18-742 Fall 2012
Parallel Computer Architecture
Lecture 22: Dataflow 1

Prof. Onur Mutlu
Carnegie Mellon University
10/31/2012

New Review Assignments

Were Due: Sunday, October 28, 11:59pm.

o Das et al., "Aergia: Exploiting Packet Latency Slack in On-Chip
Networks,” ISCA 2010.

o Dennis and Misunas, “A Preliminary Architecture for a Basic Data
Flow Processor,” ISCA 1974.

Was Due: Tuesday, October 30, 11:59pm.

o Arvind and Nikhil, "Executing a Program on the MIT Tagged-Token
Dataflow Architecture,” IEEE TC 1990.

Due: Thursday, November 1, 11:59pm.

o Patt et al., "HPS, a new microarchitecture: rationale and
introduction,” MICRO 1985.

o Patt et al., “Critical issues regarding HPS, a high performance
microarchitecture,” MICRO 1985.

Other Readings

Dataflow

Gurd et al., "The Manchester prototype dataflow computer,”
CACM 1985.

Lee and Hurson, “Dataflow Architectures and Multithreading,”
IEEE Computer 1994.

(4

Restricted Dataflow

o Patt et al., "HPS, a new microarchitecture: rationale and
introduction,” MICRO 1985.

o Patt et al., “Critical issues regarding HPS, a high performance
microarchitecture,” MICRO 1985.

o Sankaralingam et al., "Exploiting ILP, TLP and DLP with the
Polymorphous TRIPS Architecture,” ISCA 2003.

o Burger et al., "Scaling to the End of Silicon with EDGE
Architectures,” IEEE Computer 2004.

l.ast Lecture

Interconnects Research

o Application-aware packet scheduling

o Slack-driven packet scheduling

o Scalable topologies

o QoS and topology+QoS co-design for scalability

Today

= Start Dataflow

Data Flow

Readings: Data Flow (I)

Dennis and Misunas, “A Preliminary Architecture for a Basic
Data Flow Processor,” ISCA 1974.

Treleaven et al., "Data-Driven and Demand-Driven
Computer Architecture,” ACM Computing Surveys 1982.

Veen, “Dataflow Machine Architecture,” ACM Computing
Surveys 1986.

Gurd et al., "The Manchester prototype dataflow
computer,” CACM 1985.

Arvind and Nikhil, “"Executing a Program on the MIT
Tagged-Token Dataflow Architecture,” IEEE TC 1990.

Patt et al., "HPS, a new microarchitecture: rationale and
introduction,” MICRO 1985.

Lee and Hurson, “Dataflow Architectures and
Multithreading,” IEEE Computer 1994.

Readings: Data Flow (1)

Sankaralingam et al., “Exploiting ILP, TLP and DLP with the
Polymorphous TRIPS Architecture,” ISCA 2003.

Burger et al., “Scaling to the End of Silicon with EDGE
Architectures,” IEEE Computer 2004.

Data Flow

The models we have examined in 447/740 all assumed

o Instructions are fetched and retired in sequential, control flow
order

This is part of the Von-Neumann model of computation
o Single program counter

o Sequential execution

o Control flow determines fetch, execution, commit order

What about out-of-order execution?
a Architecture level: Obeys the control-flow model

o Uarch level: A window of instructions executed in data-flow
order - execute an instruction when its operands become
available

Data Flow

= In a data flow machine, a program consists of data flow
nodes

= A data flow node fires (fetched and executed) when all its
inputs are ready

o i.e. when all inputs have tokens

= Data flow node and its ISA representation

* | |
i * R ARG1 ‘ R ARG2 Dest. Of Resuit

10

Data Flow Nodes

X |

% Conditional .
(=% = (=
N

10\ 7
* Relational ((5
—
éRUE
l
¢

*Barrier Synch t t
Vo

11

Data Flow Nodes (II)

A small set of dataflow operators can be used to
define a general programming language

Fork Primitive Ops Switch Merge
A *(i) T T ?
U
A g s
?

+

Datatlow Graphs

{x=a+b;
y=b*7 a
in \
(X-y) * (x+y)} '
1l +
Values in dataflow graphs are
represented as tokens Xl
. ip=3
token <|p,p,V>W ,
_—— AN \ 3 -

instruction ptr port data

An operator executes when all its
input tokens are present; copies of
the result token are distributed to
the destination operators

no separate control flow

Example Data Flow Program

OuT

14

Control Flow vs. Data Flow

a:“x+}r
b:=a XxXa
c:=4—a

o B =

"'\

c -
i]
[}]

ngramwemmy Memory
¥V .f’.\\' : ¥

e

b I

i
X| &
i
—1 4

Figure 2. A comparison of control flow and dataflow programs. On the
left a control flow program for a computer with memory-to-memory
instructions. The arcs point to the locations of data that are to be used or
created. Control flow arcs are indicated with dashed arrows; usually most
of them are implicit. In the equivalent dataflow program on the right only
one memory is involved. Each instruction contains pointers to all instruc-
tions that consume its results.

15

Static Datatlow

Allows only one instance of a node to be enabled for firing

A dataflow node is fired only when all of the tokens are

available on its input arcs and no tokens exist on any of its
its output arcs

Dennis and Misunas, “A Preliminary Architecture for a Basic
Data Flow Processor,” ISCA 1974.

16

Static Dataflow Machine:
Instruction Templates

AR SENEEY
O OO d O
0066 6&”\(\6 6&"\(\6 6(00 e(’bQ a b
ov” Q¥ Q¢° o of
1| +|3L |4L 1 [.
2| | 3R |4R
3 — X
& | y
4| +| sr : :
5 #| out 3| - +

X Presence bits

Each arc in the graph has an
operand slot in the program

Static Dataflow Machine (Dennis+, ISCA 1974)

—— RGIeEIYE

Instruction Templates
B Op destl dest2 pl srcl p2 src2

#

<Sll pll V1>I <SZI pZI V2>

P Scond)

= Many such processors can be connected together
= Programs can be statically divided among the processors

Static versus Dynamic Datatlow Machines

Result Operation
tokens Operation packets

&i unit(s)

: InEQtI.T:I:.ItéDn
Update Fetch
unit unit
<> Activity .
store o

Program
memory
Matched t
Data token
tokens . sets
Matching »| Feich
E : unit unit
Token
queue
| Processing <
Data unit Enabled
tokens instructions

Figure 1. The basic organization of the
static dataflow model.

Figure 3. The general organization of

Destination s,

Destination s_

the dynamic dataflow model.
§: Opcode s: Opcode
Presence bit Operand 1 Literal/constant
Presence bit Operand 2

Destination s,

Destination s_

Figure 2, An instruction template for
the static dataflow model.

Figure 4. An instruction format for the
dynamic dataflow model.

19

Static Data Flow Machines

Mismatch between the model and the implementation

o The model requires unbounded FIFO token gueues per arc but
the architecture provides storage for one token per arc

o The architecture does not ensure FIFO order in the reuse of
an operand slot

The static model does not support

o Reentrant code
Function calls
Loops

o Data Structures

20

Problems with Re-entrancy

Fig. 3. A finng sequence for s+ A[i] = Bli).”

Assume this
was in a loop

Or in a function

And operations
took variable
time to execute

How do you
ensure the
tokens that
match are of
the same
Invocation?

21

Dynamic Datatlow Architectures

Allocate instruction templates, i.e., a frame, dynamically to
support each loop iteration and procedure call

o termination detection needed to deallocate frames

The code can be shared if we separate the code and the
operand storage

a token <fp, ip, port, data>

frame instruction
pointer pointer

A Frame in Dynamic Dataflow

o W N =

O N WN K

+ 1 3L, 4L
x | 2 3R, 4R

3 5L
+ 4 5R
* 5 out
L 7

Need to provide storage for only one operand/operator

Program

Frame

Monsoon Processor (ISCA 1990)

Frames

Operand
Fetch

Token
Queue

Network

Network

Concept of Tagging

= Each invocation receives a separate tag

Caller Calles
< L

e T

Graph for
body of function

Fig. 6. Daaflow graph for function call and return linkage.

25

Procedure Linkage Operators

f

?

get frame

extract tag

an

i

Like standard
call/return
but caller &
callee can be
active
simultaneously

® token in frame O
® token in frame 1

change Tag O
|

change Tag 1

? 1

change Tag n

L

Graph for f

change Tag 0

change Tag 1

¢

Function Calls

Need extra mechanism to direct the output token of the
function to the proper calling site

Usually done by sending special token containing the return
node address

27

Loops and Function Calls Summary

0

o)

U =3
next
restore | | restore
tag lag
! '
new new
X Y

Figure 10. An implementation of a loop using tagged
tokens. At the start.of the loop a new tag area is
allocated. Tokens belonging to consecutive iterations
receive consecutive tags within this area. The tag from

~ before the loop is restored on tokens that exit from
the loop.

- o wm ww

A \,rﬁtm'c . Send to
) : \ Destination

Figure 11. Interface for a procedure call. On the left
a call of procedure P whose graph is on the right.
P has one parameter and one return value. The
actual parameter receives a new tag and is sent to
the input node of P and concurrently a token contain-
ing address A is sent to the output node. This
SEND-TO-DESTINATION node transmits the other
input token to a node of which the address is contained
in the first token. The effect is that, when the return
value of the procedure becomes available, the output
node sends the result to node A, which restores the
tag belonging to the calling expression.

Control of Parallelism

Problem: Many loop iterations can be present in the
machine at any given time

o 100K iterations on a 256 processor machine can swamp the
machine (thrashing in token matching units)

o Not enough bits to represent frame id

Solution: Throttle loops. Control how many loop iterations
can be in the machine at the same time.

o Requires changes to loop dataflow graph to inhibit token
generation when number of iterations is greater than N

29

Data Structures

Dataflow by nature has write-once semantics
Each arc (token) represents a data value

An arc (token) gets transformed by a dataflow node into a
new arc (token) - No persistent state...

Data structures as we know of them (in imperative
languages) are structures with persistent state
Why do we want persistent state?

o More natural representation for some tasks? (bank accounts,
databases, ...)

o To exploit locality

30

Data Structures 1n Dataflow

= Data structures reside in a structure
store

— tokens carry pointers

= I-structures: Write-once, Read

multiple tlme§ or [-fetch
o allocate, write, read, ..., read,
deallocate \
— No problem if a reader arrives
before the writer at the memory 3 v
location I \

I-store

[-Structures

n+1l:
n+2 :
n+3 :
n+4 :

n-+m :

Data or

l— Deferred Read Pointer

l'-.-'-.-.l_.-_l-.-‘-‘-‘-'-""'-l—-_-—l-""".

P datum

A

W -

W -

A

P datum
-""'-'-—__'"""--.._,_______,_..-r
Data Storage

Fig. 7.

Presence Bits (Present, Absent, Waiting)

1' 'lhhn-_,_‘_'__.ud-'_)
X Sm—
Tag Z
Tag Y
I
L—"'_‘—'--

"-l-_._‘_l_._._,_—-"

Deferred Read Requests

Possible execution sequence producing this structure:

® Attempt to READ(n+2) for instruction X
+ WRITE(n+m)

* Attempt to READ(n+3) for instruction Z
* WRITE(n)

* Attempt to READ(n+2) for instruction Y
+ READ(n)

I-structure memory.

32

Dynamic Data Structures

Write-multiple-times data structures

How can you support them in a dataflow machine?
a Can you implement a linked list?

What are the ordering semantics for writes and reads?

Imperative vs. functional languages
o Side effects and mutable state

VS.
o No side effects and no mutable state

33

T Tagged Token Data Flow Architecture

Processor Nodes
(including local program and "stack” memory)

(] Resource

Interconnection Network Manager

LIl ... o

"|-Structure” Memory Nodes (global heap data memory)

Resource Manager Nodes

a responsible for Function allocation (allocation of context/frame
identifiers), Heap allocation, etc.

34

MIT Tagged Token Data Flow Architecture

= Wait—Match Unit:
try to match
incoming token and
context id and a
waiting token with
same instruction
address

o Success: Both
tokens forwarded

o Fail: Incoming
token ——>
Waiting Token
Mem, bubble (no-

From network op forwarded)

To network

35

TTDA Data Flow Example

Conceptual

|
My, o

Encoding of token:
A "packet" containing:

] Iﬁ_]

=0 =

Encoding of graph

Program memory:

Re-entrancy ("dynamic" dataflow):

® Each invocation of a function or loop iteration gets
its own, unique, "Context"

® Tokens destined for same instruction in different
invocations are distinguished by a context identifier

120R Destination instruction address, Left/Right port
Ctxt Context Identifier

E-:Ed-e Destination(s)
109 [opl [120L |
113 [op2 | 120R |
120 [+ 141, 159
141 [op3 |
159 [opd | ..., |

6.847 Value

120R Destination instruction address, Left/Right port

6.847 Value

36

TTDA Data Flow Example

120R,c, 6.847

120L,c, 6.001
120,c, 6.001,6.847

141,159L,c, +,6.001,6.847

o

141,159L,c, 12.848

e |

1-!41,.!:‘.*.I 12.848
159L,c, 12.848

37

TTDA Data Flow Example

200,c, A
Conceptual:
Heap Memory
200,c, A
207,c, Fetch,A -

Encoding of graph:

Program memory:

Opcode Destination(s) 207,c, v Fetch, A, 207,c
200 [Fefch| 207] reteh, A, 207.¢ mr:.c, v
N C el)
207 1 - T *
Fetch, A, 207,c 207,¢, v

38

TTDA Synchronization

= Heap memory locations have FULL/EMPTY bits

= if the heap location is EMPTY, heap memory module
queues request at that location When "I-Fetch" request
arrives (instead of "Fetch"),

= Later, when "I-Store" arrives, pending requests are
discharged

I
|-Store,A,v, 191,c2

= No busy waiting | 191,62, ack

I-Fetch,A, 207,c 207.c, v

= No extra messages | 900.c1, v

I-Fetch,A, 900,c1

39

Manchester Data Flow Machine

Manchester

- v

|

Token

| Queue

Matching

|

Store

L

Overflow
Unit

J

l

v
Node

Store

Matching Store: Pairs
together tokens
destined for the same
Instruction

Large data set -
overflow in overflow
unit

Paired tokens fetch the
appropriate instruction
from the node store

40

Data Flow Summary

Availability of data determines order of execution
A data flow node fires when its sources are ready
Programs represented as data flow graphs (of nodes)

Data Flow at the ISA level has not been (as) successful

Data Flow implementations under the hood (while
preserving sequential ISA semantics) have been successful
o Out of order execution

o Hwu and Patt, "HPSm, a high performance restricted data flow
architecture having minimal functionality,” ISCA 1986.

41

Data Flow Characteristics

Data-driven execution of instruction-level graphical code
o Nodes are operators

o Arcs are data (I/0)

o As opposed to control-driven execution

Only real dependencies constrain processing

No sequential I-stream

o No program counter

Operations execute asynchronously

Execution triggered by the presence of data

Single assignment languages and functional programming
o E.g., SISAL in Manchester Data Flow Computer

o No mutable state

42

Data Flow Advantages/Disadvantages

Advantages
o Very good at exploiting irregular parallelism
o Only real dependencies constrain processing

Disadvantages

o Debugging difficult (no precise state)

Interrupt/exception handling is difficult (what is precise state
semantics?)

o Implementing dynamic data structures difficult in pure data
flow models

o Too much parallelism? (Parallelism control needed)
o High bookkeeping overhead (tag matching, data storage)

o Instruction cycle is inefficient (delay between dependent
instructions), memory locality is not exploited

43

Combining Data Flow and Control Flow

Can we get the best of both worlds?

Two possibilities

o Model 1: Keep control flow at the ISA level, do dataflow
underneath, preserving sequential semantics

o Model 2: Keep dataflow model, but incorporate control flow at
the ISA level to improve efficiency, exploit locality, and ease
resource management

Incorporate threads into dataflow: statically ordered instructions;

when the first instruction is fired, the remaining instructions
execute without interruption

44

