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New Review Assignments 

Â Were Due: Sunday, October 28, 11:59pm. 

Ç Das et al., ñAergia: Exploiting Packet Latency Slack in On-Chip 
Networks,ò ISCA 2010. 

Ç Dennis and Misunas, ñA Preliminary Architecture for a Basic Data 
Flow Processor,ò ISCA 1974. 
 

Â Due: Tuesday, October 30, 11:59pm.  

Ç Arvind and Nikhil, ñExecuting a Program on the MIT Tagged-Token 
Dataflow Architecture,ò IEEE TC 1990. 
 

Â Due: Thursday, November 1, 11:59pm.  

Ç Patt et al., ñHPS, a new microarchitecture: rationale and 
introduction,ò MICRO 1985. 

Ç Patt et al., ñCritical issues regarding HPS, a high performance 
microarchitecture,ò MICRO 1985. 
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Other Readings 

Â Dataflow 

Â Gurd et al., ñThe Manchester prototype dataflow computer,ò 
CACM 1985. 

Â Lee and Hurson, ñDataflow Architectures and Multithreading,ò 
IEEE Computer 1994. 

 

ÂRestricted Dataflow 

Ç Patt et al., ñHPS, a new microarchitecture: rationale and 
introduction,ò MICRO 1985. 

Ç Patt et al., ñCritical issues regarding HPS, a high performance 
microarchitecture,ò MICRO 1985. 

Ç Sankaralingam et al., ñExploiting ILP, TLP and DLP with the 
Polymorphous TRIPS Architecture,ò ISCA 2003. 

Ç Burger et al., ñScaling to the End of Silicon with EDGE 
Architectures,ò IEEE Computer 2004.  
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Project Milestone I Meetings 

Â Please come to office hours for feedback on 

Ç Your progress 

Ç Your presentation 
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Last Lectures 

Â Transactional Memory (brief) 

 

Â Interconnect wrap -up 

 

Â Project Milestone I presentations 
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Today 

Â More on Interconnects Research 

 

Â Start Dataflow  
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Research in Interconnects 

 

 

 

 

 



Research Topics in Interconnects 

Â Plenty of topics in interconnection networks. Examples: 
 

Â Energy/power efficient and proportional design 

Â Reducing Complexity: Simplified router and protocol designs 

Â Adaptivity: Ability to adapt to different access patterns  

Â QoS and performance isolation 

Ç Reducing and controlling interference, admission control 

Â Co-design of NoCs with other shared resources 

Ç End-to-end performance, QoS, power/energy optimization 

Â Scalable topologies to many cores, heterogeneous systems 

Â Fault tolerance 

Â Request prioritization, priority inversion, coherence, é 

Â New technologies (optical, 3D) 
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Packet Scheduling 

Â Which packet to choose for a given output port?  

Ç Router needs to prioritize between competing flits  

Ç Which input port? 

Ç Which virtual channel? 

Ç Which application s packet? 

 

Â Common strategies 

Ç Round robin across virtual channels 

Ç Oldest packet first (or an approximation)  

Ç Prioritize some virtual channels over others 

 

Â Better policies in a multi-core environment 

Ç Use application characteristics 
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Application-Aware Packet Scheduling 

 

 

 

 

 

Das et al., Application-Aware Prioritization Mechanisms for On-Chip 
Networks,  MICRO 2009. 



The Problem: Packet Scheduling 
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The Problem: Packet Scheduling 

ÁExisting scheduling policies  

ÁRound Robin 

ÁAge 

ÁProblem 1: Local to a router 

ÁLead to contradictory decision making between routers: packets 

from one application may be prioritized at one router, to be 

delayed at next.  

ÁProblem 2: Application oblivious 

ÁTreat all applicationsõ packets equally 

ÁBut applications are heterogeneous 

ÁSolution : Application-aware global scheduling policies. 

 

 

 



Motivation: Stall Time Criticality 

ÁApplications are not homogenous 

 

ÁApplications have different criticality with respect to the 

network 

ÁSome applications are network latency sensitive  

ÁSome applications are network latency tolerant 

 

ÁApplications Stall Time Criticality (STC) can be measured by 
its average network stall time per packet (i.e. NST/packet) 

ÁNetwork Stall Time (NST) is number of cycles the processor 

stalls waiting for network transactions to complete 

 



Motivation: Stall Time Criticality 

ÁWhy do applications have different network stall time 

criticality (STC)?  

ÁMemory Level Parallelism (MLP)  

ÁLower MLP  leads to higher STC 

 

ÁShortest Job First Principle (SJF)  

ÁLower network load leads to higher STC  

 

ÁAverage Memory Access Time 

ÁHigher memory access time leads to higher STC 

 



 

 

 

 

 

 

 

 

ÁObservation 1: Packet Latency != Network Stall Time 
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ÁObservation 1: Packet Latency != Network Stall Time 

ÁObservation 2: A low MLP applications  packets have higher 

criticality than a high MLP applications 

STALL STALL 

STALL of  Red Packet = 0 

LATENCY 

LATENCY 

LATENCY 

Application with high MLP  

STALL 

LATENCY 

STALL 

LATENCY 

STALL 

LATENCY 

Application with low MLP 

STC Principle 1 {MLP} 



STC Principle 2 {Shortest-Job-First} 

4X network slow down 

1.2X network slow down 

1.3X network slow down 

1.6X network slow down 

Overall system throughput{weighted speedup} increases by 34% 

Running ALONE 

Baseline (RR) Scheduling 

SJF  Scheduling 

Light Application Heavy Application 

Compute 



Solution: Application-Aware Policies 

Á Idea 

ÁIdentify stall time critical applications (i.e. network 

sensitive applications) and prioritize their packets in 

each router. 

 

ÁKey components of scheduling policy: 

ÁApplication Ranking 

ÁPacket Batching 

 

ÁPropose low-hardware complexity solution 



Component 1 : Ranking 

ÁRanking distinguishes applications based on Stall Time 

Criticality (STC) 

ÁPeriodically  rank applications based on Stall Time Criticality 

(STC). 

ÁExplored many heuristics for quantifying STC (Details & 

analysis in paper) 

ÁHeuristic based on outermost private cache Misses Per 

Instruction (L1-MPI) is the most effective 

ÁLow L1-MPI => high STC => higher rank 

ÁWhy Misses Per Instruction (L1-MPI)? 

ÁEasy to Compute (low complexity) 

ÁStable Metric (unaffected by interference in network) 



Component 1 : How to Rank? 
ÁExecution time is divided into fixed ranking intervals 

ÁRanking interval is 350,000 cycles  

ÁAt the end of an interval, each core calculates their L1-MPI and  

sends it to the Central Decision Logic (CDL) 

ÁCDL is located in the central node of mesh 

ÁCDL forms a ranking order and sends back its rank to each core 

ÁTwo control packets per core every ranking interval 

ÁRanking order is a partial order  

 

ÁRank formation is not on the critical path 

ÁRanking interval is significantly longer than rank computation time 

ÁCores use older rank values until new ranking is available 



Component 2: Batching 

ÁProblem: Starvation 

ÁPrioritizing a higher ranked application can lead to starvation of 

lower ranked application 

ÁSolution: Packet Batching 

ÁNetwork packets are grouped into finite sized batches  

ÁPackets of older batches are prioritized over younger 

batches 

ÁAlternative batching policies explored in paper 

ÁTime-Based Batching 

ÁNew batches are formed in a periodic, synchronous manner 

across all nodes in the network, every T cycles  

 

 



Putting it all together 

ÁBefore injecting a packet into the network, it is tagged by  

ÁBatch ID (3 bits) 

ÁRank ID (3 bits) 

ÁThree tier priority structure at routers 

ÁOldest batch first (prevent starvation) 

ÁHighest rank first   (maximize performance) 

ÁLocal Round-Robin        (final tie breaker) 

ÁSimple hardware support: priority arbiters 

ÁGlobal coordinated scheduling 

ÁRanking order and batching order are the same across all routers 

 



STC Scheduling Example 
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STC Scheduling Example 
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STC Scheduling Example 
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STC Scheduling Example 

4 8 

5 

1 7 

3 

2 

6 2 

2 

3 

Router 

S
c
h

e
d

u
le

r 

Round Robin 

5 4 3 1 2 2 3 2 8 7 6 

Age 

3 3 5 4 6 7 8 

STALL CYCLES Avg 

RR 8 6 11 8.3 

Age 4 6 11 7.0 

STC 

Time 

Time 



STC Scheduling Example 
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Qualitative Comparison 
ÁRound Robin & Age 

ÁLocal and application oblivious 

ÁAge is biased towards heavy applications 
Áheavy applications flood the network 

Áhigher likelihood of an older packet being from heavy application 

ÁGlobally Synchronized Frames (GSF) [Lee et al., ISCA 
2008] 

ÁProvides bandwidth fairness at the expense of system 
performance 

ÁPenalizes heavy and bursty applications  
ÁEach application gets equal and fixed quota of flits (credits) in each batch. 

ÁHeavy application quickly run out of credits after injecting into all active 
batches & stall till oldest batch completes and frees up fresh credits. 

ÁUnderutilization of network resources 
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System Performance 

ÁSTC provides 9.1% improvement in weighted speedup over 

the best existing policy{averaged across 96 workloads} 

ÁDetailed case studies in the paper 



Slack-Driven Packet Scheduling 

 

 

 

 

 

Das et al., ñAergia: Exploiting Packet Latency Slack in On-Chip Networks,ò 

ISCA 2010. 



Packet Scheduling in NoC 

ÁExisting scheduling policies   

ÁRound robin   

ÁAge 

 

ÁProblem 

ÁTreat all packets equally 

ÁApplication-oblivious 

 

ÁPackets have different criticality  

ÁPacket is critical if latency of a packet affects applicationõs 

performance 

ÁDifferent criticality due to memory level parallelism (MLP) 

All packets are not the sameé!!! 



Latency (   ) 

MLP Principle 

Stall Compute 

Latency (   ) 

Latency (   ) 

Stall (   )  = 0    

Packet Latency != Network Stall Time 

Different Packets have different criticality due to MLP 

Criticality (   )  >    Criticality (   )  >    Criticality (   )    
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ÁIntroduction 

ÁPacket Scheduling  

ÁMemory Level Parallelism 

ÁAeӢrgia  

ÁConcept of Slack 

ÁEstimating Slack 

ÁEvaluation 

ÁConclusion 



What is AeӢrgia? 
 

 

 

 

 

 

 

 

 

ÁAeӢrgia is the spirit of laziness in Greek mythology 

ÁSome packets can afford to slack! 
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Slack of Packets 
 

ÁWhat is slack of a packet? 

ÁSlack of a packet is number of cycles it can be delayed in a router 
without (significantly) reducing applicationõs performance 

ÁLocal network slack 

 

ÁSource of slack: Memory-Level Parallelism (MLP) 

ÁLatency of an applicationõs packet hidden from application due to 
overlap with latency of pending cache miss requests 

 

ÁPrioritize packets with lower slack 

 

 

 

 

 



Concept of Slack  
Instruction  

 Window 
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Network-on-Chip 

Load Miss  Causes  

 

   returns earlier than necessary 

Compute 

Slack (   ) = Latency (   ) ð Latency (   ) = 26 ð 6 = 20 hops 

Execution Time 

Packet(  ) can be delayed for available slack cycles  

without reducing performance! 
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Prioritizing using Slack  

Core A 

Core B 

Packet Latency Slack 

13 hops 0   hops 

3  hops 10 hops 

10 hops 0 hops 

4  hops  6 hops 

Causes 

Causes Load Miss  

Load Miss  

Prioritize   

Load Miss  

Load Miss  Causes 

Causes 

Interference at 3 hops 

Slack(   )   >  Slack (   )  



Slack in Applications 
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Slack in Applications 
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Diversity in Slack 
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Diversity in Slack 
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Slack varies between packets of  different  applications 

Slack varies between packets of  a single application 
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Estimating Slack Priority 

Slack (P) = Max (Latencies of Põs Predecessors) ð Latency of P 
 

 Predecessors(P) are the packets of outstanding cache miss 

requests when P is issued 
 

ÁPacket latencies not known when issued 

 

ÁPredicting latency of any packet Q 

ÁHigher latency if Q corresponds to an L2 miss 

ÁHigher latency if Q has to travel farther number of hops 

 



ÁSlack of P = Maximum Predecessor Latency ð Latency of P 

 

ÁSlack(P) =  

 

PredL2: Set if any predecessor packet is servicing L2 miss 

 

MyL2:  Set if  P is NOT servicing an L2 miss 

 

HopEstimate: Max (# of hops of Predecessors) ð hops of P 

 

Estimating Slack Priority 

PredL2 

(2 bits) 

MyL2 

(1 bit) 

HopEstimate 

(2 bits) 



Estimating Slack Priority 

ÁHow to predict L2 hit or miss at core? 

ÁGlobal Branch Predictor based L2 Miss Predictor  

ÁUse Pattern History Table and 2-bit saturating counters 

ÁThreshold based L2 Miss Predictor 

ÁIf  #L2 misses in òMó misses >= òTó threshold then next load is a L2 miss.  

ÁNumber of miss predecessors? 

ÁList of outstanding L2 Misses 

ÁHops estimate? 

ÁHops => æX + æ Y distance 

ÁUse predecessor list to calculate slack hop estimate 



Starvation Avoidance 

ÁProblem: Starvation 

ÁPrioritizing packets can lead to starvation of lower priority 

packets 

 

ÁSolution: Time-Based Packet Batching 

ÁNew batches are formed at every T cycles  

 

ÁPackets of older batches are prioritized over younger batches 

 

 



Putting it all together 

ÁTag header of the packet with priority bits before injection 

 

 

ÁPriority(P)? 

ÁPõs batch                 (highest priority) 

ÁPõs Slack 

ÁLocal Round-Robin                                        (final tie breaker) 

 

 

PredL2 

(2 bits) 

MyL2 

(1 bit) 

HopEstimate 

(2 bits) 

Batch 

(3 bits) 
Priority (P) =  
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Evaluation Methodology 
Á64-core system 
Áx86 processor model based on Intel Pentium M 

Á2 GHz processor, 128-entry instruction window 

Á32KB private L1 and 1MB per core shared L2 caches, 32  miss buffers 

Á4GB DRAM, 320 cycle access latency, 4 on-chip DRAM controllers 

ÁDetailed Network-on-Chip model  
Á2-stage routers (with speculation  and look ahead routing) 

ÁWormhole switching (8 flit data packets) 

ÁVirtual channel flow control (6 VCs, 5 flit buffer depth) 

Á8x8 Mesh (128 bit bi-directional channels) 

ÁBenchmarks 
ÁMultiprogrammed scientific, server, desktop workloads (35 applications) 

Á96 workload combinations 



Qualitative Comparison 

ÁRound Robin & Age 

ÁLocal and application oblivious 

ÁAge is biased towards heavy applications 

ÁGlobally Synchronized Frames (GSF)  
[Lee et al., ISCA 2008] 

ÁProvides bandwidth fairness at the expense of system performance 

ÁPenalizes heavy and bursty applications  

ÁApplication -Aware Prioritization Policies (SJF)  
[Das et al., MICRO 2009] 

ÁShortest-Job-First Principle 

ÁPacket scheduling policies which prioritize network sensitive 

applications which inject lower load  

 

 



System Performance 
 

ÁSJF provides 8.9% improvement 

in weighted speedup 

ÁAeӢrgia improves system  

throughput by 10.3% 

ÁAeӢrgia+SJF improves system  

throughput by 16.1% 
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Network Unfairness 
 

ÁSJF does not imbalance 

 network fairness 

ÁAergia improves network 

unfairness by 1.5X 

ÁSJF+Aergia improves  

network unfairness by 1.3X 
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Conclusions & Future Directions 

ÁPackets have different criticality, yet existing packet 

scheduling policies treat all packets equally   

ÁWe propose a new approach to packet scheduling in NoCs 

ÁWe define Slack as a key measure that characterizes the relative 

importance of a packet. 

ÁWe propose AeӢrgia a novel architecture to accelerate low slack 

critical packets 

ÁResult 

ÁImproves system performance: 16.1%  

ÁImproves network fairness: 30.8% 



Express-Cube Topologies 

 

 

 

 

 

Grot et al., ñExpress Cube Topologies for On-Chip Interconnectsò ò HPCA 2009. 



UTCS 60 HPCA '09 

2-D Mesh 



Å Pros 
Â Low design & layout 

complexity  

ÂSimple, fast routers  

ÅCons 
Â Large diameter  

ÂEnergy & latency impact  

UTCS 61 HPCA '09 

2-D Mesh 



Å Pros 
ÂMultiple terminals  

attached to a router node  

Â Fast nearest -neighbor 
communication via the 
crossbar  

ÂHop count reduction 
proportional to 
concentration  degree  

ÅCons 
ÂBenefits limited by 

crossbar complexity  

UTCS 62 HPCA '09 

Concentration (Balfour & Dally, ICS 06) 
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Concentration 

Å Side -effects  
Â Fewer channels  

ÂGreater channel width  



UTCS 64 HPCA 09 

Replication 

CMesh-X2 

Å Benefits  
ÂRestores bisection 

channel count  

ÂRestores channel width  

ÂReduced crossbar 
complexity  



UTCS 65 HPCA '09 

Flattened Butterfly (Kim et al., Micro 

07) 

ÅObjectives:  
Â Improve connectivity  

ÂExploit the wire budget  
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Flattened Butterfly (Kim et al., Micro 

07) 
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Flattened Butterfly (Kim et al., Micro 

07) 
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Flattened Butterfly (Kim et al., Micro 

07) 



UTCS 69 HPCA '09 

Flattened Butterfly (Kim et al., Micro 

07) 



Å Pros 
ÂExcellent connectivity  

Â Low diameter: 2 hops  

ÅCons 
ÂHigh channel count:  

k2/2 per row/column  

Â Low channel utilization  

Â Increased control 
(arbitration) complexity  

UTCS 70 HPCA '09 

Flattened Butterfly (Kim et al., Micro 

07) 



UTCS 71 HPCA '09 

Multidrop Express Channels (MECS) 

ÅObjectives:  
ÂConnectivity  

ÂMore scalable channel 
count  

ÂBetter channel 
utilization  
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Multidrop Express Channels (MECS) 
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Multidrop Express Channels (MECS) 
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Multidrop Express Channels (MECS) 
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Multidrop Express Channels (MECS) 
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Multidrop Express Channels (MECS) 


