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New Review Assignments 

 Due: Tuesday, November 13, 11:59pm. 

 Mutlu and Moscibroda, “Parallelism-Aware Batch Scheduling: 
Enhancing both Performance and Fairness of Shared DRAM 
Systems,” ISCA 2008. 

 Kim et al., “Thread Cluster Memory Scheduling: Exploiting 
Differences in Memory Access Behavior,” MICRO 2010. 

 

 Due: Thursday, November 15, 11:59pm. 

 Ebrahimi et al., “Fairness via Source Throttling: A Configurable 
and High-Performance Fairness Substrate for Multi-Core Memory 
Systems,” ASPLOS 2010. 

 Muralidhara et al., “Reducing Memory Interference in 
Multicore Systems via Application-Aware Memory Channel 
Partitioning,” MICRO 2011. 

 

 
2 



Reminder: Old Review Assignment 

 Was Due: Sunday, November 4, 11:59pm. 

 H. T. Kung, “Why Systolic Architectures?,” IEEE Computer 
1982. 
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Reminder: Literature Survey Process  

 Done in groups: your research project group is likely ideal 

 Step 1: Pick 3 or more research papers  

 Broadly related to your research project 

 Step 2: Send me the list of papers with links to pdf copies (by 
Sunday, November 11) 

 I need to approve the 3 papers 

 We will iterate to ensure convergence on the list 

 Step 3: Prepare a 2-page writeup on the 3 papers 

 Step 3: Prepare a 15-minute presentation on the 3 papers 

 Total time: 15-minute talk + 5-minute Q&A 

 Talk should focus on insights and tradeoffs 

 Step 4: Deliver the presentation in front of class (dates: 
November 26-28 or December 3-7) and turn in your writeup 
(due date: December 1) 
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Reminder: Literature Survey Guidelines 

 The goal is to  

 Understand the solution space and tradeoffs 

 Deeply analyze and synthesize three papers 

 Analyze: Describe individual strengths and weaknesses 

 Synthesize: Find commonalities and common strengths and 
weaknesses, categorize the solutions with respect to criteria 

 Explain how they relate to your project, how they can enhance 
it, or why your solution will be better 

 

 Read the papers very carefully 

 Attention to detail is important 
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Reminder: Literature Survey Talk 
 The talk should clearly convey at least the following: 

 The problem: What is the general problem targeted by the papers 
and what are the specific problems? 

 The solutions: What are the key ideas and solution approaches of 
the proposed papers? 

 Key results and insights: What are the key results, insights, and 
conclusions of the papers? 

 Tradeoffs and analyses: How do the solutions differ or interact with 
each other? Can they be combined? What are the tradeoffs between 
them? This is where you will need to analyze the approaches and 
find a way to synthesize a common framework to describe and 
qualitatively compare&contrast the approaches.  

 Comparison to your project: How do these approaches relate to your 
project? Why is your approach novel, different, better, or 
complementary? 

 Key conclusions and new ideas: What have you learned? Do you 
have new ideas/approaches based on what you have learned? 
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Last Lecture 

 End Dataflow  

 

 Systolic Arrays 
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Today 

 Begin shared resource management 

 

 Main memory as a shared resource 

 QoS-aware memory systems 

 Memory request scheduling 

 Memory channel partitioning 

 Source throttling 
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Other Readings: Shared Main Memory  

 Required 

 Moscibroda and Mutlu, “Memory Performance Attacks,” USENIX Security 2007. 

 Mutlu and Moscibroda, “Stall-Time Fair Memory Access Scheduling for Chip 
Multiprocessors,” MICRO 2007.  

 Kim et al., “ATLAS: A Scalable and High-Performance Scheduling Algorithm for 
Multiple Memory Controllers,” HPCA 2010.   

 Muralidhara et al., “Reducing Memory Interference in Multicore Systems via 
Application-Aware Memory Channel Partitioning,” MICRO 2011. 

 Ausavarungnirun et al., “Staged Memory Scheduling: Achieving High 
Performance and Scalability in Heterogeneous Systems,” ISCA 2012. 

 Lee et al., “Prefetch-Aware DRAM Controllers,” MICRO 2008. 
 

 Recommended 

 Rixner et al., “Memory Access Scheduling,” ISCA 2000. 

 Zheng et al., “Mini-Rank: Adaptive DRAM Architecture for Improving Memory 
Power Efficiency,” MICRO 2008. 

 Ipek et al., “Self Optimizing Memory Controllers: A Reinforcement Learning 
Approach,” ISCA 2008. 
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Resource Sharing 

 

 

 

 

 



Resource Sharing Concept 

 Idea: Instead of dedicating a hardware resource to a 
hardware context, allow multiple contexts to use it 

 Example resources: functional units, pipeline, caches, buses, 
memory 

 Why? 

 

+ Resource sharing improves utilization/efficiency  throughput 

 As we saw with (simultaneous) multithreading 

 When a resource is left idle by one thread, another thread can 
use it; no need to replicate shared data 

+ Reduces communication latency 

 For example, shared data kept in the same cache in SMT 

+ Compatible with the shared memory model 
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Resource Sharing Disadvantages 

 Resource sharing results in contention for resources 

 When the resource is not idle, another thread cannot use it 

 If space is occupied by one thread, another thread needs to re-
occupy it  

 

- Sometimes reduces each or some thread’s performance 

 - Thread performance can be worse than when it is run alone   

- Eliminates performance isolation  inconsistent performance 

across runs 

  - Thread performance depends on co-executing threads 

- Uncontrolled (free-for-all) sharing degrades QoS 

  - Causes unfairness, starvation 
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Need for QoS and Shared Resource Mgmt. 

 Why is unpredictable performance (or lack of QoS) bad? 

 

 Makes programmer’s life difficult 

 An optimized program can get low performance (and 
performance varies widely depending on co-runners) 

 

 Causes discomfort to user 

 An important program can starve 

 Examples from shared software resources 

 

 Makes system management difficult 

 How do we enforce a Service Level Agreement when 
hardware resources are sharing is uncontrollable? 
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Resource Sharing vs. Partitioning 

 Sharing improves throughput 

 Better utilization of space  

 

 Partitioning provides performance isolation (predictable 
performance) 

 Dedicated space 

 

 Can we get the benefits of both?  

 

 Idea: Design shared resources in a 
controllable/partitionable way 
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Shared Hardware Resources 

 Memory subsystem (in both MT and CMP) 

 Non-private caches 

 Interconnects 

 Memory controllers, buses, banks 

 

 I/O subsystem (in both MT and CMP) 

 I/O, DMA controllers 

 Ethernet controllers 

 

 Processor (in MT) 

 Pipeline resources 

 L1 caches 
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Resource Sharing Issues and Related Metrics 

 System performance 

 Fairness  

 Per-application performance (QoS) 

 Power 

 Energy 

 System cost 

 Lifetime 

 Reliability, effect of faults 

 Security, information leakage 

 

 Partitioning: Isolation between apps/threads 

 Sharing (free for all): No isolation 
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Main Memory in the System 
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Modern Memory Systems (Multi-Core) 

 

18 



Memory System is the Major Shared Resource 
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threads’ requests  

interfere 



Multi-core Issues in Caching 

 How does the cache hierarchy change in a multi-core system? 

 Private cache: Cache belongs to one core (a shared block can be in 
multiple caches) 

 Shared cache: Cache is shared by multiple cores 
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Shared Caches Between Cores 

 Advantages: 
 High effective capacity 

 Dynamic partitioning of available cache space 

 No fragmentation due to static partitioning 

 Easier to maintain coherence (a cache block is in a single location) 

 Shared data and locks do not ping pong between caches 

 

 Disadvantages 
 Slower access 

 Cores incur conflict misses due to other cores’ accesses 

 Misses due to inter-core interference 

 Some cores can destroy the hit rate of other cores 

 Guaranteeing a minimum level of service (or fairness) to each core is harder 
(how much space, how much bandwidth?) 
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Shared Caches: How to Share? 

 Free-for-all sharing 

 Placement/replacement policies are the same as a single core 
system (usually LRU or pseudo-LRU) 

 Not thread/application aware 

 An incoming block evicts a block regardless of which threads 
the blocks belong to 

 

 Problems 

 A cache-unfriendly application can destroy the performance of 
a cache friendly application 

 Not all applications benefit equally from the same amount of 
cache: free-for-all might prioritize those that do not benefit 

 Reduced performance, reduced fairness 
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Controlled Cache Sharing 

 Utility based cache partitioning 
 Qureshi and Patt, “Utility-Based Cache Partitioning: A Low-Overhead, High-

Performance, Runtime Mechanism to Partition Shared Caches,” MICRO 
2006. 

 Suh et al., “A New Memory Monitoring Scheme for Memory-Aware 
Scheduling and Partitioning,” HPCA 2002. 

 

 Fair cache partitioning 
 Kim et al., “Fair Cache Sharing and Partitioning in a Chip Multiprocessor 

Architecture,” PACT 2004. 

 

 Shared/private mixed cache mechanisms 
 Qureshi, “Adaptive Spill-Receive for Robust High-Performance Caching in 

CMPs,” HPCA 2009. 

 Hardavellas et al., “Reactive NUCA: Near-Optimal Block Placement and 
Replication in Distributed Caches,” ISCA 2009. 
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Readings: Shared Cache Management 

 Required 
 Qureshi and Patt, “Utility-Based Cache Partitioning: A Low-Overhead, High-

Performance, Runtime Mechanism to Partition Shared Caches,” MICRO 
2006. 

 Kim et al., “Fair Cache Sharing and Partitioning in a Chip Multiprocessor 
Architecture,” PACT 2004. 

 Qureshi, “Adaptive Spill-Receive for Robust High-Performance Caching in 
CMPs,” HPCA 2009. 

 Hardavellas et al., “Reactive NUCA: Near-Optimal Block Placement and 
Replication in Distributed Caches,” ISCA 2009. 

 Recommended 
 Kim et al., “An Adaptive, Non-Uniform Cache Structure for Wire-Delay 

Dominated On-Chip Caches,” ASPLOS 2002. 

 Qureshi et al., “Adaptive Insertion Policies for High-Performance Caching,” 
ISCA 2007. 

 Lin et al., “Gaining Insights into Multi-Core Cache Partitioning: Bridging the 
Gap between Simulation and Real Systems,” HPCA 2008. 
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Main Memory As a Shared Resource 

 

 

 

 

 



Sharing in Main Memory 

 Bandwidth sharing 

 Which thread/core to prioritize? 

 How to schedule requests? 

 How much bandwidth to allocate to each thread? 

 

 Capacity sharing 

 How much memory capacity to allocate to which thread? 

 Where to map that memory? (row, bank, rank, channel) 

 

 Metrics for optimization 

 System performance 

 Fairness, QoS 

 Energy/power consumption 
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DRAM Bank Operation 
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Generalized Memory Structure 
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Memory Controller 
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Inter-Thread Interference in DRAM 

 Memory controllers, pins, and memory banks are shared 

 

 Pin bandwidth is not increasing as fast as number of cores 

 Bandwidth per core reducing 

 

 Different threads executing on different cores interfere with 
each other in the main memory system 

 

 Threads delay each other by causing resource contention: 

 Bank, bus, row-buffer conflicts  reduced DRAM throughput 

 Threads can also destroy each other’s DRAM bank 
parallelism  

 Otherwise parallel requests can become serialized  
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Effects of Inter-Thread Interference in DRAM 

 Queueing/contention delays 

 Bank conflict, bus conflict, channel conflict, … 

 

 Additional delays due to DRAM constraints 

 Called “protocol overhead” 

 Examples 

 Row conflicts 

 Read-to-write and write-to-read delays 

 

 Loss of intra-thread parallelism 
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Trend: Many Cores on Chip 

 Simpler and lower power than a single large core 

 Large scale parallelism on chip 
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IBM Cell BE 
8+1 cores 

Intel Core i7 
8 cores 

Tilera TILE Gx 
100 cores, networked 

IBM POWER7 
8 cores 

Intel SCC 
48 cores, networked 

Nvidia Fermi 
448 “cores” 

AMD Barcelona 
4 cores 

Sun Niagara II 
8 cores 



Many Cores on Chip 

 What we want: 

 N times the system performance with N times the cores 

 

 What do we get today? 

33 



(Un)expected Slowdowns 

Memory Performance Hog 
Low priority 

High priority 

(Core 0) (Core 1) 

Moscibroda and Mutlu, “Memory performance attacks: Denial of memory service  
in multi-core systems,” USENIX Security 2007. 

matlab 
(Core 1) 

gcc 
(Core 2) 
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Why? Uncontrolled Memory Interference 
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// initialize large arrays A, B 
 
for (j=0; j<N; j++) { 
     index = rand(); 
     A[index] = B[index]; 
     … 
} 

36 

A Memory Performance Hog 

STREAM 

- Sequential memory access  
- Very high row buffer locality (96% hit rate) 
- Memory intensive 

RANDOM 

- Random memory access 
- Very low row buffer locality (3% hit rate) 
- Similarly memory intensive 

// initialize large arrays A, B 
 
for (j=0; j<N; j++) { 
     index = j*linesize; 
     A[index] = B[index]; 
     … 
} 

streaming random 

Moscibroda and Mutlu, “Memory Performance Attacks,” USENIX Security 2007. 
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DRAM Controllers 

 A row-conflict memory access takes significantly longer 
than a row-hit access 

 

 Current controllers take advantage of the row buffer 
 

 Commonly used scheduling policy (FR-FCFS) [Rixner 2000]* 

(1) Row-hit first: Service row-hit memory accesses first 

(2) Oldest-first: Then service older accesses first 

 

 This scheduling policy aims to maximize DRAM throughput 

 But, it is unfair when multiple threads share the DRAM system   

 
*Rixner et al., “Memory Access Scheduling,” ISCA 2000. 

*Zuravleff and Robinson, “Controller for a synchronous DRAM …,” US Patent 5,630,096, May 1997. 
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What Does the Memory Hog Do? 
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T0: STREAM 
T1: RANDOM 

Row size: 8KB, cache block size: 64B 

128 (8KB/64B) requests of T0 serviced before T1 

Moscibroda and Mutlu, “Memory Performance Attacks,” USENIX Security 2007. 
 



Effect of the Memory Performance Hog 
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1.18X slowdown 

2.82X slowdown 

Results on Intel Pentium D running Windows XP 
(Similar results for Intel Core Duo and AMD Turion, and on Fedora Linux)  
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Moscibroda and Mutlu, “Memory Performance Attacks,” USENIX Security 2007. 
 



Greater Problem with More Cores 

 Vulnerable to denial of service (DoS) [Usenix Security’07] 

 Unable to enforce priorities or SLAs [MICRO’07,’10,’11, ISCA’08’11’12, ASPLOS’10] 

 Low system performance [IEEE Micro Top Picks ’09,’11a,’11b,’12] 

 

Uncontrollable, unpredictable system 
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Distributed DoS in Networked Multi-Core Systems 
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Attackers 
(Cores 1-8) 

Stock option pricing application 
(Cores 9-64) 

    Cores connected via  

    packet-switched 

    routers on chip 

     ~5000X slowdown 

Grot, Hestness, Keckler, Mutlu,  
“Preemptive virtual clock: A Flexible,  
Efficient, and Cost-effective QOS  
Scheme for Networks-on-Chip,“ 
MICRO 2009. 



How Do We Solve The Problem? 

 Inter-thread interference is uncontrolled in all memory 
resources 

 Memory controller 

 Interconnect 

 Caches 

 

 We need to control it 

 i.e., design an interference-aware (QoS-aware) memory system 
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 Problem: Memory interference is uncontrolled  

uncontrollable, unpredictable, vulnerable system 
 

 Goal: We need to control it  Design a QoS-aware system  
 

 Solution: Hardware/software cooperative memory QoS 

 Hardware designed to provide a configurable fairness substrate  

 Application-aware memory scheduling, partitioning, throttling 

 Software designed to configure the resources to satisfy different 
QoS goals 

 

 E.g., fair, programmable memory controllers and on-chip 
networks provide QoS and predictable performance  

      [2007-2012, Top Picks’09,’11a,’11b,’12] 

 

 

Solution: QoS-Aware, Predictable Memory 



QoS-Aware Memory Systems: Challenges 

 How do we reduce inter-thread interference? 

 Improve system performance and core utilization 

 Reduce request serialization and core starvation 

 

 How do we control inter-thread interference? 

 Provide mechanisms to enable system software to enforce 
QoS policies  

 While providing high system performance 

 

 How do we make the memory system configurable/flexible?  

 Enable flexible mechanisms that can achieve many goals 

 Provide fairness or throughput when needed 

 Satisfy performance guarantees when needed 
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Designing QoS-Aware Memory Systems: Approaches 

 Smart resources: Design each shared resource to have a 
configurable interference control/reduction mechanism 

 QoS-aware memory controllers [Mutlu+ MICRO’07] [Moscibroda+, Usenix Security’07] 

[Mutlu+ ISCA’08, Top Picks’09] [Kim+ HPCA’10] [Kim+ MICRO’10, Top Picks’11] [Ebrahimi+ ISCA’11, 
MICRO’11] [Ausavarungnirun+, ISCA’12] 

 QoS-aware interconnects [Das+ MICRO’09, ISCA’10, Top Picks ’11] [Grot+ MICRO’09, 

ISCA’11, Top Picks ’12] 

 QoS-aware caches 
 

 Dumb resources: Keep each resource free-for-all, but 
reduce/control interference by injection control or data 
mapping 

 Source throttling to control access to memory system [Ebrahimi+ ASPLOS’10, 

ISCA’11, TOCS’12] [Ebrahimi+ MICRO’09] [Nychis+ HotNets’10] 

 QoS-aware data mapping to memory controllers [Muralidhara+ MICRO’11] 

 QoS-aware thread scheduling to cores 
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 Memory Channel Partitioning 

 Idea: System software maps badly-interfering applications’ pages 
to different channels [Muralidhara+, MICRO’11] 

 

 

 

 

 

 

 

 

 Separate data of low/high intensity and low/high row-locality applications 

 Especially effective in reducing interference of threads with “medium” and 
“heavy” memory intensity  

 11% higher performance over existing systems (200 workloads) 

A Mechanism to Reduce Memory Interference 
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Designing QoS-Aware Memory Systems: Approaches 

 Smart resources: Design each shared resource to have a 
configurable interference control/reduction mechanism 

 QoS-aware memory controllers [Mutlu+ MICRO’07] [Moscibroda+, Usenix Security’07] 

[Mutlu+ ISCA’08, Top Picks’09] [Kim+ HPCA’10] [Kim+ MICRO’10, Top Picks’11] [Ebrahimi+ ISCA’11, 
MICRO’11] [Ausavarungnirun+, ISCA’12] 

 QoS-aware interconnects [Das+ MICRO’09, ISCA’10, Top Picks ’11] [Grot+ MICRO’09, 

ISCA’11, Top Picks ’12] 

 QoS-aware caches 
 

 Dumb resources: Keep each resource free-for-all, but 
reduce/control interference by injection control or data 
mapping 

 Source throttling to control access to memory system [Ebrahimi+ ASPLOS’10, 

ISCA’11, TOCS’12] [Ebrahimi+ MICRO’09] [Nychis+ HotNets’10] 

 QoS-aware data mapping to memory controllers [Muralidhara+ MICRO’11] 

 QoS-aware thread scheduling to cores 
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QoS-Aware Memory Scheduling 

 

 

 

 

 

 How to schedule requests to provide 

 High system performance 

 High fairness to applications 

 Configurability to system software  

 

 Memory controller needs to be aware of threads 
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QoS-Aware Memory Scheduling: Evolution 

 Stall-time fair memory scheduling [Mutlu+ MICRO’07] 

 Idea: Estimate and balance thread slowdowns 

 Takeaway: Proportional thread progress improves performance, 
especially when threads are “heavy” (memory intensive) 
 

 Parallelism-aware batch scheduling [Mutlu+ ISCA’08, Top Picks’09] 

 Idea: Rank threads and service in rank order (to preserve bank 
parallelism); batch requests to prevent starvation 

 Takeaway: Preserving within-thread bank-parallelism improves 
performance; request batching improves fairness 
 

 ATLAS memory scheduler [Kim+ HPCA’10] 

 Idea: Prioritize threads that have attained the least service from the 
memory scheduler  

 Takeaway: Prioritizing “light” threads improves performance 
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QoS-Aware Memory Scheduling: Evolution 

 Thread cluster memory scheduling [Kim+ MICRO’10] 

 Idea: Cluster threads into two groups (latency vs. bandwidth 
sensitive); prioritize the latency-sensitive ones; employ a fairness 
policy in the bandwidth sensitive group 

 Takeaway: Heterogeneous scheduling policy that is different based 
on thread behavior maximizes both performance and fairness 

 

 Integrated Memory Channel Partitioning and Scheduling 
[Muralidhara+ MICRO’11] 

 Idea: Only prioritize very latency-sensitive threads in the scheduler; 
mitigate all other applications’ interference via channel partitioning 

 Takeaway: Intelligently ombining application-aware channel 
partitioning and memory scheduling provides better performance 
than either 
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QoS-Aware Memory Scheduling: Evolution 

 Parallel application memory scheduling [Ebrahimi+ MICRO’11] 

 Idea: Identify and prioritize limiter threads of a multithreaded 
application in the memory scheduler; provide fast and fair progress 
to non-limiter threads 

 Takeaway: Carefully prioritizing between limiter and non-limiter 
threads of a parallel application improves performance 

 

 Staged memory scheduling [Ausavarungnirun+ ISCA’12] 

 Idea: Divide the functional tasks of an application-aware memory 
scheduler into multiple distinct stages, where each stage is 
significantly simpler than a monolithic scheduler 

 Takeaway: Staging enables the design of a scalable and relatively 
simpler application-aware memory scheduler that works on very 
large request buffers 
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QoS-Aware Memory Scheduling: Evolution 

 Prefetch-aware shared resource management [Ebrahimi+ 

ISCA’12] [Ebrahimi+ MICRO’09] [Lee+ MICRO’08] 

 Idea: Prioritize prefetches depending on how they affect system 
performance; even accurate prefetches can degrade performance of 
the system  

 Takeaway: Carefully controlling and prioritizing prefetch requests 
improves performance and fairness 
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Stall-Time Fair Memory Scheduling 

 

 

 

 

Onur Mutlu and Thomas Moscibroda,  
"Stall-Time Fair Memory Access Scheduling for Chip Multiprocessors"  

40th International Symposium on Microarchitecture (MICRO),  
pages 146-158, Chicago, IL, December 2007. Slides (ppt)  

STFM Micro 2007 Talk 

http://users.ece.cmu.edu/~omutlu/pub/stfm_micro07.pdf
http://users.ece.cmu.edu/~omutlu/pub/stfm_micro07.pdf
http://users.ece.cmu.edu/~omutlu/pub/stfm_micro07.pdf
http://www.microarch.org/micro40/
http://users.ece.cmu.edu/~omutlu/pub/mutlu_micro07_talk.ppt
file://localhost/Users/omutlu/Documents/presentations/CMU/SNU%20Lectures%20June%2018-20%202012/previous%20talks/mutlu_micro07_talk.ppt


The Problem: Unfairness 

 Vulnerable to denial of service (DoS) [Usenix Security’07] 

 Unable to enforce priorities or SLAs [MICRO’07,’10,’11, ISCA’08’11’12, ASPLOS’10] 

 Low system performance [IEEE Micro Top Picks ’09,’11a,’11b,’12] 

 

Uncontrollable, unpredictable system 
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How Do We Solve the Problem? 

 Stall-time fair memory scheduling [Mutlu+ MICRO’07] 

 

 Goal: Threads sharing main memory should experience 
similar slowdowns compared to when they are run alone  

fair scheduling 
 Also improves overall system performance by ensuring cores make 

“proportional” progress 

 

 Idea: Memory controller estimates each thread’s slowdown 
due to interference and schedules requests in a way to 
balance the slowdowns 

 

 Mutlu and Moscibroda, “Stall-Time Fair Memory Access Scheduling for 
Chip Multiprocessors,” MICRO 2007.  
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Stall-Time Fairness in Shared DRAM Systems 

 A DRAM system is fair if it equalizes the slowdown of equal-priority threads  
relative to when each thread is run alone on the same system 

 

 DRAM-related stall-time: The time a thread spends waiting for DRAM memory 

 STshared: DRAM-related stall-time when the thread runs with other threads 

 STalone:  DRAM-related stall-time when the thread runs alone 

 Memory-slowdown = STshared/STalone    
 Relative increase in stall-time 

 

 Stall-Time Fair Memory scheduler (STFM) aims to equalize             
Memory-slowdown for interfering threads, without sacrificing performance 

 Considers inherent DRAM performance of each thread 

 Aims to allow proportional progress of threads 
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STFM Scheduling Algorithm [MICRO’07] 

 
 For each thread, the DRAM controller 

 Tracks STshared  

 Estimates STalone  

 

 Each cycle, the DRAM controller 

 Computes Slowdown = STshared/STalone for threads with legal requests 

 Computes unfairness = MAX Slowdown / MIN Slowdown 

 

 If unfairness <  

 Use DRAM throughput oriented scheduling policy 

 If unfairness ≥  

 Use fairness-oriented scheduling policy  

 (1) requests from thread with MAX Slowdown first  

 (2) row-hit first , (3) oldest-first 
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How Does STFM Prevent Unfairness? 
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STFM Pros and Cons 

 Upsides:  

 First work on fair multi-core memory scheduling 

 Good at providing fairness 

 Being fair improves performance  

 

 Downsides: 

 Does not handle all types of interference 

 (Somewhat) complex to implement 

 Slowdown estimations can be incorrect 
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Parallelism-Aware Batch Scheduling 

 

 

 

 

Onur Mutlu and Thomas Moscibroda,  
"Parallelism-Aware Batch Scheduling: Enhancing both  
Performance and Fairness of Shared DRAM Systems” 

35th International Symposium on Computer Architecture (ISCA),  
pages 63-74, Beijing, China, June 2008. Slides (ppt) 

PAR-BS ISCA 2008 Talk 

http://users.ece.cmu.edu/~omutlu/pub/parbs_isca08.pdf
http://users.ece.cmu.edu/~omutlu/pub/parbs_isca08.pdf
http://users.ece.cmu.edu/~omutlu/pub/parbs_isca08.pdf
http://users.ece.cmu.edu/~omutlu/pub/parbs_isca08.pdf
http://isca2008.cs.princeton.edu/
http://isca2008.cs.princeton.edu/
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Another Problem due to Interference 

 Processors try to tolerate the latency of DRAM requests by 
generating multiple outstanding requests 

 Memory-Level Parallelism (MLP)  

 Out-of-order execution, non-blocking caches, runahead execution 

 

 Effective only if the DRAM controller actually services the 
multiple requests in parallel in DRAM banks 

 

 Multiple threads share the DRAM controller 

 DRAM controllers are not aware of a thread’s MLP 

 Can service each thread’s outstanding requests serially, not in parallel 
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Bank Parallelism of a Thread 
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Thread A: Bank 0, Row 1 

Thread A: Bank 1, Row 1 

Bank access latencies of the two requests overlapped 

Thread stalls for ~ONE bank access latency 

Thread A : 

Bank 0 Bank 1 

Compute 

2 DRAM Requests 

Bank 0 

Stall Compute 

Bank 1 

Single Thread: 



Compute 

Compute 

2 DRAM Requests 

Bank Parallelism Interference in DRAM 
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Bank 0 Bank 1 

Thread A: Bank 0, Row 1 

Thread B: Bank 1, Row 99 

Thread B: Bank 0, Row 99 

Thread A: Bank 1, Row 1 

A : Compute 

2 DRAM Requests 

Bank 0 

Stall 

Bank 1 

Baseline Scheduler: 

B: Compute 

Bank 0 

Stall 
Bank 1 

Stall 

Stall 

Bank access latencies of each thread serialized 

Each thread stalls for ~TWO bank access latencies 



2 DRAM Requests 

Parallelism-Aware Scheduler 
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Bank 0 Bank 1 

Thread A: Bank 0, Row 1 

Thread B: Bank 1, Row 99 

Thread B: Bank 0, Row 99 

Thread A: Bank 1, Row 1 

A : 

2 DRAM Requests 

Parallelism-aware Scheduler: 

B: Compute 
Bank 0 

Stall Compute 

Bank 1 

Stall 

2 DRAM Requests 

A : Compute 

2 DRAM Requests 

Bank 0 

Stall Compute 

Bank 1 

B: Compute 

Bank 0 

Stall Compute 
Bank 1 

Stall 

Stall 

Baseline Scheduler: 

Compute 

Bank 0 

Stall Compute 

Bank 1 

Saved Cycles Average stall-time: 

~1.5 bank access 

latencies 



Parallelism-Aware Batch Scheduling (PAR-BS) 

 Principle 1: Parallelism-awareness 

 Schedule requests from a thread (to 
different banks) back to back 

 Preserves each thread’s bank parallelism 

 But, this can cause starvation… 

 

 Principle 2: Request Batching 

 Group a fixed number of oldest requests 
from each thread into a “batch” 

 Service the batch before all other requests 

 Form a new batch when the current one is done 

 Eliminates starvation, provides fairness 

 Allows parallelism-awareness within a batch 
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Bank 0 Bank 1 

T1 

T1 

T0 

T0 

T2 

T2 

T3 

T3 

T2 T2 

T2 

Batch 

T0 

T1 T1 

Mutlu and Moscibroda, “Parallelism-Aware Batch Scheduling,” ISCA 2008. 



PAR-BS Components 

 Request batching 
 

 

 

 Within-batch scheduling 
 Parallelism aware 
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Request Batching 

 Each memory request has a bit (marked) associated with it 

 

 Batch formation: 

 Mark up to Marking-Cap oldest requests per bank for each thread 

 Marked requests constitute the batch 

 Form a new batch when no marked requests are left 

 

 Marked requests are prioritized over unmarked ones 

 No reordering of requests across batches: no starvation, high fairness 

 

 How to prioritize requests within a batch? 
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Within-Batch Scheduling 

 Can use any existing DRAM scheduling policy 

 FR-FCFS (row-hit first, then oldest-first) exploits row-buffer locality 

 But, we also want to preserve intra-thread bank parallelism 

 Service each thread’s requests back to back 

 

 

 Scheduler computes a ranking of threads when the batch is 
formed 

 Higher-ranked threads are prioritized over lower-ranked ones 

 Improves the likelihood that requests from a thread are serviced in 
parallel by different banks 

 Different threads prioritized in the same order across ALL banks 
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How to Rank Threads within a Batch 

 Ranking scheme affects system throughput and fairness 
 

 Maximize system throughput 

 Minimize average stall-time of threads within the batch 

 Minimize unfairness (Equalize the slowdown of threads) 

 Service threads with inherently low stall-time early in the batch 

 Insight: delaying memory non-intensive threads results in high 
slowdown 

 

 Shortest stall-time first (shortest job first) ranking 

 Provides optimal system throughput [Smith, 1956]* 

 Controller estimates each thread’s stall-time within the batch 

 Ranks threads with shorter stall-time higher 
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* W.E. Smith, “Various optimizers for single stage production,” Naval Research Logistics Quarterly, 1956. 



 Maximum number of marked requests to any bank (max-bank-load) 

 Rank thread with lower max-bank-load higher (~ low stall-time) 

 Total number of marked requests (total-load) 

 Breaks ties: rank thread with lower total-load higher 

 

Shortest Stall-Time First Ranking 
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T2 T3 T1 

T0 

Bank 0 Bank 1 Bank 2 Bank 3 

T3 

T3 T1 T3 

T2 T2 T1 T2 

T1 T0 T2 T0 

T3 T2 T3 

T3 

T3 

T3 
max-bank-load total-load 

T0 1 3 

T1 2 4 

T2 2 6 

T3 5 9 

Ranking: 

T0 > T1 > T2 > T3 



7 

5 

3 

Example Within-Batch Scheduling Order 
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T2 T3 T1 

T0 

Bank 0 Bank 1 Bank 2 Bank 3 

T3 

T3 T1 T3 

T2 T2 T1 T2 

T1 T0 T2 T0 

T3 T2 T3 

T3 

T3 

T3 Baseline Scheduling  

Order (Arrival order) 

PAR-BS Scheduling 

Order 

T2 

T3 

T1 T0 

Bank 0 Bank 1 Bank 2 Bank 3 

T3 

T3 

T1 

T3 T2 T2 

T1 T2 T1 

T0 

T2 

T0 

T3 T2 

T3 

T3 

T3 

T3 

T0 T1 T2 T3 

4 4 5 7 

AVG: 5 bank access latencies AVG: 3.5 bank access latencies 

Stall times 

T0 T1 T2 T3 

1 2 4 7 Stall times 
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6 

Ranking: T0 > T1 > T2 > T3 
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3 
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6 

7 
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Putting It Together: PAR-BS Scheduling Policy 

 PAR-BS Scheduling Policy 

  (1) Marked requests first 

  (2) Row-hit requests first 

  (3) Higher-rank thread first (shortest stall-time first) 

  (4) Oldest first 

 

 Three properties: 

 Exploits row-buffer locality and intra-thread bank parallelism  

 Work-conserving 

 Services unmarked requests to banks without marked requests  

 Marking-Cap is important 

 Too small cap: destroys row-buffer locality 

 Too large cap: penalizes memory non-intensive threads    

 Many more trade-offs analyzed in the paper 
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Batching 

Parallelism-aware 

within-batch 

scheduling 



Hardware Cost 

 <1.5KB storage cost for 

 8-core system with 128-entry memory request buffer 

 

 No complex operations (e.g., divisions) 

 

 Not on the critical path 

 Scheduler makes a decision only every DRAM cycle 
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Unfairness on 4-, 8-, 16-core Systems 
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1.11X 
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System Performance (Hmean-speedup) 
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PAR-BS Pros and Cons 

 Upsides:  

 First work to identify the notion of bank parallelism destruction 
across multiple threads 

 Simple mechanism 

 

 Downsides: 

 Implementation in multiple controllers needs coordination for 
best performance  too frequent coordination since batching 

is done frequently 

 Does not always prioritize the latency-sensitive applications 
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ATLAS Memory Scheduler 

 

 

 

 

Yoongu Kim, Dongsu Han, Onur Mutlu, and Mor Harchol-Balter, 
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Rethinking Memory Scheduling 

A thread alternates between two states (episodes) 

 Compute episode: Zero outstanding memory requests  High IPC 

Memory episode: Non-zero outstanding memory requests  Low IPC 
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Goal: Minimize time spent in memory episodes 
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How to Minimize Memory Episode Time 

  Minimizes time spent in memory episodes across all threads 

  Supported by queueing theory: 

 Shortest-Remaining-Processing-Time scheduling is optimal in 
single-server queue 

Remaining length of a memory episode? 

 Prioritize thread whose memory episode will end the soonest  

Time 
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 r
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How much longer? 
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Predicting Memory Episode Lengths 

Large attained service  Large expected remaining service 

 

Q: Why? 

A: Memory episode lengths are Pareto distributed… 
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We discovered: past is excellent predictor for future 
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Pareto Distribution of Memory Episode Lengths 
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401.bzip2 

Favoring least-attained-service memory episode  

 = Favoring memory episode which will end the soonest 
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}
 

x (cycles) 

Memory episode lengths of  
SPEC benchmarks 

Pareto distribution 

Attained service correlates with 
remaining service 

The longer an episode has lasted 
 The longer it will last further 



Prioritize the job with  
shortest-remaining-processing-time 

 
Provably optimal 

 Remaining service: Correlates with attained service 
 
 Attained service: Tracked by per-thread counter 

Least Attained Service (LAS) Memory Scheduling 
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Prioritize the memory episode with 
least-remaining-service 

Our Approach Queueing Theory 

Least-attained-service (LAS) scheduling: 

Minimize memory episode time 

However, LAS does not consider  
long-term thread behavior 

Prioritize the memory episode with 
least-attained-service 



Long-Term Thread Behavior 
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Mem. 
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Thread 1 Thread 2 

Short-term 
thread behavior 

Mem. 
episode 

Long-term 
thread behavior 

Compute  
episode 

Compute 
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> 
priority 
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Prioritizing Thread 2 is more beneficial:  
results in very long stretches of compute episodes 

Short memory episode Long memory episode 



Quantum-Based Attained Service of a Thread 
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LAS Thread Ranking 

Each thread’s attained service (AS) is tracked by MCs 
 

ASi = A thread’s AS during only the i-th quantum 

Each thread’s TotalAS computed as: 
 

TotalASi = α · TotalASi-1 + (1- α) · ASi 

High α  More bias towards history 
 

Threads are ranked, favoring threads with lower TotalAS 

Threads are serviced according to their ranking 

During a quantum 

End of a quantum 

Next quantum 
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ATLAS Scheduling Algorithm 

ATLAS 
 Adaptive per-Thread Least Attained Service 

 

 Request prioritization order 

 1. Prevent starvation: Over threshold request 

 2. Maximize performance: Higher LAS rank 

 3. Exploit locality: Row-hit request 

 4. Tie-breaker: Oldest request 
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How to coordinate MCs to agree upon a consistent ranking? 
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System throughput = ∑ Speedup 

ATLAS consistently provides higher system throughput than 
all previous scheduling algorithms 
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Properties of ATLAS 

 LAS-ranking 

 Bank-level parallelism 

 Row-buffer locality 

 

 Very infrequent coordination 

 

 

 Scale attained service with 
thread weight (in paper) 

 

 Low complexity: Attained 
service requires a single 
counter per thread in each MC 
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 Maximize system performance 
 
 
 

 Scalable to large number of controllers 
 
 
 

 Configurable by system software 

Goals Properties of ATLAS 



ATLAS Pros and Cons 

 Upsides: 

 Good at improving performance 

 Low complexity 

 Coordination among controllers happens infrequently 

 

 Downsides: 

 Lowest ranked threads get delayed significantly  high 

unfairness 
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