
18-742 Fall 2012

Parallel Computer Architecture

Lecture 16: Speculation II

Prof. Onur Mutlu

Carnegie Mellon University

10/12/2012

Past Due: Review Assignments

 Was Due: Tuesday, October 9, 11:59pm.

 Sohi et al., “Multiscalar Processors,” ISCA 1995.

 Was Due: Thursday, October 11, 11:59pm.

 Herlihy and Moss, “Transactional Memory: Architectural Support
for Lock-Free Data Structures,” ISCA 1993.

 Austin, “DIVA: A Reliable Substrate for Deep Submicron
Microarchitecture Design,” MICRO 1999.

2

New Review Assignments

 Due: Sunday, October 14, 11:59pm.

 Patel, “Processor-Memory Interconnections for Multiprocessors,”
ISCA 1979.

 Due: Tuesday, October 16, 11:59pm.

 Moscibroda and Mutlu, “A Case for Bufferless Routing in On-Chip
Networks,” ISCA 2009.

3

Project Milestone I Due (I)

 Deadline: October 20, 11:59pm (next Saturday)

 Format: Slides (no page limit) + presentation (10-15min)

 What you should turn in:

 PPT/PDF slides describing the following:

 The problem you are solving + your goal

 Your solution ideas + strengths and weaknesses

 Your methodology to test your ideas

 Concrete mechanisms you have implemented so far

 Concrete results you have so far

 What will you do next?

 What hypotheses you have for future?

 How close were you to your target?
4

Project Milestone I Due (II)

 Next week (Oct 22-26)

 Sign up for Milestone I presentation slots (10-15 min/group)

 Make a lot of progress and find breakthroughs

 Example milestones:

 http://www.ece.cmu.edu/~ece742/2011spring/doku.php?id=p
roject

 http://www.ece.cmu.edu/~ece742/2011spring/lib/exe/fetch.p
hp?media=milestone1_ausavarungnirun_meza_yoon.pptx

 http://www.ece.cmu.edu/~ece742/2011spring/lib/exe/fetch.p
hp?media=milestone1_tumanov_lin.pdf

5

http://www.ece.cmu.edu/~ece742/2011spring/doku.php?id=project
http://www.ece.cmu.edu/~ece742/2011spring/doku.php?id=project
http://www.ece.cmu.edu/~ece742/2011spring/lib/exe/fetch.php?media=milestone1_ausavarungnirun_meza_yoon.pptx
http://www.ece.cmu.edu/~ece742/2011spring/lib/exe/fetch.php?media=milestone1_ausavarungnirun_meza_yoon.pptx
http://www.ece.cmu.edu/~ece742/2011spring/lib/exe/fetch.php?media=milestone1_tumanov_lin.pdf
http://www.ece.cmu.edu/~ece742/2011spring/lib/exe/fetch.php?media=milestone1_tumanov_lin.pdf

Last Lecture

 Slipstream processors

 Dual-core execution

 Thread-level speculation

 Key concepts in speculative parallelization

 Multiscalar processors

6

Today

 More multiscalar

 Speculative lock elision

 More speculation

7

Readings: Speculation

 Required

 Sohi et al., “Multiscalar Processors,” ISCA 1995.

 Herlihy and Moss, “Transactional Memory: Architectural Support for
Lock-Free Data Structures,” ISCA 1993.

 Recommended

 Rajwar and Goodman, “Speculative Lock Elision: Enabling Highly
Concurrent Multithreaded Execution,” MICRO 2001.

 Colohan et al., “A Scalable Approach to Thread-Level Speculation,”
ISCA 2000.

 Akkary and Driscoll, “A dynamic multithreading processor,” MICRO
1998.

 Reading list will be updated…

8

More Multiscalar

Multiscalar Processors (ISCA 1992, 1995)

 Exploit “implicit” thread-level parallelism within a serial
program

 Compiler divides program into tasks

 Tasks scheduled on independent processing resources

 Hardware handles register dependences between tasks

 Compiler specifies which registers should be communicated
between tasks

 Memory speculation for memory dependences

 Hardware detects and resolves misspeculation

 Franklin and Sohi, “The expandable split window paradigm for
exploiting fine-grain parallelism,” ISCA 1992.

 Sohi et al., “Multiscalar processors,” ISCA 1995.

 10

Multiscalar vs. Large Instruction Windows

11

Multiscalar Model of Execution

12

Multiscalar Tasks

 A task is a subgraph of the control
flow graph (CFG)

 e.g., a basic block, multiple basic
blocks, loop body, function

 Tasks are selected by compiler and
conveyed to hardware

 Tasks are predicted and scheduled
by processor

 Tasks may have data and/or control
dependences

13

Multiscalar Processor

14

Multiscalar Compiler
 Task selection: partition CFG into tasks

 Load balance

 Minimize inter-task data dependences

 Minimize inter-task control dependences

 By embedding hard-to-predict branches within tasks

 Convey task and communication information in the executable

 Task headers

 create_mask (1 bit per register)

 Indicates all registers that are possibly modified or created by the task
(better: live-out of the task)

 Don’t forward instances received from prior tasks

 PCs of successor tasks

 Release instructions: Release a register to be forwarded to a
receiving task

15

Multiscalar Program Example

16

Forwarding Registers Between Tasks

 Compiler must identify the last instance of write to a
register within a task

 Opcodes that write a register have additional forward bit,
indicating the instance should be forwarded

 Stop bits - indicate end of task

 Release instruction

 tells PE to forward the register value

17

Task Sequencing

 Task prediction analogous to branch prediction

 Predict inter-task control flow

18

Handling Inter-Task Dependences

 Control dependences

 Predict

 Squash subsequent tasks on inter-task misprediction

 Intra-task mispredictions do not need to cause flushing of later
tasks

 Data dependences

 Register file: mask bits and forwarding (stall until available)

 Memory: address resolution buffer (speculative load, squash
on violation)

19

Address Resolution Buffer

 Multiscalar issues loads to ARB/D-cache as soon as address
is computed

 ARB is organized like a cache, maintaining state for all
outstanding load/store addresses

 Franklin and Sohi, “ARB: A hardware mechanism for
dynamic reordering of memory references,” IEEE TC 1996.

 An ARB entry:

20

Address Resolution Buffer

 Loads

 ARB miss: data comes from D-cache (no prior stores yet)

 ARB hit: get most recent data to the load, which may be from
D-cache, or nearest prior task with S=1

 Stores

 ARB buffers speculative stores

 If store from an older task finds a load from a younger task to
the same address misspeculation detected

 When a task commits, commit all of the task’s stores into the
D-cache

21

Address Resolution Buffer

 Franklin and Sohi, “ARB: A hardware mechanism for
dynamic reordering of memory references,” IEEE TC 1996.

22

Memory Dependence Prediction

 ARB performs memory renaming

 However, it does not perform dependence prediction

 Can reduce intra-task dependency flushes by accurate
memory dependence prediction

 Idea: Predict whether or not a load instruction will be
dependent on a previous store (and predict which store).
Delay the execution of the load if it is predicted to be
dependent.

 Moshovos et al., “Dynamic Speculation and Synchronization of
Data Dependences,” ISCA 1997.

 Chrysos and Emer, “Memory Dependence Prediction using Store
Sets,” ISCA 1998.

23

740: Handling of Store-Load Dependencies

 A load’s dependence status is not known until all previous store
addresses are available.

 How does the OOO engine detect dependence of a load instruction on a
previous store?

 Option 1: Wait until all previous stores committed (no need to
check)

 Option 2: Keep a list of pending stores in a store buffer and check
whether load address matches a previous store address

 How does the OOO engine treat the scheduling of a load instruction wrt
previous stores?

 Option 1: Assume load independent of all previous stores

 Option 2: Assume load dependent on all previous stores

 Option 3: Predict the dependence of a load on an outstanding store

24

740: Memory Disambiguation

 Option 1: Assume load independent of all previous stores

 + Simple and can be common case: no delay for independent loads

 -- Requires recovery and re-execution of load and dependents on misprediction

 Option 2: Assume load dependent on all previous stores

 + No need for recovery

 -- Too conservative: delays independent loads unnecessarily

 Option 3: Predict the dependence of a load on an
outstanding store

 + More accurate. Load store dependencies persist over time

 -- Still requires recovery/re-execution on misprediction

 Alpha 21264 : Initially assume load independent, delay loads found to be dependent

 Moshovos et al., “Dynamic speculation and synchronization of data dependences,”
ISCA 1997.

 Chrysos and Emer, “Memory Dependence Prediction Using Store Sets,” ISCA 1998.

25

740: Memory Disambiguation

 Chrysos and Emer, “Memory Dependence Prediction Using Store
Sets,” ISCA 1998.

 Predicting store-load dependencies important for performance

 Simple predictors (based on past history) can achieve most of
the potential performance

26

Multiscalar Comparisons and Questions

 vs. superscalar, out-of-order?

 vs. multi-core?

 vs. CMP and SMT-based thread-level speculation
mechanisms

 What is different in multiscalar hardware?

 Scalability of fine-grained register communication

 Scalability of memory renaming and dependence
speculation

27

More Speculation

Speculation to Improve Parallel Programs

 Goal: reduce the impact of serializing bottlenecks

 Improve performance

 Improve programming ease

 Examples

 Herlihy and Moss, “Transactional Memory: Architectural Support for
Lock-Free Data Structures,” ISCA 1993.

 Rajwar and Goodman, “Speculative Lock Elision: Enabling Highly
Concurrent Multithreaded Execution,” MICRO 2001.

 Martinez and Torrellas, “Speculative Synchronization: Applying
Thread-Level Speculation to Explicitly Parallel Applications,” ASPLOS
2002.

 Rajwar and Goodman, ”Transactional lock-free execution of lock-
based programs,” ASPLOS 2002.

29

Speculative Lock Elision

 Many programs use locks for synchronization

 Many locks are not necessary

 Stores occur infrequently during execution

 Updates can occur to disjoint parts of the data structure

 Idea:

 Speculatively assume lock is not necessary and execute critical
section without acquiring the lock

 Check for conflicts within the critical section

 Roll back if assumption is incorrect

 Rajwar and Goodman, “Speculative Lock Elision: Enabling
Highly Concurrent Multithreaded Execution,” MICRO 2001.

 30

Dynamically Unnecessary Synchronization

31

Speculative Lock Elision: Issues

 Either the entire critical section is committed or none of it

 How to detect the lock

 How to keep track of dependencies and conflicts in a critical
section

 Read set and write set

 How to buffer speculative state

 How to check if “atomicity” is violated

 Dependence violations with another thread

 How to support commit and rollback

32

Maintaining Atomicity

 If atomicity is maintained, all locks can be removed

 Conditions for atomicity:

 Data read is not modified by another thread until critical
section is complete

 Data written is not accessed by another thread until critical
section is complete

 If we know the beginning and end of a critical section, we
can monitor the memory addresses read or written to by
the critical section and check for conflicts

 Using the underlying coherence mechanism

33

SLE Implementation

 Checkpoint register state before entering SLE mode

 In SLE mode:

 Store: Buffer the update in the write buffer (do not make
visible to other processors), request exclusive access

 Store/Load: Set “access” bit for block in the cache

 Trigger misspeculation on some coherence actions

 If external invalidation to a block with “access” bit set

 If exclusive access to request to a block with “access” bit set

 If not enough buffering space, trigger misspeculation

 If end of critical section reached without misspeculation,
commit all writes (needs to appear instantaneous)

34

Accelerated Critical Sections (ACS) vs. SLE

 ACS Advantages over SLE

+ Speeds up each individual critical section

+ Keeps shared data and locks in a single cache (improves
shared data and lock locality)

+ Does not incur re-execution overhead since it does not
speculatively execute critical sections in parallel

 ACS Disadvantages over SLE

- Needs transfer of private data and control to a large core
(reduces private data locality and incurs overhead)

- Executes non-conflicting critical sections serially

- Large core can reduce parallel throughput (assuming no SMT)

35

ACS vs. SLE

36

Suleman et al., “Accelerating Critical Section Execution with Asymmetric Multi-Core
Architectures,” ASPLOS 2009, IEEE Micro Top Picks 2010.

ACS vs. Transactional Lock Removal

37

ACS vs. SLE

 Can you combine both?

 How would you combine both?

 Can you do better than both?

38

Four Issues in Speculative Parallelization

 How to deal with unavailable values: predict vs. wait

 How to deal with speculative updates: Logging/buffering

 How to detect conflicts

 How and when to abort/rollback or commit

39

We did not cover the following slides in lecture.

These are for your preparation for the next lecture.

Transactional Memory

Transactional Memory

 Idea: Programmer specifies code to be executed atomically
as transactions. Hardware/software guarantees atomicity
for transactions.

 Motivated by difficulty of lock-based programming

 Motivated by lack of concurrency (performance issues) in
blocking synchronization (or “pessimistic concurrency”)

42

Locking Issues

 Locks: objects only one thread can hold at a time

 Organization: lock for each shared structure

 Usage: (block) acquire access release

 Correctness issues

 Under-locking data races

 Acquires in different orders deadlock

 Performance issues

 Conservative serialization

 Overhead of acquiring

 Difficult to find right granularity

 Blocking

 43

Locks vs. Transactions

 Locks pessimistic concurrency

 Transactions optimistic concurrency

44

Lock issues:

– Under-locking data races

– Deadlock due to lock ordering

– Blocking synchronization

– Conservative serialization

How transactions help:

+ Simpler interface/reasoning

+ No ordering

+ Nonblocking (Abort on conflict)

+ Serialization only on conflicts

Transactional Memory
 Transactional Memory (TM) allows arbitrary multiple memory

locations to be updated atomically (all or none)

 Basic Mechanisms:

 Isolation and conflict management: Track read/writes per
transaction, detect when a conflict occurs between transactions

 Version management: Record new/old values (where?)

 Atomicity: Commit new values or abort back to old values all

or none semantics of a transaction

 Issues the same as other speculative parallelization schemes

 Logging/buffering

 Conflict detection

 Abort/rollback

 Commit

45

Four Issues in Transactional Memory

 How to deal with unavailable values: predict vs. wait

 How to deal with speculative updates: logging/buffering

 How to detect conflicts: lazy vs. eager

 How and when to abort/rollback or commit

46

Many Variations of TM

 Software

 High performance overhead, but no virtualization issues

 Hardware

 What if buffering is not enough?

 Context switches, I/O within transactions?

 Need support for virtualization

 Hybrid HW/SW

 Switch to SW to handle large transactions and buffer overflows

47

Initial TM Ideas

 Load Linked Store Conditional Operations

 Lock-free atomic update of a single cache line

 Used to implement non-blocking synchronization

 Alpha, MIPS, ARM, PowerPC

 Load-linked returns current value of a location

 A subsequent store-conditional to the same memory location
will store a new value only if no updates have occurred to the
location

 Herlihy and Moss, ISCA 1993

 Instructions explicitly identify transactional loads and stores

 Used dedicated transaction cache

 Size of transactions limited to transaction cache

48

Herlihy and Moss, ISCA 1993

49

Current Implementations of TM/SLE

 Sun ROCK

 IBM Blue Gene

 IBM System Z: Two types of transactions

 Best effort transactions: Programmer responsible for aborts

 Guaranteed transactions are subject to many limitations

 Intel Haswell

50

TM Research Issues

 How to virtualize transactions (without much complexity)

 Ensure long transactions execute correctly

 In the presence of context switches, paging

 Handling I/O within transactions

 No problem with locks

 Semantics of nested transactions (more of a
language/programming research topic)

 Does TM increase programmer productivity?

 Does the programmer need to optimize transactions?

51

