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New Review Assignments 

 Were Due: Sunday, October 28, 11:59pm. 

 Das et al., “Aergia: Exploiting Packet Latency Slack in On-Chip 
Networks,” ISCA 2010. 

 Dennis and Misunas, “A Preliminary Architecture for a Basic Data 
Flow Processor,” ISCA 1974. 
 

 Due: Tuesday, October 30, 11:59pm.  

 Arvind and Nikhil, “Executing a Program on the MIT Tagged-Token 
Dataflow Architecture,” IEEE TC 1990. 
 

 Due: Thursday, November 1, 11:59pm.  

 Patt et al., “HPS, a new microarchitecture: rationale and 
introduction,” MICRO 1985. 

 Patt et al., “Critical issues regarding HPS, a high performance 
microarchitecture,” MICRO 1985. 
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Other Readings 

 Dataflow 

 Gurd et al., “The Manchester prototype dataflow computer,” 
CACM 1985. 

 Lee and Hurson, “Dataflow Architectures and Multithreading,” 
IEEE Computer 1994. 

 

Restricted Dataflow 

 Patt et al., “HPS, a new microarchitecture: rationale and 
introduction,” MICRO 1985. 

 Patt et al., “Critical issues regarding HPS, a high performance 
microarchitecture,” MICRO 1985. 

 Sankaralingam et al., “Exploiting ILP, TLP and DLP with the 
Polymorphous TRIPS Architecture,” ISCA 2003. 

 Burger et al., “Scaling to the End of Silicon with EDGE 
Architectures,” IEEE Computer 2004.  
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Project Milestone I Meetings 

 Please come to office hours for feedback on 

 Your progress 

 Your presentation 
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Last Lectures 

 Transactional Memory (brief) 

 

 Interconnect wrap-up 

 

 Project Milestone I presentations 
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Today 

 More on Interconnects Research 

 

 Start Dataflow  
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Research in Interconnects 

 

 

 

 

 



Research Topics in Interconnects 

 Plenty of topics in interconnection networks. Examples: 
 

 Energy/power efficient and proportional design 

 Reducing Complexity: Simplified router and protocol designs 

 Adaptivity: Ability to adapt to different access patterns 

 QoS and performance isolation 

 Reducing and controlling interference, admission control 

 Co-design of NoCs with other shared resources 

 End-to-end performance, QoS, power/energy optimization 

 Scalable topologies to many cores, heterogeneous systems 

 Fault tolerance 

 Request prioritization, priority inversion, coherence, … 

 New technologies (optical, 3D) 
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Packet Scheduling 

 Which packet to choose for a given output port? 

 Router needs to prioritize between competing flits 

 Which input port? 

 Which virtual channel? 

 Which application’s packet? 

 

 Common strategies 

 Round robin across virtual channels 

 Oldest packet first (or an approximation) 

 Prioritize some virtual channels over others 

 

 Better policies in a multi-core environment 

 Use application characteristics 
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Application-Aware Packet Scheduling 

 

 

 

 

 

Das et al., “Application-Aware Prioritization Mechanisms for On-Chip 
Networks,” MICRO 2009. 



The Problem: Packet Scheduling 
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The Problem: Packet Scheduling 

 Existing scheduling policies  

 Round Robin 

 Age 

 Problem 1: Local to a router 

 Lead to contradictory decision making between routers: packets 

from one application may be prioritized at one router, to be 

delayed at next.  

 Problem 2: Application oblivious 

 Treat all applications’ packets equally 

 But applications are heterogeneous 

 Solution : Application-aware global scheduling policies. 

 

 

 



Motivation: Stall Time Criticality 

 Applications are not homogenous 

 

 Applications have different criticality with respect to the 

network 

 Some applications are network latency sensitive  

 Some applications are network latency tolerant 

 

 Application’s Stall Time Criticality (STC) can be measured by 
its average network stall time per packet (i.e. NST/packet) 

 Network Stall Time (NST) is number of cycles the processor 

stalls waiting for network transactions to complete 

 



Motivation: Stall Time Criticality 

 Why do applications have different network stall time 

criticality (STC)?  

 Memory Level Parallelism (MLP)  

 Lower MLP  leads to higher STC 

 

 Shortest Job First Principle (SJF)  

 Lower network load leads to higher STC  

 

 Average Memory Access Time 

 Higher memory access time leads to higher STC 

 



 

 

 

 

 

 

 

 

 Observation 1: Packet Latency != Network Stall Time 
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 Observation 1: Packet Latency != Network Stall Time 

 Observation 2: A low MLP application’s  packets have higher 

criticality than a high MLP application’s 
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STC Principle 2 {Shortest-Job-First} 

4X network slow down 

1.2X network slow down 

1.3X network slow down 

1.6X network slow down 

Overall system throughput{weighted speedup} increases by 34% 

Running ALONE 
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Light Application Heavy Application 

Compute 



Solution: Application-Aware Policies 

  Idea 

 Identify stall time critical applications (i.e. network 

sensitive applications) and prioritize their packets in 

each router. 

 

 Key components of scheduling policy: 

 Application Ranking 

 Packet Batching 

 

 Propose low-hardware complexity solution 



Component 1 : Ranking 

 Ranking distinguishes applications based on Stall Time 

Criticality (STC) 

 Periodically  rank applications based on Stall Time Criticality 

(STC). 

 Explored many heuristics for quantifying STC (Details & 

analysis in paper) 

 Heuristic based on outermost private cache Misses Per 

Instruction (L1-MPI) is the most effective 

 Low L1-MPI => high STC => higher rank 

 Why Misses Per Instruction (L1-MPI)? 

 Easy to Compute (low complexity) 

 Stable Metric (unaffected by interference in network) 



Component 1 : How to Rank? 
 Execution time is divided into fixed “ranking intervals” 

 Ranking interval is 350,000 cycles  

 At the end of an interval, each core calculates their L1-MPI and  

sends it to the Central Decision Logic (CDL) 

 CDL is located in the central node of mesh 

 CDL forms a ranking order and sends back its rank to each core 

 Two control packets per core every ranking interval 

 Ranking order is a “partial order” 

 

 Rank formation is not on the critical path 

 Ranking interval is significantly longer than rank computation time 

 Cores use older rank values until new ranking is available 



Component 2: Batching 

 Problem: Starvation 

 Prioritizing a higher ranked application can lead to starvation of 

lower ranked application 

 Solution: Packet Batching 

 Network packets are grouped into finite sized batches  

 Packets of older batches are prioritized over younger 

batches 

 Alternative batching policies explored in paper 

 Time-Based Batching 

 New batches are formed in a periodic, synchronous manner 

across all nodes in the network, every T cycles  

 

 



Putting it all together 

 Before injecting a packet into the network, it is tagged by  

 Batch ID (3 bits) 

 Rank ID (3 bits) 

 Three tier priority structure at routers 

 Oldest batch first (prevent starvation) 

 Highest rank first   (maximize performance) 

 Local Round-Robin        (final tie breaker) 

 Simple hardware support: priority arbiters 

 Global coordinated scheduling 

 Ranking order and batching order are the same across all routers 

 



STC Scheduling Example 
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STC Scheduling Example 
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STC Scheduling Example 
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STC Scheduling Example 
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STC Scheduling Example 
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Qualitative Comparison 
 Round Robin & Age 

 Local and application oblivious 

 Age is biased towards heavy applications 
 heavy applications flood the network 

 higher likelihood of an older packet being from heavy application 

 Globally Synchronized Frames (GSF) [Lee et al., ISCA 
2008] 

 Provides bandwidth fairness at the expense of system 
performance 

 Penalizes heavy and bursty applications  
 Each application gets equal and fixed quota of flits (credits) in each batch. 

 Heavy application quickly run out of credits after injecting into all active 
batches & stall till oldest batch completes and frees up fresh credits. 

 Underutilization of network resources 
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System Performance 

 STC provides 9.1% improvement in weighted speedup over 

the best existing policy{averaged across 96 workloads} 

 Detailed case studies in the paper 



Slack-Driven Packet Scheduling 

 

 

 

 

 

Das et al., “Aergia: Exploiting Packet Latency Slack in On-Chip Networks,” 

ISCA 2010. 



Packet Scheduling in NoC 

 Existing scheduling policies   

 Round robin   

 Age 

 

 Problem 

 Treat all packets equally 

 Application-oblivious 

 

 Packets have different criticality  

 Packet is critical if latency of a packet affects application’s 

performance 

 Different criticality due to memory level parallelism (MLP) 

All packets are not the same…!!! 



Latency (   ) 

MLP Principle 

Stall Compute 
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Stall (   )  = 0    

Packet Latency != Network Stall Time 

Different Packets have different criticality due to MLP 

Criticality(   )  >    Criticality(   )  >    Criticality(   )    
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What is Aérgia? 
 

 

 

 

 

 

 

 

 

 Aérgia is the spirit of laziness in Greek mythology 

 Some packets can afford to slack! 
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Slack of Packets 
 

 What is slack of a packet? 

 Slack of a packet is number of cycles it can be delayed in a router 
without (significantly) reducing application’s performance 

 Local network slack 

 

 Source of slack: Memory-Level Parallelism (MLP) 

 Latency of an application’s packet hidden from application due to 
overlap with latency of pending cache miss requests 

 

 Prioritize packets with lower slack 

 

 

 

 

 



Concept of Slack  
Instruction 

 Window 
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Compute 
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Execution Time 
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Prioritizing using Slack  

Core A 

Core B 

Packet Latency Slack 

13 hops 0   hops 

3  hops 10 hops 

10 hops 0 hops 

4  hops  6 hops 

Causes 

Causes Load Miss  

Load Miss  

Prioritize   

Load Miss  

Load Miss  Causes 

Causes 

Interference at 3 hops 

Slack(   )   >  Slack (   )  



Slack in Applications 
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Slack in Applications 
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Diversity in Slack 
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Diversity in Slack 
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Slack varies between packets of  different applications 

Slack varies between packets of  a single application 
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Estimating Slack Priority 

Slack (P) = Max (Latencies of P’s Predecessors) – Latency of P 
 

 Predecessors(P) are the packets of outstanding cache miss 

requests when P is issued 
 

 Packet latencies not known when issued 

 

 Predicting latency of any packet Q 

 Higher latency if Q corresponds to an L2 miss 

 Higher latency if Q has to travel farther number of hops 

 



 Slack of P = Maximum Predecessor Latency – Latency of P 

 

 Slack(P) =  

 

PredL2: Set if any predecessor packet is servicing L2 miss 

 

MyL2:  Set if  P is NOT servicing an L2 miss 

 

HopEstimate: Max (# of hops of Predecessors) – hops of P 

 

Estimating Slack Priority 

PredL2 

(2 bits) 

MyL2 
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HopEstimate 
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Estimating Slack Priority 

 How to predict L2 hit or miss at core? 

 Global Branch Predictor based L2 Miss Predictor  

 Use Pattern History Table and 2-bit saturating counters 

 Threshold based L2 Miss Predictor 

 If  #L2 misses in “M” misses >= “T” threshold then next load is a L2 miss.  

 Number of miss predecessors? 

 List of outstanding L2 Misses 

 Hops estimate? 

 Hops => ∆X + ∆ Y distance 

 Use predecessor list to calculate slack hop estimate 



Starvation Avoidance 

 Problem: Starvation 

 Prioritizing packets can lead to starvation of lower priority 

packets 

 

 Solution: Time-Based Packet Batching 

 New batches are formed at every T cycles  

 

 Packets of older batches are prioritized over younger batches 

 

 



Putting it all together 

 Tag header of the packet with priority bits before injection 

 

 

 Priority(P)? 

 P’s batch                 (highest priority) 

 P’s Slack 

 Local Round-Robin                                        (final tie breaker) 

 

 

PredL2 

(2 bits) 

MyL2 

(1 bit) 

HopEstimate 

(2 bits) 

Batch 

(3 bits) 
Priority (P) = 
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Evaluation Methodology 
 64-core system 

 x86 processor model based on Intel Pentium M 

 2 GHz processor, 128-entry instruction window 

 32KB private L1 and 1MB per core shared L2 caches, 32  miss buffers 

 4GB DRAM, 320 cycle access latency, 4 on-chip DRAM controllers 

 Detailed Network-on-Chip model  
 2-stage routers (with speculation  and look ahead routing) 

 Wormhole switching (8 flit data packets) 

 Virtual channel flow control (6 VCs, 5 flit buffer depth) 

 8x8 Mesh (128 bit bi-directional channels) 

 Benchmarks 
 Multiprogrammed scientific, server, desktop workloads (35 applications) 

 96 workload combinations 



Qualitative Comparison 

 Round Robin & Age 

 Local and application oblivious 

 Age is biased towards heavy applications 

 Globally Synchronized Frames (GSF)  
[Lee et al., ISCA 2008] 

 Provides bandwidth fairness at the expense of system performance 

 Penalizes heavy and bursty applications  

 Application-Aware Prioritization Policies (SJF)  
[Das et al., MICRO 2009] 

 Shortest-Job-First Principle 

 Packet scheduling policies which prioritize network sensitive 

applications which inject lower load  

 

 



System Performance 
 

 SJF provides 8.9% improvement 

in weighted speedup 

 Aérgia improves system  

throughput by 10.3% 

 Aérgia+SJF improves system  

throughput by 16.1% 
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Network Unfairness 
 

 SJF does not imbalance 

 network fairness 

 Aergia improves network 

unfairness by 1.5X 

 SJF+Aergia improves  

network unfairness by 1.3X 
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Conclusions & Future Directions 

 Packets have different criticality, yet existing packet 

scheduling policies treat all packets equally   

 We propose a new approach to packet scheduling in NoCs 

 We define Slack as a key measure that characterizes the relative 

importance of a packet. 

 We propose Ae ́rgia a novel architecture to accelerate low slack 

critical packets 

 Result 

 Improves system performance: 16.1%  

 Improves network fairness: 30.8% 



Express-Cube Topologies 

 

 

 

 

 

Grot et al., “Express Cube Topologies for On-Chip Interconnects” ” HPCA 2009. 



UTCS 60 HPCA '09 

2-D Mesh 



 Pros 
 Low design & layout 

complexity 

 Simple, fast routers 

 Cons 
 Large diameter 

 Energy & latency impact 

UTCS 61 HPCA '09 

2-D Mesh 



 Pros 
 Multiple terminals 

attached to a router node 

 Fast nearest-neighbor 
communication via the 
crossbar 

 Hop count reduction 
proportional to 
concentration degree 

 Cons 
 Benefits limited by 

crossbar complexity 

UTCS 62 HPCA '09 

Concentration (Balfour & Dally, ICS ‘06) 



UTCS 63 HPCA '09 

Concentration 

 Side-effects 
 Fewer channels 

 Greater channel width 



UTCS 64 HPCA ‘09 

Replication 

CMesh-X2 

 Benefits 
 Restores bisection 

channel count 

 Restores channel width 

 Reduced crossbar 
complexity 



UTCS 65 HPCA '09 

Flattened Butterfly (Kim et al., Micro 

‘07) 

 Objectives: 
 Improve connectivity 

 Exploit the wire budget 
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Flattened Butterfly (Kim et al., Micro 

‘07) 
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Flattened Butterfly (Kim et al., Micro 

‘07) 
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Flattened Butterfly (Kim et al., Micro 

‘07) 



UTCS 69 HPCA '09 

Flattened Butterfly (Kim et al., Micro 

‘07) 



 Pros 
 Excellent connectivity  

 Low diameter: 2 hops 

 Cons 
 High channel count:  
k2/2 per row/column 

 Low channel utilization 

 Increased control 
(arbitration) complexity 

UTCS 70 HPCA '09 

Flattened Butterfly (Kim et al., Micro 

‘07) 



UTCS 71 HPCA '09 

Multidrop Express Channels (MECS) 

 Objectives: 
 Connectivity 

 More scalable channel 
count 

 Better channel 
utilization 
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Multidrop Express Channels (MECS) 
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Multidrop Express Channels (MECS) 



UTCS 74 HPCA '09 

Multidrop Express Channels (MECS) 
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Multidrop Express Channels (MECS) 



UTCS 76 HPCA ‘09 

Multidrop Express Channels (MECS) 



 Pros 
 One-to-many topology 

 Low diameter: 2 hops 

 k channels row/column 

 Asymmetric 

 Cons 
 Asymmetric 

 Increased control 
(arbitration) complexity 
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Multidrop Express Channels (MECS) 



Partitioning: a GEC Example 
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Analytical Comparison 

UTCS 79 HPCA '09 

CMesh FBfly MECS 

Network Size 64 256 64 256 64 256 

Radix (conctr’d) 4 8 4 8 4 8 

Diameter 6 14 2 2 2 2 

Channel count 2 2 8 32 4 8 

Channel width 576 1152 144 72 288 288 

Router inputs 4 4 6 14 6 14 

Router outputs 4 4 6 14 4 4 



Experimental Methodology 

Topologies Mesh, CMesh, CMesh-X2, FBFly, MECS, MECS-X2 

Network sizes 64 & 256 terminals 

Routing DOR, adaptive 

Messages 64 & 576 bits 

Synthetic traffic Uniform random, bit complement,  transpose, self-similar 

PARSEC 

benchmarks 

Blackscholes, Bodytrack, Canneal, Ferret,  

Fluidanimate, Freqmine, Vip, x264 

Full-system config M5 simulator, Alpha ISA, 64 OOO cores 

Energy evaluation Orion + CACTI 6 
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256 nodes: Uniform Random 
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UTCS 83 HPCA '09 

Energy (100K pkts, Uniform Random) 
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UTCS 84 HPCA '09 

64 Nodes: PARSEC 
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Summary 

 MECS 
 A new one-to-many topology 

 Good fit for planar substrates 

 Excellent connectivity 

 Effective wire utilization 

 Generalized Express Cubes 
 Framework & taxonomy for NOC topologies 

 Extension of the k-ary n-cube model 

 Useful for understanding and exploring  
on-chip interconnect options 

 Future: expand & formalize 
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Kilo-NoC: Topology-Aware QoS 

 

 

 

 

 

Grot et al., “Kilo-NOC: A Heterogeneous Network-on-Chip Architecture for 

Scalability and Service Guarantees,” ISCA 2011. 



Motivation 

 Extreme-scale chip-level integration 

 Cores 

 Cache banks 

 Accelerators 

 I/O logic 

 Network-on-chip (NOC) 

 10-100 cores today 

 1000+ assets in the near future 
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Kilo-NOC requirements 

 High efficiency 

 Area 

 Energy 

 Good performance 

 Strong service guarantees (QoS) 
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Topology-Aware QoS 

 Problem: QoS support in each router is expensive (in terms 
of buffering, arbitration, bookkeeping) 

 E.g., Grot et al., “Preemptive Virtual Clock: A Flexible, 
Efficient, and Cost-effective QOS Scheme for Networks-on-
Chip,” MICRO 2009. 

 

 Goal: Provide QoS guarantees at low area and power cost 

 

 Idea:  

 Isolate shared resources in a region of the network, support 
QoS within that area 

 Design the topology so that applications can access the region 
without interference 
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Baseline QOS-enabled CMP 

Multiple VMs  

sharing a die 
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Shared resources  
(e.g., memory controllers) 

VM-private resources  
(cores, caches) 

Q Q Q Q

Q Q Q Q

Q Q Q Q

Q Q Q Q

VM #1

VM #1

VM #3

VM #2

QOS-enabled router Q 



Conventional NOC QOS 

Contention scenarios: 

Shared resources  

 memory access 

Intra-VM traffic 

 shared cache access 

Inter-VM traffic 

 VM page sharing 

 

 

91 

Q Q Q Q

Q Q Q Q
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VM #1

VM #1

VM #3

VM #2



Conventional NOC QOS 
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Q Q Q Q

Q Q Q Q

Q Q Q Q

Q Q Q Q

VM #1

VM #1

VM #3

VM #2

Contention scenarios: 

Shared resources 

 memory access 

Intra-VM traffic 

 shared cache access 

Inter-VM traffic 

 VM page sharing 

 

 
Network-wide guarantees without 

network-wide QOS support 



Kilo-NOC  QOS 

 Insight: leverage rich network connectivity 

 Naturally reduce interference among flows 

 Limit the extent of hardware QOS support 

 Requires a low-diameter topology 

 This work: Multidrop Express Channels (MECS) 
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Grot et al., HPCA 

2009 



 

Dedicated, QOS-enabled 
regions 

 Rest of die: QOS-free 

Richly-connected topology 

 Traffic isolation 

Special routing rules 

 Manage interference 
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Dedicated, QOS-enabled 
regions 

 Rest of die: QOS-free 

Richly-connected topology 

 Traffic isolation 

Special routing rules 

 Manage interference 
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Dedicated, QOS-enabled 
regions 

 Rest of die: QOS-free 

Richly-connected topology 

 Traffic isolation 

Special routing rules 

 Manage interference 
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Q

Q

Q

Q

VM #1 VM #2

VM #1

VM #3

Topology-Aware  QOS 



 Topology-aware QOS 
support 

 Limit QOS complexity to 
a fraction of the die 

 Optimized flow control 

 Reduce buffer 
requirements in QOS-
free regions 
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Parameter Value 

Technology 15 nm 

Vdd 0.7 V 

System 1024 tiles: 
256 concentrated nodes (64 shared resources) 

Networks: 

MECS+PVC VC flow control, QOS support (PVC) at each node 

MECS+TAQ VC flow control, QOS support only in shared regions 

MECS+TAQ+EB EB flow control outside of SRs,  
Separate Request and Reply networks 

K-MECS Proposed organization:  TAQ + hybrid flow control 
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Kilo-NOC: a heterogeneous NOC architecture 
for kilo-node substrates 

Topology-aware QOS 

 Limits QOS support to a fraction of the die 

 Leverages low-diameter topologies 

 Improves NOC area- and energy-efficiency 

 Provides strong guarantees 
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