
18-742 Fall 2012

Parallel Computer Architecture

Lecture 21: Interconnects IV

Prof. Onur Mutlu

Carnegie Mellon University

10/29/2012

New Review Assignments

 Were Due: Sunday, October 28, 11:59pm.

 Das et al., “Aergia: Exploiting Packet Latency Slack in On-Chip
Networks,” ISCA 2010.

 Dennis and Misunas, “A Preliminary Architecture for a Basic Data
Flow Processor,” ISCA 1974.

 Due: Tuesday, October 30, 11:59pm.

 Arvind and Nikhil, “Executing a Program on the MIT Tagged-Token
Dataflow Architecture,” IEEE TC 1990.

 Due: Thursday, November 1, 11:59pm.

 Patt et al., “HPS, a new microarchitecture: rationale and
introduction,” MICRO 1985.

 Patt et al., “Critical issues regarding HPS, a high performance
microarchitecture,” MICRO 1985.

2

Other Readings

 Dataflow

 Gurd et al., “The Manchester prototype dataflow computer,”
CACM 1985.

 Lee and Hurson, “Dataflow Architectures and Multithreading,”
IEEE Computer 1994.

Restricted Dataflow

 Patt et al., “HPS, a new microarchitecture: rationale and
introduction,” MICRO 1985.

 Patt et al., “Critical issues regarding HPS, a high performance
microarchitecture,” MICRO 1985.

 Sankaralingam et al., “Exploiting ILP, TLP and DLP with the
Polymorphous TRIPS Architecture,” ISCA 2003.

 Burger et al., “Scaling to the End of Silicon with EDGE
Architectures,” IEEE Computer 2004.

3

Project Milestone I Meetings

 Please come to office hours for feedback on

 Your progress

 Your presentation

4

Last Lectures

 Transactional Memory (brief)

 Interconnect wrap-up

 Project Milestone I presentations

5

Today

 More on Interconnects Research

 Start Dataflow

6

Research in Interconnects

Research Topics in Interconnects

 Plenty of topics in interconnection networks. Examples:

 Energy/power efficient and proportional design

 Reducing Complexity: Simplified router and protocol designs

 Adaptivity: Ability to adapt to different access patterns

 QoS and performance isolation

 Reducing and controlling interference, admission control

 Co-design of NoCs with other shared resources

 End-to-end performance, QoS, power/energy optimization

 Scalable topologies to many cores, heterogeneous systems

 Fault tolerance

 Request prioritization, priority inversion, coherence, …

 New technologies (optical, 3D)

8

Packet Scheduling

 Which packet to choose for a given output port?

 Router needs to prioritize between competing flits

 Which input port?

 Which virtual channel?

 Which application’s packet?

 Common strategies

 Round robin across virtual channels

 Oldest packet first (or an approximation)

 Prioritize some virtual channels over others

 Better policies in a multi-core environment

 Use application characteristics

9

Application-Aware Packet Scheduling

Das et al., “Application-Aware Prioritization Mechanisms for On-Chip
Networks,” MICRO 2009.

The Problem: Packet Scheduling

Network-on-Chip

L2$ L2$
L2$

L2$

Bank

mem

cont

Memory

Controller

P

Accelerator
L2$

Bank

L2$

Bank

P P P P P P P

Network-on-Chip

Network-on-Chip is a critical resource

shared by multiple applications

App1 App2 App N App N-1

From East

From West

From North

From South

From PE

VC 0

VC Identifier

VC 1

VC 2

The Problem: Packet Scheduling

R

PE

R

PE

R

PE

R

PE

R

PE

R

PE

R

PE

R

PE

R

PE

R

PE

R

PE

R

PE

R

PE

R

PE

R

PE

R

PE

Crossbar (5 x 5)

To East

To PE

To West

To North

To South

Input Port with Buffers

Control Logic

Crossbar

R Routers

PE Processing Element
(Cores, L2 Banks, Memory Controllers etc)

Routing Unit
(RC)

VC Allocator
(VA)

Switch
Allocator (SA)

VC 0
Routing Unit

(RC)

VC Allocator
(VA)

Switch
Allocator (SA)

VC 1

VC 2

From East

From West

From North

From South

From PE

The Problem: Packet Scheduling

Conceptual

View

From East

From West

From North

From South

From PE

VC 0

VC 1

VC 2

App1 App2 App3 App4
App5 App6 App7 App8

The Problem: Packet Scheduling

VC 0
Routing Unit

(RC)

VC Allocator
(VA)

Switch

VC 1

VC 2

From East

From West

From North

From South

From PE

Allocator (SA)

Sc
h

e
d

u
le

r

Conceptual

View

VC 0
Routing Unit

(RC)

VC Allocator
(VA)

Switch
Allocator (SA)

VC 1

VC 2

From East

From West

From North

From South

From PE

From East

From West

From North

From South

From PE

VC 0

VC 1

VC 2

App1 App2 App3 App4
App5 App6 App7 App8

Which packet to choose?

The Problem: Packet Scheduling

The Problem: Packet Scheduling

 Existing scheduling policies

 Round Robin

 Age

 Problem 1: Local to a router

 Lead to contradictory decision making between routers: packets

from one application may be prioritized at one router, to be

delayed at next.

 Problem 2: Application oblivious

 Treat all applications’ packets equally

 But applications are heterogeneous

 Solution : Application-aware global scheduling policies.

Motivation: Stall Time Criticality

 Applications are not homogenous

 Applications have different criticality with respect to the

network

 Some applications are network latency sensitive

 Some applications are network latency tolerant

 Application’s Stall Time Criticality (STC) can be measured by
its average network stall time per packet (i.e. NST/packet)

 Network Stall Time (NST) is number of cycles the processor

stalls waiting for network transactions to complete

Motivation: Stall Time Criticality

 Why do applications have different network stall time

criticality (STC)?

 Memory Level Parallelism (MLP)

 Lower MLP leads to higher STC

 Shortest Job First Principle (SJF)

 Lower network load leads to higher STC

 Average Memory Access Time

 Higher memory access time leads to higher STC

 Observation 1: Packet Latency != Network Stall Time

STALL STALL

STALL of Red Packet = 0

LATENCY

LATENCY

LATENCY

Application with high MLP

STC Principle 1 {MLP}
Compute

 Observation 1: Packet Latency != Network Stall Time

 Observation 2: A low MLP application’s packets have higher

criticality than a high MLP application’s

STALL STALL

STALL of Red Packet = 0

LATENCY

LATENCY

LATENCY

Application with high MLP

STALL

LATENCY

STALL

LATENCY

STALL

LATENCY

Application with low MLP

STC Principle 1 {MLP}

STC Principle 2 {Shortest-Job-First}

4X network slow down

1.2X network slow down

1.3X network slow down

1.6X network slow down

Overall system throughput{weighted speedup} increases by 34%

Running ALONE

Baseline (RR) Scheduling

SJF Scheduling

Light Application Heavy Application

Compute

Solution: Application-Aware Policies

 Idea

 Identify stall time critical applications (i.e. network

sensitive applications) and prioritize their packets in

each router.

 Key components of scheduling policy:

 Application Ranking

 Packet Batching

 Propose low-hardware complexity solution

Component 1 : Ranking

 Ranking distinguishes applications based on Stall Time

Criticality (STC)

 Periodically rank applications based on Stall Time Criticality

(STC).

 Explored many heuristics for quantifying STC (Details &

analysis in paper)

 Heuristic based on outermost private cache Misses Per

Instruction (L1-MPI) is the most effective

 Low L1-MPI => high STC => higher rank

 Why Misses Per Instruction (L1-MPI)?

 Easy to Compute (low complexity)

 Stable Metric (unaffected by interference in network)

Component 1 : How to Rank?
 Execution time is divided into fixed “ranking intervals”

 Ranking interval is 350,000 cycles

 At the end of an interval, each core calculates their L1-MPI and

sends it to the Central Decision Logic (CDL)

 CDL is located in the central node of mesh

 CDL forms a ranking order and sends back its rank to each core

 Two control packets per core every ranking interval

 Ranking order is a “partial order”

 Rank formation is not on the critical path

 Ranking interval is significantly longer than rank computation time

 Cores use older rank values until new ranking is available

Component 2: Batching

 Problem: Starvation

 Prioritizing a higher ranked application can lead to starvation of

lower ranked application

 Solution: Packet Batching

 Network packets are grouped into finite sized batches

 Packets of older batches are prioritized over younger

batches

 Alternative batching policies explored in paper

 Time-Based Batching

 New batches are formed in a periodic, synchronous manner

across all nodes in the network, every T cycles

Putting it all together

 Before injecting a packet into the network, it is tagged by

 Batch ID (3 bits)

 Rank ID (3 bits)

 Three tier priority structure at routers

 Oldest batch first (prevent starvation)

 Highest rank first (maximize performance)

 Local Round-Robin (final tie breaker)

 Simple hardware support: priority arbiters

 Global coordinated scheduling

 Ranking order and batching order are the same across all routers

STC Scheduling Example

In
je

ct
io

n
C

yc
le

s

1

2

3

4

5

6

7

8

2 2

3

Batch 0

Packet Injection Order at Processor

Core1 Core2 Core3

Batching interval length = 3 cycles

Ranking order =

Batch 1

Batch 2

STC Scheduling Example

4 8

5

1 7

2

1

6 2

1

3

Router

Sc
h

e
d

u
le

r

In
je

ct
io

n
C

yc
le

s

1

2

3

4

5

6

7

8

2 2

3

Batch 2

Batch 1

Batch 0

Applications

STC Scheduling Example

4 8

5

1 7

3

2

6 2

2

3

Router

Sc
h

e
d

u
le

r

Round Robin

3 2 8 7 6

STALL CYCLES Avg

RR 8 6 11 8.3

Age

STC

Time

STC Scheduling Example

4 8

5

1 7

3

2

6 2

2

3

Router

Sc
h

e
d

u
le

r

Round Robin

5 4 3 1 2 2 3 2 8 7 6

Age

3 3 5 4 6 7 8

STALL CYCLES Avg

RR 8 6 11 8.3

Age 4 6 11 7.0

STC

Time

Time

STC Scheduling Example

4 8

5

1 7

3

2

6 2

2

3

Router

Sc
h

e
d

u
le

r

Round Robin

5 4 3 1 2 2 3 2 8 7 6

Age

2 3 3 5 4 6 7 8 1 2 2

STC

3 5 4 6 7 8

STALL CYCLES Avg

RR 8 6 11 8.3

Age 4 6 11 7.0

STC 1 3 11 5.0

Ranking order

Time

Time

Time

Qualitative Comparison
 Round Robin & Age

 Local and application oblivious

 Age is biased towards heavy applications
 heavy applications flood the network

 higher likelihood of an older packet being from heavy application

 Globally Synchronized Frames (GSF) [Lee et al., ISCA
2008]

 Provides bandwidth fairness at the expense of system
performance

 Penalizes heavy and bursty applications
 Each application gets equal and fixed quota of flits (credits) in each batch.

 Heavy application quickly run out of credits after injecting into all active
batches & stall till oldest batch completes and frees up fresh credits.

 Underutilization of network resources

0.0

0.2

0.4

0.6

0.8

1.0

1.2

N
o

rm
al

iz
e

d
 S

y
st

e
m

 S
p

e
e

d
u

p

LocalRR LocalAge

GSF STC

0

2

4

6

8

10

N
e

tw
o

rk
 U

n
fa

ir
n

e
ss

LocalRR LocalAge

GSF STC

System Performance

 STC provides 9.1% improvement in weighted speedup over

the best existing policy{averaged across 96 workloads}

 Detailed case studies in the paper

Slack-Driven Packet Scheduling

Das et al., “Aergia: Exploiting Packet Latency Slack in On-Chip Networks,”

ISCA 2010.

Packet Scheduling in NoC

 Existing scheduling policies

 Round robin

 Age

 Problem

 Treat all packets equally

 Application-oblivious

 Packets have different criticality

 Packet is critical if latency of a packet affects application’s

performance

 Different criticality due to memory level parallelism (MLP)

All packets are not the same…!!!

Latency ()

MLP Principle

Stall Compute

Latency ()

Latency ()

Stall () = 0

Packet Latency != Network Stall Time

Different Packets have different criticality due to MLP

Criticality() > Criticality() > Criticality()

Outline

 Introduction

 Packet Scheduling

 Memory Level Parallelism

 Aérgia

 Concept of Slack

 Estimating Slack

 Evaluation

 Conclusion

What is Aérgia?

 Aérgia is the spirit of laziness in Greek mythology

 Some packets can afford to slack!

Outline

 Introduction

 Packet Scheduling

 Memory Level Parallelism

 Aérgia

 Concept of Slack

 Estimating Slack

 Evaluation

 Conclusion

Slack of Packets

 What is slack of a packet?

 Slack of a packet is number of cycles it can be delayed in a router
without (significantly) reducing application’s performance

 Local network slack

 Source of slack: Memory-Level Parallelism (MLP)

 Latency of an application’s packet hidden from application due to
overlap with latency of pending cache miss requests

 Prioritize packets with lower slack

Concept of Slack
Instruction

 Window

Stall

Network-on-Chip

Load Miss Causes

 returns earlier than necessary

Compute

Slack () = Latency () – Latency () = 26 – 6 = 20 hops

Execution Time

Packet() can be delayed for available slack cycles

without reducing performance!

Causes Load Miss

Latency ()

Latency ()

Slack Slack

Prioritizing using Slack

Core A

Core B

Packet Latency Slack

13 hops 0 hops

3 hops 10 hops

10 hops 0 hops

4 hops 6 hops

Causes

Causes Load Miss

Load Miss

Prioritize

Load Miss

Load Miss Causes

Causes

Interference at 3 hops

Slack() > Slack ()

Slack in Applications

0

10

20

30

40

50

60

70

80

90

100

0 50 100 150 200 250 300 350 400 450 500

P
e
rc

e
n
ta

g
e
 o

f
a
ll

P
a
c
k
e
ts

 (
%

)

Slack in cycles

Gems

50% of packets have 350+ slack cycles

10% of packets have <50 slack cycles

Non-critical

critical

Slack in Applications

0

10

20

30

40

50

60

70

80

90

100

0 50 100 150 200 250 300 350 400 450 500

P
e
rc

e
n
ta

g
e
 o

f
a
ll

P
a
c
k
e
ts

 (
%

)

Slack in cycles

Gems

art

68% of packets have zero slack cycles

Diversity in Slack

0

10

20

30

40

50

60

70

80

90

100

0 50 100 150 200 250 300 350 400 450 500

P
e
rc

e
n
ta

g
e
 o

f
a
ll

P
a
c
k
e
ts

 (
%

)

Slack in cycles

Gems

omnet

tpcw

mcf

bzip2

sjbb

sap

sphinx

deal

barnes

astar

calculix

art

libquantum

sjeng

h264ref

Diversity in Slack

0

10

20

30

40

50

60

70

80

90

100

0 50 100 150 200 250 300 350 400 450 500

P
e
rc

e
n
ta

g
e
 o

f
a
ll

P
a
c
k
e
ts

 (
%

)

Slack in cycles

Gems

omnet

tpcw

mcf

bzip2

sjbb

sap

sphinx

deal

barnes

astar

calculix

art

libquantum

sjeng

h264ref

Slack varies between packets of different applications

Slack varies between packets of a single application

Outline

 Introduction

 Packet Scheduling

 Memory Level Parallelism

 Aérgia

 Concept of Slack

 Estimating Slack

 Evaluation

 Conclusion

Estimating Slack Priority

Slack (P) = Max (Latencies of P’s Predecessors) – Latency of P

 Predecessors(P) are the packets of outstanding cache miss

requests when P is issued

 Packet latencies not known when issued

 Predicting latency of any packet Q

 Higher latency if Q corresponds to an L2 miss

 Higher latency if Q has to travel farther number of hops

 Slack of P = Maximum Predecessor Latency – Latency of P

 Slack(P) =

PredL2: Set if any predecessor packet is servicing L2 miss

MyL2: Set if P is NOT servicing an L2 miss

HopEstimate: Max (# of hops of Predecessors) – hops of P

Estimating Slack Priority

PredL2

(2 bits)

MyL2

(1 bit)

HopEstimate

(2 bits)

Estimating Slack Priority

 How to predict L2 hit or miss at core?

 Global Branch Predictor based L2 Miss Predictor

 Use Pattern History Table and 2-bit saturating counters

 Threshold based L2 Miss Predictor

 If #L2 misses in “M” misses >= “T” threshold then next load is a L2 miss.

 Number of miss predecessors?

 List of outstanding L2 Misses

 Hops estimate?

 Hops => ∆X + ∆ Y distance

 Use predecessor list to calculate slack hop estimate

Starvation Avoidance

 Problem: Starvation

 Prioritizing packets can lead to starvation of lower priority

packets

 Solution: Time-Based Packet Batching

 New batches are formed at every T cycles

 Packets of older batches are prioritized over younger batches

Putting it all together

 Tag header of the packet with priority bits before injection

 Priority(P)?

 P’s batch (highest priority)

 P’s Slack

 Local Round-Robin (final tie breaker)

PredL2

(2 bits)

MyL2

(1 bit)

HopEstimate

(2 bits)

Batch

(3 bits)
Priority (P) =

Outline

 Introduction

 Packet Scheduling

 Memory Level Parallelism

 Aérgia

 Concept of Slack

 Estimating Slack

 Evaluation

 Conclusion

Evaluation Methodology
 64-core system

 x86 processor model based on Intel Pentium M

 2 GHz processor, 128-entry instruction window

 32KB private L1 and 1MB per core shared L2 caches, 32 miss buffers

 4GB DRAM, 320 cycle access latency, 4 on-chip DRAM controllers

 Detailed Network-on-Chip model
 2-stage routers (with speculation and look ahead routing)

 Wormhole switching (8 flit data packets)

 Virtual channel flow control (6 VCs, 5 flit buffer depth)

 8x8 Mesh (128 bit bi-directional channels)

 Benchmarks
 Multiprogrammed scientific, server, desktop workloads (35 applications)

 96 workload combinations

Qualitative Comparison

 Round Robin & Age

 Local and application oblivious

 Age is biased towards heavy applications

 Globally Synchronized Frames (GSF)
[Lee et al., ISCA 2008]

 Provides bandwidth fairness at the expense of system performance

 Penalizes heavy and bursty applications

 Application-Aware Prioritization Policies (SJF)
[Das et al., MICRO 2009]

 Shortest-Job-First Principle

 Packet scheduling policies which prioritize network sensitive

applications which inject lower load

System Performance

 SJF provides 8.9% improvement

in weighted speedup

 Aérgia improves system

throughput by 10.3%

 Aérgia+SJF improves system

throughput by 16.1%

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

1.2

N
o

rm
al

iz
e

d
 S

y
st

e
m

 S
p

e
e

d
u

p

Age RR

GSF SJF

Aergia SJF+Aergia

Network Unfairness

 SJF does not imbalance

 network fairness

 Aergia improves network

unfairness by 1.5X

 SJF+Aergia improves

network unfairness by 1.3X

0.0

3.0

6.0

9.0

12.0

 N
e

tw
o

rk
 U

n
fa

ir
n

e
ss

Age RR

GSF SJF

Aergia SJF+Aergia

Conclusions & Future Directions

 Packets have different criticality, yet existing packet

scheduling policies treat all packets equally

 We propose a new approach to packet scheduling in NoCs

 We define Slack as a key measure that characterizes the relative

importance of a packet.

 We propose Ae ́rgia a novel architecture to accelerate low slack

critical packets

 Result

 Improves system performance: 16.1%

 Improves network fairness: 30.8%

Express-Cube Topologies

Grot et al., “Express Cube Topologies for On-Chip Interconnects” ” HPCA 2009.

UTCS 60 HPCA '09

2-D Mesh

 Pros
 Low design & layout

complexity

 Simple, fast routers

 Cons
 Large diameter

 Energy & latency impact

UTCS 61 HPCA '09

2-D Mesh

 Pros
 Multiple terminals

attached to a router node

 Fast nearest-neighbor
communication via the
crossbar

 Hop count reduction
proportional to
concentration degree

 Cons
 Benefits limited by

crossbar complexity

UTCS 62 HPCA '09

Concentration (Balfour & Dally, ICS ‘06)

UTCS 63 HPCA '09

Concentration

 Side-effects
 Fewer channels

 Greater channel width

UTCS 64 HPCA ‘09

Replication

CMesh-X2

 Benefits
 Restores bisection

channel count

 Restores channel width

 Reduced crossbar
complexity

UTCS 65 HPCA '09

Flattened Butterfly (Kim et al., Micro

‘07)

 Objectives:
 Improve connectivity

 Exploit the wire budget

UTCS 66 HPCA '09

Flattened Butterfly (Kim et al., Micro

‘07)

UTCS 67 HPCA '09

Flattened Butterfly (Kim et al., Micro

‘07)

UTCS 68 HPCA '09

Flattened Butterfly (Kim et al., Micro

‘07)

UTCS 69 HPCA '09

Flattened Butterfly (Kim et al., Micro

‘07)

 Pros
 Excellent connectivity

 Low diameter: 2 hops

 Cons
 High channel count:
k2/2 per row/column

 Low channel utilization

 Increased control
(arbitration) complexity

UTCS 70 HPCA '09

Flattened Butterfly (Kim et al., Micro

‘07)

UTCS 71 HPCA '09

Multidrop Express Channels (MECS)

 Objectives:
 Connectivity

 More scalable channel
count

 Better channel
utilization

UTCS 72 HPCA '09

Multidrop Express Channels (MECS)

UTCS 73 HPCA '09

Multidrop Express Channels (MECS)

UTCS 74 HPCA '09

Multidrop Express Channels (MECS)

UTCS 75 HPCA '09

Multidrop Express Channels (MECS)

UTCS 76 HPCA ‘09

Multidrop Express Channels (MECS)

 Pros
 One-to-many topology

 Low diameter: 2 hops

 k channels row/column

 Asymmetric

 Cons
 Asymmetric

 Increased control
(arbitration) complexity

UTCS 77 HPCA ‘09

Multidrop Express Channels (MECS)

Partitioning: a GEC Example

UTCS 78 HPCA '09

MECS

MECS-X2

Flattened
Butterfly

Partitioned
MECS

Analytical Comparison

UTCS 79 HPCA '09

CMesh FBfly MECS

Network Size 64 256 64 256 64 256

Radix (conctr’d) 4 8 4 8 4 8

Diameter 6 14 2 2 2 2

Channel count 2 2 8 32 4 8

Channel width 576 1152 144 72 288 288

Router inputs 4 4 6 14 6 14

Router outputs 4 4 6 14 4 4

Experimental Methodology

Topologies Mesh, CMesh, CMesh-X2, FBFly, MECS, MECS-X2

Network sizes 64 & 256 terminals

Routing DOR, adaptive

Messages 64 & 576 bits

Synthetic traffic Uniform random, bit complement, transpose, self-similar

PARSEC

benchmarks

Blackscholes, Bodytrack, Canneal, Ferret,

Fluidanimate, Freqmine, Vip, x264

Full-system config M5 simulator, Alpha ISA, 64 OOO cores

Energy evaluation Orion + CACTI 6

UTCS 80 HPCA '09

UTCS 81 HPCA '09

64 nodes: Uniform Random

0

10

20

30

40

1 4 7 10 13 16 19 22 25 28 31 34 37 40

La
te

n
cy

 (c
yc

le
s)

injection rate (%)

mesh cmesh cmesh-x2 fbfly mecs mecs-x2

UTCS 82 HPCA '09

256 nodes: Uniform Random

0

10

20

30

40

50

60

70

1 4 7 10 13 16 19 22 25

La
te

n
cy

 (c
yc

le
s)

Injection rate (%)

mesh cmesh-x2 fbfly mecs mecs-x2

UTCS 83 HPCA '09

Energy (100K pkts, Uniform Random)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

A
ve

ra
ge

 p
ac

ke
t e

n
er

gy
 (n

J)

Link Energy Router Energy

64 nodes 256 nodes

UTCS 84 HPCA '09

64 Nodes: PARSEC

0

2

4

6

8

10

12

14

16

18

20

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

Router Energy Link Energy latency

Blackscholes Canneal Vip

To
ta

l n
e

tw
o

rk
 E

n
e

rg
y

(J
)

A
vg

 p
ac

ke
t

la
te

n
cy

 (c
yc

le
s)

x264

Summary

 MECS
 A new one-to-many topology

 Good fit for planar substrates

 Excellent connectivity

 Effective wire utilization

 Generalized Express Cubes
 Framework & taxonomy for NOC topologies

 Extension of the k-ary n-cube model

 Useful for understanding and exploring
on-chip interconnect options

 Future: expand & formalize

UTCS 85 HPCA '09

Kilo-NoC: Topology-Aware QoS

Grot et al., “Kilo-NOC: A Heterogeneous Network-on-Chip Architecture for

Scalability and Service Guarantees,” ISCA 2011.

Motivation

 Extreme-scale chip-level integration

 Cores

 Cache banks

 Accelerators

 I/O logic

 Network-on-chip (NOC)

 10-100 cores today

 1000+ assets in the near future

87

Kilo-NOC requirements

 High efficiency

 Area

 Energy

 Good performance

 Strong service guarantees (QoS)

88

Topology-Aware QoS

 Problem: QoS support in each router is expensive (in terms
of buffering, arbitration, bookkeeping)

 E.g., Grot et al., “Preemptive Virtual Clock: A Flexible,
Efficient, and Cost-effective QOS Scheme for Networks-on-
Chip,” MICRO 2009.

 Goal: Provide QoS guarantees at low area and power cost

 Idea:

 Isolate shared resources in a region of the network, support
QoS within that area

 Design the topology so that applications can access the region
without interference

89

Baseline QOS-enabled CMP

Multiple VMs

sharing a die

90

Shared resources
(e.g., memory controllers)

VM-private resources
(cores, caches)

Q Q Q Q

Q Q Q Q

Q Q Q Q

Q Q Q Q

VM #1

VM #1

VM #3

VM #2

QOS-enabled router Q

Conventional NOC QOS

Contention scenarios:

Shared resources

 memory access

Intra-VM traffic

 shared cache access

Inter-VM traffic

 VM page sharing

91

Q Q Q Q

Q Q Q Q

Q Q Q Q

Q Q Q Q

VM #1

VM #1

VM #3

VM #2

Conventional NOC QOS

92

Q Q Q Q

Q Q Q Q

Q Q Q Q

Q Q Q Q

VM #1

VM #1

VM #3

VM #2

Contention scenarios:

Shared resources

 memory access

Intra-VM traffic

 shared cache access

Inter-VM traffic

 VM page sharing

Network-wide guarantees without

network-wide QOS support

Kilo-NOC QOS

 Insight: leverage rich network connectivity

 Naturally reduce interference among flows

 Limit the extent of hardware QOS support

 Requires a low-diameter topology

 This work: Multidrop Express Channels (MECS)

93

Grot et al., HPCA

2009

Dedicated, QOS-enabled
regions

 Rest of die: QOS-free

Richly-connected topology

 Traffic isolation

Special routing rules

 Manage interference

94

Q

Q

Q

Q

VM #1 VM #2

VM #1

VM #3

Topology-Aware QOS

Dedicated, QOS-enabled
regions

 Rest of die: QOS-free

Richly-connected topology

 Traffic isolation

Special routing rules

 Manage interference

95

Q

Q

Q

Q

VM #1 VM #2

VM #1

VM #3

Topology-Aware QOS

Dedicated, QOS-enabled
regions

 Rest of die: QOS-free

Richly-connected topology

 Traffic isolation

Special routing rules

 Manage interference

96

Q

Q

Q

Q

VM #1 VM #2

VM #1

VM #3

Topology-Aware QOS

Dedicated, QOS-enabled
regions

 Rest of die: QOS-free

Richly-connected topology

 Traffic isolation

Special routing rules

 Manage interference

97

Q

Q

Q

Q

VM #1 VM #2

VM #1

VM #3

Topology-Aware QOS

 Topology-aware QOS
support

 Limit QOS complexity to
a fraction of the die

 Optimized flow control

 Reduce buffer
requirements in QOS-
free regions

98

Q

Q

Q

Q

VM #1 VM #2

VM #1

VM #3

Kilo-NOC view

Parameter Value

Technology 15 nm

Vdd 0.7 V

System 1024 tiles:
256 concentrated nodes (64 shared resources)

Networks:

MECS+PVC VC flow control, QOS support (PVC) at each node

MECS+TAQ VC flow control, QOS support only in shared regions

MECS+TAQ+EB EB flow control outside of SRs,
Separate Request and Reply networks

K-MECS Proposed organization: TAQ + hybrid flow control

99

100

101

Kilo-NOC: a heterogeneous NOC architecture
for kilo-node substrates

Topology-aware QOS

 Limits QOS support to a fraction of the die

 Leverages low-diameter topologies

 Improves NOC area- and energy-efficiency

 Provides strong guarantees

102

