
18-742 Fall 2012

Parallel Computer Architecture

Lecture 2: Basics

Prof. Onur Mutlu

Carnegie Mellon University

9/10/2012

Reminder: Assignments for This Week

1. Review two papers from ISCA 2012 – due September 11,
11:59pm.

2. Attend NVIDIA talk on September 10 – write an online
review of the talk; due September 11, 11:59pm.

3. Think hard about

 Literature survey topics

 Research project topics

4. Examine survey and project topics from Spring 2011

5. Find your literature survey and project partner

 2

Reminder: Reviews for This Week

 Due: Tuesday September 11, 11:59pm

 Required – Enter reviews in the online system

 Pick two papers from ISCA 2012 proceedings

 At least one of them should be new to you

 Cannot be a paper you have co-authored

 http://isca2012.ittc.ku.edu/index.php?option=com_content&vi
ew=article&id=53&Itemid=57

 Read them thoroughly

 Write a “critical” review for each paper online

 Bonus: pick three papers instead of two

3

http://isca2012.ittc.ku.edu/index.php?option=com_content&view=article&id=53&Itemid=57
http://isca2012.ittc.ku.edu/index.php?option=com_content&view=article&id=53&Itemid=57

Reminder: NVIDIA Talk Today

 NVIDIA Tech Talk by ECE Alumnus, Philip Cuadra

 Monday, September 10, 2012 7-9 pm, HH-1107

 Refreshments will be provided.

 Inside the Kepler GPU Architecture and Dynamic Parallelism

 This talk will dive into the features of the compute architecture for
“Kepler” – NVIDIA’s new 7-billion transistor GPU. From the reorganized
processing cores with new instructions and processing capabilities, to
an improved memory system with faster atomic processing and low-
overhead ECC, we will explore how the Kepler GPU achieves world
leading performance and efficiency, and how it enables wholly new
types of parallel problems to be solved. The software improvements to
expose the new dynamic parallelism features of the architecture will
also be discussed.

 Your job: Attend the talk and write a review of the talk.
4

Reminder: How to Do the Reviews

 Brief summary

 What is the problem the paper is trying to solve?

 What are the key ideas of the paper? Key insights?

 What is the key contribution to literature at the time it was written?

 What are the most important things you take out from it?

 Strengths (most important ones)

 Does the paper solve the problem well?

 Weaknesses (most important ones)

 This is where you should think critically. Every paper/idea has a
weakness. This does not mean the paper is necessarily bad. It means
there is room for improvement and future research can accomplish this.

 Can you do (much) better? Present your thoughts/ideas.

 What have you learned/enjoyed most in the paper? Why?

 Review should be short and concise (~half a page or shorter)

5

Reminder: Advice on Paper/Talk Reviews

 When doing the reviews, be very critical

 Always think about better ways of solving the problem or
related problems

 Do background reading

 Reviewing a paper/talk is the best way of learning about a
research problem/topic

 Think about forming a literature survey topic or a research
proposal

6

Reminder: Literature Survey

 More information to come

 Read a lot of papers; find focused problem areas to survey
papers on

7

Supplementary Readings on Research, Writing, Reviews

 Hamming, “You and Your Research,” Bell Communications
Research Colloquium Seminar, 7 March 1986.

 http://www.cs.virginia.edu/~robins/YouAndYourResearch.html

 Levin and Redell, “How (and how not) to write a good
systems paper,” OSR 1983.

 Smith, “The Task of the Referee,” IEEE Computer 1990.

 Read this to get an idea of the publication process

 SP Jones, “How to Write a Great Research Paper”

 Fong, “How to Write a CS Research Paper: A Bibliography”

8

http://www.cs.virginia.edu/~robins/YouAndYourResearch.html

Quiz 0 (Student Info Sheet)

 Was due Sep 7 (this Friday)

 Our way of getting to know about you fast

 All grading predicated on passing Quiz 0

 But, you are not in this room for grades anyway

9

Today’s Lecture

 Basics of Parallel Processing

 Outline of required readings (no reviews required yet):

 Hill, Jouppi, Sohi, “Multiprocessors and Multicomputers,” pp.
551-560 in Readings in Computer Architecture.

 Hill, Jouppi, Sohi, “Dataflow and Multithreading,” pp. 309-314
in Readings in Computer Architecture.

 Suleman et al., “Accelerating Critical Section Execution with
Asymmetric Multi-Core Architectures,” ASPLOS 2009.

 Culler & Singh, Chapter 1

10

Parallel Computer Architecture:

Basics

11

What is a Parallel Computer?

 Definition of a “parallel computer” not really precise

 “A ‘parallel computer’ is a “collection of processing elements
that communicate and cooperate to solve large problems fast”

 Almasi and Gottlieb, “Highly Parallel Computing,” 1989

 Is a superscalar processor a parallel computer?

 A processor that gives the illusion of executing a sequential ISA
on a single thread at a time is a sequential machine

 Almost anything else is a parallel machine

 Examples of parallel machines:

 Multiple program counters (PCs)

 Multiple data being operated on simultaneously

 Some combination
12

Remember: Flynn’s Taxonomy of Computers

 Mike Flynn, “Very High-Speed Computing Systems,” Proc.
of IEEE, 1966

 SISD: Single instruction operates on single data element

 SIMD: Single instruction operates on multiple data elements

 Array processor

 Vector processor

 MISD: Multiple instructions operate on single data element

 Closest form: systolic array processor, streaming processor

 MIMD: Multiple instructions operate on multiple data
elements (multiple instruction streams)

 Multiprocessor

 Multithreaded processor

13

Why Parallel Computers?

 Parallelism: Doing multiple things at a time

 Things: instructions, operations, tasks

 Main Goal

 Improve performance (Execution time or task throughput)
 Execution time of a program governed by Amdahl’s Law

 Other Goals

 Reduce power consumption

 (4N units at freq F/4) consume less power than (N units at freq F)

 Why?

 Improve cost efficiency and scalability, reduce complexity

 Harder to design a single unit that performs as well as N simpler units

 Improve dependability: Redundant execution in space

 14

Types of Parallelism and How to Exploit

Them
 Instruction Level Parallelism

 Different instructions within a stream can be executed in parallel

 Pipelining, out-of-order execution, speculative execution, VLIW

 Dataflow

 Data Parallelism

 Different pieces of data can be operated on in parallel

 SIMD: Vector processing, array processing

 Systolic arrays, streaming processors

 Task Level Parallelism

 Different “tasks/threads” can be executed in parallel

 Multithreading

 Multiprocessing (multi-core)

 15

Task-Level Parallelism: Creating Tasks

 Partition a single problem into multiple related tasks
(threads)

 Explicitly: Parallel programming

 Easy when tasks are natural in the problem

 Web/database queries

 Difficult when natural task boundaries are unclear

 Transparently/implicitly: Thread level speculation

 Partition a single thread speculatively

 Run many independent tasks (processes) together

 Easy when there are many processes

 Batch simulations, different users, cloud computing workloads

 Does not improve the performance of a single task

16

MIMD Processing

 Loosely coupled multiprocessors

 No shared global memory address space

 Multicomputer network

 Network-based multiprocessors

 Usually programmed via message passing

 Explicit calls (send, receive) for communication

 Tightly coupled multiprocessors

 Shared global memory address space

 Traditional multiprocessing: symmetric multiprocessing (SMP)

 Existing multi-core processors, multithreaded processors

 Programming model similar to uniprocessors (i.e., multitasking
uniprocessor) except

 Operations on shared data require synchronization

17

Main Issues in Tightly-Coupled MP

 Shared memory synchronization

 Locks, atomic operations

 Cache consistency

 More commonly called cache coherence

 Ordering of memory operations

 What should the programmer expect the hardware to provide?

 Resource sharing, contention, partitioning

 Communication: Interconnection networks

 Load imbalance

18

Aside: Hardware-based Multithreading

 Coarse grained

 Quantum based

 Event based (switch-on-event multithreading)

 Fine grained

 Cycle by cycle

 Thornton, “CDC 6600: Design of a Computer,” 1970.

 Burton Smith, “A pipelined, shared resource MIMD computer,” ICPP
1978.

 Simultaneous

 Can dispatch instructions from multiple threads at the same time

 Good for improving execution unit utilization

19

Caveats of Parallelism

 Amdahl’s Law

 p: Parallelizable fraction of a program

 N: Number of processors

 Amdahl, “Validity of the single processor approach to achieving large scale

computing capabilities,” AFIPS 1967.

 Maximum speedup limited by serial portion: Serial bottleneck

 Parallel portion is usually not perfectly parallel

 Synchronization overhead (e.g., updates to shared data)

 Load imbalance overhead (imperfect parallelization)

 Resource sharing overhead (contention among N processors)

20

Speedup =
1

+ 1 - p
p

N

Parallel Speedup Example

 a4x4 + a3x3 + a2x2 + a1x + a0

 Assume each operation 1 cycle, no communication cost,
each op can be executed in a different processor

 How fast is this with a single processor?

 How fast is this with 3 processors?

21

22

23

Speedup with 3 Processors

24

Revisiting the Single-Processor Algorithm

25

Horner, “A new method of solving numerical equations of all orders, by continuous

approximation,” Philosophical Transactions of the Royal Society, 1819.

26

Superlinear Speedup

 Can speedup be greater than P with P processing
elements?

 Happens in two ways:

 Unfair comparisons

 Memory/cache effects

27

Utilization, Redundancy, Efficiency

 Traditional metrics

 Assume all P processors are tied up for parallel computation

 Utilization: How much processing capability is used

 U = (# Operations in parallel version) / (processors x Time)

 Redundancy: how much extra work is done with parallel
processing

 R = (# of operations in parallel version) / (# operations in best
single processor algorithm version)

 Efficiency

 E = (Time with 1 processor) / (processors x Time with P processors)

 E = U/R

28

Utilization of Multiprocessor

29

30

Caveats of Parallelism (I)

31

Amdahl’s Law

32

Amdahl, “Validity of the single processor approach to
achieving large scale computing capabilities,” AFIPS 1967.

Amdahl’s Law Implication 1

33

Amdahl’s Law Implication 2

34

Caveats of Parallelism (Again)

 Amdahl’s Law

 f: Parallelizable fraction of a program

 N: Number of processors

 Amdahl, “Validity of the single processor approach to achieving large scale

computing capabilities,” AFIPS 1967.

 Maximum speedup limited by serial portion: Serial bottleneck

 Parallel portion is usually not perfectly parallel

 Synchronization overhead (e.g., updates to shared data)

 Load imbalance overhead (imperfect parallelization)

 Resource sharing overhead (contention among N processors)

35

Speedup =
1

+ 1 - f
f

N

Sequential Bottleneck

36

0
10
20
30
40
50
60
70
80
90

100
110
120
130
140
150
160
170
180
190
200

0

0
.0

4

0
.0

8

0
.1

2

0
.1

6

0
.2

0
.2

4

0
.2

8

0
.3

2

0
.3

6

0
.4

0
.4

4

0
.4

8

0
.5

2

0
.5

6

0
.6

0
.6

4

0
.6

8

0
.7

2

0
.7

6

0
.8

0
.8

4

0
.8

8

0
.9

2

0
.9

6 1

N=10

N=100

N=1000

f (parallel fraction)

Why the Sequential Bottleneck?

 Parallel machines have the
sequential bottleneck

 Main cause: Non-parallelizable
operations on data (e.g. non-
parallelizable loops)
 for (i = 0 ; i < N; i++)

 A[i] = (A[i] + A[i-1]) / 2

 Single thread prepares data
and spawns parallel tasks
(usually sequential)

37

Another Example of Sequential Bottleneck

38

Bottlenecks in Parallel Portion

 Synchronization: Operations manipulating shared data
cannot be parallelized

 Locks, mutual exclusion, barrier synchronization

 Communication: Tasks may need values from each other

- Causes thread serialization when shared data is contended

 Load Imbalance: Parallel tasks may have different lengths

 Due to imperfect parallelization or microarchitectural effects

- Reduces speedup in parallel portion

 Resource Contention: Parallel tasks can share hardware
resources, delaying each other

 Replicating all resources (e.g., memory) expensive

- Additional latency not present when each task runs alone

 39

Difficulty in Parallel Programming

 Little difficulty if parallelism is natural

 “Embarrassingly parallel” applications

 Multimedia, physical simulation, graphics

 Large web servers, databases?

 Difficulty is in

 Getting parallel programs to work correctly

 Optimizing performance in the presence of bottlenecks

 Much of parallel computer architecture is about

 Designing machines that overcome the sequential and parallel
bottlenecks to achieve higher performance and efficiency

 Making programmer’s job easier in writing correct and high-
performance parallel programs

40

Parallel and Serial Bottlenecks

 How do you alleviate some of the serial and parallel
bottlenecks in a multi-core processor?

 We will return to this question in the next few lectures

 Reading list:

 Hill and Marty, “Amdahl’s Law in the Multi-Core Era,” IEEE
Computer 2008.

 Annavaram et al., “Mitigating Amdahl’s Law Through EPI
Throttling,” ISCA 2005.

 Suleman et al., “Accelerating Critical Section Execution with
Asymmetric Multi-Core Architectures,” ASPLOS 2009.

 Joao et al., “Bottleneck Identification and Scheduling in
Multithreaded Applications,” ASPLOS 2012.

 Ipek et al., “Core Fusion: Accommodating Software Diversity
in Chip Multiprocessors,” ISCA 2007.

 41

Bottlenecks in the Parallel Portion

 Amdahl’s Law does not consider these

 How do synchronization (e.g., critical sections), and load
imbalance, resource contention affect parallel speedup?

 Can we develop an intuitive model (like Amdahl’s Law) to
reason about these?

 A research topic

 Example papers:

 Eyerman and Eeckhout, “Modeling critical sections in Amdahl's
law and its implications for multicore design,” ISCA 2010.

 Suleman et al., “Feedback-driven threading: power-efficient
and high-performance execution of multi-threaded workloads
on CMPs,” ASPLOS 2008.

 Need better analysis of critical sections in real programs

42

Reviews Due Sunday

 Sunday, September 16, 11:59pm.

 Suleman et al., “Accelerating Critical Section Execution with
Asymmetric Multi-Core Architectures,” ASPLOS 2009.

 Suleman et al., “Data Marshaling for Multi-core
Architectures,” ISCA 2010.

 Joao et al., “Bottleneck Identification and Scheduling in
Multithreaded Applications,” ASPLOS 2012.

43

