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New Review Assignments

Were Due: Sunday, October 28, 11:59pm.

¢ Das et al., fAergia: Exploiting Packet Latency Slack in ORChip
Networks,0 | SCA 2010.

¢ Dennis and Misunas, fA Preliminary Architecture for a Basic Data
Flow Processoro ISCA 1974.

Due: Tuesday, October 30, 11:59pm.

¢ Arvind and Nikhil, iExecuting a Program on the MIT Tagged-Token
Dataflow Architecture,0 IEEE TC 1990.

Due: Thursday, November 1, 11:59pm.

c¢ Pattetal., "HPS, a new microarchitecture: rationale and
Introduction,0 MICRO 1985.

¢ Patt et al., iCritical issues regarding HPS, a high performance
microarchitecture,0 MICRO 1985.



Other Readings

Dataflow

Gurd et al., n"The Manchester prototype dataflow computer,0
CACM 1985.

Lee and Hurson, iDataflow Architectures and Multithreading,0
IEEE Computer 1994.

Restricted Dataflow

¢ Pattetal.,, HPS, a new microarchitecture: rationale and
Introduction,0 MICRO 1985.

¢ Patt et al., iCritical issues regarding HPS, a high performance
microarchitecture,0 MICRO 1985.

¢ Sankaralingam et al., iExploiting ILP, TLP and DLP with the
Polymorphous TRIPS Architectureo ISCA 2003.

¢ Burger et al., AScaling to the End of Silicon with EDGE
Architectures,0 IEEE Computer 2004.



Project Milestone | Meetings

i Please come to office hours for feedback on
¢ Your progress
¢ Your presentation




Last Lectures

Transactional Memory (brief)
Interconnect wrap -up

Project Milestone | presentations



Today

A More on Interconnects Research

A Start Dataflow




Research In Interconnects




Research Topics In Interconnects

Plenty of topics in interconnection networks. Examples:

Energy/power efficient and proportional design
Reducing Complexity. Simplified router and protocol designs
Adaptivity: Ability to adapt to different access patterns

QoS and performance isolation
¢ Reducing and controlling interference, admission control

Co-design of NoCs with other shared resources
¢ End-to-end performance, QoS, power/energy optimization

Scalable topologiesto many cores, heterogeneous systems
Fault tolerance

Request prioritization, prio
New technologies (optical, 3D)



Packet Scheduling

Which packet to choose for a given output port?
¢ Router needs to prioritize between competing flits
¢ Which input port?

¢ Which virtual channel?

¢ Which application s packet?

Common strategies

¢ Round robin across virtual channels

¢ Oldest packet first (or an approximation)

¢ Prioritize some virtual channels over others

Better policies in a multi-core environment
¢ Use application characteristics



ApplicationAware Packet Scheduling

Das et al., Application-Aware Prioritization Mechanisms for OnChip
Networks, MICRO 20009.



The Problem: Packet Scheduling
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Network-on-Chip is acritical resource
sharedby multiple applications



The Problem: Packet Scheduling
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The Problem: Packet Scheduling
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The Problem: Packet Scheduling
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The Problem: Packet Scheduling

WhICh packet to choose? 1 \/

|

————————————————————————————————————————— 1 - O S . . 1

i i I VCO I

1 A VCO - - ! ! .. :

iFrom East 'm ROL;\gr}g il i i From East \\//C(S: 12 |

) N / i i Ep—— i

1

| AN | | |

I I From West — !

iFromWest P i : 1 O E
. , -

: I o v | Conceptuali T I ) S |

EFrom Nort}] L M i ‘ i From North__ D E

: L | g View | 1 1 ] S l

: PV — | : O :

From Sout — | > I . I

! From South i

|

1

1

1

1

1

1

1

1

1

1

I

. App__ Appz_ App3i8 App4
- App@8 Apptdl App7i App8



The Problem: Packet Scheduling

Existing scheduling policies
A Round Robin

A Age

Problem 1:ocato a router

A Lead to contradictory decision making between routers: |

from one application may be prioritized at one router, to t
delayed at next.

Problem Zpplication oblivious
ATreat all applicatifpackets equally
A But applications are heterogeneous

SolutionApplicaticiaware global scheduling policies.




Motivation: Stall Time Criticality

Applications anet homogenous

Applications have diffecentalitywith respect to the
network

A Some applications are network latency sensitive

A Some applications are network latency tolerant

ApplicatiorsStall Time Criticality (S't@n be measured b
Its average network stall time per packeé®t T/packet)

A Network Stall Time (N$Imumber of cycles the processor
stalls waiting for network transactions to complete



Motivation: Stall Time Criticality

A Whydoapplications have different network stall time
criticality (STC)?
A Memory Level Parallelism (MLP)
Lower MLP leads to higher STC

AShorteslob First Principle (SJF)
Lower network load leads to higher STC

A Average Memory Access Time
Higher memory access time leads to higher STC



STC Principle 1 {MLP}

~ Compute I I I
11 STALL of Red Packet = 0
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A Observation Packet Latency !'= Network Stall Time



STC Principle 1 {MLP}
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11 'STALL of Red Packet =0
',|_rq_‘.’_—’ Application with high MLP
. yarency @ N
“b_atencyl
. LATENCY '
1 | I  Application with low MLP
O [ [

v, o, " -

i LATENCY =I i LATENCY :I i LATENCY ’I

A Observation RPacket Latency != Network Stall Time

A Observation 2: A low MLP applicatipackets have highe
criticality than a high MLP application



STC Principle 2 {Shorteslob-First}

Running ALONE
3 Compute L SXTET YRR
Baseline (RR) Scheduling
- AL EEREEEE S,
4X network slow down 1.3X network slow down

SJF Scheduling
| £ ZEZEEIEE R RN

1.2X network slow down 1.6X network slow down

Overall system throughput{weighted speedup} increases by 34%



Solution: ApplicatiorAware Policies

A ldea

Aldentify stall time critical applications (i.e. networ|
sensitive applications) and prioritize their packet
each router.

A Key components of scheduling policy:
AApplication Ranking
APacket Batching

A Propose lowardware complexity solution



Component 1 : Ranking

Ranking distinguishes applications based on Stall Tim.
Criticality (STC)

Periodicallyankapplications based on Stall Time Critica
(STC)

Explored mamguristicor quantifying STC (Detalls &

analysis In paper)

A Heuristic based@riermost private cagheses Per
Instruction (LAP1)is the most effective

A Low LEMPI => high STC => higher rank

Why Misses Per InstructiorMBI)?
A Easy to Compute (low complexity)
A Stable Metric (unaffected by interference in network)



Component 1 : How to Rank?

Execution time is divided into fissetking intervals
A Ranking interval is 350,000 cycles

At the end of an interval, each core calculatesMAkeardl
sends it to tlhgentral Decision LA@®©L)

A CDL is located in the central node of mesh
CDL forms a ranking order and sends back its rank to eacl
A Two control packets per core every ranking interval

Ranking order isg@artiabrder

Rank formationiiston thecritical path

A Ranking interval is significantly longer than rank computation time
A Cores use older rank values until new ranking is available



Component 2: Batching

ProblemStarvation

A Prioritizing a higher ranked application can lead totarve
lower ranked application

SolutionPacket Batching

A Network packets are grouped into finite sized batches

A Packets of older batches are prioritized over younger
batches

Alternative batching policies explored in paper

TimeBased Batching

A New batches are formed in a periodic, synchronous man
across all nodes in the network, every T cycles



Putting It all together

Before injecting a packet into the network, it is tagged
A Batch |I[B bits)

A Rank I3 bits)

Three tier priority structure at routers

A Oldest batch first (prevent starvation)

A Highest rank first (maximize performance)

A Local Round-Robin (final tie breaker)

Simple hardware support: priority arbiters

Global coordinatecheduling
A Ranking order and batching order are the same across &




STC Scheduling Example

Batch 2

Batching interval length = 3 cycle
Batch 1

________________________ Ranking order = > B > @

Injection Cycles
S80 88

-—— -

o NN ED Em - - ——
N

AN . N N N NS NN NN NN NS NN NS B NN R S

Corel Core2 Core3
Packet Injection Order at Processor




Injection Cycles

STC Scheduling Example
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STC Scheduling Example
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STC Scheduling Example
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Ranking order > B > ]
STC Scheduling Example
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Qualitative Comparison

Round Robin & Age
A Local and application oblivious

A Age is biased towards heavy applications
heavy applications flood the network
higher likelihood of an older packet being from heavy application

Globally Synchronized Frames (GSfeke et al., ISCA

2008]

A Providebandwidth fairnedthe expensespftem
performance

A Penalizes heavy and bursty applications
Each application gets equal and fixed quota of flits (credits) in eac

Heavy application quickly run out of credits after injecting into all :
batches & stall till oldest batch completes and frees up fresh cred

Underutilization of network resources



System Performance

A STC provides 9.1% improvement in weighted speedur
the best existing policy{averaged across 96 workloads

A Detailed case studies in the paper

m LocalRR mLocalAge

m LocalRR mLocalAge = GSE L STC

m GSF mSTC

=
N

=
o

o0
|

O
oo
(@))
|

o
o
D
|

o
AN
Network Unfairness

O

N
N

|

Normalized System Speedup

o

o

o
|




SlackDriven Packet Scheduling

Das et al., fAergia: Exploiting Packet Latency Slack in On-Chip Networks,0
ISCA 2010.




Packet Scheduling in NoC

Existing scheduling policies
A Round robin
A Age

Problem

A Treat all packets equa[ Al'l packets a} \,( t
A Applicatiomblivious Q

Packets hawéerent criticality

A Packet is critical if latency of a packet affects &pplication
performance

A Different criticality due to memory level parallelism (MLP



MLP Principle
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Packet Latency != Network Stall Time

Different Packets have different criticality due to MLP

Criticality (1) > Criticality () > Criticality ()



Outline

A Introduction
A Packet Scheduling
A Memory Level Parallelism

A A Hia
A Concept of Slack
A Estimating Slack
A Evaluation

A Conclusion



What isA &fjia?

A A Hjia is the spirit of laziness in Greek mythology
A Some packets can affariddé



Outline

A Introduction
A Packet Scheduling
A Memory Level Parallelism

A A Hyia
A Concept of Slack
A Estimating Slack
A Evaluation

A Conclusion



Slack of Packets

What is slack of a packet?

A Slack of a packet is number of cycles it can be delayed i
without (significantly) reducing appl@ateyformance

A Local network slack

Source of slack: Memaryel Parallelism (MLP)

A Latency of an applicé@ipacket hidden from application du
overlapvith latency of pending cache miss requests

Prioritize packets witverslack



Concept of Slack

Instruction . .
Window Execution Time
Latency )
Latencyll)

Load Miss Cause

BRGNS covsg D0 S Compuef

N returns earlier than necessary

Slack (1  Latency (1 )dLatency (g ) =260 6= 20hops

Network-on-Chip

Packet(l ) can be delayed for available slack cycles
without reducing performance!




Prioritizing using Slack

Core A Packet Latency Slack
Load Miss = Cause: o 0 13hops | 0 hop
Eoadivisss Caused Y Y Y Y i 3 hops 10 hop:

Core B
I | I I | I I
N N N N < Interference at 3 hops
Load Miss Cause: | | | | | | |
Load Miss Cause¢  — — — — — — — Slack(@§ ) > Slack{( )

Prioritize



Slack in Applications
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Slack in Applications
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Diversity in Slack
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Diversity in Slack
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Outline

A Introduction
A Packet Scheduling
A Memory Level Parallelism

A A Hyia
A Concept of Slack
A Estimating Slack
A Evaluation

A Conclusion



Estimating Slack Priority
Slack (B Max (Latencies @& Predecessartptency of P

Predecessorsary th@ackets of outstanding cache miss
requests when P is issued

Packet latencies not known when issued
Predicting latency of any packet Q

A Higher latency if Q corresponds to an L2 miss
A Higher latency if Q has to travel farther number of hops



Estimating Slack Priority

A Slack of P

= Maximum Predecessor

Haiatercy ofl P

) . PredL2 MylL2 HopEstimate
A slack(P) =SSN ho " ebie

Predl2: Set If any predecessor packet is sezviuss] L

. Setif P is NOT servicin@amds

HopEstimate Max (# of hops of Predecessors) hops of P



Estimating Slack Priority

How to predict L2 hit or miss at core?

A Global Branch Prduhsid L2 Miss Predictor
Use Pattern History Table dodsaturating counters

A Threshdddsed L2 Miss Predictor
If #L2 missesadldmisses >ol0threshold then next load is a L2 mis

Number of miss predecessors?

A List of outstanding L2 Misses

Hops estimate?

AHops => &X + @& Y di stance
A Use predecessor list to calculate slack hop estimate



Starvation Avolidance

ProblemStarvation

A Prioritizing packets can lead to stapvdwar priority
packets

SolutionlimeBased Packet Batching
A New batches are formed at every T cycles

A Packets of older batches are prioritized over younger bat



Putting It all together

Tag header of the packet with priority bits before injec

. _ Myl2 HopEstimate
Priority (P) = (1bit) (2 bits)

Priority(P)?

A P& batch (highest priority)
A P& Slack
A Local Rourdobin (final tie breaker)



Outline

A Introduction
A Packet Scheduling
A Memory Level Parallelism

A A Hyia
A Concept of Slack
A Estimating Slack
A Evaluation

A Conclusion



Evaluation Methodology

64-core system

A x86processor model based on Intel Pentium M

A 2 GHz processtB8entry instruction window

A 3B privatelandlMB per core shar@dache82 miss buffers
A 4GB DRAM320cycle access latefhorchip DRAM controllers

Detailed Netwoxn-Chip model

A 2-stage routers (with speculation and look ahead routing)
A Wormhole switchir§fflit data packets)

A Virtual channel flow cont®M@s 5 flit buffer depth)

A 8x8 Mesh128bit btdirectional channels)

Benchmarks
A Multiprogrammed scientific, server, desktop wasklapplsc@tions)
A 96workload combinations



Qualitative Comparison

Round Robin & Age
A Local and application oblivious
A Age is biased towards heavy applications

Globally Synchronized Frames (GSF)

[Lee et al., ISCA 2008]
A Providebandwidth fairnedthe expensespftem performanc

A Penalizes heavy and bursty applications

Application -Aware Prioritization Policies (SJF)

[Das et al., MICRO 2009]

A ShorteslobFirst Principle

A Packet scheduling policies which prioritize network sens
applications which inject lower load



System Performanc

A SJprovide8.96 improvement
In weighted speedup

A A Hyjia improves system
throughput B0.3%6

A A Hyia+SJIF improves system
throughput dy6.246
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m Age m RR

Network Unfairnes  =¢sF = SIF

m Aergia m SIF+Aerqic
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network fairness
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Conclusions & Future Directions

Packets have different criticaliggigghg packet
scheduling polidiesat all packets equally
We propose a new approach to packet scheduling in N

A We defin&lackas a key measure that characterizes the re
Importance of a packet.

A We proposé éfjia a novel architecture to accelerate low s|
critical packets

Result
A Improves system performasces
A Improves network fairngesdo



ExpressCube Topologies

Grot et al., fExpress Cube TopologiesforOn-Chi p I nt eocBHBRGACZP2



2-D Mesh
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2-D Mesh
L

A Pros

A Low design & layout
complexity

A Simple, fast routers
A Cons

A Large diameter
A Energy & latency impact

UTCS HPCA'09 61



ConcentratiorBalfous. DallyJCS 06)
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Concentration
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Replication
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Flattened Butterflgkim et al., Micro
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Flattened Butterflgkim et al., Micro
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Flattened Butterflgkim et al., Micro
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Flattened Butterflgkim et al., Micro
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Flattened Butterflgkim et al., Micro
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Flattened Butterflgkim et al., Micro
O

D O =70 A Pros

TR THO A Excellent connectivity
L S =R E=NIN A Low diameter: 2 hops
i T T T A Cons
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Multidrop Express Channels (MEC
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Multidrop Express Channels (MEC
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Multidrop Express Channels (MEC
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Multidrop Express Channels (MEC
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Multidrop Express Channels (MEC
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Multidrop Express Channels (MEC
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