.98

1

1.02

1.04

1.06

1.08

1.1

1.12

FRFCFS ATLAS TCM

N
o

rm
al

iz
e

d

Sy
st

e
m

 P
e

rf
o

rm
an

ce

No IMPS

IMPS improves performance regardless of scheduling policy
Highest improvement over FRFCFS as IMPS designed for FRFCFS

Interaction with Memory Scheduling

Averaged over 240 workloads

MCP Summary

 Uncontrolled inter-application interference in main memory
degrades system performance

 Application-aware memory channel partitioning (MCP)

 Separates the data of badly-interfering applications
to different channels, eliminating interference

 Integrated memory partitioning and scheduling (IMPS)

 Prioritizes very low memory-intensity applications in scheduler

 Handles other applications’ interference by partitioning

 MCP/IMPS provide better performance than application-
aware memory request scheduling at lower hardware cost

96

Summary: Memory QoS Approaches and Techniques

 Approaches: Smart vs. dumb resources

 Smart resources: QoS-aware memory scheduling

 Dumb resources: Source throttling; channel partitioning

 Both approaches are effective in reducing interference

 No single best approach for all workloads

 Techniques: Request scheduling, source throttling, memory
partitioning

 All approaches are effective in reducing interference

 Can be applied at different levels: hardware vs. software

 No single best technique for all workloads

 Combined approaches and techniques are the most powerful

 Integrated Memory Channel Partitioning and Scheduling [MICRO’11]

97

Smart Resources vs. Source Throttling

 Advantages of “smart resources”
 Each resource is designed to be as efficient as possible

more efficient design using custom techniques for each resource

 No need for estimating interference across the entire system
(to feed a throttling algorithm).

 Does not lose throughput by possibly overthrottling

 Advantages of source throttling

 Prevents overloading of any or all resources (if employed well)

 Can keep each resource simple; no need to redesign each resource

 Provides prioritization of threads in the entire memory system; inst
ead of per resource

 Eliminates conflicting decision making between resources

98

Handling Interference in Parallel Applications

 Threads in a multithreaded application are inter-dependent

 Some threads can be on the critical path of execution due
to synchronization; some threads are not

 How do we schedule requests of inter-dependent threads
to maximize multithreaded application performance?

 Idea: Estimate limiter threads likely to be on the critical path and
prioritize their requests; shuffle priorities of non-limiter threads
to reduce memory interference among them [Ebrahimi+, MICRO’11]

 Hardware/software cooperative limiter thread estimation:

 Thread executing the most contended critical section

 Thread that is falling behind the most in a parallel for loop

 99 PAMS Micro 2011 Talk

file://localhost/Users/omutlu/Documents/presentations/CMU/SNU%20Lectures%20June%2018-20%202012/previous%20talks/ebrahimi_micro2011_talk.pptx

Other Ways of Reducing (DRAM) Interference

 DRAM bank/subarray partitioning among threads

 Interference-aware address mapping/remapping

 Core/request throttling: How?

 Interference-aware thread scheduling: How?

 Better/Interference-aware caching

 Interference-aware scheduling in the interconnect

 Randomized address mapping

 DRAM architecture/microarchitecture changes?

 These are general techniques that can be used to improve

 System throughput

 QoS/fairness

 Power/energy consumption?
100

Research Topics in Main Memory Management

 Abundant

 Interference reduction via different techniques

 Distributed memory controller management

 Co-design with on-chip interconnects and caches

 Reducing waste, minimizing energy, minimizing cost

 Enabling new memory technologies

 Die stacking

 Non-volatile memory

 Latency tolerance

 You can come up with great solutions that will significantly
impact computing industry

101

