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New Review Assignments 

 Were Due: Sunday, October 28, 11:59pm. 

 Das et al., “Aergia: Exploiting Packet Latency Slack in On-Chip 
Networks,” ISCA 2010. 

 Dennis and Misunas, “A Preliminary Architecture for a Basic Data 
Flow Processor,” ISCA 1974. 
 

 Was Due: Tuesday, October 30, 11:59pm.  

 Arvind and Nikhil, “Executing a Program on the MIT Tagged-Token 
Dataflow Architecture,” IEEE TC 1990. 
 

 Due: Thursday, November 1, 11:59pm.  

 Patt et al., “HPS, a new microarchitecture: rationale and 
introduction,” MICRO 1985. 

 Patt et al., “Critical issues regarding HPS, a high performance 
microarchitecture,” MICRO 1985. 
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Other Readings 

 Dataflow 

 Gurd et al., “The Manchester prototype dataflow computer,” 
CACM 1985. 

 Lee and Hurson, “Dataflow Architectures and Multithreading,” 
IEEE Computer 1994. 

 

Restricted Dataflow 

 Patt et al., “HPS, a new microarchitecture: rationale and 
introduction,” MICRO 1985. 

 Patt et al., “Critical issues regarding HPS, a high performance 
microarchitecture,” MICRO 1985. 

 Sankaralingam et al., “Exploiting ILP, TLP and DLP with the 
Polymorphous TRIPS Architecture,” ISCA 2003. 

 Burger et al., “Scaling to the End of Silicon with EDGE 
Architectures,” IEEE Computer 2004.  
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Last Lecture 

 Interconnects Research 

 Application-aware packet scheduling 

 Slack-driven packet scheduling 

 Scalable topologies 

 QoS and topology+QoS co-design for scalability 
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Today 

 Start Dataflow  
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Data Flow 

 

 

 

 

 



Readings: Data Flow (I) 

 Dennis and Misunas, “A Preliminary Architecture for a Basic 
Data Flow Processor,” ISCA 1974. 

 Treleaven et al., “Data-Driven and Demand-Driven 
Computer Architecture,” ACM Computing Surveys 1982. 

 Veen, “Dataflow Machine Architecture,” ACM Computing 
Surveys 1986. 

 Gurd et al., “The Manchester prototype dataflow 
computer,” CACM 1985. 

 Arvind and Nikhil, “Executing a Program on the MIT 
Tagged-Token Dataflow Architecture,” IEEE TC 1990. 

 Patt et al., “HPS, a new microarchitecture: rationale and 
introduction,” MICRO 1985. 

 Lee and Hurson, “Dataflow Architectures and 
Multithreading,” IEEE Computer 1994. 
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Readings: Data Flow (II) 

 Sankaralingam et al., “Exploiting ILP, TLP and DLP with the 
Polymorphous TRIPS Architecture,” ISCA 2003. 

 Burger et al., “Scaling to the End of Silicon with EDGE 
Architectures,” IEEE Computer 2004.  
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Data Flow 

 The models we have examined in 447/740 all assumed 

 Instructions are fetched and retired in sequential, control flow 
order 

 

 This is part of the Von-Neumann model of computation 

 Single program counter 

 Sequential execution 

 Control flow determines fetch, execution, commit order 

 

 What about out-of-order execution? 

 Architecture level: Obeys the control-flow model 

 Uarch level: A window of instructions executed in data-flow 
order  execute an instruction when its operands become 

available 
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Data Flow 

 In a data flow machine, a program consists of data flow 
nodes 

 A data flow node fires (fetched and executed) when all its 
inputs are ready 

 i.e. when all inputs have tokens 

 

 

 Data flow node and its ISA representation 
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Data Flow Nodes 
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Data Flow Nodes (II) 

 A small set of dataflow operators can be used to 
define a general programming language  

Fork Primitive Ops 

+ 

Switch Merge 

T F 
T F 

T T 

+ T F 
T F 

T T 


 



Dataflow Graphs 

{x = a + b;    
 y = b * 7 
in 
   (x-y) * (x+y)} 
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 Values in dataflow graphs are 
represented as tokens 

 

 

 

 An operator executes when all its 
input tokens are present; copies of 
the result token are distributed to 
the destination operators 

token < ip , p , v > 

instruction ptr port data 

no separate control flow 



Example Data Flow Program 
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Control Flow vs. Data Flow 
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Static Dataflow 

 Allows only one instance of a node to be enabled for firing 

 

 A dataflow node is fired only when all of the tokens are 
available on its input arcs and no tokens exist on any of its 
its output arcs 

 

 Dennis and Misunas, “A Preliminary Architecture for a Basic 
Data Flow Processor,” ISCA 1974. 
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Static Dataflow Machine: 
Instruction Templates 

Each arc in the graph has an 
operand slot in the program 

Presence bits 
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Static Dataflow Machine (Dennis+, ISCA 1974) 

<s1, p1, v1>, <s2, p2, v2> 

FU FU FU FU FU 

Op   dest1  dest2  p1  src1   p2   src2 1 
2 
. 
. 
. 

Receive 

Send 

Instruction Templates 

 Many such processors can be connected together 

 Programs can be statically divided among the processors 



Static versus Dynamic Dataflow Machines 
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Static Data Flow Machines 

 Mismatch between the model and the implementation 

 The model requires unbounded FIFO token queues per arc but 
the architecture provides storage for one token per arc 

 The architecture does not ensure FIFO order in the reuse of 
an operand slot 

 

 The static model does not support 

 Reentrant code 

 Function calls 

 Loops 

  Data Structures 
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Problems with Re-entrancy 

 Assume this 
was in a loop 

 Or in a function 

 

 And operations 
took variable 
time to execute 

 

 How do you 
ensure the 
tokens that 
match are of 
the same 
invocation? 
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Dynamic Dataflow Architectures 

 Allocate instruction templates, i.e., a frame, dynamically to 
support each loop iteration and procedure call 

 termination detection needed to deallocate frames 

 

 The code can be shared if we separate the code and the 
operand storage 

 

<fp, ip, port, data> 

frame  
pointer 

instruction 
pointer 

a token 



A Frame in Dynamic Dataflow 
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4 
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Program + 
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Need to provide storage for only one operand/operator 

<fp, ip, p , v> 

3 

Frame 
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Monsoon Processor (ISCA 1990)  
 

Instruction 
Fetch 

Operand 
Fetch 

ip 

fp+r 

Network Network 

Frames 

op r d1,d2 

Code 

Form 
Token 

ALU 

Token 
Queue 



Concept of Tagging 

 Each invocation receives a separate tag 
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Procedure Linkage Operators 

f 

get frame extract tag 

change Tag 0 

change Tag 0 

Graph for f 

change Tag 1 

a1 

1: 

change Tag n 

an 

n: 

... 

change Tag 1 

Fork 

token in frame 0 

token in frame 1 

Like standard 

call/return 

but caller & 

callee can be 

active 

simultaneously 



Function Calls 

 Need extra mechanism to direct the output token of the 
function to the proper calling site 

 

 Usually done by sending special token containing the return 
node address 

27 



Loops and Function Calls Summary 
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Control of Parallelism 

 Problem: Many loop iterations can be present in the 
machine at any given time 

 100K iterations on a 256 processor machine can swamp the 
machine (thrashing in token matching units) 

 Not enough bits to represent frame id  

 

 Solution: Throttle loops. Control how many loop iterations 
can be in the machine at the same time.  

 Requires changes to loop dataflow graph to inhibit token 
generation when number of iterations is greater than N 
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Data Structures 

 Dataflow by nature has write-once semantics 

 Each arc (token) represents a data value 

 An arc (token) gets transformed by a dataflow node into a 
new arc (token)  No persistent state…  

 

 Data structures as we know of them (in imperative 
languages) are structures with persistent state 

 Why do we want persistent state? 

 More natural representation for some tasks? (bank accounts, 
databases, …) 

 To exploit locality  
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Data Structures in Dataflow 

. . . . P P 

Memory 
 Data structures reside in a structure 

store  

  tokens carry pointers 

 

 I-structures: Write-once, Read 
multiple times or 

 allocate, write, read, ..., read, 
deallocate      

  No problem if a reader arrives 
before the writer at the memory 
location  

 

I-fetch 

a 

I-store 

a v 



I-Structures 
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Dynamic Data Structures 

 Write-multiple-times data structures 

 How can you support them in a dataflow machine? 

 Can you implement a linked list? 

 

 What are the ordering semantics for writes and reads? 

 

 Imperative vs. functional languages 

 Side effects and mutable state  

   vs.  

 No side effects and no mutable state 
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MIT Tagged Token Data Flow Architecture 

 

 

 

 

 

 

 

 

 Resource Manager Nodes  

 responsible for Function allocation (allocation of context/frame 
identifiers), Heap allocation, etc.  
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MIT Tagged Token Data Flow Architecture 

 Wait−Match Unit: 
try to match 
incoming token and 
context id and a 
waiting token with 
same instruction 
address  

 Success: Both 
tokens forwarded 

 Fail: Incoming 
token −−> 
Waiting Token 
Mem, bubble (no-
op forwarded) 
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TTDA Data Flow Example 
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TTDA Data Flow Example 
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TTDA Data Flow Example 
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TTDA Synchronization 

 Heap memory locations have FULL/EMPTY bits 

 if the heap location is EMPTY,  heap memory module 
queues request at that location When "I−Fetch" request 
arrives (instead of "Fetch"),  

 Later, when "I−Store" arrives, pending requests are 
discharged 

 No busy waiting 

 No extra messages 
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Manchester Data Flow Machine 

 Matching Store: Pairs 
together tokens 
destined for the same 
instruction 

 Large data set  

overflow in overflow 
unit 

 Paired tokens fetch the 
appropriate instruction 
from the node store 
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Data Flow Summary 

 Availability of data determines order of execution 

 A data flow node fires when its sources are ready 

 Programs represented as data flow graphs (of nodes) 

 

 Data Flow at the ISA level has not been (as) successful 

 

 Data Flow implementations under the hood (while 
preserving sequential ISA semantics) have been successful 

 Out of order execution 

 Hwu and Patt, “HPSm, a high performance restricted data flow 
architecture having minimal functionality,” ISCA 1986. 
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Data Flow Characteristics 

 Data-driven execution of instruction-level graphical code 

 Nodes are operators 

 Arcs are data (I/O) 

 As opposed to control-driven execution 

 Only real dependencies constrain processing 

 No sequential I-stream  

 No program counter 

 Operations execute asynchronously 

 Execution triggered by the presence of data 

 Single assignment languages and functional programming 

 E.g., SISAL in Manchester Data Flow Computer 

 No mutable state 
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Data Flow Advantages/Disadvantages 
 Advantages 

 Very good at exploiting irregular parallelism 

 Only real dependencies constrain processing 
 

 Disadvantages 

 Debugging difficult (no precise state) 

 Interrupt/exception handling is difficult (what is precise state 
semantics?) 

 Implementing dynamic data structures difficult in pure data 
flow models 

 Too much parallelism? (Parallelism control needed) 

 High bookkeeping overhead (tag matching, data storage) 

 Instruction cycle is inefficient (delay between dependent 
instructions), memory locality is not exploited 
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Combining Data Flow and Control Flow 

 Can we get the best of both worlds? 

 

 Two possibilities 

 Model 1: Keep control flow at the ISA level, do dataflow 
underneath, preserving sequential semantics 

 Model 2: Keep dataflow model, but incorporate control flow at 
the ISA level to improve efficiency, exploit locality, and ease 
resource management 

 Incorporate threads into dataflow: statically ordered instructions; 
when the first instruction is fired, the remaining instructions 
execute without interruption 
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