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Reminder: New Review Assignments 

 Due: Tuesday, November 13, 11:59pm. 

 Mutlu and Moscibroda, “Parallelism-Aware Batch Scheduling: 
Enhancing both Performance and Fairness of Shared DRAM 
Systems,” ISCA 2008. 

 Kim et al., “Thread Cluster Memory Scheduling: Exploiting 
Differences in Memory Access Behavior,” MICRO 2010. 

 

 Due: Thursday, November 15, 11:59pm. 

 Ebrahimi et al., “Fairness via Source Throttling: A Configurable 
and High-Performance Fairness Substrate for Multi-Core Memory 
Systems,” ASPLOS 2010. 

 Muralidhara et al., “Reducing Memory Interference in 
Multicore Systems via Application-Aware Memory Channel 
Partitioning,” MICRO 2011. 
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Reminder: Literature Survey Process  

 Done in groups: your research project group is likely ideal 

 Step 1: Pick 3 or more research papers  

 Broadly related to your research project 

 Step 2: Send me the list of papers with links to pdf copies (by 
Sunday, November 11) 

 I need to approve the 3 papers 

 We will iterate to ensure convergence on the list 

 Step 3: Prepare a 2-page writeup on the 3 papers 

 Step 3: Prepare a 15-minute presentation on the 3 papers 

 Total time: 15-minute talk + 5-minute Q&A 

 Talk should focus on insights and tradeoffs 

 Step 4: Deliver the presentation in front of class (dates: 
November 26-28 or December 3-7) and turn in your writeup 
(due date: December 1) 
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Last Lecture 

 Begin shared resource management 

 

 Main memory as a shared resource 

 QoS-aware memory systems 

 Memory request scheduling 

 Memory performance attacks 

 STFM 

 PAR-BS 

 ATLAS 
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Today 

 End QoS-aware Memory Request Scheduling 
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More on QoS-Aware  

Memory Request Scheduling 

 

 

 

 

 



Designing QoS-Aware Memory Systems: Approaches 

 Smart resources: Design each shared resource to have a 
configurable interference control/reduction mechanism 

 QoS-aware memory controllers [Mutlu+ MICRO’07] [Moscibroda+, Usenix Security’07] 

[Mutlu+ ISCA’08, Top Picks’09] [Kim+ HPCA’10] [Kim+ MICRO’10, Top Picks’11] [Ebrahimi+ ISCA’11, 
MICRO’11] [Ausavarungnirun+, ISCA’12] 

 QoS-aware interconnects [Das+ MICRO’09, ISCA’10, Top Picks ’11] [Grot+ MICRO’09, 

ISCA’11, Top Picks ’12] 

 QoS-aware caches 
 

 Dumb resources: Keep each resource free-for-all, but 
reduce/control interference by injection control or data 
mapping 

 Source throttling to control access to memory system [Ebrahimi+ ASPLOS’10, 

ISCA’11, TOCS’12] [Ebrahimi+ MICRO’09] [Nychis+ HotNets’10] 

 QoS-aware data mapping to memory controllers [Muralidhara+ MICRO’11] 

 QoS-aware thread scheduling to cores 
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QoS-Aware Memory Scheduling 

 

 

 

 

 

 How to schedule requests to provide 

 High system performance 

 High fairness to applications 

 Configurability to system software  

 

 Memory controller needs to be aware of threads 
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Memory 
Controller 

Core Core 

Core Core 

Memory 

Resolves memory contention 
by scheduling requests 



QoS-Aware Memory Scheduling: Evolution 

 Stall-time fair memory scheduling [Mutlu+ MICRO’07] 

 Idea: Estimate and balance thread slowdowns 

 Takeaway: Proportional thread progress improves performance, 
especially when threads are “heavy” (memory intensive) 
 

 Parallelism-aware batch scheduling [Mutlu+ ISCA’08, Top Picks’09] 

 Idea: Rank threads and service in rank order (to preserve bank 
parallelism); batch requests to prevent starvation 

 Takeaway: Preserving within-thread bank-parallelism improves 
performance; request batching improves fairness 
 

 ATLAS memory scheduler [Kim+ HPCA’10] 

 Idea: Prioritize threads that have attained the least service from the 
memory scheduler  

 Takeaway: Prioritizing “light” threads improves performance 
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QoS-Aware Memory Scheduling: Evolution 

 Thread cluster memory scheduling [Kim+ MICRO’10] 

 Idea: Cluster threads into two groups (latency vs. bandwidth 
sensitive); prioritize the latency-sensitive ones; employ a fairness 
policy in the bandwidth sensitive group 

 Takeaway: Heterogeneous scheduling policy that is different based 
on thread behavior maximizes both performance and fairness 

 

 Staged memory scheduling [Ausavarungnirun+ ISCA’12] 

 Idea: Divide the functional tasks of an application-aware memory 
scheduler into multiple distinct stages, where each stage is 
significantly simpler than a monolithic scheduler 

 Takeaway: Staging enables the design of a scalable and relatively 
simpler application-aware memory scheduler that works on very 
large request buffers 
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QoS-Aware Memory Scheduling: Evolution 

 Parallel application memory scheduling [Ebrahimi+ MICRO’11] 

 Idea: Identify and prioritize limiter threads of a multithreaded 
application in the memory scheduler; provide fast and fair progress 
to non-limiter threads 

 Takeaway: Carefully prioritizing between limiter and non-limiter 
threads of a parallel application improves performance 

 

 Integrated Memory Channel Partitioning and Scheduling 
[Muralidhara+ MICRO’11] 

 Idea: Only prioritize very latency-sensitive threads in the scheduler; 
mitigate all other applications’ interference via channel partitioning 

 Takeaway: Intelligently ombining application-aware channel 
partitioning and memory scheduling provides better performance 
than either 
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QoS-Aware Memory Scheduling: Evolution 

 Prefetch-aware shared resource management [Ebrahimi+ 

ISCA’12] [Ebrahimi+ MICRO’09] [Lee+ MICRO’08] 

 Idea: Prioritize prefetches depending on how they affect system 
performance; even accurate prefetches can degrade performance of 
the system  

 Takeaway: Carefully controlling and prioritizing prefetch requests 
improves performance and fairness 

 
 

 

 

12 



Properties of ATLAS 

 LAS-ranking 

 Bank-level parallelism 

 Row-buffer locality 

 

 Very infrequent coordination 

 

 

 Scale attained service with 
thread weight (in paper) 

 

 Low complexity: Attained 
service requires a single 
counter per thread in each MC 

13 

 
 Maximize system performance 
 
 
 

 Scalable to large number of controllers 
 
 
 

 Configurable by system software 

Goals Properties of ATLAS 



ATLAS Pros and Cons 

 Upsides: 

 Good at improving performance 

 Low complexity 

 Coordination among controllers happens infrequently 

 

 Downsides: 

 Lowest ranked threads get delayed significantly  high 

unfairness 
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TCM: 

Thread Cluster Memory Scheduling 

 

 

 

 

Yoongu Kim, Michael Papamichael, Onur Mutlu, and Mor Harchol-Balter, 
"Thread Cluster Memory Scheduling:  

Exploiting Differences in Memory Access Behavior"  
43rd International Symposium on Microarchitecture (MICRO),  
pages 65-76, Atlanta, GA, December 2010. Slides (pptx) (pdf)  

TCM Micro 2010 Talk 

http://users.ece.cmu.edu/~omutlu/pub/tcm_micro10.pdf
http://users.ece.cmu.edu/~omutlu/pub/tcm_micro10.pdf
http://users.ece.cmu.edu/~omutlu/pub/tcm_micro10.pdf
http://www.microarch.org/micro43/
http://users.ece.cmu.edu/~omutlu/pub/kim_micro10_talk.pptx
http://users.ece.cmu.edu/~omutlu/pub/kim_micro10_talk.pdf
file://localhost/Users/omutlu/Documents/presentations/CMU/SNU%20Lectures%20June%2018-20%202012/previous%20talks/kim_micro10_talk.pptx


No previous memory scheduling algorithm provides 
both the best fairness and system throughput 
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System throughput bias 

Fairness bias 

Better system throughput 
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24 cores, 4 memory controllers, 96 workloads  

Throughput vs. Fairness 



Take turns accessing memory 

Throughput vs. Fairness 
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Fairness biased approach 

thread C 

thread B 

thread A 

less memory  
intensive 

higher 
priority 

Prioritize less memory-intensive threads 

Throughput biased approach 

Good for throughput 

starvation  unfairness 

thread C thread B thread A 

Does not starve 

not prioritized   
reduced throughput 

Single policy for all threads is insufficient 



Achieving the Best of Both Worlds 
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thread 

thread 

higher 
priority 

thread 

thread 

thread  

thread 

thread 

thread 

Prioritize memory-non-intensive threads 

For Throughput 

Unfairness caused by memory-intensive 
being prioritized over each other  

• Shuffle thread ranking 
 

Memory-intensive threads have  
different vulnerability to interference 

• Shuffle asymmetrically 

For Fairness 

thread 

thread 

thread 

thread 



Thread Cluster Memory Scheduling [Kim+ MICRO’10] 

1. Group threads into two clusters 
2. Prioritize non-intensive cluster 
3. Different policies for each cluster 
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thread 

Threads in the system 

thread 

thread 

thread 

thread 

thread 

thread 

Non-intensive  
cluster 

Intensive cluster 

thread 

thread 

thread 

Memory-non-intensive  

Memory-intensive  
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Clustering Threads 

Step1 Sort threads by MPKI (misses per kiloinstruction) 
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Step2 Memory bandwidth usage αT divides clusters 

 



TCM: Quantum-Based Operation 
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Time 

Previous quantum 
(~1M cycles) 

During quantum: 
• Monitor thread behavior 

1. Memory intensity 
2. Bank-level parallelism 
3. Row-buffer locality 

Beginning of quantum: 
• Perform clustering 
• Compute niceness of 

intensive threads 

Current quantum 
(~1M cycles) 

Shuffle interval 
(~1K cycles) 



TCM: Scheduling Algorithm 

1. Highest-rank: Requests from higher ranked threads prioritized 

• Non-Intensive cluster > Intensive cluster 

• Non-Intensive cluster: lower intensity  higher rank 

• Intensive cluster: rank shuffling 

 

 

2. Row-hit: Row-buffer hit requests are prioritized 

 

3. Oldest: Older requests are prioritized 
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TCM: Throughput and Fairness 
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Better system throughput 
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24 cores, 4 memory controllers, 96 workloads  

TCM, a heterogeneous scheduling policy, 
provides best fairness and system throughput 



TCM: Fairness-Throughput Tradeoff 
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When configuration parameter is varied… 

Adjusting  
ClusterThreshold 

TCM allows robust fairness-throughput tradeoff  

STFM 
PAR-BS 

ATLAS 

TCM 

Better system throughput 
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TCM Pros and Cons 

 Upsides: 

 Provides both high fairness and high performance 

 

 Downsides: 

 Scalability to large buffer sizes? 

 Effectiveness in a heterogeneous system? 
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Staged Memory Scheduling 

 

 

 

 

Rachata Ausavarungnirun, Kevin Chang, Lavanya Subramanian, Gabriel Loh, and Onur Mutlu, 

"Staged Memory Scheduling: Achieving High Performance  
and Scalability in Heterogeneous Systems” 

39th International Symposium on Computer Architecture (ISCA),  
Portland, OR, June 2012.  

SMS ISCA 2012 Talk 

http://users.ece.cmu.edu/~omutlu/pub/staged-memory-scheduling_isca12.pdf
http://users.ece.cmu.edu/~omutlu/pub/staged-memory-scheduling_isca12.pdf
http://users.ece.cmu.edu/~omutlu/pub/staged-memory-scheduling_isca12.pdf
http://isca2012.ittc.ku.edu/
http://isca2012.ittc.ku.edu/
file://localhost/Users/omutlu/Documents/presentations/CMU/SNU%20Lectures%20June%2018-20%202012/previous%20talks/rachata_isca12_talk.pptx


Memory Control in CPU-GPU Systems 

 Observation: Heterogeneous CPU-GPU systems require 

memory schedulers with large request buffers 
 

 Problem: Existing monolithic application-aware memory 

scheduler designs are hard to scale to large request buffer sizes 
 

 Solution: Staged Memory Scheduling (SMS)  

decomposes the memory controller into three simple stages: 

1) Batch formation: maintains row buffer locality 

2) Batch scheduler: reduces interference between applications 

3) DRAM command scheduler: issues requests to DRAM 
 

 Compared to state-of-the-art memory schedulers: 

 SMS is significantly simpler and more scalable 

 SMS provides higher performance and fairness 

 27 Ausavarungnirun et al., “Staged Memory Scheduling,” ISCA 2012. 

file://localhost/Users/omutlu/Documents/presentations/CMU/Samsung%20Memory%20June%2021%202012/Previous%20Presentations/rachata_isca12_talk.pptx


Key Idea: Decouple Tasks into Stages 

 Idea: Decouple the functional tasks of the memory controller 

 Partition tasks across several simpler HW structures (stages) 
 

1) Maximize row buffer hits 

 Stage 1: Batch formation  

 Within each application, groups requests to the same row into 
batches 

2) Manage contention between applications 

 Stage 2: Batch scheduler  

 Schedules batches from different applications 

3) Satisfy DRAM timing constraints 

 Stage 3: DRAM command scheduler 

 Issues requests from the already-scheduled order to each bank 
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SMS: Staged Memory Scheduling 
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Stage 1 

Stage 2 

SMS: Staged Memory Scheduling 
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Core 1 Core 2 Core 3 Core 4 

To DRAM 

GPU 

Req Req Batch Scheduler 

Batch 
Formation 

Stage 3 

DRAM 
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Bank 1 Bank 2 Bank 3 Bank 4 



Current Batch 
Scheduling 

Policy 

SJF 

Current Batch 
Scheduling 

Policy 

RR 

Batch Scheduler 

Bank 1 Bank 2 Bank 3 Bank 4 

SMS: Staged Memory Scheduling 
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Core 1 Core 2 Core 3 Core 4 

Stage 1: 
Batch  
Formation 

Stage 3: 
DRAM 
Command 
Scheduler 

GPU 

  

Stage 2: 



SMS Complexity 

 Compared to a row hit first scheduler, SMS consumes* 

 66% less area 

 46% less static power 

 

 

 Reduction comes from: 

 Monolithic scheduler  stages of simpler schedulers 

 Each stage has a simpler scheduler (considers fewer 
properties at a time to make the scheduling decision) 

 Each stage has simpler buffers (FIFO instead of out-of-order) 

 Each stage has a portion of the total buffer size (buffering is 
distributed across stages) 

32 * Based on a Verilog model using 180nm library 



SMS Performance 
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 At every GPU weight, SMS outperforms the best previous 
scheduling algorithm for that weight 

SMS Performance 
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Memory QoS in a Parallel Application 

 Threads in a multithreaded application are inter-dependent 

 Some threads can be on the critical path of execution due 
to synchronization; some threads are not 

 How do we schedule requests of inter-dependent threads 
to maximize multithreaded application performance? 

 

 Idea: Estimate limiter threads likely to be on the critical path and 
prioritize their requests; shuffle priorities of non-limiter threads 
to reduce memory interference among them [Ebrahimi+, MICRO’11] 

 

 Hardware/software cooperative limiter thread estimation: 

 Thread executing the most contended critical section 

 Thread that is falling behind the most in a parallel for loop 

 

 35 Ebrahimi et al., “Parallel Application Memory Scheduling,” MICRO 2011. 

file://localhost/Users/omutlu/Documents/presentations/CMU/Samsung%20Memory%20June%2021%202012/Previous%20Presentations/ebrahimi_micro2011_talk.pptx


Designing QoS-Aware Memory Systems: Approaches 

 Smart resources: Design each shared resource to have a 
configurable interference control/reduction mechanism 

 QoS-aware memory controllers [Mutlu+ MICRO’07] [Moscibroda+, Usenix Security’07] 

[Mutlu+ ISCA’08, Top Picks’09] [Kim+ HPCA’10] [Kim+ MICRO’10, Top Picks’11] [Ebrahimi+ ISCA’11, 
MICRO’11] [Ausavarungnirun+, ISCA’12] 

 QoS-aware interconnects [Das+ MICRO’09, ISCA’10, Top Picks ’11] [Grot+ MICRO’09, 

ISCA’11, Top Picks ’12] 

 QoS-aware caches 
 

 Dumb resources: Keep each resource free-for-all, but 
reduce/control interference by injection control or data 
mapping 

 Source throttling to control access to memory system [Ebrahimi+ ASPLOS’10, 

ISCA’11, TOCS’12] [Ebrahimi+ MICRO’09] [Nychis+ HotNets’10] 

 QoS-aware data mapping to memory controllers [Muralidhara+ MICRO’11] 

 QoS-aware thread scheduling to cores 
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We did not cover the following slides in lecture. 

These are for your preparation for the next lecture.  



Self-Optimizing Memory Controllers 

 

 

 

 

Engin Ipek, Onur Mutlu, José F. Martínez, and Rich Caruana,  

"Self Optimizing Memory Controllers: A Reinforcement Learning Approach" 

Proceedings of the 35th International Symposium on Computer Architecture (ISCA),  

Beijing, China, June 2008. 

http://users.ece.cmu.edu/~omutlu/pub/rlmc_isca08.pdf
http://isca2008.cs.princeton.edu/


Why are DRAM Controllers Difficult to Design? 

 Need to obey DRAM timing constraints for correctness 

 There are many (50+) timing constraints in DRAM 

 tWTR: Minimum number of cycles to wait before issuing a 
read command after a write command is issued 

 tRC: Minimum number of cycles between the issuing of two 
consecutive activate commands to the same bank 

 … 

 Need to keep track of many resources to prevent conflicts 

 Channels, banks, ranks, data bus, address bus, row buffers 

 Need to handle DRAM refresh 

 Need to optimize for performance (in the presence of constraints) 

 Reordering is not simple 

 Predicting the future? 
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Why are DRAM Controllers Difficult to Design? 

 

 

 

 

 

 

 

 

 From Lee et al., “DRAM-Aware Last-Level Cache Writeback: Reducing 
Write-Caused Interference in Memory Systems,” HPS Technical Report, 
April 2010. 
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Self-Optimizing DRAM Controllers 

 Problem: DRAM controllers difficult to design  It is difficult for 

human designers to design a policy that can adapt itself very well 
to different workloads and different system conditions 

 

 Idea: Design a memory controller that adapts its scheduling 
policy decisions to workload behavior and system conditions 
using machine learning. 

 

 Observation: Reinforcement learning maps nicely to memory 
control. 

 

 Design: Memory controller is a reinforcement learning agent that 
dynamically and continuously learns and employs the best 
scheduling policy. 
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Self-Optimizing DRAM Controllers 

 Engin Ipek, Onur Mutlu, José F. Martínez, and Rich 
Caruana,  
"Self Optimizing Memory Controllers: A 
Reinforcement Learning Approach" 
Proceedings of the 35th International Symposium on 
Computer Architecture (ISCA), pages 39-50, Beijing, 
China, June 2008. 
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http://users.ece.cmu.edu/~omutlu/pub/rlmc_isca08.pdf
http://users.ece.cmu.edu/~omutlu/pub/rlmc_isca08.pdf
http://isca2008.cs.princeton.edu/
http://isca2008.cs.princeton.edu/


Self-Optimizing DRAM Controllers 

 Engin Ipek, Onur Mutlu, José F. Martínez, and Rich Caruana,  
"Self Optimizing Memory Controllers: A Reinforcement Learning 
Approach" 
Proceedings of the 35th International Symposium on Computer Architecture 
(ISCA), pages 39-50, Beijing, China, June 2008. 
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http://users.ece.cmu.edu/~omutlu/pub/rlmc_isca08.pdf
http://users.ece.cmu.edu/~omutlu/pub/rlmc_isca08.pdf
http://isca2008.cs.princeton.edu/


Performance Results 
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DRAM-Aware Cache Design: 

An Example of Resource Coordination 

 

 

 

 Chang Joo Lee, Veynu Narasiman, Eiman Ebrahimi, Onur Mutlu, and Yale N. Patt,  

"DRAM-Aware Last-Level Cache Writeback: Reducing Write-Caused Interference in Memory Systems" 

HPS Technical Report, TR-HPS-2010-002, April 2010.  

http://users.ece.cmu.edu/~omutlu/pub/dram-aware-caches-TR-HPS-2010-002.pdf
http://users.ece.cmu.edu/~omutlu/pub/dram-aware-caches-TR-HPS-2010-002.pdf
http://users.ece.cmu.edu/~omutlu/pub/dram-aware-caches-TR-HPS-2010-002.pdf
http://users.ece.cmu.edu/~omutlu/pub/dram-aware-caches-TR-HPS-2010-002.pdf
http://users.ece.cmu.edu/~omutlu/pub/dram-aware-caches-TR-HPS-2010-002.pdf
http://users.ece.cmu.edu/~omutlu/pub/dram-aware-caches-TR-HPS-2010-002.pdf
http://users.ece.cmu.edu/~omutlu/pub/dram-aware-caches-TR-HPS-2010-002.pdf


DRAM-Aware LLC Writeback 

 Problem 1: Writebacks to DRAM interfere with reads and 
cause additional performance penalty 
 Write-to-read turnaround time in DRAM bus 

 Write-recovery latency in DRAM bank 

 Change of row buffer  reduced row-buffer locality for read requests 

 

 Problem 2: Writebacks that occur once in a while have low 
row buffer locality 

 

 Idea: When evicting a dirty cache block to a row, 
proactively search the cache for other dirty blocks to the 
same row  evict them  write to DRAM in a batch 
 Improves row buffer locality 

 Reduces write-to-read switching penalties on DRAM bus 

 Improves performance on both single-core and multi-core systems 
46 



More Information 

 Chang Joo Lee, Veynu Narasiman, Eiman Ebrahimi, Onur Mutlu, and Yale N. 
Patt,  
"DRAM-Aware Last-Level Cache Writeback: Reducing Write-Caused 
Interference in Memory Systems" 
HPS Technical Report, TR-HPS-2010-002, April 2010.  
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http://users.ece.cmu.edu/~omutlu/pub/dram-aware-caches-TR-HPS-2010-002.pdf
http://users.ece.cmu.edu/~omutlu/pub/dram-aware-caches-TR-HPS-2010-002.pdf
http://users.ece.cmu.edu/~omutlu/pub/dram-aware-caches-TR-HPS-2010-002.pdf
http://users.ece.cmu.edu/~omutlu/pub/dram-aware-caches-TR-HPS-2010-002.pdf
http://users.ece.cmu.edu/~omutlu/pub/dram-aware-caches-TR-HPS-2010-002.pdf
http://users.ece.cmu.edu/~omutlu/pub/dram-aware-caches-TR-HPS-2010-002.pdf
http://users.ece.cmu.edu/~omutlu/pub/dram-aware-caches-TR-HPS-2010-002.pdf
http://users.ece.cmu.edu/~omutlu/pub/dram-aware-caches-TR-HPS-2010-002.pdf


DRAM-aware Cache Design 

 Coordination of cache policies with memory controllers 
 

 Chang Joo Lee, Veynu Narasiman, Eiman Ebrahimi, Onur Mutlu, and 
Yale N. Patt,  
"DRAM-Aware Last-Level Cache Writeback: Reducing Write-
Caused Interference in Memory Systems" 
HPS Technical Report, TR-HPS-2010-002, April 2010.  

 

 Chang Joo Lee, Eiman Ebrahimi, Veynu Narasiman, Onur Mutlu, and 
Yale N. Patt,  
"DRAM-Aware Last-Level Cache Replacement" 
HPS Technical Report, TR-HPS-2010-007, December 2010.  
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http://users.ece.cmu.edu/~omutlu/pub/dram-aware-caches-TR-HPS-2010-002.pdf
http://users.ece.cmu.edu/~omutlu/pub/dram-aware-caches-TR-HPS-2010-002.pdf
http://users.ece.cmu.edu/~omutlu/pub/dram-aware-caches-TR-HPS-2010-002.pdf
http://users.ece.cmu.edu/~omutlu/pub/dram-aware-caches-TR-HPS-2010-002.pdf
http://users.ece.cmu.edu/~omutlu/pub/dram-aware-caches-TR-HPS-2010-002.pdf
http://users.ece.cmu.edu/~omutlu/pub/dram-aware-caches-TR-HPS-2010-002.pdf
http://users.ece.cmu.edu/~omutlu/pub/dram-aware-caches-TR-HPS-2010-002.pdf
http://users.ece.cmu.edu/~omutlu/pub/dram-aware-replacement-TR-HPS-2010-007.pdf
http://users.ece.cmu.edu/~omutlu/pub/dram-aware-replacement-TR-HPS-2010-007.pdf
http://users.ece.cmu.edu/~omutlu/pub/dram-aware-replacement-TR-HPS-2010-007.pdf
http://users.ece.cmu.edu/~omutlu/pub/dram-aware-replacement-TR-HPS-2010-007.pdf
http://users.ece.cmu.edu/~omutlu/pub/dram-aware-replacement-TR-HPS-2010-007.pdf
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Write-Caused Interference:  

Read-Write Switching 

• Read-write switching penalty for requests to any bank   

Data bus: 

Idle (~10 processor cycles) 

Data A 

Idle (~85 processor cycles) 

Data C 

Frequent read-write switching incurs many idle cycles 

Data B 

Command: 
Read A Write C Read B 

Data bus: 

Data A 

Data B Command: 
Read A Read B 

• Row-hit read-to-read (write-to-write) to any bank:  

back-to-back data transfer   



 

11/12/2012 
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No precharge  

(~60 processor cycles) 

Write-Caused Interference: 

Write-to-Row-Conflict 
• Row-conflict after read (in the same bank)  

Row-conflict after a write causes more idle cycles 

Command: 
Read A Precharge 

Data bus: 

Data A 

Idle (~120 processor cycles) 
Data B 

Activate B  Read or write B 

Command: 
Write A Precharge 

Data bus: 

Data A Data B 

Activate B Read or write B 

• Row-conflict after write (in the same bank)  

Idle (~225 processor cycles) 

Row-conflict 

Row-conflict 



 

11/12/2012 
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Write-Caused Interference 

• Read-Write Switching 

– Frequent read-write switching incurs many 

idle cycles 

 

• Write-to-Row-Conflict 

– A row-conflict after a write causes more 

idle cycles 

Generating many row-hit writes rather than  

row-conflict writes is preferred 



 

11/12/2012 
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LRU vs. Interference-Aware  

Replacement 

Read A Write B 

Row B 

Row Buffer in Bank 0 

DRAM 

All requests are to the same cache set 

DRAM 

Controller 

Read 

buffer 

Write 

buffer 

Dirty C Set X 

 Conventional LRU:   

 

Reading A 

Row-conflict after write penalty 

Writing B Writing C 
Servicing 

Write B (row-hit), Write C (row-conflict) 

Clean  

Clean A  

Clean  Dirty B  

Write C 

Last-level cache 

Less recently used 



 

11/12/2012 

 

 

53 

LRU vs. Interference-Aware  

Replacement 

Read A Write B 

Row B 

Row Buffer for writes 

DRAM 

All requests are to the same cache set 
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Reading A 

Row-conflict after write penalty 

Writing B Writing C 

Writing B 

Reading A 

Writing B 

Reduced idle cycles 

Servicing 
Write B (row-hit), Write C (row-conflict) 

Clean  

Clean A  

Clean  Dirty B  

Write B 

Write B (row-hit), Write B (row-hit) 

A simple policy can reduce write service time 



 

11/12/2012 

 

 

54 

Performance of  

DRAM-Aware Replacement 
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Outline 

• Problem 

• Solutions 

– Prefetch-Aware DRAM Controller  

– BLP-Aware Request Issue Policies 

– DRAM-Aware Cache Replacement 

– DRAM-Aware Writeback  

• Combination of Solutions 

• Related Work 

• Conclusion 
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DRAM-Aware Writeback 

• Write-caused interference-aware 
replacement is not enough 

–  Row-hit writebacks are sent only when a 
replacement occurs 

• Lose opportunities to service more writes quickly 

• To minimize write-caused interference, 
proactively clean row-hit dirty lines 
→ Reads are serviced without write-caused 
interference for a longer period 
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DRAM-Aware Writeback 

1. When a dirty line is evicted for the last-level       

cache, store its address  

2. Using the stored address, search all possible     

sets for row-hit dirty lines and clean them           

whenever the cache bank is idle 

 

• Many row-hit writes (up to the row size) are m    

serviced quickly 

– Reads can be serviced for a longer time without being 

interfered with by writes 
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Performance of  

DRAM-Aware Writeback 
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Fairness via Source Throttling 

 

 

 

 

Eiman Ebrahimi, Chang Joo Lee, Onur Mutlu, and Yale N. Patt, 
"Fairness via Source Throttling: A Configurable and High-Performance  

Fairness Substrate for Multi-Core Memory Systems"  
15th Intl. Conf. on Architectural Support for Programming Languages and Operating Systems (ASPLOS),  

pages 335-346, Pittsburgh, PA, March 2010. Slides (pdf)  

FST ASPLOS 2010 Talk 
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Many Shared Resources 

Core 0 Core 1 Core 2 Core N 

Shared Cache 
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DRAM 
Bank 1 

DRAM 
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... DRAM 
Bank K 

... 

Shared Memory 
Resources 

Chip Boundary 
On-chip 

Off-chip 
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The Problem with “Smart Resources” 
 

 Independent interference control mechanisms in 
caches, interconnect, and memory can contradict 
each other 

 

 Explicitly coordinating mechanisms for different 
resources requires complex implementation 

 

 How do we enable fair sharing of the entire 
memory system by controlling interference in a 
coordinated manner? 
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An Alternative Approach: Source Throttling 

 Manage inter-thread interference at the cores, not at the 
shared resources 
 

 Dynamically estimate unfairness in the memory system  

 Feed back this information into a controller 

 Throttle cores’ memory access rates accordingly 

 Whom to throttle and by how much depends on performance 
target (throughput, fairness, per-thread QoS, etc) 

 E.g., if unfairness > system-software-specified target then 
throttle down core causing unfairness &  
throttle up core that was unfairly treated 

 

 Ebrahimi et al., “Fairness via Source Throttling,” ASPLOS’10, TOCS’12. 
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Fairness via Source Throttling (FST) 

 Two components (interval-based) 

 

 Run-time unfairness evaluation (in hardware) 

 Dynamically estimates the unfairness in the memory system 

 Estimates which application is slowing down which other 

 

 Dynamic request throttling (hardware/software) 

 Adjusts how aggressively each core makes requests to the 
shared resources 

 Throttles down request rates of cores causing unfairness 

 Limit miss buffers, limit injection rate 
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Runtime 
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Runtime 

Unfairness 

Evaluation 

Dynamic 

Request Throttling 

1- Estimating system unfairness  
2- Find app. with the highest 
slowdown (App-slowest) 
3- Find app. causing most 
interference for App-slowest  
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Fairness via Source Throttling (FST) 



Estimating System Unfairness 

 
 Unfairness =  

 

 

 Slowdown of application i =  

 

 How can            be estimated in shared mode? 

 

             is the number of extra cycles it takes  
application i to execute due to interference 
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Tracking Inter-Core Interference 
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Tracking DRAM Row-Buffer Interference 
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Tracking Inter-Core Interference 
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Runtime 

Unfairness 

Evaluation 

Dynamic 

Request Throttling 

1- Estimating system unfairness  
2- Find app. with the highest 
slowdown (App-slowest) 
3- Find app. causing most 
interference for App-slowest  
(App-interfering) 

if (Unfairness Estimate >Target)  
{ 
 1-Throttle down App-interfering 
 2-Throttle up App-slowest 
} 

FST 

Unfairness Estimate 

App-slowest 

App-interfering 
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Fairness via Source Throttling (FST) 

 



Tracking Inter-Core Interference 

 To identify App-interfering, for each core i 

 FST separately tracks interference caused by each core j 
( j ≠ i ) 
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Fairness via Source Throttling (FST) 
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Runtime 
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Dynamic Request Throttling 

 
 Goal: Adjust how aggressively each core makes requests to 

the shared memory system  

 

 Mechanisms: 

 Miss Status Holding Register (MSHR) quota 

 Controls the number of concurrent requests accessing shared 
resources from each application 

 Request injection frequency 

 Controls how often memory requests are issued to the last level 
cache from the MSHRs 
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Dynamic Request Throttling 

 
 Throttling level assigned to each core determines both 

MSHR quota and request injection rate 
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Throttling level MSHR quota Request Injection Rate 

100% 128 Every cycle 

50% 64 Every other cycle 

25% 32 Once every 4 cycles 

10% 12 Once every 10 cycles 

5% 6 Once every 20 cycles 

4% 5 Once every 25 cycles 

3% 3 Once every 30 cycles 

2% 2 Once every 50 cycles Total # of 

MSHRs: 128 



FST at Work 

  

76 

Time 
Interval i Interval i+1 Interval i+2 

Runtime Unfairness 

Evaluation 

 

Dynamic 

Request Throttling 

FST 

Unfairness Estimate 

App-slowest 

App-interfering 

Throttling Levels 

Core 0 Core 1 Core 3 
50% 100% 10% 100% 

25% 100% 25% 100% 
25% 50% 50% 100% 

Interval i 

Interval i + 1 
Interval i + 2 

3 

Core 2 

Core 0 

Core 0 Core 2 

Throttle down Throttle up 

2.5 

Core 2 

Core 1 

Throttle down Throttle up 

System software  

fairness goal: 1.4 

Slowdown  

Estimation 

⎪
 

⎨
 
⎪

 
⎧

 

⎩
 

Slowdown  

Estimation 

⎪
 

⎨
 
⎪

 
⎧

 

⎩
 



System Software Support 

 
 Different fairness objectives can be configured by       

system software 

 Estimated Unfairness > Target Unfairness 

 Keep maximum slowdown in check 

 Estimated Max Slowdown < Target Max Slowdown 

 Keep slowdown of particular applications in check to achieve a 
particular performance target 

 Estimated Slowdown(i) < Target Slowdown(i) 

 

 Support for thread priorities 

 Weighted Slowdown(i) =  
        Estimated Slowdown(i) x Weight(i) 
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FST Hardware Cost 

 Total storage cost required for 4 cores is ~12KB 

 

 FST does not require any structures or logic that are on the 
processor’s critical path 
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FST Evaluation Methodology 

 x86 cycle accurate simulator 

 Baseline processor configuration 

 Per-core 

 4-wide issue, out-of-order, 256 entry ROB 

 Shared (4-core system) 

 128 MSHRs  

 2 MB, 16-way L2 cache 

 Main Memory 

 DDR3 1333 MHz 

 Latency of 15ns per command (tRP, tRCD, CL) 

 8B wide core to memory bus 
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FST: System Unfairness Results 
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44.4% 

36% 



FST: System Performance Results 
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Source Throttling Results: Takeaways 

 Source throttling alone provides better performance than a 
combination of “smart” memory scheduling and fair caching 

 Decisions made at the memory scheduler and the cache 
sometimes contradict each other 

 

 Neither source throttling alone nor “smart resources” alone 
provides the best performance 

 

 Combined approaches are even more powerful  

 Source throttling and resource-based interference control 
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FST ASPLOS 2010 Talk 

file://localhost/Users/omutlu/Documents/presentations/CMU/SNU%20Lectures%20June%2018-20%202012/previous%20talks/ebrahimi_asplos10_talk.pdf


Designing QoS-Aware Memory Systems: Approaches 

 Smart resources: Design each shared resource to have a 
configurable interference control/reduction mechanism 

 QoS-aware memory controllers [Mutlu+ MICRO’07] [Moscibroda+, Usenix Security’07] 

[Mutlu+ ISCA’08, Top Picks’09] [Kim+ HPCA’10] [Kim+ MICRO’10, Top Picks’11] [Ebrahimi+ ISCA’11, 
MICRO’11] [Ausavarungnirun+, ISCA’12] 

 QoS-aware interconnects [Das+ MICRO’09, ISCA’10, Top Picks ’11] [Grot+ MICRO’09, 

ISCA’11, Top Picks ’12] 

 QoS-aware caches 
 

 Dumb resources: Keep each resource free-for-all, but 
reduce/control interference by injection control or data 
mapping 

 Source throttling to control access to memory system [Ebrahimi+ ASPLOS’10, 

ISCA’11, TOCS’12] [Ebrahimi+ MICRO’09] [Nychis+ HotNets’10] 

 QoS-aware data mapping to memory controllers [Muralidhara+ MICRO’11] 

 QoS-aware thread scheduling to cores 
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Memory Channel Partitioning 

 

 

 

 

Sai Prashanth Muralidhara, Lavanya Subramanian, Onur Mutlu, Mahmut Kandemir, and Thomas Moscibroda,  

"Reducing Memory Interference in Multicore Systems via  
Application-Aware Memory Channel Partitioning” 

 44th International Symposium on Microarchitecture (MICRO),  
Porto Alegre, Brazil, December 2011. Slides (pptx)  

MCP Micro 2011 Talk 
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Outline 

85 

Goal:  
Mitigate  

Inter-Application Interference  

Previous Approach: 
Application-Aware Memory 

Request Scheduling 

Our First Approach: 
Application-Aware Memory 

Channel Partitioning 

Our Second Approach: 
Integrated Memory 

Partitioning and Scheduling 



Overview: Memory Channel Partitioning (MCP)  

 Goal 

 Eliminate harmful interference between applications 

 

 Basic Idea 

 Map the data of badly-interfering applications to different 
channels 

 

 Key Principles 

 Separate low and high memory-intensity applications 

 Separate low and high row-buffer locality applications 
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Key Insight 1: Separate by Memory Intensity 

High memory-intensity applications interfere with low 
memory-intensity applications in shared memory channels 
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Map data of low and high memory-intensity applications  
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Key Insight 2: Separate by Row-Buffer Locality 
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High row-buffer locality applications interfere with low  

row-buffer locality applications in shared memory channels 
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Memory Channel Partitioning (MCP) Mechanism 

1. Profile applications 

2. Classify applications into groups 

3. Partition channels between application groups 

4. Assign a preferred channel to each application 

5. Allocate application pages to preferred channel 
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Integrating Partitioning and Scheduling 
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Previous Approach: 
Application-Aware Memory 

Request Scheduling 

Our First Approach: 
Application-Aware Memory 

Channel Partitioning 

Our Second Approach: 
Integrated Memory 

Partitioning and Scheduling 

Goal:  
Mitigate  

Inter-Application Interference  



Observations 

 

 Applications with very low memory-intensity rarely 
access memory                                                         
 Dedicating channels to them results in precious 
memory bandwidth waste 

 

 They have the most potential to keep their cores busy  
 We would really like to prioritize them 

 

 They interfere minimally with other applications            
 Prioritizing them does not hurt others 
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Integrated Memory Partitioning and Scheduling (IMPS) 

 

 Always prioritize very low memory-intensity 
applications in the memory scheduler 

 

 

 Use memory channel partitioning to mitigate 
interference between other applications 
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Hardware Cost 

 Memory Channel Partitioning (MCP) 

 Only profiling counters in hardware 

 No modifications to memory scheduling logic 

 1.5 KB storage cost for a 24-core, 4-channel system 

 

 Integrated Memory Partitioning and Scheduling (IMPS) 

 A single bit per request 

 Scheduler prioritizes based on this single bit 
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Comparison to Previous Scheduling Policies 
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IMPS improves performance regardless of scheduling policy 
Highest improvement over FRFCFS as IMPS designed for FRFCFS  

Interaction with Memory Scheduling 

Averaged over 240 workloads 



MCP Summary 

 Uncontrolled inter-application interference in main memory 
degrades system performance 

 

 Application-aware memory channel partitioning (MCP) 

 Separates the data of badly-interfering applications              
to different channels, eliminating interference  

 

 Integrated memory partitioning and scheduling (IMPS) 

 Prioritizes very low memory-intensity applications in scheduler 

 Handles other applications’ interference by partitioning 

 

 MCP/IMPS provide better performance than application-
aware memory request scheduling at lower hardware cost 
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Summary: Memory QoS Approaches and Techniques 

 Approaches: Smart vs. dumb resources 

 Smart resources: QoS-aware memory scheduling 

 Dumb resources: Source throttling; channel partitioning 

 Both approaches are effective in reducing interference 

 No single best approach for all workloads 
 

 Techniques: Request scheduling, source throttling, memory 
partitioning 

 All approaches are effective in reducing interference 

 Can be applied at different levels: hardware vs. software 

 No single best technique for all workloads 
 

 Combined approaches and techniques are the most powerful 

 Integrated Memory Channel Partitioning and Scheduling [MICRO’11] 
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Smart Resources vs. Source Throttling 

 Advantages of “smart resources” 
 Each resource is designed to be as efficient as possible    

more efficient design using custom techniques for each resource  

 No need for estimating interference across the entire system 
(to feed a throttling algorithm). 

 Does not lose throughput by possibly overthrottling  

 

 Advantages of source throttling 

 Prevents overloading of any or all resources (if employed well) 

 Can keep each resource simple; no need to redesign each resource  

 Provides prioritization of threads in the entire memory system;   inst
ead of per resource  

 Eliminates conflicting decision making between resources   
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Handling Interference in Parallel Applications 

 Threads in a multithreaded application are inter-dependent 

 Some threads can be on the critical path of execution due 
to synchronization; some threads are not 

 How do we schedule requests of inter-dependent threads 
to maximize multithreaded application performance? 

 

 Idea: Estimate limiter threads likely to be on the critical path and 
prioritize their requests; shuffle priorities of non-limiter threads 
to reduce memory interference among them [Ebrahimi+, MICRO’11] 

 

 Hardware/software cooperative limiter thread estimation: 

 Thread executing the most contended critical section 

 Thread that is falling behind the most in a parallel for loop 
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Other Ways of Reducing (DRAM) Interference 

 DRAM bank/subarray partitioning among threads 

 Interference-aware address mapping/remapping 

 Core/request throttling: How? 

 Interference-aware thread scheduling: How? 

 Better/Interference-aware caching 

 Interference-aware scheduling in the interconnect 

 Randomized address mapping 

 DRAM architecture/microarchitecture changes? 

 

 These are general techniques that can be used to improve 

 System throughput 

 QoS/fairness 

 Power/energy consumption? 
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Research Topics in Main Memory Management 

 Abundant 

 

 Interference reduction via different techniques 

 Distributed memory controller management 

 Co-design with on-chip interconnects and caches 

 Reducing waste, minimizing energy, minimizing cost 

 Enabling new memory technologies 

 Die stacking 

 Non-volatile memory 

 Latency tolerance 

 

 You can come up with great solutions that will significantly 
impact computing industry  
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