
18-742 Fall 2012

Parallel Computer Architecture

Lecture 22: Dataflow I

Prof. Onur Mutlu

Carnegie Mellon University

10/31/2012

New Review Assignments

 Were Due: Sunday, October 28, 11:59pm.

 Das et al., “Aergia: Exploiting Packet Latency Slack in On-Chip
Networks,” ISCA 2010.

 Dennis and Misunas, “A Preliminary Architecture for a Basic Data
Flow Processor,” ISCA 1974.

 Was Due: Tuesday, October 30, 11:59pm.

 Arvind and Nikhil, “Executing a Program on the MIT Tagged-Token
Dataflow Architecture,” IEEE TC 1990.

 Due: Thursday, November 1, 11:59pm.

 Patt et al., “HPS, a new microarchitecture: rationale and
introduction,” MICRO 1985.

 Patt et al., “Critical issues regarding HPS, a high performance
microarchitecture,” MICRO 1985.

2

Other Readings

 Dataflow

 Gurd et al., “The Manchester prototype dataflow computer,”
CACM 1985.

 Lee and Hurson, “Dataflow Architectures and Multithreading,”
IEEE Computer 1994.

Restricted Dataflow

 Patt et al., “HPS, a new microarchitecture: rationale and
introduction,” MICRO 1985.

 Patt et al., “Critical issues regarding HPS, a high performance
microarchitecture,” MICRO 1985.

 Sankaralingam et al., “Exploiting ILP, TLP and DLP with the
Polymorphous TRIPS Architecture,” ISCA 2003.

 Burger et al., “Scaling to the End of Silicon with EDGE
Architectures,” IEEE Computer 2004.

3

Last Lecture

 Interconnects Research

 Application-aware packet scheduling

 Slack-driven packet scheduling

 Scalable topologies

 QoS and topology+QoS co-design for scalability

4

Today

 Start Dataflow

5

Data Flow

Readings: Data Flow (I)

 Dennis and Misunas, “A Preliminary Architecture for a Basic
Data Flow Processor,” ISCA 1974.

 Treleaven et al., “Data-Driven and Demand-Driven
Computer Architecture,” ACM Computing Surveys 1982.

 Veen, “Dataflow Machine Architecture,” ACM Computing
Surveys 1986.

 Gurd et al., “The Manchester prototype dataflow
computer,” CACM 1985.

 Arvind and Nikhil, “Executing a Program on the MIT
Tagged-Token Dataflow Architecture,” IEEE TC 1990.

 Patt et al., “HPS, a new microarchitecture: rationale and
introduction,” MICRO 1985.

 Lee and Hurson, “Dataflow Architectures and
Multithreading,” IEEE Computer 1994.

7

Readings: Data Flow (II)

 Sankaralingam et al., “Exploiting ILP, TLP and DLP with the
Polymorphous TRIPS Architecture,” ISCA 2003.

 Burger et al., “Scaling to the End of Silicon with EDGE
Architectures,” IEEE Computer 2004.

8

Data Flow

 The models we have examined in 447/740 all assumed

 Instructions are fetched and retired in sequential, control flow
order

 This is part of the Von-Neumann model of computation

 Single program counter

 Sequential execution

 Control flow determines fetch, execution, commit order

 What about out-of-order execution?

 Architecture level: Obeys the control-flow model

 Uarch level: A window of instructions executed in data-flow
order execute an instruction when its operands become

available

9

Data Flow

 In a data flow machine, a program consists of data flow
nodes

 A data flow node fires (fetched and executed) when all its
inputs are ready

 i.e. when all inputs have tokens

 Data flow node and its ISA representation

10

Data Flow Nodes

11

Data Flow Nodes (II)

 A small set of dataflow operators can be used to
define a general programming language

Fork Primitive Ops

+

Switch Merge

T F
T F

T T

+ T F
T F

T T

Dataflow Graphs

{x = a + b;
 y = b * 7
in
 (x-y) * (x+y)}

a b

+ *7

- +

*

y
x

1 2

3 4

5

 Values in dataflow graphs are
represented as tokens

 An operator executes when all its
input tokens are present; copies of
the result token are distributed to
the destination operators

token < ip , p , v >

instruction ptr port data

no separate control flow

Example Data Flow Program

14

OUT

Control Flow vs. Data Flow

15

Static Dataflow

 Allows only one instance of a node to be enabled for firing

 A dataflow node is fired only when all of the tokens are
available on its input arcs and no tokens exist on any of its
its output arcs

 Dennis and Misunas, “A Preliminary Architecture for a Basic
Data Flow Processor,” ISCA 1974.

16

Static Dataflow Machine:
Instruction Templates

Each arc in the graph has an
operand slot in the program

Presence bits

1

2

3

4

5

+ 3L 4L

* 3R 4R
- 5L
+ 5R

* out

a b

+ *7

- +

*

y
x

1 2

3 4

5

Static Dataflow Machine (Dennis+, ISCA 1974)

<s1, p1, v1>, <s2, p2, v2>

FU FU FU FU FU

Op dest1 dest2 p1 src1 p2 src2 1
2
.
.
.

Receive

Send

Instruction Templates

 Many such processors can be connected together

 Programs can be statically divided among the processors

Static versus Dynamic Dataflow Machines

19

Static Data Flow Machines

 Mismatch between the model and the implementation

 The model requires unbounded FIFO token queues per arc but
the architecture provides storage for one token per arc

 The architecture does not ensure FIFO order in the reuse of
an operand slot

 The static model does not support

 Reentrant code

 Function calls

 Loops

 Data Structures

20

Problems with Re-entrancy

 Assume this
was in a loop

 Or in a function

 And operations
took variable
time to execute

 How do you
ensure the
tokens that
match are of
the same
invocation?

21

Dynamic Dataflow Architectures

 Allocate instruction templates, i.e., a frame, dynamically to
support each loop iteration and procedure call

 termination detection needed to deallocate frames

 The code can be shared if we separate the code and the
operand storage

<fp, ip, port, data>

frame
pointer

instruction
pointer

a token

A Frame in Dynamic Dataflow

1

2

3

4

5

Program +

*

-

+

3

1

2

4

5

3L, 4L

3R, 4R

5L

5R

out *

1

2

4

5

7

a b

+ *7

- +

*

y
x

1 2

3 4

5

Need to provide storage for only one operand/operator

<fp, ip, p , v>

3

Frame

L

Monsoon Processor (ISCA 1990)

Instruction
Fetch

Operand
Fetch

ip

fp+r

Network Network

Frames

op r d1,d2

Code

Form
Token

ALU

Token
Queue

Concept of Tagging

 Each invocation receives a separate tag

25

Procedure Linkage Operators

f

get frame extract tag

change Tag 0

change Tag 0

Graph for f

change Tag 1

a1

1:

change Tag n

an

n:

...

change Tag 1

Fork

token in frame 0

token in frame 1

Like standard

call/return

but caller &

callee can be

active

simultaneously

Function Calls

 Need extra mechanism to direct the output token of the
function to the proper calling site

 Usually done by sending special token containing the return
node address

27

Loops and Function Calls Summary

28

Control of Parallelism

 Problem: Many loop iterations can be present in the
machine at any given time

 100K iterations on a 256 processor machine can swamp the
machine (thrashing in token matching units)

 Not enough bits to represent frame id

 Solution: Throttle loops. Control how many loop iterations
can be in the machine at the same time.

 Requires changes to loop dataflow graph to inhibit token
generation when number of iterations is greater than N

29

Data Structures

 Dataflow by nature has write-once semantics

 Each arc (token) represents a data value

 An arc (token) gets transformed by a dataflow node into a
new arc (token) No persistent state…

 Data structures as we know of them (in imperative
languages) are structures with persistent state

 Why do we want persistent state?

 More natural representation for some tasks? (bank accounts,
databases, …)

 To exploit locality

 30

Data Structures in Dataflow

. . . . P P

Memory
 Data structures reside in a structure

store

 tokens carry pointers

 I-structures: Write-once, Read
multiple times or

 allocate, write, read, ..., read,
deallocate

 No problem if a reader arrives
before the writer at the memory
location

I-fetch

a

I-store

a v

I-Structures

32

Dynamic Data Structures

 Write-multiple-times data structures

 How can you support them in a dataflow machine?

 Can you implement a linked list?

 What are the ordering semantics for writes and reads?

 Imperative vs. functional languages

 Side effects and mutable state

 vs.

 No side effects and no mutable state

33

MIT Tagged Token Data Flow Architecture

 Resource Manager Nodes

 responsible for Function allocation (allocation of context/frame
identifiers), Heap allocation, etc.

34

MIT Tagged Token Data Flow Architecture

 Wait−Match Unit:
try to match
incoming token and
context id and a
waiting token with
same instruction
address

 Success: Both
tokens forwarded

 Fail: Incoming
token −−>
Waiting Token
Mem, bubble (no-
op forwarded)

35

TTDA Data Flow Example

36

TTDA Data Flow Example

37

TTDA Data Flow Example

38

TTDA Synchronization

 Heap memory locations have FULL/EMPTY bits

 if the heap location is EMPTY, heap memory module
queues request at that location When "I−Fetch" request
arrives (instead of "Fetch"),

 Later, when "I−Store" arrives, pending requests are
discharged

 No busy waiting

 No extra messages

39

Manchester Data Flow Machine

 Matching Store: Pairs
together tokens
destined for the same
instruction

 Large data set

overflow in overflow
unit

 Paired tokens fetch the
appropriate instruction
from the node store

40

Data Flow Summary

 Availability of data determines order of execution

 A data flow node fires when its sources are ready

 Programs represented as data flow graphs (of nodes)

 Data Flow at the ISA level has not been (as) successful

 Data Flow implementations under the hood (while
preserving sequential ISA semantics) have been successful

 Out of order execution

 Hwu and Patt, “HPSm, a high performance restricted data flow
architecture having minimal functionality,” ISCA 1986.

41

Data Flow Characteristics

 Data-driven execution of instruction-level graphical code

 Nodes are operators

 Arcs are data (I/O)

 As opposed to control-driven execution

 Only real dependencies constrain processing

 No sequential I-stream

 No program counter

 Operations execute asynchronously

 Execution triggered by the presence of data

 Single assignment languages and functional programming

 E.g., SISAL in Manchester Data Flow Computer

 No mutable state

42

Data Flow Advantages/Disadvantages
 Advantages

 Very good at exploiting irregular parallelism

 Only real dependencies constrain processing

 Disadvantages

 Debugging difficult (no precise state)

 Interrupt/exception handling is difficult (what is precise state
semantics?)

 Implementing dynamic data structures difficult in pure data
flow models

 Too much parallelism? (Parallelism control needed)

 High bookkeeping overhead (tag matching, data storage)

 Instruction cycle is inefficient (delay between dependent
instructions), memory locality is not exploited

43

Combining Data Flow and Control Flow

 Can we get the best of both worlds?

 Two possibilities

 Model 1: Keep control flow at the ISA level, do dataflow
underneath, preserving sequential semantics

 Model 2: Keep dataflow model, but incorporate control flow at
the ISA level to improve efficiency, exploit locality, and ease
resource management

 Incorporate threads into dataflow: statically ordered instructions;
when the first instruction is fired, the remaining instructions
execute without interruption

44

