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Past Due: Review Assignments 

 Was Due: Tuesday, October 9, 11:59pm. 

 

 Sohi et al., “Multiscalar Processors,” ISCA 1995. 

 

 Was Due: Thursday, October 11, 11:59pm. 

 

 Herlihy and Moss, “Transactional Memory: Architectural Support 
for Lock-Free Data Structures,” ISCA 1993. 

 

 Austin, “DIVA: A Reliable Substrate for Deep Submicron 
Microarchitecture Design,” MICRO 1999. 
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New Review Assignments 

 Due: Sunday, October 14, 11:59pm. 

 Patel, “Processor-Memory Interconnections for Multiprocessors,” 
ISCA 1979. 

 

 Due: Tuesday, October 16, 11:59pm.  

 Moscibroda and Mutlu, “A Case for Bufferless Routing in On-Chip 
Networks,” ISCA 2009.  
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Project Milestone I Due (I) 

 Deadline: October 20, 11:59pm (next Saturday) 

 

 Format: Slides (no page limit) + presentation (10-15min) 

 

 What you should turn in: 

 PPT/PDF slides describing the following: 

 The problem you are solving + your goal 

 Your solution ideas + strengths and weaknesses 

 Your methodology to test your ideas 

 Concrete mechanisms you have implemented so far  

 Concrete results you have so far  

 What will you do next? 

 What hypotheses you have for future? 

 How close were you to your target? 
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Project Milestone I Due (II) 

 Next week (Oct 22-26) 

 Sign up for Milestone I presentation slots (10-15 min/group) 

 

 Make a lot of progress and find breakthroughs 

 

 Example milestones: 

 http://www.ece.cmu.edu/~ece742/2011spring/doku.php?id=p
roject 

 http://www.ece.cmu.edu/~ece742/2011spring/lib/exe/fetch.p
hp?media=milestone1_ausavarungnirun_meza_yoon.pptx 

 http://www.ece.cmu.edu/~ece742/2011spring/lib/exe/fetch.p
hp?media=milestone1_tumanov_lin.pdf 
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Last Lecture 

 Slipstream processors 

 

 Dual-core execution 

 

 Thread-level speculation 

 

 Key concepts in speculative parallelization 

 

 Multiscalar processors  
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Today 

 More multiscalar 

 

 Speculative lock elision 

 

 More speculation 
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Readings: Speculation 

 Required 

 Sohi et al., “Multiscalar Processors,” ISCA 1995. 

 Herlihy and Moss, “Transactional Memory: Architectural Support for 
Lock-Free Data Structures,” ISCA 1993. 

 

 Recommended 

 Rajwar and Goodman, “Speculative Lock Elision: Enabling Highly 
Concurrent Multithreaded Execution,” MICRO 2001. 

 Colohan et al., “A Scalable Approach to Thread-Level Speculation,” 
ISCA 2000. 

 Akkary and Driscoll, “A dynamic multithreading processor,” MICRO 
1998. 

 

 Reading list will be updated… 
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More Multiscalar 

 

 

 

 

 



Multiscalar Processors (ISCA 1992, 1995) 

 Exploit “implicit” thread-level parallelism within a serial 
program  

 Compiler divides program into tasks  

 Tasks scheduled on independent processing resources 
 

 Hardware handles register dependences between tasks 

 Compiler specifies which registers should be communicated 
between tasks 

 Memory speculation for memory dependences 

 Hardware detects and resolves misspeculation 

 

 Franklin and Sohi, “The expandable split window paradigm for 
exploiting fine-grain parallelism,” ISCA 1992. 

 Sohi et al., “Multiscalar processors,” ISCA 1995. 
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Multiscalar vs. Large Instruction Windows  
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Multiscalar Model of Execution 
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Multiscalar Tasks 

 A task is a subgraph of the control 
flow graph (CFG)  

 e.g., a basic block, multiple basic 
blocks, loop body, function 

 

 Tasks are selected by compiler and 
conveyed to hardware 

 

 Tasks are predicted and scheduled 
by processor  

 

 Tasks may have data and/or control 
dependences 
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Multiscalar Processor 
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Multiscalar Compiler 
 Task selection: partition CFG into tasks  

 Load balance  

 Minimize inter-task data dependences  

 Minimize inter-task control dependences  

 By embedding hard-to-predict branches within tasks  

 

 Convey task and communication information in the executable  

 Task headers  

 create_mask (1 bit per register)  

 Indicates all registers that are possibly modified or created by the task 
(better: live-out of the task) 

 Don’t forward instances received from prior tasks  

 PCs of successor tasks  

 Release instructions: Release a register to be forwarded to a 
receiving task 
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Multiscalar Program Example 
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Forwarding Registers Between Tasks 

 Compiler must identify the last instance of write to a 
register within a task  

 Opcodes that write a register have additional forward bit, 
indicating the instance should be forwarded  

 Stop bits - indicate end of task  

 Release instruction  

 tells PE to forward the register value 
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Task Sequencing 

 Task prediction analogous to branch prediction  

 Predict inter-task control flow 
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Handling Inter-Task Dependences 

 Control dependences  

 Predict  

 Squash subsequent tasks on inter-task misprediction  

 Intra-task mispredictions do not need to cause flushing of later 
tasks 

 

 Data dependences  

 Register file: mask bits and forwarding (stall until available) 

 Memory: address resolution buffer (speculative load, squash 
on violation) 
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Address Resolution Buffer 

 Multiscalar issues loads to ARB/D-cache as soon as address 
is computed  

 ARB is organized like a cache, maintaining state for all 
outstanding load/store addresses  

 Franklin and Sohi, “ARB: A hardware mechanism for 
dynamic reordering of memory references,” IEEE TC 1996.  

 

 An ARB entry: 
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Address Resolution Buffer 

 Loads  

 ARB miss: data comes from D-cache (no prior stores yet) 

 ARB hit: get most recent data to the load, which may be from 
D-cache, or nearest prior task with S=1  

 

 Stores  

 ARB buffers speculative stores  

 If store from an older task finds a load from a younger task to 
the same address  misspeculation detected  

 When a task commits, commit all of the task’s stores into the 
D-cache  
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Address Resolution Buffer 

 Franklin and Sohi, “ARB: A hardware mechanism for 
dynamic reordering of memory references,” IEEE TC 1996.  
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Memory Dependence Prediction 

 ARB performs memory renaming 

 However, it does not perform dependence prediction 

 Can reduce intra-task dependency flushes by accurate 
memory dependence prediction 

 

 Idea: Predict whether or not a load instruction will be 
dependent on a previous store (and predict which store). 
Delay the execution of the load if it is predicted to be 
dependent.  

 

 Moshovos et al., “Dynamic Speculation and Synchronization of 
Data Dependences,” ISCA 1997. 

 Chrysos and Emer, “Memory Dependence Prediction using Store 
Sets,” ISCA 1998.  
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740: Handling of Store-Load Dependencies 

 A load’s dependence status is not known until all previous store 
addresses are available.  

 

 How does the OOO engine detect dependence of a load instruction on a 
previous store? 

 Option 1: Wait until all previous stores committed (no need to 
check)  

 Option 2: Keep a list of pending stores in a store buffer and check 
whether load address matches a previous store address 

 

 How does the OOO engine treat the scheduling of a load instruction wrt 
previous stores? 

 Option 1: Assume load independent of all previous stores 

 Option 2: Assume load dependent on all previous stores 

 Option 3: Predict the dependence of a load on an outstanding store 
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740: Memory Disambiguation  

 Option 1: Assume load independent of all previous stores 

 + Simple and can be common case: no delay for independent loads 

 -- Requires recovery and re-execution of load and dependents on misprediction 
 

 Option 2: Assume load dependent on all previous stores 

 + No need for recovery  

    -- Too conservative: delays independent loads unnecessarily 
 

 Option 3: Predict the dependence of a load on an 
outstanding store 

 + More accurate. Load store dependencies persist over time 

 -- Still requires recovery/re-execution on misprediction 

 Alpha 21264 : Initially assume load independent, delay loads found to be dependent  

 Moshovos et al., “Dynamic speculation and synchronization of data dependences,” 
ISCA 1997. 

 Chrysos and Emer, “Memory Dependence Prediction Using Store Sets,” ISCA 1998. 
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740: Memory Disambiguation 

 Chrysos and Emer, “Memory Dependence Prediction Using Store 
Sets,” ISCA 1998. 

 

 

 

 

 

 

 

 

 Predicting store-load dependencies important for performance 

 Simple predictors (based on past history) can achieve most of 
the potential performance  
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Multiscalar Comparisons and Questions 

 vs. superscalar, out-of-order? 

 vs. multi-core? 

 vs. CMP and SMT-based thread-level speculation 
mechanisms 

 What is different in multiscalar hardware? 

 

 Scalability of fine-grained register communication 

 Scalability of memory renaming and dependence 
speculation 
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More Speculation 

 

 

 

 

 



Speculation to Improve Parallel Programs 

 Goal: reduce the impact of serializing bottlenecks 

 Improve performance 

 Improve programming ease 

 

 Examples 

 Herlihy and Moss, “Transactional Memory: Architectural Support for 
Lock-Free Data Structures,” ISCA 1993. 

 Rajwar and Goodman, “Speculative Lock Elision: Enabling Highly 
Concurrent Multithreaded Execution,” MICRO 2001. 

 Martinez and Torrellas, “Speculative Synchronization: Applying 
Thread-Level Speculation to Explicitly Parallel Applications,” ASPLOS 
2002. 

 Rajwar and Goodman, ”Transactional lock-free execution of lock-
based programs,” ASPLOS 2002. 
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Speculative Lock Elision 

 Many programs use locks for synchronization 

 Many locks are not necessary 

 Stores occur infrequently during execution 

 Updates can occur to disjoint parts of the data structure 

 

 Idea:  

 Speculatively assume lock is not necessary and execute critical 
section without acquiring the lock 

 Check for conflicts within the critical section  

 Roll back if assumption is incorrect 

 

 Rajwar and Goodman, “Speculative Lock Elision: Enabling 
Highly Concurrent Multithreaded Execution,” MICRO 2001. 
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Dynamically Unnecessary Synchronization 
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Speculative Lock Elision: Issues 

 Either the entire critical section is committed or none of it 

 

 How to detect the lock 

 How to keep track of dependencies and conflicts in a critical 
section 

 Read set and write set 

 How to buffer speculative state 

 How to check if “atomicity” is violated 

 Dependence violations with another thread 

 How to support commit and rollback 
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Maintaining Atomicity 

 If atomicity is maintained, all locks can be removed 

 Conditions for atomicity: 

 Data read is not modified by another thread until critical 
section is complete 

 Data written is not accessed by another thread until critical 
section is complete 

 

 If we know the beginning and end of a critical section, we 
can monitor the memory addresses read or written to by 
the critical section and check for conflicts 

 Using the underlying coherence mechanism 
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SLE Implementation 

 Checkpoint register state before entering SLE mode 

 

 In SLE mode: 

 Store: Buffer the update in the write buffer (do not make 
visible to other processors), request exclusive access 

 Store/Load: Set “access” bit for block in the cache 

 Trigger misspeculation on some coherence actions 

 If external invalidation to a block with “access” bit set 

 If exclusive access to request to a block with “access” bit set 

 If not enough buffering space, trigger misspeculation 

 

 If end of critical section reached without misspeculation, 
commit all writes (needs to appear instantaneous)    
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Accelerated Critical Sections (ACS) vs. SLE 

 ACS Advantages over SLE 

+ Speeds up each individual critical section 

+ Keeps shared data and locks in a single cache (improves 
shared data and lock locality) 

+ Does not incur re-execution overhead since it does not 
speculatively execute critical sections in parallel 

 

 ACS Disadvantages over SLE 

- Needs transfer of private data and control to a large core 
(reduces private data locality and incurs overhead) 

- Executes non-conflicting critical sections serially 

- Large core can reduce parallel throughput (assuming no SMT) 
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ACS vs. SLE 
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Suleman et al., “Accelerating Critical Section Execution with Asymmetric Multi-Core 
Architectures,” ASPLOS 2009, IEEE Micro Top Picks 2010.  



ACS vs. Transactional Lock Removal 
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ACS vs. SLE 

 Can you combine both? 

 

 How would you combine both? 

 

 Can you do better than both?  
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Four Issues in Speculative Parallelization 

 How to deal with unavailable values: predict vs. wait 

 

 How to deal with speculative updates: Logging/buffering 

 

 How to detect conflicts 

 

 How and when to abort/rollback or commit 
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We did not cover the following slides in lecture. 

These are for your preparation for the next lecture.  



Transactional Memory 

 

 

 

 

 



Transactional Memory 

 Idea: Programmer specifies code to be executed atomically 
as transactions. Hardware/software guarantees atomicity 
for transactions. 

 

 Motivated by difficulty of lock-based programming 

 Motivated by lack of concurrency (performance issues) in 
blocking synchronization (or “pessimistic concurrency”) 
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Locking Issues 

 Locks: objects only one thread can hold at a time 

 Organization: lock for each shared structure 

 Usage: (block)  acquire  access  release 

 

 Correctness issues 

 Under-locking  data races 

 Acquires in different orders  deadlock 

 

 Performance issues 

 Conservative serialization 

 Overhead of acquiring 

 Difficult to find right granularity 

 Blocking 
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Locks vs. Transactions 

 

 

 

 

 

 

 

 

 Locks  pessimistic concurrency 

 Transactions  optimistic concurrency 
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Lock issues: 

– Under-locking  data races 

– Deadlock due to lock ordering  

– Blocking synchronization 

– Conservative serialization 

 

How transactions help: 

+ Simpler interface/reasoning 

+ No ordering 

+ Nonblocking (Abort on conflict)  

+ Serialization only on conflicts 

 

 



Transactional Memory 
 Transactional Memory (TM) allows arbitrary multiple memory 

locations to be updated atomically (all or none) 
 

 Basic Mechanisms: 

 Isolation and conflict management: Track read/writes per 
transaction, detect when a conflict occurs between transactions 

 Version management: Record new/old values (where?) 

 Atomicity: Commit new values or abort back to old values  all 

or none semantics of a transaction 
 

 Issues the same as other speculative parallelization schemes 

 Logging/buffering 

 Conflict detection 

 Abort/rollback 

 Commit 
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Four Issues in Transactional Memory 

 How to deal with unavailable values: predict vs. wait 

 

 How to deal with speculative updates: logging/buffering 

 

 How to detect conflicts: lazy vs. eager 

 

 How and when to abort/rollback or commit 
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Many Variations of TM 

 Software 

 High performance overhead, but no virtualization issues 

 

 Hardware 

 What if buffering is not enough? 

 Context switches, I/O within transactions? 

 Need support for virtualization 

 

 Hybrid HW/SW 

 Switch to SW to handle large transactions and buffer overflows 
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Initial TM Ideas 

 Load Linked Store Conditional Operations 

 Lock-free atomic update of a single cache line 

 Used to implement non-blocking synchronization 

 Alpha, MIPS, ARM, PowerPC 

 Load-linked returns current value of a location 

 A subsequent store-conditional to the same memory location 
will store a new value only if no updates have occurred to the 
location 

 

 Herlihy and Moss, ISCA 1993 

 Instructions explicitly identify transactional loads and stores 

 Used dedicated transaction cache  

 Size of transactions limited to transaction cache 
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Herlihy and Moss, ISCA 1993 
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Current Implementations of TM/SLE 

 Sun ROCK 

 

 IBM Blue Gene 

 

 IBM System Z: Two types of transactions 

 Best effort transactions: Programmer responsible for aborts 

 Guaranteed transactions are subject to many limitations 

 

 Intel Haswell 
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TM Research Issues 

 How to virtualize transactions (without much complexity) 

 Ensure long transactions execute correctly 

 In the presence of context switches, paging 

 

 Handling I/O within transactions 

 No problem with locks 

 

 Semantics of nested transactions (more of a 
language/programming research topic) 

 

 Does TM increase programmer productivity? 

 Does the programmer need to optimize transactions? 
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