
18-742 Fall 2012

Parallel Computer Architecture

Lecture 24: Main Memory Management

Prof. Onur Mutlu

Carnegie Mellon University

11/9/2012

New Review Assignments

 Due: Tuesday, November 13, 11:59pm.

 Mutlu and Moscibroda, “Parallelism-Aware Batch Scheduling:
Enhancing both Performance and Fairness of Shared DRAM
Systems,” ISCA 2008.

 Kim et al., “Thread Cluster Memory Scheduling: Exploiting
Differences in Memory Access Behavior,” MICRO 2010.

 Due: Thursday, November 15, 11:59pm.

 Ebrahimi et al., “Fairness via Source Throttling: A Configurable
and High-Performance Fairness Substrate for Multi-Core Memory
Systems,” ASPLOS 2010.

 Muralidhara et al., “Reducing Memory Interference in
Multicore Systems via Application-Aware Memory Channel
Partitioning,” MICRO 2011.

2

Reminder: Old Review Assignment

 Was Due: Sunday, November 4, 11:59pm.

 H. T. Kung, “Why Systolic Architectures?,” IEEE Computer
1982.

3

Reminder: Literature Survey Process

 Done in groups: your research project group is likely ideal

 Step 1: Pick 3 or more research papers

 Broadly related to your research project

 Step 2: Send me the list of papers with links to pdf copies (by
Sunday, November 11)

 I need to approve the 3 papers

 We will iterate to ensure convergence on the list

 Step 3: Prepare a 2-page writeup on the 3 papers

 Step 3: Prepare a 15-minute presentation on the 3 papers

 Total time: 15-minute talk + 5-minute Q&A

 Talk should focus on insights and tradeoffs

 Step 4: Deliver the presentation in front of class (dates:
November 26-28 or December 3-7) and turn in your writeup
(due date: December 1)

4

Reminder: Literature Survey Guidelines

 The goal is to

 Understand the solution space and tradeoffs

 Deeply analyze and synthesize three papers

 Analyze: Describe individual strengths and weaknesses

 Synthesize: Find commonalities and common strengths and
weaknesses, categorize the solutions with respect to criteria

 Explain how they relate to your project, how they can enhance
it, or why your solution will be better

 Read the papers very carefully

 Attention to detail is important

5

Reminder: Literature Survey Talk
 The talk should clearly convey at least the following:

 The problem: What is the general problem targeted by the papers
and what are the specific problems?

 The solutions: What are the key ideas and solution approaches of
the proposed papers?

 Key results and insights: What are the key results, insights, and
conclusions of the papers?

 Tradeoffs and analyses: How do the solutions differ or interact with
each other? Can they be combined? What are the tradeoffs between
them? This is where you will need to analyze the approaches and
find a way to synthesize a common framework to describe and
qualitatively compare&contrast the approaches.

 Comparison to your project: How do these approaches relate to your
project? Why is your approach novel, different, better, or
complementary?

 Key conclusions and new ideas: What have you learned? Do you
have new ideas/approaches based on what you have learned?

6

Last Lecture

 End Dataflow

 Systolic Arrays

7

Today

 Begin shared resource management

 Main memory as a shared resource

 QoS-aware memory systems

 Memory request scheduling

 Memory channel partitioning

 Source throttling

8

Other Readings: Shared Main Memory

 Required

 Moscibroda and Mutlu, “Memory Performance Attacks,” USENIX Security 2007.

 Mutlu and Moscibroda, “Stall-Time Fair Memory Access Scheduling for Chip
Multiprocessors,” MICRO 2007.

 Kim et al., “ATLAS: A Scalable and High-Performance Scheduling Algorithm for
Multiple Memory Controllers,” HPCA 2010.

 Muralidhara et al., “Reducing Memory Interference in Multicore Systems via
Application-Aware Memory Channel Partitioning,” MICRO 2011.

 Ausavarungnirun et al., “Staged Memory Scheduling: Achieving High
Performance and Scalability in Heterogeneous Systems,” ISCA 2012.

 Lee et al., “Prefetch-Aware DRAM Controllers,” MICRO 2008.

 Recommended

 Rixner et al., “Memory Access Scheduling,” ISCA 2000.

 Zheng et al., “Mini-Rank: Adaptive DRAM Architecture for Improving Memory
Power Efficiency,” MICRO 2008.

 Ipek et al., “Self Optimizing Memory Controllers: A Reinforcement Learning
Approach,” ISCA 2008.

9

Resource Sharing

Resource Sharing Concept

 Idea: Instead of dedicating a hardware resource to a
hardware context, allow multiple contexts to use it

 Example resources: functional units, pipeline, caches, buses,
memory

 Why?

+ Resource sharing improves utilization/efficiency throughput

 As we saw with (simultaneous) multithreading

 When a resource is left idle by one thread, another thread can
use it; no need to replicate shared data

+ Reduces communication latency

 For example, shared data kept in the same cache in SMT

+ Compatible with the shared memory model

11

Resource Sharing Disadvantages

 Resource sharing results in contention for resources

 When the resource is not idle, another thread cannot use it

 If space is occupied by one thread, another thread needs to re-
occupy it

- Sometimes reduces each or some thread’s performance

 - Thread performance can be worse than when it is run alone

- Eliminates performance isolation inconsistent performance

across runs

 - Thread performance depends on co-executing threads

- Uncontrolled (free-for-all) sharing degrades QoS

 - Causes unfairness, starvation

12

Need for QoS and Shared Resource Mgmt.

 Why is unpredictable performance (or lack of QoS) bad?

 Makes programmer’s life difficult

 An optimized program can get low performance (and
performance varies widely depending on co-runners)

 Causes discomfort to user

 An important program can starve

 Examples from shared software resources

 Makes system management difficult

 How do we enforce a Service Level Agreement when
hardware resources are sharing is uncontrollable?

13

Resource Sharing vs. Partitioning

 Sharing improves throughput

 Better utilization of space

 Partitioning provides performance isolation (predictable
performance)

 Dedicated space

 Can we get the benefits of both?

 Idea: Design shared resources in a
controllable/partitionable way

14

Shared Hardware Resources

 Memory subsystem (in both MT and CMP)

 Non-private caches

 Interconnects

 Memory controllers, buses, banks

 I/O subsystem (in both MT and CMP)

 I/O, DMA controllers

 Ethernet controllers

 Processor (in MT)

 Pipeline resources

 L1 caches

 15

Resource Sharing Issues and Related Metrics

 System performance

 Fairness

 Per-application performance (QoS)

 Power

 Energy

 System cost

 Lifetime

 Reliability, effect of faults

 Security, information leakage

 Partitioning: Isolation between apps/threads

 Sharing (free for all): No isolation

16

Main Memory in the System

17

CORE 1

L
2
 C

A
C

H
E

 0

S
H

A
R

E
D

 L
3
 C

A
C

H
E

D
R

A
M

 IN
T

E
R

F
A

C
E

CORE 0

CORE 2 CORE 3
L

2
 C

A
C

H
E

 1

L
2
 C

A
C

H
E

 2

L
2

 C
A

C
H

E
 3

D
R

A
M

 B
A

N
K

S

DRAM MEMORY

CONTROLLER

Modern Memory Systems (Multi-Core)

18

Memory System is the Major Shared Resource

19

threads’ requests

interfere

Multi-core Issues in Caching

 How does the cache hierarchy change in a multi-core system?

 Private cache: Cache belongs to one core (a shared block can be in
multiple caches)

 Shared cache: Cache is shared by multiple cores

20

CORE 0 CORE 1 CORE 2 CORE 3

 L2

CACHE

 L2

CACHE

 L2

CACHE

DRAM MEMORY CONTROLLER

 L2

CACHE

CORE 0 CORE 1 CORE 2 CORE 3

DRAM MEMORY CONTROLLER

 L2

CACHE

Shared Caches Between Cores

 Advantages:
 High effective capacity

 Dynamic partitioning of available cache space

 No fragmentation due to static partitioning

 Easier to maintain coherence (a cache block is in a single location)

 Shared data and locks do not ping pong between caches

 Disadvantages
 Slower access

 Cores incur conflict misses due to other cores’ accesses

 Misses due to inter-core interference

 Some cores can destroy the hit rate of other cores

 Guaranteeing a minimum level of service (or fairness) to each core is harder
(how much space, how much bandwidth?)

21

Shared Caches: How to Share?

 Free-for-all sharing

 Placement/replacement policies are the same as a single core
system (usually LRU or pseudo-LRU)

 Not thread/application aware

 An incoming block evicts a block regardless of which threads
the blocks belong to

 Problems

 A cache-unfriendly application can destroy the performance of
a cache friendly application

 Not all applications benefit equally from the same amount of
cache: free-for-all might prioritize those that do not benefit

 Reduced performance, reduced fairness

22

Controlled Cache Sharing

 Utility based cache partitioning
 Qureshi and Patt, “Utility-Based Cache Partitioning: A Low-Overhead, High-

Performance, Runtime Mechanism to Partition Shared Caches,” MICRO
2006.

 Suh et al., “A New Memory Monitoring Scheme for Memory-Aware
Scheduling and Partitioning,” HPCA 2002.

 Fair cache partitioning
 Kim et al., “Fair Cache Sharing and Partitioning in a Chip Multiprocessor

Architecture,” PACT 2004.

 Shared/private mixed cache mechanisms
 Qureshi, “Adaptive Spill-Receive for Robust High-Performance Caching in

CMPs,” HPCA 2009.

 Hardavellas et al., “Reactive NUCA: Near-Optimal Block Placement and
Replication in Distributed Caches,” ISCA 2009.

23

Readings: Shared Cache Management

 Required
 Qureshi and Patt, “Utility-Based Cache Partitioning: A Low-Overhead, High-

Performance, Runtime Mechanism to Partition Shared Caches,” MICRO
2006.

 Kim et al., “Fair Cache Sharing and Partitioning in a Chip Multiprocessor
Architecture,” PACT 2004.

 Qureshi, “Adaptive Spill-Receive for Robust High-Performance Caching in
CMPs,” HPCA 2009.

 Hardavellas et al., “Reactive NUCA: Near-Optimal Block Placement and
Replication in Distributed Caches,” ISCA 2009.

 Recommended
 Kim et al., “An Adaptive, Non-Uniform Cache Structure for Wire-Delay

Dominated On-Chip Caches,” ASPLOS 2002.

 Qureshi et al., “Adaptive Insertion Policies for High-Performance Caching,”
ISCA 2007.

 Lin et al., “Gaining Insights into Multi-Core Cache Partitioning: Bridging the
Gap between Simulation and Real Systems,” HPCA 2008.

24

Main Memory As a Shared Resource

Sharing in Main Memory

 Bandwidth sharing

 Which thread/core to prioritize?

 How to schedule requests?

 How much bandwidth to allocate to each thread?

 Capacity sharing

 How much memory capacity to allocate to which thread?

 Where to map that memory? (row, bank, rank, channel)

 Metrics for optimization

 System performance

 Fairness, QoS

 Energy/power consumption

26

DRAM Bank Operation

27

Row Buffer

(Row 0, Column 0)

R
o
w

 d
e
c
o
d
e
r

Column mux

Row address 0

Column address 0

Data

Row 0 Empty

 (Row 0, Column 1)

Column address 1

(Row 0, Column 85)

Column address 85

(Row 1, Column 0)

HIT HIT

Row address 1

Row 1

Column address 0

CONFLICT !

Columns

R
o
w

s

 Access Address:

Generalized Memory Structure

28

Memory Controller

29

Inter-Thread Interference in DRAM

 Memory controllers, pins, and memory banks are shared

 Pin bandwidth is not increasing as fast as number of cores

 Bandwidth per core reducing

 Different threads executing on different cores interfere with
each other in the main memory system

 Threads delay each other by causing resource contention:

 Bank, bus, row-buffer conflicts reduced DRAM throughput

 Threads can also destroy each other’s DRAM bank
parallelism

 Otherwise parallel requests can become serialized

 30

Effects of Inter-Thread Interference in DRAM

 Queueing/contention delays

 Bank conflict, bus conflict, channel conflict, …

 Additional delays due to DRAM constraints

 Called “protocol overhead”

 Examples

 Row conflicts

 Read-to-write and write-to-read delays

 Loss of intra-thread parallelism

31

Trend: Many Cores on Chip

 Simpler and lower power than a single large core

 Large scale parallelism on chip

32

IBM Cell BE
8+1 cores

Intel Core i7
8 cores

Tilera TILE Gx
100 cores, networked

IBM POWER7
8 cores

Intel SCC
48 cores, networked

Nvidia Fermi
448 “cores”

AMD Barcelona
4 cores

Sun Niagara II
8 cores

Many Cores on Chip

 What we want:

 N times the system performance with N times the cores

 What do we get today?

33

(Un)expected Slowdowns

Memory Performance Hog
Low priority

High priority

(Core 0) (Core 1)

Moscibroda and Mutlu, “Memory performance attacks: Denial of memory service
in multi-core systems,” USENIX Security 2007.

matlab
(Core 1)

gcc
(Core 2)

34

Why? Uncontrolled Memory Interference

CORE 1 CORE 2

 L2

CACHE

 L2

CACHE

DRAM MEMORY CONTROLLER

DRAM

Bank 0

DRAM

Bank 1

DRAM

Bank 2

Shared DRAM

Memory System

Multi-Core

Chip

unfairness

INTERCONNECT

matlab gcc

DRAM

Bank 3

35

// initialize large arrays A, B

for (j=0; j<N; j++) {
 index = rand();
 A[index] = B[index];
 …
}

36

A Memory Performance Hog

STREAM

- Sequential memory access
- Very high row buffer locality (96% hit rate)
- Memory intensive

RANDOM

- Random memory access
- Very low row buffer locality (3% hit rate)
- Similarly memory intensive

// initialize large arrays A, B

for (j=0; j<N; j++) {
 index = j*linesize;
 A[index] = B[index];
 …
}

streaming random

Moscibroda and Mutlu, “Memory Performance Attacks,” USENIX Security 2007.

37

DRAM Controllers

 A row-conflict memory access takes significantly longer
than a row-hit access

 Current controllers take advantage of the row buffer

 Commonly used scheduling policy (FR-FCFS) [Rixner 2000]*

(1) Row-hit first: Service row-hit memory accesses first

(2) Oldest-first: Then service older accesses first

 This scheduling policy aims to maximize DRAM throughput

 But, it is unfair when multiple threads share the DRAM system

*Rixner et al., “Memory Access Scheduling,” ISCA 2000.

*Zuravleff and Robinson, “Controller for a synchronous DRAM …,” US Patent 5,630,096, May 1997.

38

What Does the Memory Hog Do?

Row Buffer

R
o
w

 d
e
c
o
d
e
r

Column mux

Data

Row 0

T0: Row 0

Row 0

T1: Row 16

T0: Row 0 T1: Row 111

T0: Row 0 T0: Row 0 T1: Row 5

T0: Row 0 T0: Row 0 T0: Row 0 T0: Row 0 T0: Row 0

Memory Request Buffer

T0: STREAM
T1: RANDOM

Row size: 8KB, cache block size: 64B

128 (8KB/64B) requests of T0 serviced before T1

Moscibroda and Mutlu, “Memory Performance Attacks,” USENIX Security 2007.

Effect of the Memory Performance Hog

39

1.18X slowdown

2.82X slowdown

Results on Intel Pentium D running Windows XP
(Similar results for Intel Core Duo and AMD Turion, and on Fedora Linux)

S
lo

w
d
o
w

n

0

0.5

1

1.5

2

2.5

3

STREAM gcc

0

0.5

1

1.5

2

2.5

3

STREAM Virtual PC

Moscibroda and Mutlu, “Memory Performance Attacks,” USENIX Security 2007.

Greater Problem with More Cores

 Vulnerable to denial of service (DoS) [Usenix Security’07]

 Unable to enforce priorities or SLAs [MICRO’07,’10,’11, ISCA’08’11’12, ASPLOS’10]

 Low system performance [IEEE Micro Top Picks ’09,’11a,’11b,’12]

Uncontrollable, unpredictable system

40

Distributed DoS in Networked Multi-Core Systems

41

Attackers
(Cores 1-8)

Stock option pricing application
(Cores 9-64)

 Cores connected via

 packet-switched

 routers on chip

 ~5000X slowdown

Grot, Hestness, Keckler, Mutlu,
“Preemptive virtual clock: A Flexible,
Efficient, and Cost-effective QOS
Scheme for Networks-on-Chip,“
MICRO 2009.

How Do We Solve The Problem?

 Inter-thread interference is uncontrolled in all memory
resources

 Memory controller

 Interconnect

 Caches

 We need to control it

 i.e., design an interference-aware (QoS-aware) memory system

42

 Problem: Memory interference is uncontrolled

uncontrollable, unpredictable, vulnerable system

 Goal: We need to control it Design a QoS-aware system

 Solution: Hardware/software cooperative memory QoS

 Hardware designed to provide a configurable fairness substrate

 Application-aware memory scheduling, partitioning, throttling

 Software designed to configure the resources to satisfy different
QoS goals

 E.g., fair, programmable memory controllers and on-chip
networks provide QoS and predictable performance

 [2007-2012, Top Picks’09,’11a,’11b,’12]

Solution: QoS-Aware, Predictable Memory

QoS-Aware Memory Systems: Challenges

 How do we reduce inter-thread interference?

 Improve system performance and core utilization

 Reduce request serialization and core starvation

 How do we control inter-thread interference?

 Provide mechanisms to enable system software to enforce
QoS policies

 While providing high system performance

 How do we make the memory system configurable/flexible?

 Enable flexible mechanisms that can achieve many goals

 Provide fairness or throughput when needed

 Satisfy performance guarantees when needed

 44

Designing QoS-Aware Memory Systems: Approaches

 Smart resources: Design each shared resource to have a
configurable interference control/reduction mechanism

 QoS-aware memory controllers [Mutlu+ MICRO’07] [Moscibroda+, Usenix Security’07]

[Mutlu+ ISCA’08, Top Picks’09] [Kim+ HPCA’10] [Kim+ MICRO’10, Top Picks’11] [Ebrahimi+ ISCA’11,
MICRO’11] [Ausavarungnirun+, ISCA’12]

 QoS-aware interconnects [Das+ MICRO’09, ISCA’10, Top Picks ’11] [Grot+ MICRO’09,

ISCA’11, Top Picks ’12]

 QoS-aware caches

 Dumb resources: Keep each resource free-for-all, but
reduce/control interference by injection control or data
mapping

 Source throttling to control access to memory system [Ebrahimi+ ASPLOS’10,

ISCA’11, TOCS’12] [Ebrahimi+ MICRO’09] [Nychis+ HotNets’10]

 QoS-aware data mapping to memory controllers [Muralidhara+ MICRO’11]

 QoS-aware thread scheduling to cores

 45

 Memory Channel Partitioning

 Idea: System software maps badly-interfering applications’ pages
to different channels [Muralidhara+, MICRO’11]

 Separate data of low/high intensity and low/high row-locality applications

 Especially effective in reducing interference of threads with “medium” and
“heavy” memory intensity

 11% higher performance over existing systems (200 workloads)

A Mechanism to Reduce Memory Interference

46

Core 0
App A

Core 1
App B

Channel 0

Bank 1

Channel 1

Bank 0

Bank 1

Bank 0

Conventional Page Mapping

Time Units

1 2 3 4 5

Channel Partitioning

Core 0
App A

Core 1
App B

Channel 0

Bank 1

Bank 0

Bank 1

Bank 0

Time Units

1 2 3 4 5

Channel 1

MCP Micro 2011 Talk

file://localhost/Users/omutlu/Documents/presentations/CMU/SNU%20Lectures%20June%2018-20%202012/previous%20talks/subramanian_micro11_talk.pptx

Designing QoS-Aware Memory Systems: Approaches

 Smart resources: Design each shared resource to have a
configurable interference control/reduction mechanism

 QoS-aware memory controllers [Mutlu+ MICRO’07] [Moscibroda+, Usenix Security’07]

[Mutlu+ ISCA’08, Top Picks’09] [Kim+ HPCA’10] [Kim+ MICRO’10, Top Picks’11] [Ebrahimi+ ISCA’11,
MICRO’11] [Ausavarungnirun+, ISCA’12]

 QoS-aware interconnects [Das+ MICRO’09, ISCA’10, Top Picks ’11] [Grot+ MICRO’09,

ISCA’11, Top Picks ’12]

 QoS-aware caches

 Dumb resources: Keep each resource free-for-all, but
reduce/control interference by injection control or data
mapping

 Source throttling to control access to memory system [Ebrahimi+ ASPLOS’10,

ISCA’11, TOCS’12] [Ebrahimi+ MICRO’09] [Nychis+ HotNets’10]

 QoS-aware data mapping to memory controllers [Muralidhara+ MICRO’11]

 QoS-aware thread scheduling to cores

 47

QoS-Aware Memory Scheduling

 How to schedule requests to provide

 High system performance

 High fairness to applications

 Configurability to system software

 Memory controller needs to be aware of threads

48

Memory
Controller

Core Core

Core Core

Memory

Resolves memory contention
by scheduling requests

QoS-Aware Memory Scheduling: Evolution

 Stall-time fair memory scheduling [Mutlu+ MICRO’07]

 Idea: Estimate and balance thread slowdowns

 Takeaway: Proportional thread progress improves performance,
especially when threads are “heavy” (memory intensive)

 Parallelism-aware batch scheduling [Mutlu+ ISCA’08, Top Picks’09]

 Idea: Rank threads and service in rank order (to preserve bank
parallelism); batch requests to prevent starvation

 Takeaway: Preserving within-thread bank-parallelism improves
performance; request batching improves fairness

 ATLAS memory scheduler [Kim+ HPCA’10]

 Idea: Prioritize threads that have attained the least service from the
memory scheduler

 Takeaway: Prioritizing “light” threads improves performance

49

QoS-Aware Memory Scheduling: Evolution

 Thread cluster memory scheduling [Kim+ MICRO’10]

 Idea: Cluster threads into two groups (latency vs. bandwidth
sensitive); prioritize the latency-sensitive ones; employ a fairness
policy in the bandwidth sensitive group

 Takeaway: Heterogeneous scheduling policy that is different based
on thread behavior maximizes both performance and fairness

 Integrated Memory Channel Partitioning and Scheduling
[Muralidhara+ MICRO’11]

 Idea: Only prioritize very latency-sensitive threads in the scheduler;
mitigate all other applications’ interference via channel partitioning

 Takeaway: Intelligently ombining application-aware channel
partitioning and memory scheduling provides better performance
than either

50

QoS-Aware Memory Scheduling: Evolution

 Parallel application memory scheduling [Ebrahimi+ MICRO’11]

 Idea: Identify and prioritize limiter threads of a multithreaded
application in the memory scheduler; provide fast and fair progress
to non-limiter threads

 Takeaway: Carefully prioritizing between limiter and non-limiter
threads of a parallel application improves performance

 Staged memory scheduling [Ausavarungnirun+ ISCA’12]

 Idea: Divide the functional tasks of an application-aware memory
scheduler into multiple distinct stages, where each stage is
significantly simpler than a monolithic scheduler

 Takeaway: Staging enables the design of a scalable and relatively
simpler application-aware memory scheduler that works on very
large request buffers

51

QoS-Aware Memory Scheduling: Evolution

 Prefetch-aware shared resource management [Ebrahimi+

ISCA’12] [Ebrahimi+ MICRO’09] [Lee+ MICRO’08]

 Idea: Prioritize prefetches depending on how they affect system
performance; even accurate prefetches can degrade performance of
the system

 Takeaway: Carefully controlling and prioritizing prefetch requests
improves performance and fairness

52

Stall-Time Fair Memory Scheduling

Onur Mutlu and Thomas Moscibroda,
"Stall-Time Fair Memory Access Scheduling for Chip Multiprocessors"

40th International Symposium on Microarchitecture (MICRO),
pages 146-158, Chicago, IL, December 2007. Slides (ppt)

STFM Micro 2007 Talk

http://users.ece.cmu.edu/~omutlu/pub/stfm_micro07.pdf
http://users.ece.cmu.edu/~omutlu/pub/stfm_micro07.pdf
http://users.ece.cmu.edu/~omutlu/pub/stfm_micro07.pdf
http://www.microarch.org/micro40/
http://users.ece.cmu.edu/~omutlu/pub/mutlu_micro07_talk.ppt
file://localhost/Users/omutlu/Documents/presentations/CMU/SNU%20Lectures%20June%2018-20%202012/previous%20talks/mutlu_micro07_talk.ppt

The Problem: Unfairness

 Vulnerable to denial of service (DoS) [Usenix Security’07]

 Unable to enforce priorities or SLAs [MICRO’07,’10,’11, ISCA’08’11’12, ASPLOS’10]

 Low system performance [IEEE Micro Top Picks ’09,’11a,’11b,’12]

Uncontrollable, unpredictable system

54

How Do We Solve the Problem?

 Stall-time fair memory scheduling [Mutlu+ MICRO’07]

 Goal: Threads sharing main memory should experience
similar slowdowns compared to when they are run alone

fair scheduling
 Also improves overall system performance by ensuring cores make

“proportional” progress

 Idea: Memory controller estimates each thread’s slowdown
due to interference and schedules requests in a way to
balance the slowdowns

 Mutlu and Moscibroda, “Stall-Time Fair Memory Access Scheduling for
Chip Multiprocessors,” MICRO 2007.

55

56

Stall-Time Fairness in Shared DRAM Systems

 A DRAM system is fair if it equalizes the slowdown of equal-priority threads
relative to when each thread is run alone on the same system

 DRAM-related stall-time: The time a thread spends waiting for DRAM memory

 STshared: DRAM-related stall-time when the thread runs with other threads

 STalone: DRAM-related stall-time when the thread runs alone

 Memory-slowdown = STshared/STalone
 Relative increase in stall-time

 Stall-Time Fair Memory scheduler (STFM) aims to equalize
Memory-slowdown for interfering threads, without sacrificing performance

 Considers inherent DRAM performance of each thread

 Aims to allow proportional progress of threads

57

STFM Scheduling Algorithm [MICRO’07]

 For each thread, the DRAM controller

 Tracks STshared

 Estimates STalone

 Each cycle, the DRAM controller

 Computes Slowdown = STshared/STalone for threads with legal requests

 Computes unfairness = MAX Slowdown / MIN Slowdown

 If unfairness <

 Use DRAM throughput oriented scheduling policy

 If unfairness ≥

 Use fairness-oriented scheduling policy

 (1) requests from thread with MAX Slowdown first

 (2) row-hit first , (3) oldest-first

58

How Does STFM Prevent Unfairness?

Row Buffer

Data

Row 0

T0: Row 0

Row 0

T1: Row 16

T0: Row 0

T1: Row 111

T0: Row 0 T0: Row 0

T1: Row 5

T0: Row 0 T0: Row 0

T0: Row 0

T0 Slowdown

T1 Slowdown 1.00

1.00

1.00 Unfairness

1.03

1.03

1.06

1.06

 1.05

1.03

1.06

1.03 1.04

1.08

1.04

1.04

1.11

1.06

1.07

1.04

1.10

1.14

1.03

Row 16 Row 111

STFM Pros and Cons

 Upsides:

 First work on fair multi-core memory scheduling

 Good at providing fairness

 Being fair improves performance

 Downsides:

 Does not handle all types of interference

 (Somewhat) complex to implement

 Slowdown estimations can be incorrect

59

Parallelism-Aware Batch Scheduling

Onur Mutlu and Thomas Moscibroda,
"Parallelism-Aware Batch Scheduling: Enhancing both
Performance and Fairness of Shared DRAM Systems”

35th International Symposium on Computer Architecture (ISCA),
pages 63-74, Beijing, China, June 2008. Slides (ppt)

PAR-BS ISCA 2008 Talk

http://users.ece.cmu.edu/~omutlu/pub/parbs_isca08.pdf
http://users.ece.cmu.edu/~omutlu/pub/parbs_isca08.pdf
http://users.ece.cmu.edu/~omutlu/pub/parbs_isca08.pdf
http://users.ece.cmu.edu/~omutlu/pub/parbs_isca08.pdf
http://isca2008.cs.princeton.edu/
http://isca2008.cs.princeton.edu/
http://users.ece.cmu.edu/~omutlu/pub/mutlu_isca08_talk.ppt
file://localhost/Users/omutlu/Documents/presentations/CMU/SNU%20Lectures%20June%2018-20%202012/previous%20talks/parbs-isca08-talk.ppt
file://localhost/Users/omutlu/Documents/presentations/CMU/SNU%20Lectures%20June%2018-20%202012/previous%20talks/parbs-isca08-talk.ppt
file://localhost/Users/omutlu/Documents/presentations/CMU/SNU%20Lectures%20June%2018-20%202012/previous%20talks/parbs-isca08-talk.ppt

Another Problem due to Interference

 Processors try to tolerate the latency of DRAM requests by
generating multiple outstanding requests

 Memory-Level Parallelism (MLP)

 Out-of-order execution, non-blocking caches, runahead execution

 Effective only if the DRAM controller actually services the
multiple requests in parallel in DRAM banks

 Multiple threads share the DRAM controller

 DRAM controllers are not aware of a thread’s MLP

 Can service each thread’s outstanding requests serially, not in parallel

 61

Bank Parallelism of a Thread

62

Thread A: Bank 0, Row 1

Thread A: Bank 1, Row 1

Bank access latencies of the two requests overlapped

Thread stalls for ~ONE bank access latency

Thread A :

Bank 0 Bank 1

Compute

2 DRAM Requests

Bank 0

Stall Compute

Bank 1

Single Thread:

Compute

Compute

2 DRAM Requests

Bank Parallelism Interference in DRAM

63

Bank 0 Bank 1

Thread A: Bank 0, Row 1

Thread B: Bank 1, Row 99

Thread B: Bank 0, Row 99

Thread A: Bank 1, Row 1

A : Compute

2 DRAM Requests

Bank 0

Stall

Bank 1

Baseline Scheduler:

B: Compute

Bank 0

Stall
Bank 1

Stall

Stall

Bank access latencies of each thread serialized

Each thread stalls for ~TWO bank access latencies

2 DRAM Requests

Parallelism-Aware Scheduler

64

Bank 0 Bank 1

Thread A: Bank 0, Row 1

Thread B: Bank 1, Row 99

Thread B: Bank 0, Row 99

Thread A: Bank 1, Row 1

A :

2 DRAM Requests

Parallelism-aware Scheduler:

B: Compute
Bank 0

Stall Compute

Bank 1

Stall

2 DRAM Requests

A : Compute

2 DRAM Requests

Bank 0

Stall Compute

Bank 1

B: Compute

Bank 0

Stall Compute
Bank 1

Stall

Stall

Baseline Scheduler:

Compute

Bank 0

Stall Compute

Bank 1

Saved Cycles Average stall-time:

~1.5 bank access

latencies

Parallelism-Aware Batch Scheduling (PAR-BS)

 Principle 1: Parallelism-awareness

 Schedule requests from a thread (to
different banks) back to back

 Preserves each thread’s bank parallelism

 But, this can cause starvation…

 Principle 2: Request Batching

 Group a fixed number of oldest requests
from each thread into a “batch”

 Service the batch before all other requests

 Form a new batch when the current one is done

 Eliminates starvation, provides fairness

 Allows parallelism-awareness within a batch

65

Bank 0 Bank 1

T1

T1

T0

T0

T2

T2

T3

T3

T2 T2

T2

Batch

T0

T1 T1

Mutlu and Moscibroda, “Parallelism-Aware Batch Scheduling,” ISCA 2008.

PAR-BS Components

 Request batching

 Within-batch scheduling
 Parallelism aware

66

Request Batching

 Each memory request has a bit (marked) associated with it

 Batch formation:

 Mark up to Marking-Cap oldest requests per bank for each thread

 Marked requests constitute the batch

 Form a new batch when no marked requests are left

 Marked requests are prioritized over unmarked ones

 No reordering of requests across batches: no starvation, high fairness

 How to prioritize requests within a batch?

67

Within-Batch Scheduling

 Can use any existing DRAM scheduling policy

 FR-FCFS (row-hit first, then oldest-first) exploits row-buffer locality

 But, we also want to preserve intra-thread bank parallelism

 Service each thread’s requests back to back

 Scheduler computes a ranking of threads when the batch is
formed

 Higher-ranked threads are prioritized over lower-ranked ones

 Improves the likelihood that requests from a thread are serviced in
parallel by different banks

 Different threads prioritized in the same order across ALL banks

68

HOW?

How to Rank Threads within a Batch

 Ranking scheme affects system throughput and fairness

 Maximize system throughput

 Minimize average stall-time of threads within the batch

 Minimize unfairness (Equalize the slowdown of threads)

 Service threads with inherently low stall-time early in the batch

 Insight: delaying memory non-intensive threads results in high
slowdown

 Shortest stall-time first (shortest job first) ranking

 Provides optimal system throughput [Smith, 1956]*

 Controller estimates each thread’s stall-time within the batch

 Ranks threads with shorter stall-time higher

69

* W.E. Smith, “Various optimizers for single stage production,” Naval Research Logistics Quarterly, 1956.

 Maximum number of marked requests to any bank (max-bank-load)

 Rank thread with lower max-bank-load higher (~ low stall-time)

 Total number of marked requests (total-load)

 Breaks ties: rank thread with lower total-load higher

Shortest Stall-Time First Ranking

70

T2 T3 T1

T0

Bank 0 Bank 1 Bank 2 Bank 3

T3

T3 T1 T3

T2 T2 T1 T2

T1 T0 T2 T0

T3 T2 T3

T3

T3

T3
max-bank-load total-load

T0 1 3

T1 2 4

T2 2 6

T3 5 9

Ranking:

T0 > T1 > T2 > T3

7

5

3

Example Within-Batch Scheduling Order

71

T2 T3 T1

T0

Bank 0 Bank 1 Bank 2 Bank 3

T3

T3 T1 T3

T2 T2 T1 T2

T1 T0 T2 T0

T3 T2 T3

T3

T3

T3 Baseline Scheduling

Order (Arrival order)

PAR-BS Scheduling

Order

T2

T3

T1 T0

Bank 0 Bank 1 Bank 2 Bank 3

T3

T3

T1

T3 T2 T2

T1 T2 T1

T0

T2

T0

T3 T2

T3

T3

T3

T3

T0 T1 T2 T3

4 4 5 7

AVG: 5 bank access latencies AVG: 3.5 bank access latencies

Stall times

T0 T1 T2 T3

1 2 4 7 Stall times

T
im

e

1

2

4

6

Ranking: T0 > T1 > T2 > T3

1

2

3

4

5

6

7

T
im

e

Putting It Together: PAR-BS Scheduling Policy

 PAR-BS Scheduling Policy

 (1) Marked requests first

 (2) Row-hit requests first

 (3) Higher-rank thread first (shortest stall-time first)

 (4) Oldest first

 Three properties:

 Exploits row-buffer locality and intra-thread bank parallelism

 Work-conserving

 Services unmarked requests to banks without marked requests

 Marking-Cap is important

 Too small cap: destroys row-buffer locality

 Too large cap: penalizes memory non-intensive threads

 Many more trade-offs analyzed in the paper

72

Batching

Parallelism-aware

within-batch

scheduling

Hardware Cost

 <1.5KB storage cost for

 8-core system with 128-entry memory request buffer

 No complex operations (e.g., divisions)

 Not on the critical path

 Scheduler makes a decision only every DRAM cycle

73

74

Unfairness on 4-, 8-, 16-core Systems

1

1.5

2

2.5

3

3.5

4

4.5

5

4-core 8-core 16-core

U
n

fa
ir

n
e
s
s
 (

lo
w

e
r

is
 b

e
tt

e
r)

FR-FCFS

FCFS

NFQ

STFM

PAR-BS

Unfairness = MAX Memory Slowdown / MIN Memory Slowdown [MICRO 2007]

1.11X 1.08X

1.11X

75

System Performance (Hmean-speedup)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

4-core 8-core 16-core

N
o

rm
a
li
z
e
d

 H
m

e
a
n

 S
p

e
e
d

u
p

FR-FCFS

FCFS

NFQ

STFM

PAR-BS

8.3% 6.1% 5.1%

PAR-BS Pros and Cons

 Upsides:

 First work to identify the notion of bank parallelism destruction
across multiple threads

 Simple mechanism

 Downsides:

 Implementation in multiple controllers needs coordination for
best performance too frequent coordination since batching

is done frequently

 Does not always prioritize the latency-sensitive applications

76

ATLAS Memory Scheduler

Yoongu Kim, Dongsu Han, Onur Mutlu, and Mor Harchol-Balter,
"ATLAS: A Scalable and High-Performance

Scheduling Algorithm for Multiple Memory Controllers"
16th International Symposium on High-Performance Computer Architecture (HPCA),

Bangalore, India, January 2010. Slides (pptx)

ATLAS HPCA 2010 Talk

http://users.ece.cmu.edu/~omutlu/pub/atlas_hpca10.pdf
http://users.ece.cmu.edu/~omutlu/pub/atlas_hpca10.pdf
http://users.ece.cmu.edu/~omutlu/pub/atlas_hpca10.pdf
http://users.ece.cmu.edu/~omutlu/pub/atlas_hpca10.pdf
http://www.cse.psu.edu/hpcl/hpca16.html
http://www.cse.psu.edu/hpcl/hpca16.html
http://www.cse.psu.edu/hpcl/hpca16.html
http://users.ece.cmu.edu/~omutlu/pub/kim_hpca10_talk.pptx
file://localhost/Users/omutlu/Documents/presentations/CMU/SNU%20Lectures%20June%2018-20%202012/previous%20talks/kim_hpca10_talk.pptx

Rethinking Memory Scheduling

A thread alternates between two states (episodes)

 Compute episode: Zero outstanding memory requests High IPC

Memory episode: Non-zero outstanding memory requests Low IPC

78

Goal: Minimize time spent in memory episodes

O
u
ts

ta
n
d
in

g

m
e
m

o
ry

 r
e
q
u
e
st

s

Time

Memory episode Compute episode

How to Minimize Memory Episode Time

 Minimizes time spent in memory episodes across all threads

 Supported by queueing theory:

 Shortest-Remaining-Processing-Time scheduling is optimal in
single-server queue

Remaining length of a memory episode?

 Prioritize thread whose memory episode will end the soonest

Time

O
u
ts

ta
n
d
in

g

m
e
m

o
ry

 r
e
q
u
e
st

s

How much longer?

79

Predicting Memory Episode Lengths

Large attained service Large expected remaining service

Q: Why?

A: Memory episode lengths are Pareto distributed…

80

We discovered: past is excellent predictor for future

Time

O
u
ts

ta
n
d
in

g

m
e
m

o
ry

 r
e
q
u
e
st

s

Remaining service
FUTURE

Attained service
PAST

Pareto Distribution of Memory Episode Lengths

81

401.bzip2

Favoring least-attained-service memory episode

 = Favoring memory episode which will end the soonest

P
r{

M
em

.
ep

is
o
d

e
>

 x
}

x (cycles)

Memory episode lengths of
SPEC benchmarks

Pareto distribution

Attained service correlates with
remaining service

The longer an episode has lasted
 The longer it will last further

Prioritize the job with
shortest-remaining-processing-time

Provably optimal

 Remaining service: Correlates with attained service

 Attained service: Tracked by per-thread counter

Least Attained Service (LAS) Memory Scheduling

82

Prioritize the memory episode with
least-remaining-service

Our Approach Queueing Theory

Least-attained-service (LAS) scheduling:

Minimize memory episode time

However, LAS does not consider
long-term thread behavior

Prioritize the memory episode with
least-attained-service

Long-Term Thread Behavior

83

Mem.
episode

Thread 1 Thread 2

Short-term
thread behavior

Mem.
episode

Long-term
thread behavior

Compute
episode

Compute
episode

>
priority

<
priority

Prioritizing Thread 2 is more beneficial:
results in very long stretches of compute episodes

Short memory episode Long memory episode

Quantum-Based Attained Service of a Thread

84

Time
O

u
ts

ta
n
d
in

g

m
e
m

o
ry

 r
e
q
u
e
st

s
Attained service

Short-term
thread behavior

We divide time into large, fixed-length intervals:
quanta (millions of cycles)

Attained service

Long-term
thread behavior

O
u
ts

ta
n
d
in

g

m
e
m

o
ry

 r
e
q
u
e
st

s

Time

…

Quantum (millions of cycles)

LAS Thread Ranking

Each thread’s attained service (AS) is tracked by MCs

ASi = A thread’s AS during only the i-th quantum

Each thread’s TotalAS computed as:

TotalASi = α · TotalASi-1 + (1- α) · ASi

High α More bias towards history

Threads are ranked, favoring threads with lower TotalAS

Threads are serviced according to their ranking

During a quantum

End of a quantum

Next quantum

85

ATLAS Scheduling Algorithm

ATLAS
 Adaptive per-Thread Least Attained Service

 Request prioritization order

 1. Prevent starvation: Over threshold request

 2. Maximize performance: Higher LAS rank

 3. Exploit locality: Row-hit request

 4. Tie-breaker: Oldest request

86

How to coordinate MCs to agree upon a consistent ranking?

4

6

8

10

12

14

16

1 2 4 8 16

Memory controllers

Sy
st

em
 t

h
ro

u
gh

p
u

t

FCFS FR_FCFS STFM PAR-BS ATLAS

System Throughput: 24-Core System

87

System throughput = ∑ Speedup

ATLAS consistently provides higher system throughput than
all previous scheduling algorithms

17.0%

9.8%

8.4%

5.9%

3.5%

S
y
st

e
m

 t
h
ro

u
g
h
p
u
t

of memory controllers

0

2

4

6

8

10

12

14

4 8 16 24 32

Cores

Sy
st

em
 t

h
ro

u
gh

p
u

t

PAR-BS ATLAS

System Throughput: 4-MC System

of cores increases ATLAS performance benefit increases

88

1.1%
3.5%

4.0%

8.4%

10.8%

S
y
st

e
m

 t
h
ro

u
g
h
p
u
t

of cores

Properties of ATLAS

 LAS-ranking

 Bank-level parallelism

 Row-buffer locality

 Very infrequent coordination

 Scale attained service with
thread weight (in paper)

 Low complexity: Attained
service requires a single
counter per thread in each MC

89

 Maximize system performance

 Scalable to large number of controllers

 Configurable by system software

Goals Properties of ATLAS

ATLAS Pros and Cons

 Upsides:

 Good at improving performance

 Low complexity

 Coordination among controllers happens infrequently

 Downsides:

 Lowest ranked threads get delayed significantly high

unfairness

90

